
114 COMMUNICATIONS OF THE ACM | FEBRUARY 2016 | VOL. 59 | NO. 2

research highlights

DOI:10.1145/2863701

Stochastic Program Optimization
By Eric Schkufza, Rahul Sharma, and Alex Aiken

Abstract
The optimization of short sequences of loop-free, fixed-point
assembly code sequences is an important problem in high-
performance computing. However, the competing constraints
of transformation correctness and performance improve-
ment often force even special purpose compilers to pro-
duce sub-optimal code. We show that by encoding these
constraints as terms in a cost function, and using a Markov
Chain Monte Carlo sampler to rapidly explore the space of
all possible code sequences, we are able to generate aggres-
sively optimized versions of a given target code sequence.
Beginning from binaries compiled by llvm −O0, we are able
to produce provably correct code sequences that either
match or outperform the code produced by gcc −O3, icc
−O3, and in some cases expert handwritten assembly.

1. INTRODUCTION
For many application domains there is considerable value
in producing the most performant code possible. However,
the traditional structure of a compiler’s optimization phase
is ill-suited to this task. Factoring the optimization problem
into a collection of small subproblems that can be solved
independently—although suitable for generating consis-
tently good code—can lead to sub-optimal results. In many
cases, the best possible code can only be obtained through
the simultaneous consideration of mutually dependent
issues such as instruction selection, register allocation, and
target-dependent optimization.

Previous approaches to this problem have focused on the
exploration of all possibilities within some limited class of
code sequences. In contrast to a traditional compiler, which
uses performance constraints to drive the generation of a sin-
gle sequence, these systems consider multiple sequences and
select the one that is best able to satisfy those constraints. An
attractive feature of this approach is completeness: if a code
sequence exists that meets the desired constraints it is guar-
anteed to be found. However, completeness also places prac-
tical limitations on the type of code that can be considered.
These techniques are either limited to sequences that are
shorter than the threshold at which many interesting optimi-
zations take place or code written in simplified languages.

We overcome this limitation through the use of incom-
plete search: the competing requirements of correctness
and performance improvement are encoded as terms in
a cost function which is defined over the space of all loop-
free x86_64 instruction sequences, and the optimization
task is formulated as a cost minimization problem. While
the search space is highly irregular and not amenable to
exact optimization techniques, we show that the com-
mon approach of employing a Markov Chain Monte Carlo
(MCMC) sampler to explore the function and produce low-
cost samples is sufficient for producing high-quality code.

Although the technique sacrifices completeness it pro-
duces dramatic increases in the quality of the resulting code.
Figure 1 shows two versions of the Montgomery multiplica-
tion kernel used by the OpenSSL RSA encryption library.
Beginning from code compiled by llvm −O0 (116 lines, not
shown), our prototype stochastic optimizer STOKE produces
code (right) that is 16 lines shorter and 1.6 times faster than
the code produced by gcc −O3 (left), and even slightly faster
than the expert handwritten assembly included in the
OpenSSL repository.

2. RELATED WORK
Although techniques that preserve completeness are effec-
tive within certain domains, their general applicability
remains limited. The shortcomings are best highlighted in
the context of the code sequence shown in Figure 1.

The code does the following: two 32-bit values, ecx and
edx, are concatenated and multiplied by the 64-bit value
rsi to produce a 128-bit product. The 64-bit values in rdi
and r8 are added to that product, and the result is stored
in r8 and rdi. The version produced by gcc −O3 (left)
implements the 128-bit multiplication as four 64-bit multi-
plications and a summation of the results. In contrast, the
version produced by STOKE (right), uses a hardware intrin-
sic which requires that the inputs be permuted and moved
to distinguished register locations so that the multiplication
may be performed in a single step. The odd looking move on
line 4 (right) produces the non-obvious but necessary side
effect of zeroing the upper 32 bits of rdx.

Massalin’s superoptimizer12 explicitly enumerates sequences
of code of increasing length and selects the first that behaves
identically to the input sequence on a set of test cases.
Massalin reports optimizing instruction sequences of up to
length 12, but only after restricting the set of enumerable
opcodes to between 10 and 15. In contrast, STOKE uses a large
subset of the nearly 400 x86_64 opcodes, some with over
20 variations, to produce the 11 instruction kernel shown in
Figure 1. It is unlikely that Massalin’s approach would scale
to an instruction set of this size.

Denali9 and Equality Saturation,17 achieve improved
scalability by only considering code sequences that are
equivalent to the input sequence; candidates are explored
through successive application of equality preserving trans-
formations. Because both techniques are goal-directed,
they dramatically improve the number of primitive instruc-
tions and the length of sequences that can be considered in
practice. However, both also rely heavily on expert knowl-
edge. It is unclear whether an expert would know to encode

This work was supported by NSF grant CCF-0915766 and
the Army High Performance Computing Research Center.

http://doi.acm.org/10.1145/2863701

FEBRUARY 2016 | VOL. 59 | NO. 2 | COMMUNICATIONS OF THE ACM 115

the multiplication transformation shown in Figure 1, or
whether a set of expert rules could ever cover the set of all
possible interesting optimizations.

Bansal’s peephole superoptimizer2 automatically enu-
merates 32-bit x86 optimizations and stores the results in
a database for later use. By exploiting symmetries between
code sequences that are equivalent up to register renam-
ing, Bansal was able to scale this approach to optimizations
mapping code sequences of up to length 6 to sequences of
up to length 3. The approach has the dual benefit of hiding
the high cost of superoptimization by performing search
once-and-for-all offline and eliminating the dependence
on expert knowledge. To an extent, the use of a database
also allows the system to overcome the low upper bound
on instruction length through the repeated application of
the optimizer along a sliding code window. Regardless, the
kernel shown in Figure 1 has a property shared by many real
world code sequences that no sequence of local optimiza-
tions will transform the code produced by gcc −O3 into the
code produced by STOKE.

Finally, Sketching16 and Brahma7 address the closely related
component-based sequence synthesis problem. These sys-
tems rely on either a declarative specification, or a user-
specified partial sequence, and operate on statements in
simplified bit-vector calculi rather than directly on hard-
ware instructions. Liang et al.10 considers the task of learn-
ing code sequences from test cases alone, but at a similarly
high level of abstraction. Although useful for synthesizing

non-trivial code, the internal representations used by these
systems preclude them from reasoning about the low-level
performance properties of the code that they produce.

3. COST MINIMIZATION
Before describing our approach to x86_64 optimization, we
discuss optimization as cost minimization in the abstract.
To begin, we define a cost function with terms that balance
the competing constraints of transformation correctness
(eq(·) ), and performance improvement (perf(·) ). We refer to
an input sequence as the target (T) and a candidate compi-
lation as a rewrite (R), and say that a function f (X; Y) takes
inputs X and is defined in terms of Y

	 cost(R; T) = we · eq(R; T) + wp · perf(R)� (1)

The eq(·) term measures the similarity of two code
sequences and returns zero if and only if they are equal. For
our purposes, code sequences are regarded as functions of
registers and memory contents and we say they are equal if
for all machine states that agree on the live inputs defined
by the target, the two code sequences produce identical side
effects on the live outputs defined by the target. Because
optimization is undefined for ill-formed code sequences,
it is unnecessary that eq(·) be defined for a target or rewrite
that produce exceptional behavior. However nothing pre-
vents us from doing so, and it would be straightforward to
define eq(·) to preserve exceptional behavior as well.

In contrast, the perf(·) term quantifies the performance
improvement of a rewrite; smaller values represent larger
improvements. Crucially, the extent to which this term is
accurate directly affects the quality of the resulting code.

Using this notation, the connection to optimization is
straightforward. We say that an optimization is any of the set
of rewrites for which the perf(·) term is improved, and the
eq(·) term is zero

{ r | perf(r) £ perf(T) Ù eq(r; T) = 0  }� (2)

Discovering these optimizations requires the use of a cost
minimization procedure. However, in general we expect cost
functions of this form to be highly irregular and not amenable
to exact optimization techniques. The solution to this problem
is to employ the common strategy of using an MCMC sampler.
Although a complete discussion of the technique is beyond
the scope of this article, we summarize the main ideas here.

MCMC sampling is a technique for drawing elements
from a probability density function in direct proportion to
its value: regions of higher probability are sampled more
often than regions of low probability. When applied to cost
minimization, it has two attractive properties. In the limit,
the most samples will be taken from the minimum (optimal)
values of a function. And in practice, well before that behav-
ior is observed, it functions as an intelligent hill climbing
method which is robust against irregular functions that are
dense with local minima.

A common method6 for transforming an arbitrary func-
tion such as cost(·) into a probability density function is
shown below, where β is a constant and Z is a partition

[r8:rdi] = rsi * [ecx:edx] + r8 + rdi

STOKE1gcc -03#1
22

3 movq rsi, r9 shlq 32, rcx
4 movl ecx, ecx movl edx, edx
5 shrq 32, rsi xorq rdx, rcx
6 andl 0xffffffff, r9d movq rcx, rax
7 movq rcx, rax mulq rsi
8 movl edx, edx addq r8, rdi
9 imulq r9, rax adcq 0, rdx
10 imulq rdx, r9 addq rdi, rax
11 imulq rsi, rdx adcq 0, rdx
12 imulq rsi, rcx movq rdx, r8
13

3
4
5
6
7
8
9

10
11
12
13addq rdx, rax movq rax, rdi

14 jae .L0
15 movabsq 0x100000000, rdx
16 addq rdx, rcx
17 .L0:
18 movq rax, rsi
19 movq rax, rdx
20 shrq 32, rsi
21 salq 32, rdx
22 addq rsi, rcx
23 addq r9, rdx
24 adcq 0, rcx
25 addq r8, rdx
26 adcq 0, rcx
27 addq rdi, rdx
28 adcq 0, rcx
29 movq rcx, r8
30 movq rdx, rdi

Figure 1. Montgomery multiplication kernel from the OpenSSL RSA
library. Compilations shown for gcc −O3 (left) and a stochastic
optimizer (right).

research highlights

116 COMMUNICATIONS OF THE ACM | FEBRUARY 2016 | VOL. 59 | NO. 2

function that normalizes the resulting distribution:
Although computing Z is generally intractable, the
Metropolis–Hastings algorithm is designed to explore
density functions such as p(·) without having to compute
Z directly8

� (3)

The basic idea is simple. The algorithm maintains a cur-
rent rewrite R and proposes a modified rewrite R*. The pro-
posal R* is then either accepted or rejected. If it is accepted,
R* becomes the current rewrite. Otherwise another proposal
based on R is generated. The algorithm iterates until its
computational budget is exhausted, and as long as the pro-
posals are ergodic (sufficient to transform any code sequence
into any other through some sequence of applications) the
algorithm will in the limit produce a sequence of samples
distributed in proportion to their cost.

This global property depends on the local acceptance
criteria for a proposal R → R*, which is governed by the
Metropolis–Hastings acceptance probability shown below.
We use the notation q(R*|R) to represent the proposal dis-
tribution from which a new rewrite R* is sampled given the
current rewrite, R. This distribution is key to a successful
application of the algorithm. Empirically, the best results
are obtained for a distribution which makes both local pro-
posals that make minor modifications to R and global pro-
posals that induce major changes

� (4)

The important properties of the acceptance criteria
are the following: If R* is better (has a higher probabil-
ity/lower cost) than R, the proposal is always accepted. If
R* is worse (has a lower probability/higher cost) than R,
the proposal may still be accepted with a probability that
decreases as a function of the ratio between R* and R. This
property prevents search from becoming trapped in local
minima while remaining less likely to accept a move that
is much worse than available alternatives. In the event that
the proposal distribution is symmetric, q(R*|R) = q(R|R*),
the acceptance probability can be reduced to the much
simpler Metropolis ratio, which is computed directly from
cost(·):

� (5)

4. X86_64 OPTIMIZATION
We now address the practical details of applying cost mini-
mization to x86_64 optimization. As x86_64 is arguably the
most complex instance of a CISC architecture, we expect
this discussion to generalize well to other architectures.
A natural choice for the implementation of the eq(·) term is
the use of a symbolic validator (val(·) ),4 and a binary indicator

function (1(·) ), which returns one if its argument is true, and
zero otherwise

	 eq(R; T) = 1-1(val(T, R))� (6)

However, the total number of invocations that can be per-
formed per second using current symbolic validator tech-
nology is quite low. For even modestly sized code sequences,
it is well below 1000. Because MCMC sampling is effective
only insofar as it is able to explore sufficiently large num-
bers of proposals, the repeated computation of Equation (6)
would drive that number well below a useful threshold.

This observation motivates the definition of an approxi-
mation to the eq(·) term which is based on test cases (τ).
Intuitively, we execute the proposal R* on a set of inputs
and measure “how close” the output matches the target for
those same inputs by counting the number of bits that differ
between live outputs (i.e., the Hamming distance). In addi-
tion to being much faster than using a theorem prover, this
approximation of equivalence has the added advantage of
producing a smoother landscape than the 0/1 output of a
symbolic equality test; it provides a useful notion of “almost
correct” that can help to guide search

�
(7)

In Equation (7), reg(·) is used to compare the side effects
(eval(·) ) that both functions produce on the live register out-
puts (ρ) defined by the target. These outputs can include gen-
eral purpose, SSE, and condition registers. reg(·) computes
the number of bits that the results differ by using the popu-
lation count function (pop(·) ), which returns the number of
1-bits in the 64-bit representation of an integer

� (8)

For brevity, we omit the definition of mem(·), which is
analogous. The remaining term, err(·), is used to distinguish
code sequences that exhibit undefined behavior, by count-
ing and then penalizing the number of segfaults, floating-
point exceptions, and reads from undefined memory or
registers, that occur during execution of a rewrite. We note
that sigsegv(·) is defined in terms of T, which determines the
set of addresses that may be successfully dereferenced by a
rewrite for a particular test case. Rewrites must be run in a
sandbox to ensure that this behavior can be detected safely
at runtime. The extension to additional types of exceptions
is straightforward

�
(9)

The evaluation of eq¢(·) may be implemented either by
JIT compilation, or the use of a hardware emulator. In our
experiments (Section 8) we have chosen the former, and
shown the ability to dispatch test case evaluations at a rate

FEBRUARY 2016 | VOL. 59 | NO. 2 | COMMUNICATIONS OF THE ACM 117

MCMC sampling, rerank each based on their actual run-
times, and return the best result.

Finally, there is the implementation of MCMC sampling for
x86_64 optimization. Rewrites are represented as loop-free
sequences of instructions of length l, where a distinguished
token (UNUSED) is used to represent unused instruction
slots. This simplification to sequences of bounded length is
crucial, as it places a constant value on the dimensionality
of the resulting search space.1 The proposal distribution q(·)
chooses from four possible moves: the first two minor and
the last two major:

•	 Opcode. An instruction is randomly selected, and its
opcode is replaced by a random opcode.

•	 Operand. An instruction is randomly selected and one
of its operands is replaced by a random operand.

•	 Swap. Two lines of code are randomly selected and
interchanged.

•  Instruction. An instruction is randomly selected and
replaced either by a random instruction or the UNUSED
token. Proposing UNUSED corresponds to deleting an
instruction, and replacing UNUSED by an instruction
corresponds to inserting an instruction.

These moves satisfy the ergodicity property described in
Section 3: any code sequence can be transformed into any
other through repeated application of instruction moves.
These moves also satisfy the symmetry property, and allow
the use of Equation (5). To see why, note that the probabili-
ties of performing all four moves are equal to the probabili-
ties of undoing the transformations they produce using a
move of the same type: opcode and operand moves are con-
strained to sample from identical equivalence classes before
and after acceptance, and swap and instruction moves are
unconstrained in either direction.

5. SEARCH STRATEGIES
An early version of the implementation described above
was able to transform llvm −O0 code into the equiva-
lent of gcc −O3 code, but was unable to produce results

of between 1 and 10 million per second. Using this imple-
mentation, we define an optimized method for computing
eq(·), which achieves sufficient throughput to be useful for
MCMC sampling

� (10)

Besides improved performance, Equation (10) has
two desirable properties. First, failed computations of
eq(·) will produce a counterexample test case4 that can
be used to refine τ. Although doing so changes the search
space defined by cost(·), in practice the number of failed
validations that are required to produce a robust set of
test cases that accurately predict correctness is quite low.
Second, as remarked above, it improves the search space
by smoothly interpolating between correct and incorrect
code sequences.

Similar considerations apply to the implementation
of the perf(·) term. Although it seems natural to JIT com-
pile both target and rewrite and compare runtimes, the
amount of time required to execute a code sequence suf-
ficiently many times to eliminate transient effects is pro-
hibitively expensive. To account for this, we define a simple
heuristic for approximating runtime which is based on a
static approximation of the average latencies (lat(·) ), of
instructions

� (11)

Figure 2 shows a reasonable correlation between this heu-
ristic and actual runtimes for a representative corpus of code
sequences. Outliers are characterized either by dispropor-
tionately high instruction level parallelism at the micro-op
level or inconsistent memory access times. A more accurate
model of the higher order performance effects introduced
by a modern CISC processor is feasible if tedious to con-
struct and would likely be necessary for more complex code
sequences.

Regardless, this approximation is sufficient for the bench-
marks that we consider (Section 8). Errors that result from
this approach are addressed by recomputing perf(·) using
the JIT compilation method as a postprocessing step. During
search, we record the n lowest cost programs produced by

0 10

20

20 30

Predicted runtime (unitless)

A
ct

ua
l r

un
ti

m
e

(n
s)

40 50 60 70

15

10

5

0

Figure 2. Predicted versus observed runtimes for selected
code sequences. Outliers are characterized by instruction level
parallelism and memory effects.

Expert

llvm -O0

gcc -O3

Random

Figure 3. Search space for the Montgomery multiplication
benchmark: O0 and O3 codes are densely connected, whereas expert
code is reachable only by an extremely low probability path.

research highlights

118 COMMUNICATIONS OF THE ACM | FEBRUARY 2016 | VOL. 59 | NO. 2

that were competitive with expert hand-written code. The
reason is suggested by Figure 3, which abstractly depicts
the search space for the Montgomery multiplication bench-
mark shown in Figure 1. For loop-free code sequences,
llvm −O0 and gcc −O3 differ primarily in stack use and
instruction selection, but otherwise produce algorithmi-
cally similar results. Compilers are generally designed to
compose many small local transformations: dead code
elimination deletes an instruction, constant propagation
changes a register to an immediate, and strength reduc-
tion replaces a multiplication by an add. Sequences of
local optimizations such as these correspond to regions of
equivalent code sequences that are densely connected by
very short sequences of moves (often just one) and easily
traversed by local search methods. Beginning from llvm
−O0 code, MCMC sampling will quickly improve local inef-
ficiencies one by one and hill climb its way to the equiva-
lent of gcc −O3 code.

The code discovered by STOKE occupies an entirely dif-
ferent region of the search space. As remarked earlier, it rep-
resents a completely distinct algorithm for implementing
the kernel at the assembly level. The only method for a local
search procedure to produce code of this form from com-
piler generated code is to traverse the extremely low prob-
ability path that builds the code in place next to the original
(all the while increasing its cost) only to delete the original
code at the very end.

Although MCMC sampling is guaranteed to traverse this
path in the limit, the likelihood of it doing so in any reason-
able amount of time is so low as to be useless in practice.
This observation motivates the division of cost minimiza-
tion into two phases:

•	 A synthesis phase focused solely on correctness, which
attempts to locate regions of equivalent code sequences
that are distinct from the region occupied by the
target.

•  An optimization phase focused on performance, which
searches for the fastest sequence within each of those
regions.

These phases share the same implementation and differ
only in starting point and acceptance function. Synthesis
begins with a random code sequence, while optimization
begins from a code sequence that is known to be equivalent
to the target. Synthesis ignores the perf(·) term and uses
Equation (10) as its cost function, whereas optimization
uses both terms, which allows it to improve performance
while also experimenting with “shortcuts” that (temporar-
ily) violate correctness.

It is perhaps unintuitive that synthesis should be able to
produce a correct rewrite from such an enormous search
space in a tractable amount of time. In our experience, syn-
thesis is effective precisely when it is possible to discover
portions of a correct rewrite incrementally, rather than all
at once. Figure 4 compares cost over time against the per-
centage of instructions that appear in the final rewrite for
the Montgomery multiplication benchmark. As synthesis

proceeds, the percentage of correct code increases in inverse
proportion to the value of the cost function.

While this is encouraging and there are many code
sequences that can be synthesized in pieces, there are
many that cannot. Fortunately, even when synthesis fails,
optimization is still possible. It must simply proceed only
from the region occupied by the target as a starting point.

6. SEARCH OPTIMIZATIONS
Equation (10) is sufficiently fast for MCMC sampling,
however its performance can be further improved. As
described above, the eq* (·) term is computed by execut-
ing a proposal on test cases, noting the ratio in total
cost with the current rewrite, and then sampling a ran-
dom variable to decide whether to accept the proposal.
However, by first sampling p, and then computing the
maximum ratio that the algorithm will accept for that
value, it is possible to terminate the evaluation of test
cases as soon as that bound is exceeded and the proposal
is guaranteed to be rejected

�

(12)

800 100%

75%

50%

25%

0%

600

400

C
os

t
fu

nc
ti

on

P
er

ce
nt

 o
f

fi
na

l c
od

e

200

0
Proposal iterations

Cost function
Percent (with trend)

Figure 4. Cost over time versus percentage of instructions
that appear in the final zero-cost rewrite for the Montgomery
multiplication synthesis benchmark.

Figure 5. Proposals evaluated per second versus test cases evaluated
prior to early termination, for the Montgomery multiplication
synthesis benchmark. Cost function shown for reference.

6

Te
st

ca
se

s
/ P

ro
po

sa
l

P
ro

po
sa

ls
 (

x1
00

,0
00

)
/ s

Proposal iterations

Testcases
Proposals

27

36

18

9

0

2

4

0

FEBRUARY 2016 | VOL. 59 | NO. 2 | COMMUNICATIONS OF THE ACM 119

generates 32 test cases for each target and synthesis and
optimization are executed in parallel on an 8 core 3.5 GHz
Intel i7–4770K with a computational budget of 15 min.

STOKE generates test cases using Intel’s PinTool.11 It
executes the binary provided by the user, and for every invo-
cation of the target records both initial register state and
the set of values dereferenced from memory. For each test
case, the set of addresses dereferenced by the target are
used to define the sandbox in which candidate rewrites are
executed. Dereferences of invalid addresses are trapped and
replaced by instructions that produce a constant zero value;
reads from undefined locations and floating-point excep-
tions are handled analogously.

STOKE uses a sound procedure to validate the equality
of loop-free code sequences.2 Both target and rewrite are
converted into SMT formulae in the quantifier free theory
of bit-vector arithmetic used by Z3,5 producing a query
that asks whether both sequences produce the same side
effects on live outputs when executed from the same initial
machine state. Depending on type, registers are modeled as
between 8- and 256-bit vectors, and memory is modeled as
two vectors: a 64-bit address and an 8-bit value (x86_64 is
byte addressable).

STOKE asserts the constraint that both sequences agree
on the initial machine state with respect to the live inputs
defined by the target. For each instruction in the target, it
also asserts a constraint that encodes the transformation it
represents on the machine state and chains these together to

Figure 5 shows the result of applying this optimization
during synthesis for the Montgomery multiplication bench-
mark. As the value of the cost function decreases, so too does
the average number of test cases that must be evaluated
prior to early termination. This produces a considerable
increase in the number of proposals evaluated per second,
which at peak falls between 100,000 and 1 million.

A more important improvement stems from the obser-
vation that the definition of reg(·) in Equation (8) is unnec-
essarily strict. An example is shown in Figure 6 for a target
in which register al is live out. A rewrite that produces the
inverse of the desired value in al is assigned the maximum
possible cost in spite of the fact that it produces the correct
value, only in the incorrect location: dl. We can improve
this term by rewarding rewrites that produce correct (or
nearly correct) values in incorrect locations. The relaxed
definition shown below examines all registers of equivalent
bit-width (bw(·) ), selects the one that most closely matches
the value of the target register, and assigns a small mis-
alignment penalty (wm) if the selected register differs from
the original. Using this definition, the rewrite is assigned
a cost of just wm

�

(13)

Although it is possible to relax the definition of memory
equality analogously, the time required to compute this
term grows quadratically with the size of the target’s mem-
ory footprint. Although this approach suffices for our experi-
ments, a more efficient implementation is necessary for
more complex code sequences.

Figure 7 shows the result of using these improved defi-
nitions during synthesis for the Montgomery multiplica-
tion benchmark. In the amount of time required for the
relaxed cost function to converge, the original strict ver-
sion obtains a minimum cost that is only slightly superior
to a purely random search. The dramatic improvement
can be explained as an implicit parallelization of the
search procedure. Accepting correct values in arbitrary
locations allows a rewrite to simultaneously explore as
many alternate computations as can fit within a code
sequence of length l.

7. STOKE
STOKE is a prototype implementation of the ideas described
above.a STOKE runs a binary created by a standard compiler
(in our experiments, llvm −O0) under instrumentation
to generate test cases for a loop-free target of interest and
broadcasts both target and test cases to a set of synthesis
threads. After a fixed time, those threads report back with
a set of validated rewrites, and a new set of optimization
threads are used to improve those rewrites. Of the results,
the top 20% most performant are re-ranked based on
actual runtime, and the best is returned to the user. STOKE

Figure 6. Strict versus relaxed equality functions for a target in
which ax is live out and the correct result appears in an incorrect
location.

eval(T, ⋅)
eval(R, ⋅)

d = eval(T, al) ⊕ eval(R, ⋅)
pop(d)

wm ⋅ 1(al ≠ ⋅)

al bl cl dl
1111 0000 0000 0000
0000 1000 1100 1111
1111 0111 0011 0000

4 3 2 0
0 1 1 1

reg(T, R, τ) = 4

reg�(T, R, τ) = min(4, 3 + 1, 2 + 1, 1)

= 1

Figure 7. Strict versus relaxed cost functions for the Montgomery
multiplication synthesis benchmark. Random search results shown
for reference.

1000

750

500

C
os

t
fu

nc
ti

on

250

0
Proposal iterations

Improved
Strict
Random

a See https://stoke.stanford.edu.

research highlights

120 COMMUNICATIONS OF THE ACM | FEBRUARY 2016 | VOL. 59 | NO. 2

produce a constraint that describes the state of the live out-
puts defined by the target. An analogous set of constraints are
asserted for the rewrite, and for all pairs of memory accesses
at addresses addr

1
 and addr

2
, STOKE adds an additional con-

straint that relates their values: addr
1
 = addr

2
 ⇒ val

1
 = val

2
.

Using these constraints, STOKE asks Z3 if there exists
an initial machine state that causes the two sequences to
produce different results. If the answer is “no,” then the
sequences are determined to be equal. If the answer is
“yes,” then Z3 produces a witness that is converted to a new
test case.

STOKE makes two simplifying assumptions to keep run-
times tractable. It assumes that stack addresses are repre-
sented exclusively as constant offsets from rsp. This allows
stack locations to be treated as named variables in llvm −
O0 code, which exhibits heavy stack traffic. Additionally, it
treats 64-bit multiplication and division as uninterpreted
functions which are constrained by a small set of special-
purpose axioms. Whereas Z3 diverges when reasoning about
two or more such operations, our benchmarks contain up to
four per sequence.

8. EVALUATION
In addition to the Montgomery multiplication kernel,
we evaluate STOKE on benchmarks drawn from both the
literature and high-performance codes. Performance
improvements and runtimes are summarized in Figure
8. Beginning from binaries compiled using llvm −O0,
STOKE consistently produces rewrites that match the
performance of code produced by gcc and icc (the two
compilers produce essentially identical results). In sev-
eral cases, the rewrites are comparable in performance to
handwritten assembly.

Gulwani et al.7 identifies Hacker’s Delight18—a collec-
tion of techniques for encoding complex algorithms as
small loop-free code sequences—as a source of bench-
marks (p01–p25) for program synthesis and optimization.
For brevity, we focus only on a kernel for which STOKE dis-
covers an algorithmically distinct rewrite. Figure 9 shows
the “Cycle Through 3 Values” benchmark, which takes an
input x and transforms it to the next value in the sequence
áa, b, cñ. The most natural implementation of this func-
tion is a sequence of conditional assignments, but for ISAs
without the required intrinsics, the implementation shown
is cheaper than one that uses branches. For x86_64, which
has conditional move intrinsics, this is an instance of pre-
mature optimization. While STOKE is able to rediscover
the optimal implementation, gcc and icc transcribe the
code as written.

Single-precision Alpha X Plus Y (SAXPY) is a level 1
vector operation in the Basic Linear Algebra Subsystems
Library.3 It makes heavy use of heap accesses and pres-
ents the opportunity to use vector intrinsics. To expose
this property, our integer implementation is unrolled four
times by hand, as shown in Figure 10. Despite annotation
to indicate that x and y are aligned and do not alias, nei-
ther production compiler is able to produce vectorized
code. STOKE on the other hand, is able to discover the
ideal implementation.

In closing, we note that STOKE is not without its limita-
tions. Figure 11 shows the Linked List Traversal benchmark
of Bansal and Aiken.2 The code iterates over a list of integers
and doubles each element. Because STOKE is only able to

Figure 8. Speedups over llvm −O0 versus STOKE runtimes. Benchmarks
for which an algorithmically distinct rewrite was discovered are shown
in bold; synthesis timeouts are annotated with a −.

Speedup (×100%) Runtime (s)
gcc/icc -03 STOKE Synth. Opt.

p01 1.60 1.60 0.15 3.05
p02 1.60 1.60 0.16 3.14
p03 1.60 1.60 0.34 3.45
p04 1.60 1.60 2.33 3.55
p05 1.60 1.60 0.47 3.24
p06 1.60 1.60 1.57 6.26
p07 2.00 2.00 1.34 3.10
p08 2.20 2.20 0.63 3.24
p09 1.20 1.20 0.26 3.21
p10 1.80 1.80 7.49 3.61
p11 1.50 1.50 0.87 3.05
p12 1.50 1.50 5.29 3.34
p13 3.25 3.25 0.22 3.08
p14 1.86 1.86 1.43 3.07
p15 2.14 2.14 2.83 3.17
p16 1.80 1.80 6.86 4.62
p17 2.60 2.60 10.65 4.45
p18 2.44 2.50 0.30 4.04
p19 1.93 1.97 - 18.37
p20 1.78 1.78 - 36.72
p21 1.62 1.65 6.97 4.96
p22 3.38 3.41 0.02 4.02
p23 5.53 6.32 0.13 4.36
p24 4.67 4.47 - 48.90
p25 2.17 2.34 3.29 4.43

mont mul 2.84 4.54 319.03 111.64
linked list 1.10 1.09 3.94 8.08
SAXPY 1.82 2.46 10.35 6.66

Figure 9.Cycling Through 3 Values benchmark.

int p21(int x, int a, int b, int c) {
return ((-(x == c)) & (a ^ c)) ^

((-(x == a)) & (b ^ c)) ^ c;
}

1 # gcc -O3 1 # STOKE
22

3 movl edx, eax 3 cmpl edi, ecx
4 xorl edx, edx 4 cmovel esi, ecx
5 xorl ecx, eax 5 xorl edi, esi
6 cmpl esi, edi 6 cmovel edx, ecx
7 sete dl 7 movq rcx, rax
8 negl edx
9 andl edx, eax
10 xorl edx, edx
11 xorl ecx, eax
12 cmpl ecx, edi
13 sete dl
14 xorl ecx, esi
15 negl edx
16 andl esi, edx
17 xorl edx, eax

FEBRUARY 2016 | VOL. 59 | NO. 2 | COMMUNICATIONS OF THE ACM 121

References
	 1.	 Andrieu, C., de Freitas, N., Doucet, A.,

Jordan, M.I. An introduction to
MCMC for machine learning.
Machine Learning 50, 1–2 (2003),
5–43.

	 2.	 Bansal, S., Aiken, A. Binary
translation using peephole
superoptimizers. In Proceedings
of the 8th USENIX Symposium
on Operating Systems Design and
Implementation, OSDI 2008.
R. Draves and R. van Renesse, eds.
(San Diego, CA, USA, December
8–10, 2008). USENIX Association,
177–192.

	 3.	 Blackford, L.S., Demmel, J., Dongarra, J.,
Duff, I., Hammarling, S., Henry, G.,
Heroux, M., Kaufman, L., Lumsdaine, A.,
Petitet, A., Pozo, R., Remington, K.,
Whaley, R.C. An updated set of basic
linear algebra subprograms (BLAS).
ACM Trans. Math. Softw. 28, 2 (2002),
135–151.

	 4.	 Cadar, C., Dunbar, D., Engler, D.R.
Klee: Unassisted and automatic

generation of high-coverage tests
for complex systems programs.
In Proceedings of the 8th USENIX
Symposium on Operating Systems
Design and Implementation, OSDI
2008. R. Draves and R. van Renesse,
eds. (San Diego, CA, USA, December
8–10, 2008). USENIX Association,
209–224.

	 5.	 Ganesh, V., Dill, D.L. A decision
procedure for bit-vectors and
arrays. In Proceedings of the
19th International Conference on
Computer Aided Verification (CAV)
2007. W. Damm and H. Hermanns,
eds. Volume of 4590 Lecture
Notes in Computer Science
(Berlin, Germany, July 3–7, 2007),
Springer, 519–531.

	 6.	 Gilks, W.R. Markov Chain Monte Carlo
in Practice. Chapman and Hall/CRC,
1999.

	 7.	 Gulwani, S., Jha, S., Tiwari, A.,
Venkatesan, R. Synthesis of loop-
free programs. In Proceedings
of the 32nd ACM SIGPLAN

independently solvable subproblems, our approach uses cost
minimization and considers the competing constraints of
transformation correctness and performance improvement
simultaneously. Although the method sacrifices completeness,
it is competitive with production compilers and has been
demonstrated capable of producing code that can out-per-
form expert handwritten assembly.

This article is based on work that was originally pub-
lished in 2013. Since then, STOKE has undergone substan-
tial improvement; the updated results that appear here were
produced using the current implementation and improve
on the original by over an order of magnitude. Interested
readers are encouraged to consult the original text Stochastic
Superoptimization13 and those that followed.

Data-Driven Equivalence Checking15 describes exten-
sions to STOKE that enable the optimization of code
sequences with non-trivial control flow. It defines a sound
method for guaranteeing that the optimizations pro-
duced by STOKE are correct for all possible inputs even
in the presence of loops. The method is based on a data-
driven algorithm that observes test case executions and
automatically infers invariants for producing inductive
proofs of equivalence. The prototype implementation is
the first sound equivalence checker for loops written in
x86_64 assembly.

Stochastic Optimization of Floating-Point Programs with
Tunable Precision14 describes extensions to STOKE that
enable the optimization of floating-point code sequences.
By modifying the definition of the eq(·) term to account
for relaxed constraints on floating-point equality STOKE
is able to generate reduced precision implementations
of Intel’s handwritten C numeric library that are up to
six times faster than the original, and achieve end-to-end
speedups of over 30% on high-performance applications
that can tolerate a loss of precision while still remaining
correct. Because these optimizations are mostly not ame-
nable to formal verification using the current state of the
art, the paper describes a search technique for character-
izing maximum error.�

Figure 10. SAXPY benchmark.

void SAXPY(int* x, int* y, int a) {
x[i] = a * x[i] + y[i];
x[i+1] = a * x[i+1] + y[i+1];
x[i+2] = a * x[i+2] + y[i+2];
x[i+3] = a * x[i+3] + y[i+3];

}

1 # gcc -O3 1 # STOKE
22

3 movslq ecx,rcx 3 movd edi,xmm0
4 leaq (rsi,rcx,4),r8 4 shufps 0,xmm0,xmm0
5 leaq 1(rcx),r9 5 movups (rsi,rcx,4),xmm1
6 movl (r8),eax 6 pmullw xmm1,xmm0
7 imull edi,eax 7 movups (rdx,rcx,4),xmm1
8 addl (rdx,rcx,4),eax 8 paddw xmm1,xmm0
9 movl eax,(r8) 9 movups xmm0,(rsi,rcx,4)
10 leaq (rsi,r9,4),r8
11 movl (r8),eax
12 imull edi,eax
13 addl (rdx,r9,4),eax
14 leaq 2(rcx),r9
15 addq 3,rcx
16 movl eax,(r8)
17 leaq (rsi,r9,4),r8
18 movl (r8),eax
19 imull edi,eax
20 addl (rdx,r9,4),eax
21 movl eax,(r8)
22 leaq (rsi,rcx,4),rax
23 imull (rax),edi
24 addl (rdx,rcx,4),edi
25 movl edi,(rax)

Figure 11. Linked List Traversal benchmark.

while (head != 0) {
head->val *= 2;
head = head->next;

}

1 # gcc -O3 1 # STOKE
22

3 movq -8(rsp), rdi 3 .L1:
4 .L1: 4 movq -8(rsp), rdi
5 sall (rdi) 5 sall (rdi)
6 movq 8(rdi), rdi 6 movq 8(rdi), rdi
7 .L2: 7 movq rdi, -8(rsp)
8 testq rdi, rdi 8 .L2:
9 jne .L1 9 movq -8(rsp), rdi

10 testq rdi, rdi
11 jne .L1

reason about loop-free code—recent work has explored
solutions to this problem15—it fails to eliminate the stack
movement at the beginning of each iteration. STOKE is
also unable to synthesize a rewrite for three of the Hacker’s
Delight benchmarks. Nonetheless, using its optimization
phase alone it is able to discover rewrites that perform com-
parably to the production compiler code.

9. CONCLUSION
We have shown a new approach to program optimization
based on stochastic search. Compared to a traditional com-
piler, which factors optimization into a sequence of small

research highlights

research highlights

122 COMMUNICATIONS OF THE ACM | FEBRUARY 2016 | VOL. 59 | NO. 2

© 2016 ACM 0001-0782/16/02 $15.00

Eric Schkufza, Rahul Sharma, and
Alex Aiken ({eschkufz, sharmar, aiken}@
cs.stanford.edu), Stanford University,
Stanford, CA.

Conference on Programming
Language Design and
Implementation (PLDI) 2011.
M. W. Hall and D. A. Padua, eds.
(San Jose, CA, USA, June 4–8,
2011). ACM, 62–73.

	 8.	 Hastings, W.K. Monte Carlo sampling
methods using Markov chains and
their applications. Biometrika 57,
1 (1970), 97–109.

	 9.	 Joshi, R., Nelson, G., Randall, K.H.
Denali: A goal-directed
superoptimizer. In Proceedings of the
ACM SIGPLAN 2002 Conference on
Programming Language Design and
Implementation (Berlin, Germany,
2002). ACM, New York,
NY, USA, 304–314.

	10.	 Liang, P., Jordan, M.I., Klein, D.
Learning programs: A hierarchical
Bayesian approach. In Proceedings
of the 27th International
Conference on Machine Learning
(ICML-10). J. Fürnkranz
and T. Joachims, eds. (Haifa, Israel,
June 21–24, 2010). Omnipress,
639–646.

	11.	 Luk, C.-K., Cohn, R.S., Muth, R., Patil,
H., Klauser, A., Lowney, P.G.,
Wallace, S., Reddi, V.J., Hazelwood,
K.M. Pin: Building customized
program analysis tools with
dynamic instrumentation.
In Proceedings of the 2005
ACM SIGPLAN Conference on
Programming Language Design
and Implementation (Chicago, IL,
USA, 2005). ACM, New York, NY,
USA, 190–200.

	12.	 Massalin, H. Superoptimizer – A look at
the smallest program. In Proceedings
of the Second International
Conference on Architectural Support
for Programming Languages and
Operating Systems (ASPLOS II).
R. H. Katz, ed. (Palo Alto, CA, USA,
October 5–8, 1987). ACM Press,
122–126.

	13.	 Schkufza, E., Sharma, R., Aiken, A.
Stochastic superoptimization.
In Architectural Support for
Programming Languages and
Operating Systems, ASPLOS’13.
V. Sarkar and R. Bodík, eds. (Houston,
TX, USA, March 16–20, 2013). ACM,
305–316.

	14.	 Schkufza, E., Sharma, R., Aiken, A.
Stochastic optimization of
floating-point programs with
tunable precision. In ACM
SIGPLAN Conference on
Programming Language Design and
Implementation, PLDI'14.
M. F. P. O'Boyle and K. Pingali, eds.
(Edinburgh, United Kingdom, June
09–11, 2014). ACM.

	15.	 Sharma, R., Schkufza, E.,
Churchill, B.R., Aiken, A. Data-driven
equivalence checking.
In Proceedings of the 2013 ACM
SIGPLAN International Conference
on Object Oriented Programming
Systems Languages & Applications,
OOPSLA 2013, Part of SPLASH
2013. A. L. Hosking, P. Th. Eugster,
and C. V. Lopes, eds. (Indianapolis,
IN, USA, October 26–31, 2013).
ACM, 391–406.

	16.	 Solar-Lezama, A., Tancau, L., Bodík, R.,
Seshia, S.A., Saraswat, V.A.
Combinatorial sketching for finite
programs. In Proceedings of the
12th International Conference
on Architectural Support for
Programming Languages and
Operating Systems, ASPLOS
2006. J. P. Shen and M. Martonosi,
eds. (San Jose, CA, USA,
October 21–25, 2006). ACM,
404–415.

	17.	 Tate, R., Stepp, M., Tatlock, Z.,
Lerner, S. Equality saturation: A new
approach to optimization. Logical
Methods Comput. Sci. 7, 1 (2011).

	18.	 Warren, H.S. Hacker’s Delight.
Addison-Wesley Longman
Publishing Co., Inc., Boston, MA,
USA, 2002.

ACM Transactions on Parallel Computing
Solutions to Complex Issues in Parallelism
Editor-in-Chief: Phillip B. Gibbons, Intel Labs, Pittsburgh, USA

For further information or to submit your manuscript, visit topc.acm.org

Subscribe at www.acm.org/subscribe

ACM Transactions on Parallel Computing (TOPC) is a forum for novel
and innovative work on all aspects of parallel computing, including
foundational and theoretical aspects, systems, languages, architectures,
tools, and applications. It will address all classes of parallel-processing
platforms including concurrent, multithreaded, multicore, accelerated,
multiprocessor, clusters, and supercomputers.

Subject Areas

• Parallel Programming Languages and Models
• Parallel System Software
• Parallel Architectures
• Parallel Algorithms and Theory
• Parallel Applications
• Tools for Parallel Computing

For further information or to submit your manuscript, visit topc.acm.org

Subscribe at www.acm.org/subscribe

