Flexible Windowing for Correlation-Aware Ranking
in Anomalous Environments

Anwesha Das'?> Henry Hoffmann' Alex Aiken?
'The University of Chicago *SLAC National Accelerator Laboratory/Stanford University

Abstract—Analyzing time-series correlations is key to anomaly
detection and incident diagnosis, but existing methods that rely on
fixed time windows often fail or are inaccurate in environments
with (a) missing adequate ground truth, (b) asynchronous signals,
or (¢) mixed sampling rates containing irregularities in signals.
To provide anomaly-relevant signal correlations given these
challenges, we propose AdaptWin, a novel method to adaptively
select windows for a signal-pair of the same size with distinct
positions, i.e., the specific start and end timestamps can differ,
for correlation-aware ranking. Our window selection is based
on deviations in (1) inter-arrival times and (2) observed values.
This flexible window selection approach improves ranking by
better capturing signal variations aligned with anomalies. Across
three real-world datasets, AdaptWin improves anomaly-relevant
ranking by over 3x compared to adaptive baselines.

Index Terms—Windowing, Correlations, Anomalies, Ranking

I. INTRODUCTION

Failure diagnosis in complex systems often requires analyz-
ing pairwise correlations in large volumes of multivariate time-
series data [19, 47]. In practice, however, several challenges
arise, including: (a) lack of precise ground truth [44], (b)
asynchronicity in data [53], and (c) mixed sampling rates [10].
Many anomaly detection methods using multiple sources of
time-series data rely on fixed-size sliding windows that assume
uniform sampling and temporal alignment across signals [29].
Unfortunately, these assumptions often fail to hold in real-
world settings, leading to poor performance in identifying the
components responsible for anomalous behavior [24].

A core problem is selecting suitable windows for pairwise
correlations, especially when the failure window is impre-
cise [32]. Domain experts may only know that an anomaly
occurred within a coarse-grained window, but not the precise
start and end times of the failure. Naively using windows
across multiple signals with mixed sampling rates, asynchrony,
or missing values can result in correlations that fail to
capture anomaly-indicative signals [52]. Brute-force search
for window selection is computationally prohibitive [46], and
existing adaptive windowing methods either target univariate
signals [9], or are not designed to improve anomaly-relevant
correlations [31]. To this end, we study the problem of selecting
windows from signal-pairs, i.e., both size and position of
a window with distinct start and end times, such that their
pairwise correlation leads to better anomaly-relevant ranking.

Key Insight: Anomalous conditions in non-stationary envi-
ronments [2] are characterized by outliers or missing values [21]
in signals. Anomalies are often identified through differences
in subsequent values (6Y), and/or inter-arrival times (67). By

prioritizing window regions with higher §¥ or 4T, we can better
capture time-localized deviations across signals. This process
of adapting the window position and size to differences in
value and time leads to more accurate rankings.

We implement this insight as AdaptWin, a flexible windowing
method for correlation-aware ranking for incident diagnosis.
Unlike traditional fixed or sliding window methods, AdaptWin
adaptively selects windows for signal-pairs based on §V and
0T deviations, allowing each signal’s window to start and end
at different times, while maintaining a consistent window size.
We develop a method to filter candidate windows using these
deviations and optimize bivariate correlation functions such
as Pearson or Spearman correlation coefficients, and dynamic
time warping. AdaptWin is robust to mixed sampling rates and
works without precise failure labels, making it applicable to a
wide range of supervised and unsupervised settings.

Contributions: Our contributions are as follows:

o We formulate the flexible window selection problem for
correlation-aware signal ranking in unstable anomalous
environments involving asynchrony and irregularities.

e We propose AdaptWin, a novel window selection method
that selects windows for signal-pairs using value and time
differences, allowing signal-specific start and end times.

o We evaluate AdaptWin across three real-world datasets:
a particle accelerator, space weather monitor, and metro
transportation system, and show that AdaptWin improves
anomaly-relevant ranking by over 3 compared to existing
fixed window and other adaptive baselines.

o We release artifacts including a curated production dataset
of a particle accelerator system at https://github.com/
adaptsyslearn/AdaptWin, to enable further studies.

Overall, AdaptWin provides a principled and practical solu-
tion to window selection for correlation analysis with regular,
irregular, or asynchronous signals. By focusing on anomaly-
relevant signal deviations, AdaptWin improves ranking accuracy
across diverse domains where traditional windowing falls short.

Why need flexible windows? In many scientific or industrial
facilities with no or sparse ground truth, the specific failure
window is unavailable or imprecise. For e.g., an anomaly lasts
for ~10 mins within a 3-hour timeframe, but which specific
10-min relates to the anomaly is not exactly known. In such
cases, various window sizes are examined by trial-and-error
method [47]. Besides, data sources may not be synchronized
leading to delays in trends across signals for which lagged or
cross correlations have been used [34, 53]. Sliding windows
with a certain step size are more flexible, but which windows
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to select for pairwise correlations that can aid overall anomaly-
relevant ranking is non-trivial to determine. The problem is
exacerbated in the presence of missing values (i.e., irregular or
unevenly spaced observations), and mixed sampling rates [24,
51], where even defining the corresponding windows in two
time-series needs a systematic method. Fixed windows mostly
assume regularity, i.e., equidistant values where time differences
between pairs of observations, referred to as 8T, do not vary
much. Imputation methods can convert an irregular data to a
regular one [54], yet anomaly-relevant window selection is not
really accounted for. Under this situation, an automated flexible
windowing method to better capture intra- and inter-signal
correlation patterns can benefit correlation-aware ranking.
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As an example, Fig. 1 shows two time-series X and Y
with missing value(s) (m) at various timesteps (). Using the
same start and end times, i.e., fixed @), in both signals for
choosing windows could result in unsatisfactory anomaly-
relevant ranking due to the aforementioned reasons. Including
certain timesteps with missing values for window selection
could have better correlation with an anomaly, as shown in (b).
Flexible positioning of windows (i.e., different start and end
times (B)) can account for any asynchronicity and irregularity,
improving ranking quality. Thus, a method to select windows
from X and Y that jointly optimize (maximize or minimize) a
bivariate function (F) in such a way that the overall anomaly-
relevant ranking quality is improved can help incident diagnosis.

A few prior works propose adaptive windows for univariate
analyses [9, 15, 41], e.g., duplicate or drift detection, or domain-
specific multivariate studies [28, 31] such as human activity
recognition. Univariate methods are insufficient for bivariate
correlations, and domain-specific methods have limited appli-
cability. Our study addresses the need for appropriate window
selection in pairwise correlations under more domain-agnostic
dynamic anomalous environments [32].

Why ranking? For fault localization or incident diagnosis,
one common strategy is to rank signals based on correlation
scores [4, 43]-[45]. Ranking helps when the relative ordering
is of greater interest than the actual statistical scores. Ranking
is also robust to outliers in the data, and helps to uncover ties
amongst signals. The ranking quality is then examined using the
obtainable failure data (i.e., ground truth) [8]. Anomaly-relevant
signal(s) if ranked higher, helps to focus on the cause-related
component(s) aiding efficient diagnosis efforts. An improved
window selection method is expected to rank the anomaly-
relevant signals relatively higher than the anomaly-irrelevant
ones. This helps domain experts/operators to analyze a small
subset of signals one by one for troubleshooting. Thus, we

show the accuracy of our proposed windowing method via
correlation-aware ranking (no new ranking method is proposed).

Why bivariate? Pairwise correlations or functions involving
two variables are often used for anomaly detection tasks [11,
14, 19, 29, 39, 47, 52]. Besides, many statistical measures
such as distance functions and rank correlations are bivariate
in nature [50]. Also, several multivariate associations can
be derived from pairwise correlations [49]. Hence, we study
bivariate functions for correlation-aware ranking.

II. BACKGROUND AND MOTIVATION

We discuss the inadequacy of prevalent window selection
methods for failure diagnosis (§II-A), followed by the effect
of window selection on correlation-aware ranking through a
real-life example (§II-B) motivating the need for our study.

A. Window Selection

Fixed-size windows with time lags of one or more values
(i.e., sliding windows) selected via random shuffling or moving
windows are generally used in time-series analysis [1, 21,
29]. A suitable single window size is derived for correlations
empirically guided by available failure ground truth data, i.e.,
manually created labels [24] or via trial-and-error method [29].
Pairwise correlations result in a score [27, 52] that can be used
for ranking-related tasks. Usually, the same window position is
used for all correlating signals assuming equally spaced values
in time-series of uniform sampling rate [19, 47].

In supervised domains, reliable ground truth helps estimate
precise windows, i.e., the known start and end times of an
anomaly is fairly accurate [43]. However, in unsupervised
domains with sparse ground truth where manual labeling is
cumbersome or error-prone, only a coarse-grained approximate
timeframe is available [17, 44]. In such cases, random trial-
and-error method for window selection is inadequate [19, 39].
Besides, asynchronicity in signals require flexible windows to
account for delays in trends to improve correlation scores as
evident from prior work [2, 47]. Also, using a few arbitrary
window sizes suffice for signals with equidistant values of
similar sampling rates to analyze failures [11, 29]. Appropriate
window selection becomes non-trivial in face of mixed sampling
rates with sizable irregularities in signals [20]. Missing data
gives rise to sparsity that can affect bivariate correlations.

Why not brute-force? A strawman solution of finding all
windows for a signal-pair with c entries each and m window
sizes is quadratic O(c*m). The time complexity is O(pc?m) for
p signal-pairs. Clearly, a brute-force method is inefficient for
large c, m, or p values even without anomaly relevance or real-
time needs. Prior studies on matrix profiles build on this aspect
to propose methods that improve runtime [30, 46]. Besides, a
brute-force search or sliding window method does not innately
account for anomaly relevance. Further analysis is needed for
incident diagnosis, e.g., pruning time-series graphs [4].

Our window selection is an offline process as many sensor-
based physical systems need to diagnose failures using accurate
hints about faulty subsystem(s) without any real-time needs.
Thus, our goal is to improve accuracy, i.e., ranking quality,
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TABLE I: Pairwise Correlation (R: Rank Variations)

Bivariate Pearson’s Coefficient (PC) Dynamic Time Warping (DTW)

1-hour 20-mins 1-hour 20-mins

™ TP R ™ TP R ™ TP R ™ TP R

Relation

S1—+S4 0.23 0.01 219—543 0.13 0.13 340—340 5.15 11.59 196—44 5.44 2.30 183—541
S2—S4 0.28 0.09 117—414 0.25 0.01 157—548 7.04 14.67 73—12 3.80 8.52 359—48
S3—S4 0.06 0.19 472—261 0.30 0.11 101—=371 7.77 7.43 63—71 3.97 7.29 346—67

TS/TP: Scores of windows related to Same and Different start/end timestamps

though we show that our method’s efficiency (runtime) is no
worse than the usual state-of-the-art methods.

Fig. 2 shows four possible cases of correlations considering
regular and irregular time-series with same and mixed sampling
rates for a signal-pair X and Y. The correlation strength varies
based on the chosen windows’ contents. Correlation score-based
ranking may not be sufficiently accurate unless fitting windows
are chosen for such cases [10, 32]. For causal discovery or
incident diagnosis in unstable domains, a minor shift in the
window can make a major difference in the final accuracy [14,
44]. Thus, we study flexible window selection for correlations
that can be adapted for both regular and irregular signals.

Prior Techniques: Analyzing a range of window sizes, or
creating a labeling tool is often used to circumvent the lack of
precise ground truth or labeled data [44, 47]. Delays in signal
trends have been addressed by considering many possible delay
values or aligning delayed trends to a reference frame [2, 47].
Aggregation functions are used for mixed sampling rates (e.g.,
mean/median) that are not always straightforward to determine
in a given context [10]. In face of unevenly spaced values,
irregular data is converted to a regular one via missing data
imputation [39, 54] (e.g., backfill) or the elapsed time between
values (67) is used as an added feature. The former involves data
augmentation while the later may lose contextual information.
These approaches to fill missing values are not correlation-
aware by themselves, and can lead to suboptimal performance
under various anomalous conditions [24].

The common scenario is that, for an anomalous incident,
anomaly- or cause-related signals deviate from their usual
behaviour for certain timesteps leading to a change in the
correlation strength. Our intuition is to prioritize timesteps of
relatively higher deviation to form windows and then impute
only within the selected window. Estimating deviations over
time to select windows for a signal-pair can improve overall
correlation-aware ranking across a set of signals.

B. A Motivating Example

For fault localization, some methods rank signals based on
correlation scores using the selected windows [13, 44]. The
ranking quality is then assessed using the available manually
logged failure ground truth, e.g., Water cooler A failed for ~30-
mins between 10:00 and 18:00 hrs. Even after consultation
with domain experts it can be infeasible to deduce finer
information, e.g., from 11:00 to 11:30 hrs, signals A* and
A% showed anomalous behaviour, where A" and A? are two
of the many signals of subsystem A, i.e., dense or precise
labels can be unavailable in some systems, conforming to

prior studies [19, 44]. With better window selection, we expect
A-related signal(s) to appear amongst the top ranked signals.
We show rank variations based on window selection in
a production system illustrating the importance of flexible
windowing. Fig. 3 shows four signals of a complex particle
accelerator [18] logging over 5000 signals, namely, S1 from
an amplifier system, S2 and S3 from two water cooling
systems, and S4 from the beam monitoring system, respectively,
over a period of three hours (9:30 to 12:30). The two
highlighted areas correspond to 1-hour and 20-min windows,
respectively. Generally, correlations are obtained using the same
start and end timestamps across signals, as shown in Fig 3a.
However, correlations with a delay help to capture the relation
between disparate sensors of a system by accommodating
asynchronous windows (overlapping or non-overlapping) [53].
For e.g., there is a 45-mins lag between S3 and S4 for the 1-
hour window in Fig. 3b. Such slightly delayed correlations help
to excavate anomaly-indicative signals, or interpret collective
anomalies [1] (i.e., multiple incidents together determine an
anomaly) that may be missed if the window position is always
fixed. Changing the window need not necessarily change some
statistical functions, such as, information gain [10]. However,
the strength of correlation depends on how long and which
observations are used for any signal-pair. Flexibility in window
positioning can enable such overlaps across various time-series.
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Tab. I shows the bivariate scores of two correlation functions,
namely, Pearson’s correlation (PC) and dynamic time warping
(DTW), corresponding to the timeframes marked in Fig. 3. PC
measures the linear relationship, and DTW [50] computes the
similarity score between two signals. TS and TP indicate the
correlation scores of signals S1 to S3 with S4 over 1-hour
and 20-min windows for same and different window positions,
respectively. S1 to S3 are then ranked based on these scores
across 5511 signals (i.e., range [1, 5511]). R lists the updated
ranks based on score changes when transitioning from fixed
to flexible window selection. In case of S1—S4 relation with
fixed 1-hour windows, PC is 23 x higher while DTW is 2.25x



lower than correlation with dissimilar windows. For a 20-min
window, S1—S4 correlation remains unchanged for PC, while
S3—S4 correlation is 1.83 x higher using dissimilar windows
for DTW. We do not analyze rank accuracy in relation to faults
here, but show that ranks can alter considerably. Such changes
are magnified when the set of signals is large with marginal
score differences, where ranks can rise or fall by 7x/8x.

As evident from Tab. I, regardless of the correlation function,
the impact of windowing depends on the nature of time-series
(e.g., sampling rate, range of values), and window size. Even a
small score change (e.g., 0.03) is non-trivial for a dataset with
signals in O(10%) orders of magnitude for which an automated
method can help enable accurate correlation-aware ranking.

III. RELATED WORK

Adaptive Window Selection: Prior work on adaptive window
selection consists of a) univariate and b) multivariate models.
Concept drift estimation and duplicate or change point detection
methods that identify changes in data distribution [9, 15, 25,
41] fall under a). Some imputation methods do not select
windows but handle missing data or construct latent space [51,
54] that can be used to post-process selected windows, and
are subsumed in a). Time-series segmentation methods finding
meaningful windows using temporal statistics [7], or methods
to pick multiple windows of different incidents in the same
time-series [23] also fall under a). These univariate methods
are inadequate for bivariate associations.

Some of the developed multivariate methods [10, 16, 33] are
domain-specific, involving feature aggregation, segmentation,
or human activity recognition [28, 31]. Flexwin [31] picks
windows from seismograms based on shape and similarity,
while Optwin [28] chooses windows by maximizing class
separability in signals to improve classifier performance. Joint
time-series models using chaining, segmentation, and discord
or motif discovery methods [7, 22, 30, 48] are domain-agnostic,
subsumed under b). Some of these methods focus on improving
efficiency (reducing runtime), or do not consider irregularities.
Few multivariate models may be adapted to bivariate analyses
but they do not address ranking accuracy. In contrast to these,
our generic method to select windows for pairwise correlations
focus on improving accuracy in anomaly-relevant ranking.

Correlation-Aware Ranking: Prior studies on causal infer-
ence, fault localization or incident diagnosis with time-series
data involve score-based ranking [4, 13, 19, 39, 44, 52]. The
scores are obtained using similarity measures, reconstruction
errors, null hypothesis testing, and point adjustment-like
techniques. Apart from using fixed windows that do not slide,
sliding windows with a step size are commonly used. The
importance of selecting suitable windows for failure diagnosis
is exemplified in recent works affirming our motivation [8,
20]. Ranking suggests incidents of interest, or cause-related
signals behind failures. F1-score, Z-score, or a domain-specific
scoring function (e.g., weighted precision and recall) is often
used to rank. Some studies detect the anomalous window or
analyze correlations in comparison to normal data [12, 39], but
do not assess anomaly relevance for incident diagnosis. Few

studies use synthetic anomalies, or use only regular sensor data,
while others can be expensive with respect to the achieved
accuracy (smaller window size implies more windows to be
examined). These studies show that based on the intricacies
of the facility, window selection is not straightforward [47].
We do not propose any novel ranking scheme, but our window
selection method can add to the wealth of these prior efforts.

IV. METHODOLOGY

In this section, we discuss the assumptions made, and the
characteristics of anomalous conditions (§IV-A), followed by a
description of our proposed window selection method (§IV-B).

A. Assumptions and Anomaly Characteristics

Our design conforms to the following realistic assumptions:

1) The choice of window is sensitive to the characteristics of
anomalies, aside from optimizing a correlation function.
Having too few values of signals may maximize correla-
tion (local extrema), but may not be relevant for detecting
anomalies. Similarly, abrupt changes, or longer than
usual time differences between observations implying
anomalous conditions are important to capture even if
the correlation score does not improve significantly.

2) The sampling rates of continuous-time signals may not be
known apriori. Reflective of real-world settings, signals
with collective or contextual anomalies are considered
unlike point anomalies [1, 21] (i.e., subsequence of values
together indicate an anomaly).

3) The exact start or end timestamps of failure incidents may
not be available. Approximate windows about failures
based on the available coarse ground truth are used.

4) Multiple incidents can occur in close temporal proximity,
i.e., using too narrow windows can miss important corre-
lations, while very large windows may dampen helpful
correlations to the point that they become undetectable.
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Conditions leading to a fault usually persist for some time.
Using too few values for correlation may not reflect an actual
fault even with an optimal correlation score. Hence, a minimum-
size window, W, across the considered set of signals helps
to have a lower bound on the possible sizes of the selected
window. In Fig. 4, T denotes time, S signal, Ts and Tg start
and end times for three signals, S1, S;, and S3, respectively.
Fig. 4 shows that windows that cross the boundaries of original
window [Ta, Tg] of size Wpax, or whose size is below W,;, are
not considered, while those within [T, Tg] with a size of Wy,



or higher are allowed (e.g., S3). The flexibility of choosing
windows is limited to the range of the original window.

For window selection, we leverage two key characteristics
of time-series often observed in anomalous conditions:

o Inter-Observation Time: The inter-arrival times or time
differences between two adjacent values are referred to as
the inter-observation times (67). The most frequent inter-
observation time in a time-series suggests the sampling
interval (SI), i.e., the mode value. Longer than usual 6T can
indicate abnormalities in many production environments.
Unusual 8T can also be intentional, such as, when a logger
is configured to skip storing values unless there is a major
change in the sensed measurement. Imputation helps in
such cases (e.g., forwardfilling). Unevenness in data can
imply a faulty device or intermittent defects (i.e., an
anomaly fixes itself before reappearing). Capturing such
irregularities helps to uncover interesting correlations. We
use unique §Ts with their respective frequencies to deduce
a minimum size window (Wy,,) across signals.

e Observational Difference: Gradual or abrupt changes
imply instabilities. Unstable conditions relate to unusual
correlations. Fig. 5 shows a specific time-series during two
non-overlapping normal (TWy) and abnormal windows
(TW,), respectively. The overall difference in the range
of observations between normal and abnormal times is not
high. However, slow changes with relatively low variance
can indicate anomalies, as evident from Fig. 5b. Based on
this insight, the difference in subsequent values V), as
opposed to variance of a randomly chosen full window is
explored for window selection. We use unique §Vs with
their respective frequencies to consider candidate windows
for capturing interesting correlations.

TABLE II: Summary of Major Notations

Notation Description

Winax Original coarse window size (fixed during window selection)
Winin Minimum size window

Wact Actual chosen finer window size

F Correlation function

8T, 8V Inter-arrival time, Observational difference

T, Tg Start, End timestamps of a window (W)

Si, SI®™  Sampling Interval of a signal (S), Common SI of a signal-pair
A, 7, @, 0 Frequencies of 6T, 6V and their filtering thresholds
L Location indices for candidate windows

Tab. II lists the notations used to describe our approach.

B. Approach Overview

Fig. 6 gives an overview of our approach comprising window
selection and correlation analysis. A coarse window [Ty4, Tg]
of size Wp,x and a set of signal-pairs are considered based on
the available failure ground truth. This original window does
not change during the process of window selection. AdaptWin
first identifies the sampling interval (SI) of each signal based
on which it selects a common minimum size window (W pin).
AdaptWin then obtains anomaly-relevant windows (Wx, Wy)
that optimize a correlation function F for a signal-pair X and
Y from [T, Tg]. Pairwise correlation scores are obtained for
all signal-pairs. Based on score-based ranking of signals, and

the available ground truth about anomalies, we examine the
accuracy of ranking for the studied failure instances. If anomaly-
relevant signals are ranked higher (top K), the related window
selection method is deemed more accurate as it localizes the
failure across fewer subsystems helping operators and domain
experts to narrow down their search space for failure diagnosis.
Not all possible signal-pairs are considered. The specific signal-
pairs used for correlation depends on the context of the dataset
and nature of failures. For e.g., a system performance-indicative
signal is correlated with all other signals to assess subsystem
correlations, or a signal representing full system reliability is
correlated with signals of a specific sensor type to determine
inter-signal relationships of that sensor, and so on.
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Algo. 1 shows AdaptWin’s minimum window size selection
approach. The idea is to estimate a sensible coarse-grained
timeframe based on non-uniformity in signals. In a dataset
with d signals, for each time-series of a signal-pair, the distinct
inter-arrival times (67) with their frequencies (\) are arranged
in descending order of 7. 6T with the highest frequency (i.e.,
mode) forms the SI of a signal. A few missing timesteps similar
to the size of SI resulting in short delays are often noticed
during normal conditions. Thus, fewer but longer delays are
prioritized over many shorter delays relative to SI. For e.g.,
with a 2-secs SI, a single 22-secs delay can be more helpful for
correlation over 170 delays of 4-secs each. Based on this insight,
a threshold ~ greater than SI, is derived from the distribution
of 6Ts, e.g., a function of inter-quartile range (IQR).

Algorithm 1 Minimum Window Size Selection
Require: Tw=[Tx, Ts]"™, SL=[S/....Sdl. g
Ensure: Wi, [tipan, SI'] for i*" signal
1: procedure MIN WIN S1ZE(Tw, Si, g)
2: for each [S;, S;] € S. do > Signal-pair
: [(6T, N)] < Sort §Ts with their frequencies X
[ST, SF] < Mode [(67, N)] > Sampling Interval
~ < Derive threshold from §7 distribution
if regular signal then tga, < (% * Winaz) €lse

3
4
5
6:
7: tspan <~ Z (5T * >\)7 v (6T > ’Y)
8.
9
10:

> d Signals
> Min. window size

> Irregular
Pairmm <+ Max tspan of [Si, SJ]
Wain < Max of all [Pairpin]
return W,,;,, [tzsptmn SII]

0Ts exceeding +y are used to estimate the cumulative duration
of irregularities, toan, using the sum of product rule, i.e., the
products of §Ts with their respective As are added. For regular
signals, 0Ts are either same or close to SI, for which topan 18
defined as %th of Whax. This ensures that at least a fraction
(%) of the total number of entries in the original window
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is used for correlation in case of fewer or no irregularities.
The minimum window size of a signal-pair (Pairy;,) is the
maximum te,, of the two signals. This is repeated for all
signal-pairs. To accommodate instabilities as much as possible,
the maximum of all Pair,;,s from the examined signal-pairs
forms the common W,

The intuition behind deriving ty,, is to capture a timeframe
that is long enough to include the major patches of unevenness
in the window. The number of missing values in the window
can be estimated using tga, and SI. For a simple case of two
regular signals, Algo. 1 guarantees Wy, to be %th of Wiax.

For illustration, Fig. 7 shows the statistics for a specific
1-hour window of a signal comprising frequency (freq.) and
cumulative distribution function (CDF) of distinct 6Vs and §7s,
respectively. In Fig. 7c (1) (top), 67=2 secs is the SI (x-axis)
with the highest frequency. As per Algo. 1, Wpi,=11.6 mins for
threshold y=8 (where §'s exceeding ~ range between 10 and
24). As seen from Figs. 7b and 7c (2), §¥ CDF has a normal
distribution, while 67 CDF has a gamma distribution hinting at
the skewness in 6's over §Vs. The histogram plots in Figs. 7a
and 7c (1) show more asymmetry in the distribution of §T over
&Y hinting at signal irregularities. Higher symmetry in both
and 07 hint at less irregularity providing more room for window
selection without major change in the correlation accuracy.
Fig. 7d shows adjacent §Ts and §Vs over time indicating that
the timesteps of higher §¥s need not correspond to higher §7s,
and vice-versa. There exists timesteps where change in both
6T and 8V coincide (i.e., deviate in both time and value).

Based on this empirical insight, timesteps with changes in
both §Y and 87 gain precedence for window selection over those
with changes in §Y only, followed by timesteps with changes in
6T only. The last condition helps when there are no trends (i.e.,
values barely change) yet gaps exist in the data. The key idea is
to capture timesteps with relatively higher deviations in fewer
iterations to form windows. To do so, we filter relatively larger
8Vs and 07s to form an ordered list of location indices that are
inspected for window formation starting with size Wp,. We
extend the candidate windows by a fixed step size, until the
correlation function F reaches an extrema for a signal-pair.

Algo. 2 shows AdaptWin’s overall window selection method
that identifies the window position in each signal maximizing
function F. Apart from Wy, SI, and the threshold-based
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of 6V and 47 indicating the level of symmetry and skewness.

filtered 6's are obtained from Algo. 1. For each signal, the
unique observational differences (§¥) with their frequencies ()
are arranged as per the decreasing order of 6V, and a threshold
6 is defined from )\ distribution (e.g., p"%ile). As frequent
minor deviations in values are normal, fewer yet larger 6Vs
are preferred. Thus, [6Y> 6] related to larger magnitudes are
considered. From the threshold-based filtered §Ts and §Vs, the
location indices (Ly) are arranged as per the aforementioned
order of precedence, i.e., indices where both oV and 67T change
are prioritized over indices with change in either 6V or §T.
For each signal-pair, we consider these location indices (L)
as various start times (Tg;) for inspecting candidate windows.
For each start time in [Lg], temporary windows of size Wy,
are formed. To assess F-values, signals are resampled with an
identified common SI for a signal-pair, converting an irregular
window to a regular one. The windows are extended by
steps while examining indices in [Lg] of both signals until F
reaches a maximum, or an expected value. This gives window
positions of a signal-pair, i.e., the specific start and end times.

Algorithm 2 Flexible Window Selection

Require: Tw=[Tx, Ts]"™, S =[S;,...S4], g, F,
Ensure: W, (W;, W) for pair (S;, S;) > Selected Windows
1: procedure ADAPTWIN(Tw, S, g, F, 8)
2: Win, (tspan, SI)' <= MinWinSize (Tw, S, g)
for each S; € Si. do
[(8Y, )] < Sort §¥s with their frequencies «
6 < Derive threshold from s’ spread
[valgirr] < Select (8¥, @), ¥ (6V> )
[Lx] < Arrange location indices from filtered [tspan] and
[valgs] as per precedence order ([6" 67]>6Y>6")

> Algo. 1

A

8: for each ([S;, S;] € F) do > Signal-pair

9: SI®°™ + Common SI from [SI', SF]

10: Select candidate windows V (Ty € [Lk]) with Wiin

11: Resample candidate windows with SI®™

12: Extend windows by § while checking F o
13: Stop if F reaches max; Wae, Wi=[T%,, T 1, Wi=[TZ,, T%]

14: return Wy, (W;, W)

For a signal-pair, if SIs are similar (e.g., 2-min vs. 1-min),
the maximum interval is chosen, but if one of the SIs is
too large compared to the other (e.g, 5-mins>>30-secs), the
minimum of the SIs is chosen as the common sampling interval,
SI®™. This balances the trade-off between losing information



via aggregation, and changing the signal shape via new data
augmentation. As location indices can change post-resampling,
instead of resampling the entire original window at the outset
(Tw), only intermediate candidate windows are resampled. We
find that the number of shortlisted location indices are /15X
lower than the number of entries in Wy,x (i.e., all possible
start times). By using the indices of relatively higher deviations
and not using every timestep as a start time exhaustively, we
reduce the number of iterations for window formation. Thus,
AdaptWin selects W; for signal i of size W, with function F.

Location Indices: [Lx.] < > Wt W
| < » A —E_>
Y 5V Wanin| B S
| Wae !
=T e e M
T & Ty T s:
Signal Candidate Windows Windows of a Signal-pair

Fig. 8: Window Selection

Fig. 8 shows that for each time-series i, AdaptWin forms an
ordered list of location indices corresponding to the selected
dVs and §7Ts (L), that are analyzed for window selection for
a signal-pair. As F can be a non-monotonic function, if F-
value is lower than its value in the previous iterations (for a
maximization problem), or does not increase for a few [ steps,
further window extensions are skipped. Theoretically, 5 >
Whin 18 possible. However, in this case Wy, is chosen from
across all signal-pairs that may not be fine-grained enough for
incremental updates during pairwise correlations. When g >1
or a small fraction of total values, and 5 <Wy,, extending a
window by [ can speedup the window selection process.

Algo. 3 shows our correlation analysis post window selection
(Fig. 6). For a set of signals of dataset D, the correlation scores
(Cy) are obtained using the selected windows of the considered
signal-pairs, and function F. We assess the quality of top K
ranked signals based on these scores using failure ground truth.

Algorithm 3 Correlation Analysis
Require: W, = [Tit, T"E], Vie D, F, K, ground truth
Ensure: Ranking Quality
1: procedure CORRELATION(W;, F, K, ground truth)
2: [Cs] < Pairwise correlation [(W;, W;) € D, F]
3: [K] < Top K ranked signals using [Cs]
4: Ranking Quality <— Assess [K] with ground truth
5: return Ranking Quality

> Algo. 2

Time Complexity: For a signal-pair with c entries each in
Wnax, filtering 67 and 6V take O(c) time. With m and n location
indices of a signal-pair, window selection takes O(c+mn) time.
For p pairs, the overall complexity is O(p(c+mn)). For d
signals, the number of pairs p for anomaly-relevant correlations
in our study is O(d). Generally, p is not O(d?).

Methods applying a single chosen fixed window take O(1)
for a pair, and O(p) for p pairs. The sliding window method
for a signal-pair of c entries each takes O(c?) time, and for p
pairs O(pc?). As m<c and n<c in AdaptWin, the number
of iterations are much lower than sliding window or brute-
force method (§Sec. I) improving runtime. Thus, AdaptWin

improves accuracy with time complexity no worse than the
commonly used windowing methods. The efficiency can be
further improved with the state-of-the-art methods [30, 46] that
reduce runtime, which is beyond the scope of this work.

V. EVALUATION

We describe datasets, baselines, correlation functions, and
evaluation metrics used (§V-A), followed by our experimental
results using AdaptWin with practical case studies (§V-B).

A. Datasets, Baselines, Functions and Metrics

Datasets: We use the following diverse real-world datasets:

e Farticle Accelerator: This dataset relates to a complex
particle accelerator system (PAS) [26] with heterogeneous
subsystems comprising regular and irregular signals of
mixed sampling rates. The signals encompass over 25
distinct sampling rates ranging from 0.1 to 120 Hz,
some of which have missing entries. The domain experts
document the high-level anomaly information, i.e., coarse-
grained failure windows, e.g., magnet or pump trips and
water system faults that serve as sparse ground truth.

o Space Weather: The SWAN logs [40] contain sensor data
measured with vector magnetograms while monitoring the
Sun [5]. A sudden increase in X-ray flux or magnetic
energy indicates anomalies such as solar flares. The
signals relate to time and location data including magnetic
field parameters containing missing values leading to
unevenness. The verified solar flare reports specify the
duration of such anomalies that serve as our ground truth.

o Air Compressor: This dataset has sensor readings from
an urban metro (e.g., pressure/temperature), i.e., the air
production unit (APU) [6] of a train containing zeroes but
no missing data. Air and oil leakage problems break down
the compressor leading to anomalies [42]. The available
expert curated report has the specific anomalies with their
duration that is leveraged as ground truth for evaluation.

Tab. III shows the statistics of datasets used. We list the
number of signals, the overall log size, the range of sampling
rates (SR), the presence of missing data if any (Miss), the
number of failure instances (FI) and the fault types, respectively.
The anomaly duration across these datasets ranges between 6-
mins to 2-hrs based on which suitable W .« values are chosen.

TABLE III: Datasets and Failure Statistics

Dataset #Signals Size SR(Hz) Miss?? #FI Fault Type

PAS 5511 300K [0.1-120] Vv 14 Cooler/Magnet/Pump Trips
SWAN 51 20K 008 Vv 11 Solar Flares
APU 15 500K 004 x 10 Air and Oil Leaks

! Sampling Rate 2 Missing Values 3 Failure Instances

Baselines: We use the following domain-agnostic methods:

1) Fixed (Fix): A fixed size window (common practice).

2) Adwin [3]: This univariate method [9] selects windows
based on evolving changes in data. Though not bivariate,
we consider Adwin as it is a well explored adaptive
technique used for anomaly detection tasks [38].



TABLE IV: Ranking quality with various window selection methods (Top-15, Wy,x=3 hrs)

Method Pearson’s Correlation (PC) Spearman’s Correlation (SC) Dynamic Time Warping (DTW)

PAS APU SWAN PAS APU

SWAN PAS APU SWAN

P RCNDCG P RC NDCG P RC NDCG P RC NDCG P RC NDCG P RC NDCG P RC NDCG P RC NDCG P RC NDCG

Fix 0.060.25 0.2 0.160.25 0.3 0.060.33 03 0.06025 03 0.1 0.2
Adwin  0.130.05 02 0.060.05 03 0.060.2 04 006025 04 0.010.01

0.2 0.060.25 03 0.190.18 03 0.1203 03 020.16 047
03 0.06025 04 023033 04 0.16025 05 026025 04

Optwin  0.060.07 0.1 0.020.02 0.12 0.160.33 0.1 0.130.33 0.4 0.060.16 0.12 0.130.16 0.35 0.120.32 0.14 0.15026 021 0.2 03 03

Flexwin  0.040.06 0.1 0.02 03 045 0.18025 05 02 04 03 03 04

03 0.180.34 04 0.050.14 0.21 0.030.21 0.19 0.24 0.3 0.31

AdaptWin 0.3 0.56 0.5 0.22 0.5 0.6 0.250.66 0.6 0.8 0.76 0.67 0.4 0.6

04 02 04 05 035053 05 04 05 0.7 04056 0.6

In addition, we adapt two domain-specific non-univariate set g of Algo. 1 to 1/8 or 1/10, and 3 of Algo. 2 to 1/12" or

methods as baselines to assess the robustness of AdaptWin: 1/18™ of Wy« based on the size and regularity of windows.

1) Optwin (Opt) [35]: This multivariate method selects Fixed-size windows (FiX). use W,y in our.experiments. We
windows to improve classification via Kullback-Leibler seek to answer the following research questions:

(KL) divergence [28]. We customize Optwin for anoma- .
lous incidents where windows have several fault types .
leading to multiple classes. Optwin takes the original

RQ1: What is the ranking quality obtained via AdaptWin?
RQ2: What is the impact of window size and correlation
function on the quality of AdaptWin?

and minimum window size as input, similar to Wy, and o RQ3: How scalable is AdaptWin with increasing signals?
Whin in Algo. 2. We replace their objective function with o RQ4: What is the runtime of AdaptWin?
our correlation function, i.e., their temporal segmentation Ranking Quality (RQ1): Tab. IV shows the results with

strategy is used for examining correlations.

2) Flexwin (Flex) [36]: This bivariate method [31] iteratively
rejects segments of windows based on several filters.
Candidate windows are positioned around local minima,
analogous to AdaptWin’s location indices related to 67
and §V. For fair comparison, we use Flexwin for cross-
correlation threshold- and time lag-based filtering of

3-hour windows, where AdaptWin’s NDCG is over 2x while
recall and precision over 3x compared to Fix for several
instances. Adwin considers too many changes that can lead to
false positives, whereas Optwin and Flexwin can consider
timesteps that are not anomaly relevant. Overall, AdaptWin’s
ranking quality is relatively better across all the datasets.

windows only, that is relevant in our context. TABLE V: Window Size and Function Variation (NDCG@15)
Optwin and Flexwin are designed for purposes different from Method PAS (SC) SWAN (SC) || PAS (2.5-hr)
AdaptWin, yet, we consider these to see the kind of ranking 2-hr 4-hr 5-hr 6-hr 2-hr 4-hr 5-hr 6-hr|| PC SC DTW
quality achievable via other multivariate windowing strategies Fix 04 02 03 01 03 03 02 0211038 04 04
relying on techniques of KL divergence, and cross-correlation. Adwin 02 0.120.12 0.1 02 0.1 0.02 0.01/[0.25 0.2 0.1
Correlation Functions: We use two popular functions whose Optwin 02 0.1 0.1 0.070.220.19 0.15 0.15)1 0.1 0.14 0.2

Flexwin 0.3 0.1 0.1 0.07 0.35 0.2 0.21 0.1 ||0.35 0.3 0.26

variants are heavily used for data analyses [4, 47]:

e Correlation Coefficient: Pairwise rank correlation coef-

AdaptWin 0.6 0.5 0.5 0.45 0.7 0.55 0.51 0.48H0.52 0.6 0.6

ficient is a statistical metric used for analyzing linear, Wiax and F Variation (RQ2): Tab. V shows the ranking

non-linear, negative, or positive associations. Specifically,
the Pearson’s (PC) and Spearman’s (SC) correlation
coefficients [49] are used for experiments.

e Dynamic Time Warping (DTW): DTW determines the sim-
ilarity of two signals. DTW has been used for data mining
in various domains including anomaly detection [22].

2 to

accuracy with variation in window size and correlation function
for PAS and SWAN. We skip APU as it has inadequate data
for this experiment. First, we fix function SC and vary the
window size from 2 hrs to 6 hrs. As evident from columns

9, increasing Wy,,x does not necessarily degrade ranking

accuracy as several anomaly-irrelevant signals can also have

Evaluation Metrics: We use the following metrics, generally  gjmilar correlations as the relevant ones. In some cases, for a

found effective for ranking and recommendation tasks [14]: change in window size, NDCG remains the same. Next, we
1) Precision@K (P): Precision is the number of signals in  fix the window size to 2.5 hrs and vary the three correlation
top-K that are actually related to failure instances. functions for PAS dataset. As seen in columns 10 to 12, NDCG

2) Recall@K (RC): RC is the ratio of anomaly-related values for AdaptWin across functions is relatively better than
signals in top-K to the relevant signals in the dataset. the baselines (we omit SWAN as findings are similar). NDCG

3) Normalized Discounted Cumulative Gain (NDCG@XK): considers the position of the relevant signal too. Having a
This measures the relative deviation of the ranked signals  relevant signal show up in top-15 is useful in itself, a higher
compared to the expected ranking as per ground truth.  rank, e.g., 3" vs. 5", can further help diagnosis efforts.

) To assess AdaptWin’s performance beyond PC, SC, and

B. Experiments DTW, we use Jaccard similarity (JS) as F, a distance measure
Experimental Setup: We use an Intel(R) Xeon(R) Silver 4110 used in anomaly detection study [19]. The ranking accuracy
CPU running @ 2.10 GHz with 376 GB of main memory. We using JS is shown in Fig. 9 for PAS. AdaptWin has lower false
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positives that improves the ranking quality compared to the
baselines (findings are similar for other datasets).

Scalability (RQ3): To analyze ranking quality with scale,
we vary the number of signals in PAS as PAS has more signals
with higher irregularity than others. Figs. 10 and 11 show the
precision@10 and NDCG@15 for function SC. Increase in
signals by 5x can lead to as much as 70% decrease in precision,
and 2x drop in NDCG. AdaptWin’s accuracy is better than
the baselines. More signals can include some correlations that
are similar to anomaly-irrelevant ones, negatively affecting
accuracy. Thus, better ranking accuracy can be harder to achieve
with higher number of signals. With a large search space, having
a relevant signal appear in top-K can be non-trivial even if X is
large (e.g., 50). AdaptWin can aid fault localization compared
to naive methods in such high dimensional signal spaces. We
do not try to further optimize pairwise evaluations for a set of
signal-pairs as efficient ranking is not our goal [37].
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Fig. 13: Signal Deviations

We show how AdaptWin accounts for anomaly relevance
through an example. Signals S1 and S2 are more correlated
during timesteps [0-2000] in Fig. 13. However, AdaptWin picks
[3800-5400] as dips and spikes are more causal of anomaly
even if the window shows relatively weaker correlation. For
abrupt as well as gradual changes (as in Fig. 5), signals with
stronger correlation can rank lower and vice versa. AdaptWin’s
sensitivity to diverse deviations alongside optimizing F helps
to improve overall anomaly-relevant ranking.

For normal windows (no faults), change in ranks is ~25%
lower than failure windows (not shown for brevity). We assume
the availability of coarse failure windows for window selection,
which is often the case in practice (§ IV-A). The ranking quality
with any windowing method is quite variable as windows can
be quite diverse in terms of temporal data distribution.

Efficiency (RQ4): While we strive for better accuracy,
Fig. 12 shows AdaptWin’s runtime with various number of
signal-pairs for DTW on PAS, where W, is 3-hrs. The other
datasets with more uniform sampling rates have lower runtimes.
Fixed has the lowest runtime as expected. With increasing

>
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Fig. 11: Accuracy Fig. 12: Runtime (DTW)

signal-pairs, Adwin takes longer time as several candidate
windows are assessed that are limited by AdaptWin. AdaptWin
amortizes runtime by filtering candidate windows that can be
fewer than the baselines in face of asynchrony, as seen in
Fig. 12. The decrease in AdaptWin’s runtime compared to
baselines is larger with a larger number of signal-pairs.

Case Studies: Table VI shows the obtained ranks for a
set of signals related to two failure cases across the studied
windowing methods, namely, a) a faulty water cooler in PAS,
and b) oil leakage in APU. In these cases, water- and oil-based
signals are anomaly-relevant, i.e., energy, magnet, and pressure-
related signals can rank lower. As evident, AdaptWin (Adapt)
uplifts the ranks of the anomaly-relevant signals in relation
to other adaptive baselines. AdaptWin tends to be beneficial
when a failure affects multiple signals of diverse subsystem(s).

TABLE VI: Case Studies (Signal Ranking)
Oil Leakage Fault
Signal Fix Adwin Opt Flex Adapt Signal Fix Adwin Opt Flex Adapt

Energy 3 36 41 47 21 Pressurel 14 10 15 7 11
Magnet 17 42 37 23 52 Pressure2 11 15 8 6 13
Waterl 33 37 49 56 12 Pressure3 9 12 9 5 14
Water2 35 29 44 40 18 Oill 12 9 13 12 7
Water3 49 47 31 61 10 Gilz2 10 10 12 11 8

Water System Failure

Practical Impact: In noisy time-series, different windows
of the same signal can lead to different correlations due to
which distinguishing between normal and failure times is
hard. AdaptWin helps when the data is aperiodic or lacks
symmetry in distribution, and faults lead to temporal deviations
for at least a fraction of the coarser failure window (usual
scenario). Anomalies with gradual changes can lead to more
location indices for candidate window selection, while those
with longer failure durations can help better capture time-
localized deviations. Spurious correlations though feasible are
rare when dense and sparse time-series are correlated for a
dynamic system with multiple incidents in close temporal
proximity. Sliding window-based analysis do not intrinsically
prioritize 6¥s for which anomaly relevance can be low. If the
window size is too small, a method may fail to learn important
signal associations. For other scenarios where identifying
atypical signal correlations is needed, windows can afford
to accommodate some delays. AdaptWin can enable such
flexibility in window selection for various application domains.

VI. CONCLUSION

We present AdaptWin, an alternative approach of generic
window selection from time-series for pairwise correlations



in anomalous environments. Our design selects windows
that improve correlation-aware ranking involving regular and
irregular signals with mixed sampling rates. AdaptWin enhances
anomaly-relevant ranking by over 3x compared to baselines.
Our method can be used in domains with sparse ground truth
involving multivariate signals for failure diagnosis.
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