
114    COMMUNICATIONS OF THE ACM    |   FEBRUARY 2016  |   VOL.  59  |   NO.  2

research highlights 

DOI:10.1145/2863701

Stochastic Program Optimization
By Eric Schkufza, Rahul Sharma, and Alex Aiken

Abstract
The optimization of short sequences of loop-free, fixed-point 
assembly code sequences is an important problem in high-
performance computing. However, the competing constraints 
of transformation correctness and performance improve-
ment often force even special purpose compilers to pro-
duce sub-optimal code. We show that by encoding these 
constraints as terms in a cost function, and using a Markov 
Chain Monte Carlo sampler to rapidly explore the space of 
all possible code sequences, we are able to generate aggres-
sively optimized versions of a given target code sequence. 
Beginning from binaries compiled by llvm −O0, we are able 
to produce provably correct code sequences that either 
match or outperform the code produced by gcc −O3, icc 
−O3, and in some cases expert handwritten assembly.

1. INTRODUCTION
For many application domains there is considerable value 
in producing the most performant code possible. However, 
the traditional structure of a compiler’s optimization phase 
is ill-suited to this task. Factoring the optimization problem 
into a collection of small subproblems that can be solved 
independently—although suitable for generating consis-
tently good code—can lead to sub-optimal results. In many 
cases, the best possible code can only be obtained through 
the simultaneous consideration of mutually dependent 
issues such as instruction selection, register allocation, and 
target-dependent optimization.

Previous approaches to this problem have focused on the 
exploration of all possibilities within some limited class of 
code sequences. In contrast to a traditional compiler, which 
uses performance constraints to drive the generation of a sin-
gle sequence, these systems consider multiple sequences and 
select the one that is best able to satisfy those constraints. An 
attractive feature of this approach is completeness: if a code 
sequence exists that meets the desired constraints it is guar-
anteed to be found. However, completeness also places prac-
tical limitations on the type of code that can be considered. 
These techniques are either limited to sequences that are 
shorter than the threshold at which many interesting optimi-
zations take place or code written in simplified languages.

We overcome this limitation through the use of incom-
plete search: the competing requirements of correctness 
and performance improvement are encoded as terms in 
a cost function which is defined over the space of all loop-
free x86_64 instruction sequences, and the optimization 
task is formulated as a cost minimization problem. While 
the search space is highly irregular and not amenable to 
exact optimization techniques, we show that the com-
mon approach of employing a Markov Chain Monte Carlo 
(MCMC) sampler to explore the function and produce low-
cost samples is sufficient for producing high-quality code.

Although the technique sacrifices completeness it pro-
duces dramatic increases in the quality of the resulting code. 
Figure 1 shows two versions of the Montgomery multiplica-
tion kernel used by the OpenSSL RSA encryption library. 
Beginning from code compiled by llvm −O0 (116 lines, not 
shown), our prototype stochastic optimizer STOKE produces 
code (right) that is 16 lines shorter and 1.6 times faster than 
the code produced by gcc −O3 (left), and even slightly faster 
than the expert handwritten assembly included in the 
OpenSSL repository.

2. RELATED WORK
Although techniques that preserve completeness are effec-
tive within certain domains, their general applicability 
remains limited. The shortcomings are best highlighted in 
the context of the code sequence shown in Figure 1.

The code does the following: two 32-bit values, ecx and 
edx, are concatenated and multiplied by the 64-bit value 
rsi to produce a 128-bit product. The 64-bit values in rdi 
and r8 are added to that product, and the result is stored 
in r8 and rdi. The version produced by gcc −O3 (left) 
implements the 128-bit multiplication as four 64-bit multi-
plications and a summation of the results. In contrast, the 
version produced by STOKE (right), uses a hardware intrin-
sic which requires that the inputs be permuted and moved 
to distinguished register locations so that the multiplication 
may be performed in a single step. The odd looking move on 
line 4 (right) produces the non-obvious but necessary side 
effect of zeroing the upper 32 bits of rdx.

Massalin’s superoptimizer12 explicitly enumerates sequences 
of code of increasing length and selects the first that behaves 
identically to the input sequence on a set of test cases. 
Massalin reports optimizing instruction sequences of up to 
length 12, but only after restricting the set of enumerable 
opcodes to between 10 and 15. In contrast, STOKE uses a large 
subset of the nearly 400 x86_64 opcodes, some with over 
20 variations, to produce the 11 instruction kernel shown in 
Figure 1. It is unlikely that Massalin’s approach would scale 
to an instruction set of this size.

Denali9 and Equality Saturation,17 achieve improved 
scalability by only considering code sequences that are 
equivalent to the input sequence; candidates are explored 
through successive application of equality preserving trans-
formations. Because both techniques are goal-directed, 
they dramatically improve the number of primitive instruc-
tions and the length of sequences that can be considered in 
practice. However, both also rely heavily on expert knowl-
edge. It is unclear whether an expert would know to encode 
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the multiplication transformation shown in Figure 1, or 
whether a set of expert rules could ever cover the set of all 
possible interesting optimizations.

Bansal’s peephole superoptimizer2 automatically enu-
merates 32-bit x86 optimizations and stores the results in 
a database for later use. By exploiting symmetries between 
code sequences that are equivalent up to register renam-
ing, Bansal was able to scale this approach to optimizations 
mapping code sequences of up to length 6 to sequences of 
up to length 3. The approach has the dual benefit of hiding 
the high cost of superoptimization by performing search 
once-and-for-all offline and eliminating the dependence 
on expert knowledge. To an extent, the use of a database 
also allows the system to overcome the low upper bound 
on instruction length through the repeated application of 
the optimizer along a sliding code window. Regardless, the 
kernel shown in Figure 1 has a property shared by many real 
world code sequences that no sequence of local optimiza-
tions will transform the code produced by gcc −O3 into the 
code produced by STOKE.

Finally, Sketching16 and Brahma7 address the closely related 
component-based sequence synthesis problem. These sys-
tems rely on either a declarative specification, or a user-
specified partial sequence, and operate on statements in 
simplified bit-vector calculi rather than directly on hard-
ware instructions. Liang et al.10 considers the task of learn-
ing code sequences from test cases alone, but at a similarly 
high level of abstraction. Although useful for synthesizing 

non-trivial code, the internal representations used by these 
systems preclude them from reasoning about the low-level 
performance properties of the code that they produce.

3. COST MINIMIZATION
Before describing our approach to x86_64 optimization, we 
discuss optimization as cost minimization in the abstract. 
To begin, we define a cost function with terms that balance 
the competing constraints of transformation correctness 
(eq(·) ), and performance improvement (perf(·) ). We refer to 
an input sequence as the target (T ) and a candidate compi-
lation as a rewrite (R), and say that a function f (X; Y) takes 
inputs X and is defined in terms of Y

	 cost(R; T ) = we · eq(R; T ) + wp · perf(R)� (1)

The eq(·) term measures the similarity of two code 
sequences and returns zero if and only if they are equal. For 
our purposes, code sequences are regarded as functions of 
registers and memory contents and we say they are equal if 
for all machine states that agree on the live inputs defined 
by the target, the two code sequences produce identical side 
effects on the live outputs defined by the target. Because 
optimization is undefined for ill-formed code sequences, 
it is unnecessary that eq(·) be defined for a target or rewrite 
that produce exceptional behavior. However nothing pre-
vents us from doing so, and it would be straightforward to 
define eq(·) to preserve exceptional behavior as well.

In contrast, the perf(·) term quantifies the performance 
improvement of a rewrite; smaller values represent larger 
improvements. Crucially, the extent to which this term is 
accurate directly affects the quality of the resulting code.

Using this notation, the connection to optimization is 
straightforward. We say that an optimization is any of the set 
of rewrites for which the perf(·) term is improved, and the 
eq(·) term is zero

{ r | perf(r) £ perf(T ) Ù eq(r; T ) = 0  }� (2)

Discovering these optimizations requires the use of a cost 
minimization procedure. However, in general we expect cost 
functions of this form to be highly irregular and not amenable 
to exact optimization techniques. The solution to this problem 
is to employ the common strategy of using an MCMC sampler. 
Although a complete discussion of the technique is beyond 
the scope of this article, we summarize the main ideas here.

MCMC sampling is a technique for drawing elements 
from a probability density function in direct proportion to 
its value: regions of higher probability are sampled more 
often than regions of low probability. When applied to cost 
minimization, it has two attractive properties. In the limit, 
the most samples will be taken from the minimum (optimal) 
values of a function. And in practice, well before that behav-
ior is observed, it functions as an intelligent hill climbing 
method which is robust against irregular functions that are 
dense with local minima.

A common method6 for transforming an arbitrary func-
tion such as cost(·) into a probability density function is 
shown below, where β is a constant and Z is a partition 

[r8:rdi] = rsi * [ecx:edx] + r8 + rdi

# STOKE1gcc -03#1
22

3 movq rsi, r9 shlq 32, rcx
4 movl ecx, ecx movl edx, edx
5 shrq 32, rsi xorq rdx, rcx
6 andl 0xffffffff, r9d movq rcx, rax
7 movq rcx, rax mulq rsi
8 movl edx, edx addq r8, rdi
9 imulq r9, rax adcq 0, rdx
10 imulq rdx, r9 addq rdi, rax
11 imulq rsi, rdx adcq 0, rdx
12 imulq rsi, rcx movq rdx, r8
13

3
4
5
6
7
8
9

10
11
12
13addq rdx, rax movq rax, rdi

14 jae .L0
15 movabsq 0x100000000, rdx
16 addq rdx, rcx
17 .L0:
18 movq rax, rsi
19 movq rax, rdx
20 shrq 32, rsi
21 salq 32, rdx
22 addq rsi, rcx
23 addq r9, rdx
24 adcq 0, rcx
25 addq r8, rdx
26 adcq 0, rcx
27 addq rdi, rdx
28 adcq 0, rcx
29 movq rcx, r8
30 movq rdx, rdi

Figure 1. Montgomery multiplication kernel from the OpenSSL RSA 
library. Compilations shown for gcc −O3 (left) and a stochastic 
optimizer (right).
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function that normalizes the resulting distribution: 
Although computing Z is generally intractable, the 
Metropolis–Hastings algorithm is designed to explore 
density functions such as p(·) without having to compute 
Z directly8

� (3)

The basic idea is simple. The algorithm maintains a cur-
rent rewrite R and proposes a modified rewrite R*. The pro-
posal R* is then either accepted or rejected. If it is accepted, 
R* becomes the current rewrite. Otherwise another proposal 
based on R is generated. The algorithm iterates until its 
computational budget is exhausted, and as long as the pro-
posals are ergodic (sufficient to transform any code sequence 
into any other through some sequence of applications) the 
algorithm will in the limit produce a sequence of samples 
distributed in proportion to their cost.

This global property depends on the local acceptance 
criteria for a proposal R → R*, which is governed by the 
Metropolis–Hastings acceptance probability shown below. 
We use the notation q(R*|R) to represent the proposal dis-
tribution from which a new rewrite R* is sampled given the 
current rewrite, R. This distribution is key to a successful 
application of the algorithm. Empirically, the best results 
are obtained for a distribution which makes both local pro-
posals that make minor modifications to R and global pro-
posals that induce major changes

� (4)

The important properties of the acceptance criteria 
are the following: If R* is better (has a higher probabil-
ity/lower cost) than R, the proposal is always accepted. If 
R* is worse (has a lower probability/higher cost) than R, 
the proposal may still be accepted with a probability that 
decreases as a function of the ratio between R* and R. This 
property prevents search from becoming trapped in local 
minima while remaining less likely to accept a move that 
is much worse than available alternatives. In the event that 
the proposal distribution is symmetric, q(R*|R) = q(R|R*), 
the acceptance probability can be reduced to the much 
simpler Metropolis ratio, which is computed directly from 
cost(·):

� (5)

4. X86_64 OPTIMIZATION
We now address the practical details of applying cost mini-
mization to x86_64 optimization. As x86_64 is arguably the 
most complex instance of a CISC architecture, we expect 
this discussion to generalize well to other architectures. 
A natural choice for the implementation of the eq(·) term is 
the use of a symbolic validator (val(·) ),4 and a binary indicator 

function (1(·) ), which returns one if its argument is true, and 
zero otherwise

	 eq(R; T ) = 1-1(val(T, R))� (6)

However, the total number of invocations that can be per-
formed per second using current symbolic validator tech-
nology is quite low. For even modestly sized code sequences, 
it is well below 1000. Because MCMC sampling is effective 
only insofar as it is able to explore sufficiently large num-
bers of proposals, the repeated computation of Equation (6) 
would drive that number well below a useful threshold.

This observation motivates the definition of an approxi-
mation to the eq(·) term which is based on test cases (τ). 
Intuitively, we execute the proposal R* on a set of inputs 
and measure “how close” the output matches the target for 
those same inputs by counting the number of bits that differ 
between live outputs (i.e., the Hamming distance). In addi-
tion to being much faster than using a theorem prover, this 
approximation of equivalence has the added advantage of 
producing a smoother landscape than the 0/1 output of a 
symbolic equality test; it provides a useful notion of “almost 
correct” that can help to guide search

�
(7)

In Equation (7), reg(·) is used to compare the side effects 
(eval(·) ) that both functions produce on the live register out-
puts (ρ) defined by the target. These outputs can include gen-
eral purpose, SSE, and condition registers. reg(·) computes 
the number of bits that the results differ by using the popu-
lation count function (pop(·) ), which returns the number of 
1-bits in the 64-bit representation of an integer

� (8)

For brevity, we omit the definition of mem(·), which is 
analogous. The remaining term, err(·), is used to distinguish 
code sequences that exhibit undefined behavior, by count-
ing and then penalizing the number of segfaults, floating-
point exceptions, and reads from undefined memory or 
registers, that occur during execution of a rewrite. We note 
that sigsegv(·) is defined in terms of T, which determines the 
set of addresses that may be successfully dereferenced by a 
rewrite for a particular test case. Rewrites must be run in a 
sandbox to ensure that this behavior can be detected safely 
at runtime. The extension to additional types of exceptions 
is straightforward

�
(9)

The evaluation of eq¢(·) may be implemented either by 
JIT compilation, or the use of a hardware emulator. In our 
experiments (Section 8) we have chosen the former, and 
shown the ability to dispatch test case evaluations at a rate 
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MCMC sampling, rerank each based on their actual run-
times, and return the best result.

Finally, there is the implementation of MCMC sampling for 
x86_64 optimization. Rewrites are represented as loop-free 
sequences of instructions of length l, where a distinguished 
token (UNUSED) is used to represent unused instruction 
slots. This simplification to sequences of bounded length is 
crucial, as it places a constant value on the dimensionality 
of the resulting search space.1 The proposal distribution q(·) 
chooses from four possible moves: the first two minor and 
the last two major:

•	 Opcode. An instruction is randomly selected, and its 
opcode is replaced by a random opcode.

•	 Operand. An instruction is randomly selected and one 
of its operands is replaced by a random operand.

•	 Swap. Two lines of code are randomly selected and 
interchanged.

•  Instruction. An instruction is randomly selected and 
replaced either by a random instruction or the UNUSED 
token. Proposing UNUSED corresponds to deleting an 
instruction, and replacing UNUSED by an instruction 
corresponds to inserting an instruction.

These moves satisfy the ergodicity property described in 
Section 3: any code sequence can be transformed into any 
other through repeated application of instruction moves. 
These moves also satisfy the symmetry property, and allow 
the use of Equation (5). To see why, note that the probabili-
ties of performing all four moves are equal to the probabili-
ties of undoing the transformations they produce using a 
move of the same type: opcode and operand moves are con-
strained to sample from identical equivalence classes before 
and after acceptance, and swap and instruction moves are 
unconstrained in either direction.

5. SEARCH STRATEGIES
An early version of the implementation described above 
was able to transform llvm −O0 code into the equiva-
lent of gcc −O3 code, but was unable to produce results 

of between 1 and 10 million per second. Using this imple-
mentation, we define an optimized method for computing 
eq(·), which achieves sufficient throughput to be useful for 
MCMC sampling

� (10)

Besides improved performance, Equation (10) has 
two desirable properties. First, failed computations of 
eq(·) will produce a counterexample test case4 that can 
be used to refine τ. Although doing so changes the search 
space defined by cost(·), in practice the number of failed 
validations that are required to produce a robust set of 
test cases that accurately predict correctness is quite low. 
Second, as remarked above, it improves the search space 
by smoothly interpolating between correct and incorrect 
code sequences.

Similar considerations apply to the implementation 
of the perf(·) term. Although it seems natural to JIT com-
pile both target and rewrite and compare runtimes, the 
amount of time required to execute a code sequence suf-
ficiently many times to eliminate transient effects is pro-
hibitively expensive. To account for this, we define a simple 
heuristic for approximating runtime which is based on a 
static approximation of the average latencies (lat(·) ), of 
instructions

� (11)

Figure 2 shows a reasonable correlation between this heu-
ristic and actual runtimes for a representative corpus of code 
sequences. Outliers are characterized either by dispropor-
tionately high instruction level parallelism at the micro-op 
level or inconsistent memory access times. A more accurate 
model of the higher order performance effects introduced 
by a modern CISC processor is feasible if tedious to con-
struct and would likely be necessary for more complex code 
sequences.

Regardless, this approximation is sufficient for the bench-
marks that we consider (Section 8). Errors that result from 
this approach are addressed by recomputing perf(·) using 
the JIT compilation method as a postprocessing step. During 
search, we record the n lowest cost programs produced by 
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that were competitive with expert hand-written code. The 
reason is suggested by Figure 3, which abstractly depicts 
the search space for the Montgomery multiplication bench-
mark shown in Figure 1. For loop-free code sequences, 
llvm −O0 and gcc −O3 differ primarily in stack use and 
instruction selection, but otherwise produce algorithmi-
cally similar results. Compilers are generally designed to 
compose many small local transformations: dead code 
elimination deletes an instruction, constant propagation 
changes a register to an immediate, and strength reduc-
tion replaces a multiplication by an add. Sequences of 
local optimizations such as these correspond to regions of 
equivalent code sequences that are densely connected by 
very short sequences of moves (often just one) and easily 
traversed by local search methods. Beginning from llvm 
−O0 code, MCMC sampling will quickly improve local inef-
ficiencies one by one and hill climb its way to the equiva-
lent of gcc −O3 code.

The code discovered by STOKE occupies an entirely dif-
ferent region of the search space. As remarked earlier, it rep-
resents a completely distinct algorithm for implementing 
the kernel at the assembly level. The only method for a local 
search procedure to produce code of this form from com-
piler generated code is to traverse the extremely low prob-
ability path that builds the code in place next to the original 
(all the while increasing its cost) only to delete the original 
code at the very end.

Although MCMC sampling is guaranteed to traverse this 
path in the limit, the likelihood of it doing so in any reason-
able amount of time is so low as to be useless in practice. 
This observation motivates the division of cost minimiza-
tion into two phases:

•	 A synthesis phase focused solely on correctness, which 
attempts to locate regions of equivalent code sequences 
that are distinct from the region occupied by the 
target.

•  An optimization phase focused on performance, which 
searches for the fastest sequence within each of those 
regions.

These phases share the same implementation and differ 
only in starting point and acceptance function. Synthesis 
begins with a random code sequence, while optimization 
begins from a code sequence that is known to be equivalent 
to the target. Synthesis ignores the perf(·) term and uses 
Equation (10) as its cost function, whereas optimization 
uses both terms, which allows it to improve performance 
while also experimenting with “shortcuts” that (temporar-
ily) violate correctness.

It is perhaps unintuitive that synthesis should be able to 
produce a correct rewrite from such an enormous search 
space in a tractable amount of time. In our experience, syn-
thesis is effective precisely when it is possible to discover 
portions of a correct rewrite incrementally, rather than all 
at once. Figure 4 compares cost over time against the per-
centage of instructions that appear in the final rewrite for 
the Montgomery multiplication benchmark. As synthesis 

proceeds, the percentage of correct code increases in inverse 
proportion to the value of the cost function.

While this is encouraging and there are many code 
sequences that can be synthesized in pieces, there are 
many that cannot. Fortunately, even when synthesis fails, 
optimization is still possible. It must simply proceed only 
from the region occupied by the target as a starting point.

6. SEARCH OPTIMIZATIONS
Equation (10) is sufficiently fast for MCMC sampling, 
however its performance can be further improved. As 
described above, the eq* (·) term is computed by execut-
ing a proposal on test cases, noting the ratio in total 
cost with the current rewrite, and then sampling a ran-
dom variable to decide whether to accept the proposal. 
However, by first sampling p, and then computing the 
maximum ratio that the algorithm will accept for that 
value, it is possible to terminate the evaluation of test 
cases as soon as that bound is exceeded and the proposal 
is guaranteed to be rejected

�
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generates 32 test cases for each target and synthesis and 
optimization are executed in parallel on an 8 core 3.5 GHz 
Intel i7–4770K with a computational budget of 15 min.

STOKE generates test cases using Intel’s PinTool.11 It 
executes the binary provided by the user, and for every invo-
cation of the target records both initial register state and 
the set of values dereferenced from memory. For each test 
case, the set of addresses dereferenced by the target are 
used to define the sandbox in which candidate rewrites are 
executed. Dereferences of invalid addresses are trapped and 
replaced by instructions that produce a constant zero value; 
reads from undefined locations and floating-point excep-
tions are handled analogously.

STOKE uses a sound procedure to validate the equality 
of loop-free code sequences.2 Both target and rewrite are 
converted into SMT formulae in the quantifier free theory 
of bit-vector arithmetic used by Z3,5 producing a query 
that asks whether both sequences produce the same side 
effects on live outputs when executed from the same initial 
machine state. Depending on type, registers are modeled as 
between 8- and 256-bit vectors, and memory is modeled as 
two vectors: a 64-bit address and an 8-bit value (x86_64 is 
byte addressable).

STOKE asserts the constraint that both sequences agree 
on the initial machine state with respect to the live inputs 
defined by the target. For each instruction in the target, it 
also asserts a constraint that encodes the transformation it 
represents on the machine state and chains these together to 

Figure 5 shows the result of applying this optimization 
during synthesis for the Montgomery multiplication bench-
mark. As the value of the cost function decreases, so too does 
the average number of test cases that must be evaluated 
prior to early termination. This produces a considerable 
increase in the number of proposals evaluated per second, 
which at peak falls between 100,000 and 1 million.

A more important improvement stems from the obser-
vation that the definition of reg(·) in Equation (8) is unnec-
essarily strict. An example is shown in Figure 6 for a target 
in which register al is live out. A rewrite that produces the 
inverse of the desired value in al is assigned the maximum 
possible cost in spite of the fact that it produces the correct 
value, only in the incorrect location: dl. We can improve 
this term by rewarding rewrites that produce correct (or 
nearly correct) values in incorrect locations. The relaxed 
definition shown below examines all registers of equivalent 
bit-width (bw(·) ), selects the one that most closely matches 
the value of the target register, and assigns a small mis-
alignment penalty (wm) if the selected register differs from 
the original. Using this definition, the rewrite is assigned 
a cost of just wm

�

(13)

Although it is possible to relax the definition of memory 
equality analogously, the time required to compute this 
term grows quadratically with the size of the target’s mem-
ory footprint. Although this approach suffices for our experi-
ments, a more efficient implementation is necessary for 
more complex code sequences.

Figure 7 shows the result of using these improved defi-
nitions during synthesis for the Montgomery multiplica-
tion benchmark. In the amount of time required for the 
relaxed cost function to converge, the original strict ver-
sion obtains a minimum cost that is only slightly superior 
to a purely random search. The dramatic improvement 
can be explained as an implicit parallelization of the 
search procedure. Accepting correct values in arbitrary 
locations allows a rewrite to simultaneously explore as 
many alternate computations as can fit within a code 
sequence of length l.

7. STOKE
STOKE is a prototype implementation of the ideas described 
above.a STOKE runs a binary created by a standard compiler 
(in our experiments, llvm −O0) under instrumentation 
to generate test cases for a loop-free target of interest and 
broadcasts both target and test cases to a set of synthesis 
threads. After a fixed time, those threads report back with 
a set of validated rewrites, and a new set of optimization 
threads are used to improve those rewrites. Of the results, 
the top 20% most performant are re-ranked based on 
actual runtime, and the best is returned to the user. STOKE 

Figure 6. Strict versus relaxed equality functions for a target in 
which ax is live out and the correct result appears in an incorrect 
location.

eval(T, ⋅)
eval(R, ⋅)

d = eval(T, al) ⊕ eval(R, ⋅)
pop(d )
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1111 0000 0000 0000
0000 1000 1100 1111
1111 0111 0011 0000
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reg(T, R, τ) = 4

reg�(T, R, τ) = min(4, 3 + 1, 2 + 1, 1)

= 1

Figure 7. Strict versus relaxed cost functions for the Montgomery 
multiplication synthesis benchmark. Random search results shown 
for reference.
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produce a constraint that describes the state of the live out-
puts defined by the target. An analogous set of constraints are 
asserted for the rewrite, and for all pairs of memory accesses 
at addresses addr

1
 and addr

2
, STOKE adds an additional con-

straint that relates their values: addr
1
 = addr

2
 ⇒ val

1
 = val

2
.

Using these constraints, STOKE asks Z3 if there exists 
an initial machine state that causes the two sequences to 
produce different results. If the answer is “no,” then the 
sequences are determined to be equal. If the answer is 
“yes,” then Z3 produces a witness that is converted to a new 
test case.

STOKE makes two simplifying assumptions to keep run-
times tractable. It assumes that stack addresses are repre-
sented exclusively as constant offsets from rsp. This allows 
stack locations to be treated as named variables in llvm −
O0 code, which exhibits heavy stack traffic. Additionally, it 
treats 64-bit multiplication and division as uninterpreted 
functions which are constrained by a small set of special-
purpose axioms. Whereas Z3 diverges when reasoning about 
two or more such operations, our benchmarks contain up to 
four per sequence.

8. EVALUATION
In addition to the Montgomery multiplication kernel, 
we evaluate STOKE on benchmarks drawn from both the 
literature and high-performance codes. Performance 
improvements and runtimes are summarized in Figure 
8. Beginning from binaries compiled using llvm −O0, 
STOKE consistently produces rewrites that match the 
performance of code produced by gcc and icc (the two 
compilers produce essentially identical results). In sev-
eral cases, the rewrites are comparable in performance to 
handwritten assembly.

Gulwani et al.7 identifies Hacker’s Delight18—a collec-
tion of techniques for encoding complex algorithms as 
small loop-free code sequences—as a source of bench-
marks (p01–p25) for program synthesis and optimization. 
For brevity, we focus only on a kernel for which STOKE dis-
covers an algorithmically distinct rewrite. Figure 9 shows 
the “Cycle Through 3 Values” benchmark, which takes an 
input x and transforms it to the next value in the sequence 
áa, b, cñ. The most natural implementation of this func-
tion is a sequence of conditional assignments, but for ISAs 
without the required intrinsics, the implementation shown 
is cheaper than one that uses branches. For x86_64, which 
has conditional move intrinsics, this is an instance of pre-
mature optimization. While STOKE is able to rediscover 
the optimal implementation, gcc and icc transcribe the 
code as written.

Single-precision Alpha X Plus Y (SAXPY) is a level 1 
vector operation in the Basic Linear Algebra Subsystems 
Library.3 It makes heavy use of heap accesses and pres-
ents the opportunity to use vector intrinsics. To expose 
this property, our integer implementation is unrolled four 
times by hand, as shown in Figure 10. Despite annotation 
to indicate that x and y are aligned and do not alias, nei-
ther production compiler is able to produce vectorized 
code. STOKE on the other hand, is able to discover the 
ideal implementation.

In closing, we note that STOKE is not without its limita-
tions. Figure 11 shows the Linked List Traversal benchmark 
of Bansal and Aiken.2 The code iterates over a list of integers 
and doubles each element. Because STOKE is only able to 

Figure 8. Speedups over llvm −O0 versus STOKE runtimes. Benchmarks 
for which an algorithmically distinct rewrite was discovered are shown 
in bold; synthesis timeouts are annotated with a −.

Speedup (×100%) Runtime (s)
gcc/icc -03 STOKE Synth. Opt.

p01 1.60 1.60 0.15 3.05
p02 1.60 1.60 0.16 3.14
p03 1.60 1.60 0.34 3.45
p04 1.60 1.60 2.33 3.55
p05 1.60 1.60 0.47 3.24
p06 1.60 1.60 1.57 6.26
p07 2.00 2.00 1.34 3.10
p08 2.20 2.20 0.63 3.24
p09 1.20 1.20 0.26 3.21
p10 1.80 1.80 7.49 3.61
p11 1.50 1.50 0.87 3.05
p12 1.50 1.50 5.29 3.34
p13 3.25 3.25 0.22 3.08
p14 1.86 1.86 1.43 3.07
p15 2.14 2.14 2.83 3.17
p16 1.80 1.80 6.86 4.62
p17 2.60 2.60 10.65 4.45
p18 2.44 2.50 0.30 4.04
p19 1.93 1.97 - 18.37
p20 1.78 1.78 - 36.72
p21 1.62 1.65 6.97 4.96
p22 3.38 3.41 0.02 4.02
p23 5.53 6.32 0.13 4.36
p24 4.67 4.47 - 48.90
p25 2.17 2.34 3.29 4.43

mont mul 2.84 4.54 319.03 111.64
linked list 1.10 1.09 3.94 8.08
SAXPY 1.82 2.46 10.35 6.66

Figure 9.Cycling Through 3 Values benchmark.

int p21(int x, int a, int b, int c) {
return ((-(x == c)) & (a ^ c)) ^

((-(x == a)) & (b ^ c)) ^ c;
}

1 # gcc -O3 1 # STOKE
22

3 movl edx, eax 3 cmpl edi, ecx
4 xorl edx, edx 4 cmovel esi, ecx
5 xorl ecx, eax 5 xorl edi, esi
6 cmpl esi, edi 6 cmovel edx, ecx
7 sete dl 7 movq rcx, rax
8 negl edx
9 andl edx, eax
10 xorl edx, edx
11 xorl ecx, eax
12 cmpl ecx, edi
13 sete dl
14 xorl ecx, esi
15 negl edx
16 andl esi, edx
17 xorl edx, eax
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Figure 10. SAXPY benchmark.

void SAXPY(int* x, int* y, int a) {
x[i] = a * x[i] + y[i];
x[i+1] = a * x[i+1] + y[i+1];
x[i+2] = a * x[i+2] + y[i+2];
x[i+3] = a * x[i+3] + y[i+3];

}

1 # gcc -O3 1 # STOKE
22

3 movslq ecx,rcx 3 movd edi,xmm0
4 leaq (rsi,rcx,4),r8 4 shufps 0,xmm0,xmm0
5 leaq 1(rcx),r9 5 movups (rsi,rcx,4),xmm1
6 movl (r8),eax 6 pmullw xmm1,xmm0
7 imull edi,eax 7 movups (rdx,rcx,4),xmm1
8 addl (rdx,rcx,4),eax 8 paddw xmm1,xmm0
9 movl eax,(r8) 9 movups xmm0,(rsi,rcx,4)
10 leaq (rsi,r9,4),r8
11 movl (r8),eax
12 imull edi,eax
13 addl (rdx,r9,4),eax
14 leaq 2(rcx),r9
15 addq 3,rcx
16 movl eax,(r8)
17 leaq (rsi,r9,4),r8
18 movl (r8),eax
19 imull edi,eax
20 addl (rdx,r9,4),eax
21 movl eax,(r8)
22 leaq (rsi,rcx,4),rax
23 imull (rax),edi
24 addl (rdx,rcx,4),edi
25 movl edi,(rax)

Figure 11. Linked List Traversal benchmark.

while (head != 0) {
head->val *= 2;
head = head->next;

}

1 # gcc -O3 1 # STOKE
22

3 movq -8(rsp), rdi 3 .L1:
4 .L1: 4 movq -8(rsp), rdi
5 sall (rdi) 5 sall (rdi)
6 movq 8(rdi), rdi 6 movq 8(rdi), rdi
7 .L2: 7 movq rdi, -8(rsp)
8 testq rdi, rdi 8 .L2:
9 jne .L1 9 movq -8(rsp), rdi

10 testq rdi, rdi
11 jne .L1

reason about loop-free code—recent work has explored 
solutions to this problem15—it fails to eliminate the stack 
movement at the beginning of each iteration. STOKE is 
also unable to synthesize a rewrite for three of the Hacker’s 
Delight benchmarks. Nonetheless, using its optimization 
phase alone it is able to discover rewrites that perform com-
parably to the production compiler code.

9. CONCLUSION
We have shown a new approach to program optimization 
based on stochastic search. Compared to a traditional com-
piler, which factors optimization into a sequence of small 
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