
IMPROVING CLOUD DATA PROCESSING AND STORAGE

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Ziheng Wang

August 2025

Abstract

SQL is not merely a query language – it is a state of mind. To think in SQL is to view reality through

the lens of sets and predicates. A crowded room becomes a table of persons, each with attributes that

can be filtered, grouped, and aggregated. Conversations become transactions, friendships become

foreign keys, and communities emerge from inner and outer joins. We normalize our thoughts,

decomposing complex ideas into atoms that can be recomposed through relational algebra. We seek

primary keys in every domain – those unique identifiers that anchor understanding. We think in

terms of constraints and integrity, recognizing that truth emerges not from individual records but

from the relationships between them.

Each computing epoch has demanded its own translation of this relational philosophy into silicon

and wire. From mainframes executing batch jobs to client-server architectures, each generation has

reimagined how to manifest set-theoretic operations in the medium of their time. Today, cloud

computing presents us with new primitives: ephemeral compute, disaggregated storage, and elastic

scale. Our challenge is not to abandon or even evolve the relational creed, but to discover how its

eternal truths can flourish when tables grow to petabytes, when compute materializes on demand,

and when the “database server” dissolves into a constellation of different hosted services.

This dissertation explores how to realize the relational vision in the cloud era. We begin by

improving distributed query processing through two key innovations: balancing fault recovery with

pipelined execution in streaming dataflow systems, and reasoning about query execution on hetero-

geneous compute resources. We then turn to the storage layer, showing how to optimize cloud-native

data lakes for selective queries by building consistent, bolt-on indices over object storage. We demon-

strate these principles through a concrete implementation for log search, showcasing how relational

operations can efficiently navigate massive volumes of semi-structured data.

We hope the reader will come to appreciate how the synthesis of distributed systems theory

and cloud engineering practice allows the relational model to flourish beyond its traditional confines

without sacrificing its essential beauty.

iv

Acknowledgments

Everyone, especially my advisor Alex Aiken, for their extraordinary patience.

v

Contents

Abstract iv

Acknowledgments v

1 Introduction and Background 1

1.1 Cloud Primitives . 2

1.1.1 Scalable Compute . 3

1.1.2 Reliable Storage . 3

1.2 Decoupling Compute and Storage . 4

1.3 Processing: Distributed Query Engines . 5

1.3.1 Stagewise and Pipelined Query Engines . 5

1.3.2 Challenge: Fault Tolerance . 7

1.3.3 Challenge: Cluster Heterogeneity . 7

1.4 Storage: Data Lakes on Object Storage . 8

1.4.1 Parquet and Data Lakes . 8

1.4.2 Challenge: New Workloads . 11

1.4.3 Contributions Summary . 12

2 Improving Processing: Fault Tolerance 13

2.1 Motivations . 13

2.2 Background I: What is Dynamic Pipelined Execution? 14

2.2.1 Blocking Execution . 15

2.2.2 Pipelined Execution . 16

2.2.3 Dynamic Lineage . 18

2.3 Background II: Fault Tolerance Challenges . 19

2.3.1 Lineage . 20

2.3.2 Upstream Backup / Spooling . 20

2.3.3 Checkpointing . 21

2.3.4 Priorities . 22

vi

2.4 Write-ahead Lineage . 22

2.4.1 Lineage Naming Scheme . 25

2.4.2 Pipeline Parallel Recovery . 25

2.5 Implementation . 26

2.5.1 Architecture . 26

2.5.2 Coordination through Transactions . 28

2.5.3 Failure Recovery . 29

2.6 Evaluation . 32

2.6.1 Quokka vs. Trino vs. SparkSQL . 33

2.6.2 Why Dynamic Pipelined Execution? . 33

2.6.3 Write-ahead Lineage Overhead . 36

2.6.4 Fault Recovery Performance . 37

2.6.5 Scalability . 38

2.6.6 Thinking about Mean Time Between Failures 39

2.7 Discussion . 40

2.7.1 Data vs Compute Fault Tolerance . 40

2.7.2 Design Motivations and Novelty . 41

2.7.3 Pre-emption Warnings and Fault Tolerance 41

2.7.4 Implementation . 41

3 Improving Processing: Cluster Heterogeneity 43

3.1 Motivations . 43

3.2 What is Optimal? . 45

3.2.1 Pareto Optimality . 45

3.2.2 Iso-instance vs. Iso-cost Curves . 46

3.2.3 Heterogeneity = More Choice . 47

3.3 Why is More Choice Beneficial? . 48

3.3.1 Query and Query Engine . 50

3.3.2 A Concrete Example . 51

3.4 Evaluation . 54

3.4.1 A More Complex Example . 55

3.5 Conclusion . 57

4 Improving Storage: Indexing Data Lakes 59

4.1 Motivations . 59

4.1.1 Existing Approaches . 61

4.2 Rottnest Search Indices . 62

4.2.1 Design Decisions . 64

vii

4.2.2 Summary and Implementation . 65

4.3 Index Protocol . 65

4.3.1 Building a Rottnest Index . 65

4.3.2 Searching a Rottnest Index . 68

4.3.3 Index Maintenance . 70

4.3.4 Invariants Proof of Correctness . 72

4.4 Index Implementation . 73

4.4.1 In-situ Querying . 73

4.4.2 Optimizing for Object Storage Accesses . 75

4.5 Evaluation . 76

4.5.1 Evaluating Rottnest . 76

4.5.2 Example Rottnest Indices . 78

4.5.3 Minimum Acheivable Latency and Maximum Tolerable Latency 80

4.5.4 Total Cost of Ownership . 81

4.5.5 In-situ Querying . 83

4.5.6 Sensitivity Analysis . 84

4.6 Discussion . 86

5 Storage: Detailed Example for Observability Data 88

5.1 Motivation . 88

5.2 Background . 89

5.2.1 Inverted Indices after Log Compression . 89

5.2.2 Challenge: Substring Searches on URIs . 90

5.2.3 Solution: The BWT and FM-index . 91

5.2.4 Challenge: Query Latency on Object Storage 93

5.3 Object Store Native Inverted Index . 93

5.3.1 Fast Search with Custom FM-Index . 93

5.3.2 Full Suffix Array with Range Reduction . 95

5.4 LogCloud Architecture . 96

5.4.1 Indexing . 97

5.4.2 Searching . 97

5.5 Results . 99

5.5.1 Storage Footprint . 99

5.5.2 Search Latency . 100

5.5.3 Total Cost of Ownership . 102

5.5.4 Ablation Studies . 104

5.5.5 Scalability . 105

5.5.6 Production Test Case . 107

viii

5.6 Conclusion . 108

6 Conclusion 109

6.1 The Impermanence of Forms and The Eternity of Essence 109

6.1.1 The Power of State Tracking . 109

6.1.2 The Fundamental Challenge: Data Volume 110

6.1.3 The Key Insight: Metadata as State Through Immutability 110

6.1.4 Flexibility Through Logical State Representation 111

6.1.5 Logical Immutability Affords Physical Ephemerality 111

6.1.6 Choosing What to Track . 112

6.1.7 Persistence Technologies and Access Patterns 112

6.1.8 Design Principles for Practical State Management 113

6.2 The Cloud as a New Computing Medium . 113

6.2.1 The Research Gap in Cloud Engineering . 113

6.2.2 Future Directions . 114

6.3 Bridging Theory and Practice . 114

Bibliography 115

ix

List of Tables

2.1 Fault tolerance design choices in data processing systems. 19

3.1 AWS EC2 instance specifications and pricing . 54

x

List of Figures

1.1 Multicore servers (left) vs distributed systems on the cloud (right). 2

1.2 The layout of a Parquet file. The format employs a hierarchical structure with multiple

levels of organization. At the highest level, a Parquet file consists of row groups, each

containing data for a range of rows in the underlying table. Typical Parquet writers

target 128MB row group sizes. The row groups contains multiple column chunks.

Each column chunk stores the values for a specific column across the rows in that row

group, along with metadata like statistics (min/max values, null counts) that enable

predicate pushdown. Within column chunks, data is further divided into pages, which

are the basic units of compression and encoding. Typical Parquet writers use a page

size of 1MB before compression, which usually results in a compressed page size of

around 300KB. This hierarchical structure allows for efficient data skipping: queries

can leverage metadata at both row group and page levels to skip reading data that

won’t contribute to query results. 9

2.1 Example problem we would like to solve. 14

2.2 Stagewise execution of the example problem with execution schedule shown on the

right. The arrow indicates the execution order of the query engine. 15

2.3 Pipelined execution of the example problem. The dashed box around task 0 and task

2 indicate they are part of the same channel, where task 2 depends on task 0. Task

0 can execute while Task C and D in stage 0 are executing. 16

2.4 Scheduling constraints in stagewise vs. pipelined execution. The dashed lines indicate

data dependencies. In pipelined execution, there could still be data dependency across

nodes! . 17

2.5 The inputs to task 2 are marked in green boxes, while its output is in blue dashed

box. Spooling would mean persisting C and D, whereas checkpointing would persist

S1. 20

xi

2.6 We show a job with 3 workers and 2 sequential stages. We assume worker 2 fails,

and we have to reconstruct the outputs of its 4 tasks across two stages. In the case

of data parallel recovery, each surviving worker would handle 1 task of each stage.

For pipelined parallel recovery, each surviving worker would handle tasks of an entire

stage. The effective parallelism achieved is similar in this case. 24

2.7 Quokka’s architecture. Note that instead of having components communicate with

each other through RPC calls, all coordination is done through the GCS. The client

also communicates with the cluster through the GCS. 26

2.8 An example fault recovery procedure when one out of three workers fail. Pink shade

represents data partitions that have been generated by past tasks and stored on the

TaskManager. Recovery tasks are shaded in light blue. 30

2.9 A channel’s execution timeline showing a strict ordering: historical tasks (filled cir-

cles) with committed lineages always precede future tasks (empty circles) with unde-

termined lineages. 31

2.10 Comparing the performance of fault-tolerant data processing systems (Trino with

FT, SparkSQL and Quokka) on the TPC-H queries (query number indicated on x-

axis) on a) 4-worker cluster and b) 16-worker cluster. Quokka outperforms Trino and

SparkSQL in most cases. 32

2.11 Pipelined Quokka vs Stagewise (blocking) Quokka execution times on the TPC-H

queries on the a) 4-worker cluster and b) 16-worker cluster. Pipelined execution

outperforms in all cases. 34

2.12 Performance of Quokka with dynamic task dependencies vs. two different static lin-

eage strategies on the a) 4-worker cluster and b) 16-worker cluster. Strategy 1 (batch

size 8) outperforms strategy 2 (batch size 128) on the 4-worker cluster but greatly

underperforms on the 16-worker cluster. Enabling dynamic task dependencies allows

Quokka to match the better performing static strategy in most cases. 34

2.13 Trino’s HDFS spooling fault tolerance overhead, Quokka S3 spooling overhead and

write-ahead lineage overhead on the a) 4-worker cluster and b) 16-worker cluster.

Overhead of 1 means no overhead. 35

2.14 Quokka vs SparkSQL’s fault recovery behavior. a) Quokka vs Spark fault recovery

performance on the 16-worker cluster where a random worker is killed at 50% query

completion during each query. b) A case study for TPC-H 9 where worker dies at

varying points during the execution. We also show Quokka’s end-to-end speedup over

Spark on the same y-axis scale. 37

xii

2.15 Experiments on 32 workers in terms of a) normal execution performance without

failures compared to Spark and Trino with FT (TPC-H query number on x-axis)

and b) fault recovery overheads where a random worker is killed at 50% completion.

Quokka is still faster end-to-end on each query compared to SparkSQL (right y-axis,

solid red line). 39

3.1 Histograms of memory and bandwidth costs of available instance types on AWS. . . 44

3.2 The model in [90] based on iso-instance curves. 45

3.3 Our proposed framework based on iso-cost curves. 46

3.4 Optimizing H over the constraint polytope. For simplicity, the IO axis is ignored in

the plot. 48

3.5 Available total resource combinations for fixed total cost for a) heterogeneous clusters

and b) homogeneous clusters. Different colors correspond to different total cost per

hour from $.5 to $5/hour in increments of $0.5 from lower left to upper right. . . . 49

3.6 A left deep join tree. The query engine builds hash tables R and S (build side), and

table T is probed against A and B in a pipeline to perform the three way join between

tables R, S and T. 50

3.7 Performance for A) scan stage B) join stage as a function of assigned vCPU. 52

3.8 Illustration of the best cluster configurations achieved by heterogeneous clusters (D)

vs homogeneous clusters (B). D has more CPU than B at the same cost per hour. . 53

3.9 Speedups achieved by using heterogeneous clusters along the iso-cost curve with a

unit cost of $4.8/hour. C8R4 denotes cluster configuration with eight c6gd.2xlarge

and four r6id.2xlarge. 54

3.10 Illustration of the polytope depicted in Figure 3.8 for r6id.2xlarge, m6id.2xlarge and

c6gd.2xlarge instance types with a total cost of around $1.8 an hour on demand. Valid

cluster configurations are shown by solid dots. 55

3.11 Runtimes of cluster configurations in Figure 3.10 assuming a disk-spilling threshold

of a) 120GB and b) 150GB. The best performing cluster configuration is on the lower

left. 56

4.1 Typical enterprise data stack. For workloads where directly querying the data lake

with a query engine like Trino is too inefficient, a specialized system like Clickhouse,

ElasticSearch or Qdrant is used. 60

4.2 The most economical approach given latency and throughput requirements of the

application. Some example applications are shown in each category. 63

4.3 Rottnest Indexing Protocol. Since the last index call b.parquet and c.parquet has

been compacted into d.parquet, and an update was written with the update file

e.parquet and deletion vector dv.bin. 67

xiii

4.4 Rottnest Search Protocol based on the running example in Figure 4.3. Assume that

after the index call, f.parquet is added to the table and is un-indexed. 69

4.5 Traditional Parquet readers read entire column chunks. Rottnest’s reader reads indi-

vidual pages, and notably bypasses the file metadata. 74

4.6 Breaking a BST into serializable components. 76

4.7 Phase change diagrams for a) Substring search and b) UUID search. Note log-log

axes. Explained in Section 4.5.4. 77

4.8 Brute force approach latency (a) and cost (b) scaling with cluster size. Rottnest

latency (c) and cost (d) scaling with cluster size. Worker instance used is r4i with

16 vCPUs. The graphs show that both Rottnest and brute force approaches cannot

achieve arbitrarily low latency by simply scaling up compute – there is some lower

limit due to the need for object storage access. 80

4.9 Phase change diagrams for vector search at different recall targets. Note log-log axes. 81

4.10 Parquet reading benchmarks showing how a) read latency increases with read gran-

ularity at different number of concurrent reads and b) the latency of reading 300KB

byte ranges compares to reading real Parquet pages. 82

4.11 Changes to the phase diagram if Rottnest keeps a copy of the data in custom format

or if it did not use an optimized custom Parquet reader. 84

4.12 Sensitivity analysis of cpq r, ic r and cpm r for vector search application at recall

0.92. Contours indicate phase diagrams if each of the parameter is multiplied by the

denoted factor. The actual diagram is in red. 85

4.13 Search latency on uncompacted vs. compacted index files for a) substring (100x

compaction factor) and b) UUID search (25x compaction factor). Compaction greatly

reduces search latency when there is a large number of index files. 86

5.1 Logs are typically made up of fixed templates and changing variables, which are

highlighted in yellow. Logs that do not fit into common templates are called outliers. 90

5.2 Summary of BWT and FM-index on the input string BANANA. For a more illustrated

reference see [136]. We show a simple FM Index and a wavelet tree FM-index. To

compute rank(B, 4) with a wavelet tree, we first lookup B’s binary representation 01.

Since the first digit is 0, we find rank(0, 4) = 2 in the bitvector at the root node.

Then we go down the left branch and find rank(1, 2) = 1 as the result. 91

5.3 Range reduction to compress the suffix array. 95

5.4 LogCloud’s architecture. 96

5.5 Searching workflow in LogCloud. All data structures shown in boxes are stored on

object storage. 98

5.6 Storage footprint comparisons across five datasets. 99

xiv

5.7 Search times for different query types across five public log datasets with breakdowns

between search and download for LogGrep and index and Parquet for LogCloud. Bars

exceeding the y-axis are annotated. 101

5.8 Phase diagrams for the four different log types. 103

5.9 LogCloud’s TCO savings compared to the cheaper of LogGrep and OpenSearch Ul-

traWarm at 12 months. Each solid curve corresponds to a different log type. The line

at 1 represents where LogCloud outperforms baselines. 103

5.10 LogCloud index search times for exact and substring queries with custom FM-index

vs wavelet tree. The solid line denotes the TCO profile of the custom FM-index,

whereas the dashed line indicates that of the baseline wavelet tree. 104

5.11 LogCloud component sizes with (left bars) and without (right bars) the range reduc-

tion optimization. 105

5.12 a) Term dictionary target chunk size vs index size. b) Search latency by type vs. term

dictionary chunk size. 106

5.13 How the TCO ratio curve for Cluster shifts at a) different dataset scales and b)

different operating horizons. 106

5.14 a) Storage footprint and b) Search times of ElasticSearch, LogGrep and LogCloud. . 107

xv

Chapter 1

Introduction and Background

Two important categories of data processing are OLTP (online transactional processing) and OLAP

(online analytical processing). The former concerns itself with handling real-time operational tasks

such as managing customer orders, processing payments, and updating inventory levels. OLTP sys-

tems are optimized for quick, atomic transactions and maintaining data consistency across multiple

concurrent users. These systems typically deal with many small, discrete transactions that modify

only a few records at a time, making them ideal for day-to-day business operations where speed and

accuracy are crucial. The latter focuses on analyzing large volumes of historical data to support

strategic decision-making and business intelligence. OLAP systems are designed to handle com-

plex queries across vast datasets, often aggregating information from multiple sources to identify

trends, patterns, and relationships. Unlike OLTP’s rapid individual transactions, OLAP operations

typically involve reading large amounts of data and performing sophisticated calculations, such as

generating sales forecasts, analyzing customer behavior over time, or creating multidimensional re-

ports for executive dashboards. There is an emerging field of data processing called HTAP (hybrid

transactional analytical processing) that aims to build unified systems with both OLTP and OLAP

capability.

This thesis mostly concerns itself with OLAP workloads. In the Chapters 2 and 3, we

will discuss efforts to improve cloud data processing [143, 144]. In the next two chapters, we will

discuss efforts to improve storage [145,146].

Two main challenges facing OLAP workloads currently are:

• An ever increasing volume of data. While a decade ago papers used 1TB datasets as an

example of “big data” [151], modern data analytics can easily process over 100TBs of data.

• New data workloads involving novel modalities such as vector embeddings, images and text.

The database community has mostly tried to tackle these challenges by leveraging new compute

primitives arising from the maturation of cloud computing, with tremendous academic and industrial

1

CHAPTER 1. INTRODUCTION AND BACKGROUND 2

Figure 1.1: Multicore servers (left) vs distributed systems on the cloud (right).

impact. The first cloud native data warehouse, Snowflake, is now a 60B company (as of Jan 2025),

while cloud-native data technologies has become a mainstream research topic [48].

1.1 Cloud Primitives

While traditional OLAP data warehouses are designed to work on multicore servers shown on the left

of Fig 1.1, cloud OLAP systems are designed to work as distributed systems on cloud platforms such

as Amazon Web Services (AWS). Such distributed systems rely on core services these public clouds

provide, such as blob storage (AWS S3, Google GCS, Azure Blob Storage) and elastic compute

(AWS EC2, GCE, Azure VM).

Multicore servers typically consist of a fixed number of cores with a shared RAM and hard drive.

Each core has caches that accelerate access to core-local data; the HDD provides a reliable storage

medium; the RAM provides fast ephemeral storage that can be shared between cores.

At first glance, distributed systems on public cloud share a striking semblance to multicore

servers. The HDD is replaced by reliable object storage services like AWS S3. Instead of a fixed

number of cores managed by an operating system, distributed systems rely on an elastic number of

virtual machines (VMs) managed by a container orchestration system like Kubernetes. Distributed

caching services like DynamoDB or Redis play a similar role as RAM. Analogous to how caches speed

up core-local data accesses in multicore machines, cloud VM instances might offer instance-attached

NVMe SSD disks that are much faster to access than object storage or distributed caching services.

CHAPTER 1. INTRODUCTION AND BACKGROUND 3

1.1.1 Scalable Compute

Cloud distributed systems rely on elastic VM instances that can be spun up and down on demand as

compute resources. These services (e.g. AWS EC2), empowered by virtualization, containerization

and orchestration technology advances in the last decade [34, 40] and gigawatt-scale data centers

packed with the latest hardware, allow distributed systems to rapidly scale up and down their

compute requirements, such as compute cores or memory, only paying for the resources used.

While a program written for multicore servers executes the same sequence of instructions on

different cores of the same machine, distributed systems typically execute the same program over

hundreds to thousands of VM instances. Similar to how optimizing software for multicore servers

could involve performance engineering single-core code to improve cache efficiency, optimizing dis-

tributed systems also involves optimizing the code run on each VM to properly use multiple cores

and instance-attached NVMe SSDs. However, there are two major qualitative differences between

cores in a multicore server and elastic cloud VMs in a distributed system.

• Elasticity: while it is almost impossible to add new cores to servers during program execution,

it is trivial (and often expected) to dynamically change the number of VM instances involved

in a distributed system execution. While the user can request more resources for the system,

the cloud provider or container orchestration system might also decide to preempt resources

from the system due to the demands of other customers or other jobs.

• Heterogeneity: while the cores in a multicore server are typically identical, distributed sys-

tems in public clouds can typically make use of a combination of instance types with different

resources in the same job. For example, there could be a mix of VM instances based on x86

and Arm cores in the same job. This situation has become increasingly common, especially at

larger organizations, to take advantage of all available compute resources.

While characteristics like preemption place new fault tolerance challenges on cloud OLAP sys-

tems, the ability to scale up and cluster heterogeneity also offer new opportunities to make cloud

OLAP systems more cost efficient. This thesis explores improvements in fault tolerance mechanisms

for distributed OLAP systems and leveraging heterogeneous clusters with a research OLAP system

called Quokka in Chapters 2 and 31.

1.1.2 Reliable Storage

In traditional database research, the disk is taken as a reliable storage medium. For distributed

systems in the cloud, this role is taken by an object storage service (AWS S3, Google Cloud Storage,

Azure Blob Storage), which typically boasts extremely high reliability. Object storage is more similar

to classic HDDs than the SSDs commonly used today:

1https://github.com/marsupialtail/quokka

CHAPTER 1. INTRODUCTION AND BACKGROUND 4

• Immutable writes. While SSDs and HDDs typically support some form of random access

writes, object stores only support append only writes: only new objects can be created while

existing objects cannot be modified. Like SSDs and HDDs, object stores do support random

reads.

• Performance. While modern disks typically offer sub 10ms random read latency, object

storage first byte read latency is typically around tens of milliseconds, with some requests

taking up to 100 ms, slower than the typical seek time in HDDs. However, if accessed properly,

object storage boasts virtually unlimited read throughput.2

Crucially, similar to hard drives, object storage is extremely cheap, costing only around $20 to

store a terabyte of data for a month.3 This cost is impressive especially considering the extremely

high availability guarantees – in practice, it is rare for an IT organization to complain about object

storage cost, as it is typically eclipsed by other line items in its budget. There is also no limit in the

amount or duration of data one can store – it is not uncommon for organizations to store multiple

petabytes of data for years for compliance reasons. The cost for storing 1PB for a year is roughly

$240,000, not even the fully loaded cost of a single software engineer. Storage is especially cheap

compared to some (perhaps overpriced) compute services: e.g. AWS Athena would charge $5/TB

read for a single query, the same as storing the data for a week!

The high reliability of cloud storage systems greatly simplifies the design of data systems –

whereas previously distributed databases had to take great care to maintain data reliability by

replicating data, cloud data systems can guarantee reliability by simply storing the data in object

storage. Another topic of this thesis is enabling efficient analytics of novel modalities such as vector

embeddings and text leveraging object storage in Chapters 4 and 5 with a research system called

Rottnest4.

1.2 Decoupling Compute and Storage

Traditional database systems for multicore servers tightly couple compute and storage resources,

where each database node would manage and process data stored on its local disks. Modern cloud

OLAP systems have shifted toward distributed systems that typically separate compute and storage:

the storage layer consists of cloud object stores that durably maintain all data, while the compute

layer comprises stateless query processing nodes that can be independently scaled. This system

architecture allows for more flexible resource management and better cost efficiency, as organiza-

tions can provision compute resources based on their immediate processing needs without being

constrained by their total data volume.

2TB/s throughput can be achieved with proper load balancing across availability zones on AWS as of 2025.
3AWS S3 Standard Tier, 2025
4https://github.com/marsupialtail/rottnest

CHAPTER 1. INTRODUCTION AND BACKGROUND 5

The separation of compute and storage in modern cloud OLAP systems is a natural architectural

choice given the aforementioned distinct characteristics of elastic compute and reliable object stor-

age. While object storage services provide virtually unlimited, highly reliable storage, elastic VM

instances offer scalable, pay-as-you-go compute resources that can be dynamically adjusted. This

separation allows OLAP systems to independently scale their compute resources based on query

workload demands without being constrained by data locality or storage capacity considerations. In

Chapter 3, we will show how query engines can exploit this separation with heterogeneous clusters

by assigning different query stages to instance types best suited for the computation (e.g., memory-

intensive operations to high-memory instances, compute-intensive operations to CPU-optimized in-

stances).

A consequence of this architectural choice is that while historically the query engine and storage

format of databases were highly coupled, e.g. it would be unusual for Postgres to be able to read data

in MySQL, query engines and storage formats in cloud databases have grown disparate as separate

projects, especially in the open source community. Most open source cloud-native query engines

today, such as SparkSQL and Presto do not concern themselves with storage, and are expected to

support many different storage formats [30,124]. Similarly, open source cloud storage formats, often

referred to as data lakes like Apache Iceberg or Delta Lake, are expected to support different query

engines. While proprietary systems like Snowflake and BigQuery typically have their own storage

formats, they are moving to support open formats [88, 98]. In Chapter 4 and 5, we will show how

the decoupling of storage and compute allows us to build lazy indexing systems that are “bolt-on”

to existing data lakes.

1.3 Processing: Distributed Query Engines

We now present a more detailed summary of the state-of-the-art in distributed query engines. We

present two challenges, fault tolerance and cluster heterogeneity, along with an overview of our

proposed solutions.

1.3.1 Stagewise and Pipelined Query Engines

Some examples of distributed query engines are Apache Spark, Google’s Dremel (later commer-

cialized as BigQuery), and Meta’s Presto [30, 99, 124]. These systems typically support SQL-based

analytics at scale by breaking down complex queries into distributed execution plans. When a user

submits a SQL query, these engines first generate a logical query plan, which is then transformed

into a physical execution plan that can be distributed across many VM instances. For example, when

processing a query that joins two large tables and performs aggregation, the engine might split the

data into partitions, distribute join operations across multiple executors, and then combine results

through a distributed aggregation phase. Each worker node in the cluster processes its assigned

CHAPTER 1. INTRODUCTION AND BACKGROUND 6

portion of the data, typically fetched from cloud object storage like Amazon S3, with the query

engine coordinating the flow of data between stages and handling fault tolerance.

While many known implementation techniques in multicore single-node OLAP data warehouses

can be readily transferred to this new setting, e.g. how to break up SQL query execution graphs

into parallel shards, cloud-based distributed query engines face some new fundamental architectural

challenges. While multicore systems attempt to minimize cross-core communication due to NUMA

issues, distributed query engines must coordinate data movement across independent VM instances

that may be scattered across different machines across a datacenter, making communication much

more expensive compared to computation.

The high cost of communication has given rise to programming paradigms like MapReduce, which

the first generation distributed OLAP SQL engines were built on [51,63,74]. MapReduce addresses

the communication bottleneck by structuring computation into distinct Map and Reduce phases,

where data is first processed locally on each machine during the Map phase to minimize data volume

before a separate shuffle operation moves data between machines during the Reduce phase. This

approach minimizes network communication in several ways:

• Data locality: Map tasks are preferentially scheduled on machines that already have the

input data locally available.

• Early filtering: Map operations can reduce data volume before the shuffle phase by filtering

and transforming data locally.

• Bounded communication: Each piece of data is typically communicated only once during

the shuffle phase, rather than making multiple round trips between machines.

• Batched communication: Data transfer happens in bulk during the shuffle, rather than

through many small network requests. This bulk data transfer can then be optimized as a

distributed primitive.

Most importantly, MapReduce encapsulates these advantages into a simple to understand bulk-

synchronous-parallel (BSP) programming model that executes one map-reduce stage at a time. First

generation OLAP systems like Hive, Pig and Spark are all built on this programming model, though

some systems like Spark evolved beyond the original MapReduce system itself with optimizations

such as lineage tracking and in-memory computing [51, 63, 74, 152]. While scalable and simple to

program, the BSP-based OLAP systems’ stagewise execution model leaves performance on the table.

When a job is executing the shuffle stage, it is typically network-bound, leaving the CPUs in the

cluster idle. The reverse situation happens in compute-intensive map stages.

A second generation of distributed query engines purpose-built for SQL often employ a pipelined

architecture where multiple stages can execute concurrently [48, 124]. This is inspired by high

performance multicore OLAP systems, which have largely moved to a pipelined work-stealing morsel

CHAPTER 1. INTRODUCTION AND BACKGROUND 7

based parallelism approach [89]. In some of these systems, the dependencies between tasks in

different stages are statically determined [124]. In other more recent systems, such dependencies are

dynamically determined to take advantage of work stealing and cache efficiencies [31]. Compared

to first generation OLAP engines, these new pipelined engines can fully exploit pipeline parallelism

between stages, leading to greater performance and resource utilization.

1.3.2 Challenge: Fault Tolerance

However, due to their more complicated execution model, pipelined query engines typically do not

support efficient intra-query fault tolerance, required to harness the elastic nature of cloud compute.

While most cloud query engines based on object storage are fault tolerant to data loss, we focus here

on intra-query fault tolerance: the query engine can reuse intermediate results to recover faster than

restarting the entire query after some tasks fail or have been preempted by the cloud provider or

the cluster orchestration software. Current pipelined query engines either re-execute failed queries

from the beginning [31, 48], or rely on high-overhead approaches such as durably persisting shuffle

partitions between stages [7].

In Chapter 2, we propose a very simple fault tolerance strategy for these pipelined OLAP engines

called write-ahead lineage. Similar to how a write-ahead log in an OLTP database persists

proposed data changes on disk before a transaction is committed, write-ahead lineage persists the

dynamically generated task dependencies in pipelined query engines in an ACID data store.

During standard execution, the system stores only kilobytes of lineage metadata as overhead.

Tasks are restricted to processing intermediate results only after their lineage data has been durably

stored. This maintains the performance benefits of a pipelined query engine with minimal overhead,

leading Quokka to outperform Spark by around 2x on TPC-H. We show that combined with a

distributed pipeline parallel recovery strategy, we can match the fault recovery performance of Spark

as well.

1.3.3 Challenge: Cluster Heterogeneity

While public cloud providers offer a broad range of vastly different VM instance types, from memory-

optimized instances with terabytes of RAM to compute-optimized instances with high-performance

CPUs to storage-optimized instances with fast local NVMe storage, traditional query optimization

research has focused primarily on homogeneous clusters where all nodes have identical resources.

Different stages of query execution often have vastly different resource requirements – for exam-

ple, hash joins are typically memory-intensive while aggregations are often CPU-bound, suggesting

potential benefits from matching query operations to specialized instance types.

In Chapter 3, we explore how we can improve the cost efficiency of query engines via mixing dif-

ferent instance types within the same query, developing novel optimization techniques that consider

CHAPTER 1. INTRODUCTION AND BACKGROUND 8

both the resource requirements of different query stages and the cost-performance characteristics of

various instance types to minimize overall query cost while maintaining performance objectives.

1.4 Storage: Data Lakes on Object Storage

Let’s now turn our attention to storage. In the last decade, object storage has become the de facto

storage medium for cloud OLAP engines. The field has converged around the “data lake” concept,

where data is stored in columnar storage formats, typically Parquet files, which are in turn organized

into a “data lake”, which might contain additional metadata files.5

1.4.1 Parquet and Data Lakes

We will first describe the format of Parquet files, then cover how data lakes organize Parquet files to

facilitate efficient data updates and querying. Several popular data lake formats exist at the time of

writing, including Delta Lake, Iceberg and Hudi [24,25,27], all of which are based on Parquet files.

In contrast to classic database storage formats (e.g. Postgres) which store tabular data row

by row, Parquet is a columnar format. It stores data column by column, allowing for efficient

compression and retrieval of only the necessary data. More details are shown in Figure 1.2.

Parquet is particularly suitable for cloud object storage:

• Compression: Each column can be compressed independently using algorithms best suited

for its data type: e.g. dictionary encoding for low-cardinality string columns or run-length

encoding for columns with repeated values. This type-specific compression, combined with

the natural redundancy in columnar storage, typically achieves better compression ratios than

row-oriented formats.

• Efficient I/O: By storing column values contiguously, Parquet minimizes I/O when queries

access only a subset of columns, which is particularly important for object storage where each

GET request incurs latency overhead.

• Statistics and Metadata: Each column chunk maintains statistics, such as the minimum

and maximum values of the colum. This enables query engine optimizations such as predicate

pushdown, where entire row groups can be skipped if the statistics incidcate that none of the

values contained would pass a filter condition. These statistics are stored in the file footer,

which can be read with a single small request.

These properties, combined with its widespread adoption across the analytics ecosystem, have

made Parquet a de facto standard for analytical data storage in the cloud. At first, query engines

5The term “data lake” has been taken to mean many things, e.g. a repository for PDFs, images, videos, magic
fairy dust, etc. In this dissertation, we will take it to mean metadata formats like Apache Iceberg and Delta Lake.

CHAPTER 1. INTRODUCTION AND BACKGROUND 9

Figure 1.2: The layout of a Parquet file. The format employs a hierarchical structure with multiple
levels of organization. At the highest level, a Parquet file consists of row groups, each containing
data for a range of rows in the underlying table. Typical Parquet writers target 128MB row group
sizes. The row groups contains multiple column chunks. Each column chunk stores the values for
a specific column across the rows in that row group, along with metadata like statistics (min/max
values, null counts) that enable predicate pushdown. Within column chunks, data is further divided
into pages, which are the basic units of compression and encoding. Typical Parquet writers use a
page size of 1MB before compression, which usually results in a compressed page size of around
300KB. This hierarchical structure allows for efficient data skipping: queries can leverage metadata
at both row group and page levels to skip reading data that won’t contribute to query results.

CHAPTER 1. INTRODUCTION AND BACKGROUND 10

manipulated Parquet files directly stored in directly on object storage in organization structures

such as Hive. However, the shortcomings of this approach soon became evident: listing the Parquet

files to read became bottlenecks on large queries; write queries overwrote each others’ data, etc.

Data lake formats soon emerged that promised strong data consistency through ACID trans-

actions and data versioning on top of the Parquet files. In effect, they offered typical OLTP-like

features on top of the raw Parquet files in object storage by keeping additional metadata such as a

transactional log stored in Json format.

These data lake formats generally follow similar architectural patterns to provide ACID guaran-

tees and versioning capabilities on top of immutable object storage. At their core, they maintain

a transaction log or commit history that tracks changes to the underlying Parquet files over time.

Each transaction creates a new “snapshot” of the table, referencing the set of Parquet files that

comprise the table’s state at that point in time. This append-only design aligns well with object

storage’s immutable nature - rather than modifying existing files, updates and deletes are handled

by creating new files and updating metadata to reference them.

In addition to ACID guarantees, this metadata-driven approach enables several other key features

that were difficult or impossible with raw Parquet files:

• Time Travel: Since each transaction creates a new snapshot, queries can read from any

historical version of the table.

• Schema Evolution: New columns can be added while maintaining backward compatibility.

• Efficient File Management: Background processes can compact small files to speed up

future queries and clean up Parquet files corresponding to obsolete versions while ensuring

active queries aren’t affected.

Modern data lake query engines have made remarkable advances in query performance on open

data lake formats, often matching or exceeding the performance of systems with proprietary storage

formats. Through sophisticated optimizations like intelligent file pruning, adaptive query execution,

and vectorized processing, these engines can execute complex SQL queries on Parquet files with

impressive efficiency. For example, Databricks’ Photon engine employs advanced techniques like

SIMD vectorization, code generation, and data-aware caching to achieve performance that rivals

traditional columnar databases [36]. Photon also has optimizations specifically for data lake patterns,

such as aggressive metadata caching to minimize object storage requests, smart file grouping to

optimize read patterns, and dynamic partition pruning that can eliminate unnecessary file reads

based on runtime information. These improvements, combined with the inherent advantages of

open formats like easier data sharing and multi-engine support, have led many organizations to

choose data lakes over proprietary storage solutions. The performance gap that once existed between

proprietary warehouse formats and open data lake formats has largely disappeared, while data lakes

offer greater flexibility and avoid vendor lock-in.

CHAPTER 1. INTRODUCTION AND BACKGROUND 11

1.4.2 Challenge: New Workloads

As data lake formats have matured to provide the missing functionality of traditional databases while

leveraging object storage’s reliability and cost advantages, organizations are storing increasingly

massive volumes of data in their data lakes, often reaching petabyte scale. This shift has played

a crucial role in breaking down traditional data silos within organizations. Historically, different

departments or teams within a company might maintain their own separate databases and data

warehouses, making it difficult to combine data for cross-functional analytics or machine learning.

Data lakes have transformed this landscape by providing a single repository of data from various

sources: sales data, customer interactions, product telemetry, or marketing analytics, commonly

referred to as the “single source of truth” in industry parlance.

The open nature of these formats means that different teams can use their preferred tools and

query engines while working with the same underlying data. For example, data scientists can use

Python and Spark for machine learning while business analysts query the same tables using SQL,

and data engineers can build ETL pipelines - all without data duplication or complex integration

layers. This democratization of data access, combined with the cost-effective storage of object stores

and widespread compatibility of data lake formats, hold the promise to allow organizations to have

a “single source of truth” for all data.

To fully realize the vision of unified data access, data lakes must expand beyond traditional

SQL-based OLAP workloads to support diverse data modalities. Organizations typically maintain

multiple specialized OLAP systems: ElasticSearch for text search, vector databases for embedding-

based similarity search, and observability platforms like Datadog, Splunk, or Prometheus for metrics,

logs, and traces. While these systems have all evolved to embrace the compute-storage separation

paradigm common in cloud architectures, their continued existence as separate silos seems unnec-

essary. Rather than maintaining multiple specialized storage systems, these could potentially exist

as purpose-built query engines operating on a shared data lake, where all of an organization’s data

resides in open formats. This consolidation would not only reduce storage costs and simplify data

management, but also enable novel workflows that combine different data modalities - for example,

joining SQL tables with vector similarity search results or correlating business metrics with system

logs. The key challenge lies in designing storage formats and query interfaces that can efficiently

support these diverse analytical patterns while maintaining the performance characteristics that

specialized systems currently provide.

In Chapter 4 I will discuss a system, Rottnest, that allows the construction and maintenance of

external indices on data lakes. These external indices can then be used to support diverse workloads,

such as fast text search or vector search. In Chapter 5 I will showcase a highly optimized Rottnest

index, LogCloud, for machine-generated log data, going into depth about the considerations around

such external indices.

CHAPTER 1. INTRODUCTION AND BACKGROUND 12

1.4.3 Contributions Summary

In summary, this dissertation presents four main contributions that advance cloud-native analytical

data processing and storage:

Chapter 2: Quokka - Improving Fault Tolerance. We introduce write-ahead lineage, a

novel fault tolerance mechanism for dynamic pipelined query engines. Unlike traditional approaches

that persist large shuffle partitions (spooling) or expensive state checkpoints, write-ahead lineage

logs only kilobytes of task dependency metadata during execution. This approach enables Quokka,

our open-source query engine, to achieve 2x speedup over SparkSQL on TPC-H benchmarks while

maintaining competitive fault recovery performance through pipeline parallel recovery.

Chapter 3: Leveraging Heterogeneous Clusters. We demonstrate that heterogeneous

clusters—combining different VM instance types—can significantly improve cost efficiency for dis-

tributed query processing. Using iso-cost curves instead of iso-instance curves, we show that hetero-

geneous configurations expand the resource constraint polytope, enabling better resource allocation

for different query stages, leading to tangible speedups and cost savings in multi-stage joins.

Chapter 4: Rottnest - External Indices for Data Lakes. We present Rottnest, a system

for building lazy, object-storage-native indices on data lakes to support diverse search workloads

including high-cardinality filtering, substring search, and vector similarity search. Through careful

design choices including in-situ indexing and componentization for object storage access patterns,

Rottnest overcomes the current shortcomings associated with Parquet-based data lakes for new

workloads such as vector and full text search, bridging the gap between expensive dedicated search

systems and inefficient brute-force scanning.

Chapter 5: LogCloud - a Rottnest Index for Log Search. Building on Rottnest’s frame-

work, we develop LogCloud, a specialized index for machine-generated logs. By combining log-

specific compression with a novel object-storage-optimized FM-index implementation, LogCloud

provides low search latencies for substring queries with very low total cost of ownership. Evaluation

on datasets up to 1.2TB shows LogCloud achieves up to 10x total cost of ownership savings compared

to OpenSearch while maintaining interactive search performance using only object storage.

If you would rather skip over the systems details to go straight to the learnings, you could now

just jump to Chapter 6, where I describe the things I learned about the theory and practice of

engineering data systems for the cloud.

Chapter 2

Improving Processing: Fault

Tolerance

2.1 Motivations

Modern distributed SQL query processing faces a critical tension between performance and fault

tolerance. Pipelined distributed query engines like Trino demonstrate significantly better perfor-

mance than bulk synchronous parallel (BSP) engines like SparkSQL, as we discussed in Chapter 1.

However, this performance advantage comes at a cost: these pipelined engines currently lack efficient

fault tolerance mechanisms.

While it may be natural for such pipelined engines to borrow fault tolerance mechanisms from

streaming systems like Kafka Streams, Apache Flink, and StreamScope [42, 82, 93], which also per-

form pipelined execution, these mechanisms are actually unsuitable for batch SQL processing. The

checkpointing-based strategies used by streaming systems are optimized for continuous processing

of small, fresh inputs, and when applied to batch workloads, they introduce significant overhead due

to the need to handle large data shuffles.

In this chapter, we will first describe dynamic pipelined execution, the state-of-the-art distributed

query engine execution model today, and explain existing fault tolerance strategies and why they

fall short. We will then introduce a novel solution to this challenge: write-ahead lineage, a fault

tolerance strategy specifically designed for pipelined query engines with dynamic task dependencies.

Unlike traditional approaches like Spark’s static lineage-based recovery [151,152], write-ahead lineage

operates by consistently logging lineage information after it has been dynamically determined at

runtime, enabling pipelined parallel fault recovery. We demonstrate this approach through Quokka,

our open-source distributed query engine implementation.

Write-ahead lineage offers several key advantages. During normal operation, it only requires

13

CHAPTER 2. IMPROVING PROCESSING: FAULT TOLERANCE 14

Key Value

w 100

x 10000

y 100

Key Value

w 100

z 200

x 700

Key Value

z 100

w 300

x 100

Key Value

x 100

y 20

z 70

Task:
select key,
sum(value)
from table
group by key

Data is stored in 4
files: A B C D, key
column has 4
unique values: w,
x, y, z

A B

C D

Figure 2.1: Example problem we would like to solve.

persisting KB-sized lineage information, rather than the MB-sized shuffle partitions or GB-sized

state checkpoints needed by traditional approaches. By enforcing a policy where tasks can only

consume intermediate outputs whose lineage has been persisted, recovery can be limited to just the

tasks scheduled on failed workers. This eliminates the need for the expensive globally coordinated

rollbacks common in checkpointing-based systems. Furthermore, our pipelined parallel recovery

mechanism enables Quokka to achieve recovery performance comparable to Spark.

Quokka represents, to our knowledge, the first distributed query engine to combine a dynamic

pipelined execution model with efficient intra-query fault tolerance. On TPC-H, Quokka outperforms

SparkSQL by around 2x on up to 32 nodes in normal execution, with competitive fault recovery

performance. While we demonstrate these concepts through Quokka, we believe write-ahead lineage

can be readily adapted by other pipelined query engines.

There are decades of related work on pipelined query engines [39, 71, 89, 99, 105, 124, 125] and

fault tolerance in dataflow systems [13,42,82,93,104]. First, let us define what is dynamic pipelined

execution in the context of a distributed query engine.

2.2 Background I: What is Dynamic Pipelined Execution?

We will introduce stagewise vs pipelined query engines, then explain static vs. dynamic lineage.

To set up our discussion, let us imagine we have to solve the problem shown in Figure 2.1 with a

very simple distributed query engine. It proceeds in discrete time steps. We have two nodes in our

system. Each can execute 1 task per step. We have a table with two columns, key and value. We

would like to perform a simple grouped aggregation on the value column. Let’s assume the table is

stored across 4 files on object storage, A, B, C and D.

CHAPTER 2. IMPROVING PROCESSING: FAULT TOLERANCE 15

Task
A

w x

Task
0

Task
1

y z

Task
2

Task
3

Time
Step

Node
1 Task

Node
2 Task

1 A B

2 C D

3 0 1

4 2 3

Stage 0

Stage 1

Task
B

Task
C

Task
D

Output

Shuffle Read

Execution Schedule

Figure 2.2: Stagewise execution of the example problem with execution schedule shown on the right.
The arrow indicates the execution order of the query engine.

2.2.1 Blocking Execution

If we have a stagewise execution engine, the query would execute in two stages, as shown in Figure

2.2. The first stage would have 4 tasks, with each task downloading one of the files. These tasks

are labelled A, B, C and D after the files they each read. After the tasks read those files, their

contents are cached locally on the RAM/disk of the worker node.

The second stage also has 4 tasks named 0, 1, 2 and 3, with each task processing all the rows

associated with a particular key. In the second stage, task 0 will read all the rows associated with

the key value w and sum up their value column to emit the result associated with key = w (500),

task 1 will read all the data associated with the key x, etc. Importantly, task 0 needs to read all the

rows associated with the key value w across the data of all four input files A, B, C and D.

An example execution schedule is shown in Figure 2.2. In the first two time steps, node 1 and

node 2 execute the first stage, downloading A, B, C and D. At time step 3, node 1 and 2 execute

tasks 0 and 1. Task 0 requires rows where key = w from the data in input files B and D, which were

downloaded on node 2. It will do a networked read, typically called a shuffle read in distributed

systems literature. Similarly, task 1 will read data from node 1 associated with key = x. In time

step 4, the rows corresponding to the other 2 keys are processed.

Popular query engines like MapReduce and Spark follow this paradigm1. Two observations:

• The lineage is static. Each task in the second stage must depend on all tasks in the first stage.

• Since tasks in the second stage depend on all the input files, the query engine can only execute

tasks of one stage at a time. Since the first stage (time steps 1 and 2) is mostly downloading

from object storage, the CPU/RAM on the query engine would be under-utilized. Similarly,

1Conceptually. Systems like Spark might have many further optimizations that may appear to deviate from this
execution paradigm in practice, like speculative task execution or push-based shuffles.

CHAPTER 2. IMPROVING PROCESSING: FAULT TOLERANCE 16

S1 S2

A B C

S0

w
,x

Stage 0

State
Variables

Task
0

Output

Channel

Initial State

Time
Step

Node
1 Task

Node
2 Task

1 A B

2 0 C

3 D 1

4 2 3

D

Task
2

Stage 1

Execution Schedule

Figure 2.3: Pipelined execution of the example problem. The dashed box around task 0 and task
2 indicate they are part of the same channel, where task 2 depends on task 0. Task 0 can execute
while Task C and D in stage 0 are executing.

in the second stage (time steps 3 and 4), the query engine stops reading from object storage,

so the network download bandwidth is under-utilized.

2.2.2 Pipelined Execution

The second observation prompts us to explore ways to start executing tasks in the second stage

concurrently with tasks in the first stage to improve resource utilization.

What if instead of having task 0 be responsible for aggregating all the rows associated with key

= w, we have task 0 only aggregate rows associated with key = w from input files A and B? Then

task 0 could start executing as soon as A and B are downloaded, and does not have to wait for

C and D. However, now we would have 8 tasks in the second stage. To make things fair with the

stagewise approach, we can have task 0 be responsible for the values associated with two keys, w

and x. Similarly, task 1 can aggregate the values associated with keys y and z from files A and B.

Task 2 can finish aggregating the values associated with w and x for files C and D. We can then

achieve the schedule shown on the left side of Figure 2.3. Four observations:

• There is still shuffle read required, since A and B are downloaded on different nodes.

• The number of rows task 0 is responsible for adding is little changed (3 vs 4), as well as the

amount of shuffle read required.2

• Now task 0 can execute concurrently with reading input C in the same time step! This means

the cluster can overlap usage of download bandwidth and CPU/RAM.3

2We increased task parallelism across input files but decreased parallelism across the key range.
3Many problems abound with this statement given our exact toy setup, but if you’re acute enough to pick up those

problems, you probably also get the general idea. Think about the nodes as two threads on the same machine, and
scale up to many machines/threads.

CHAPTER 2. IMPROVING PROCESSING: FAULT TOLERANCE 17

Figure 2.4: Scheduling constraints in stagewise vs. pipelined execution. The dashed lines indicate
data dependencies. In pipelined execution, there could still be data dependency across nodes!

• While the schedule still has 4 time steps, since it can achieve better resource utilization in

steps 2 and 3 by overlapping download and compute, it will likely execute faster end to end

compared to the schedule shown in Figure 2.2.

There is one additional complicating factor, which is that task 0 only computed partial sums of

the values associated with keys w and x, and needs task 2 to finish the job! After it finishes the

computation, it emits a state variable, containing the partial sums, which needs to be consumed

by task 2 to emit the final output associated with keys w and x as shown in Figure 2.3.

In this case, the state variable is very small. However, in real problems, this state variable can

be massive (i.e. a hash table for a join). If task 2 is scheduled on a different node than task 0, it

would have to read the state variable over the network too, which is generally ill-advised.

This limitation introduces a scheduling constraint on the tasks that is not present in the stagewise

execution case. For simplicity, we can group tasks that share such state dependencies and thus need

to be scheduled on the same node into channels. For this toy example, task 0 and 2 would be such

a channel. The second stage consists of two such channels. In our toy example, each channel is

scheduled on to their own node. This situation is illustrated in Figure 2.4.

Modern distributed SQL query engines like Snowflake, AWS RedShift, and Trino typically pro-

ceed in this pipelined fashion [31,48,124].4 Quokka also adopts this execution paradigm.

Two important observations:

• It is important to note that channels don’t preclude data parallelism. Even though typically

each channel handles a larger range of partition keys in this pipelined paradigm compared to

4Again, their implementations may contain major deviations from this simplistic description, but it is a fair mental
model for these systems.

CHAPTER 2. IMPROVING PROCESSING: FAULT TOLERANCE 18

tasks in the stagewise parallelism, this is not usually parallelism-limiting, since the ranges of

partition keys usually outnumber the amount of parallelism in query engines by a few orders

of magnitude.

• A channel is a sequence of tasks. A channel has only one task executing at a time. While

multiple channels can run in parallel across nodes or or different threads within the same

node, within a single channel, tasks execute sequentially. As such, at any time, there are as

many tasks executing in the system as there are channels.

If we take a snapshot of all running tasks in a stagewise query engine, they will all be from

the same stage. For a pipelined query engine, such a snapshot will include at most one task

from each channel.

2.2.3 Dynamic Lineage

Having covered stagewise vs. pipelined execution, let us explain static vs. dynamic lineage, specif-

ically in the context of pipelined execution. In pipelined execution, each node is typically assigned

one of more channels from different stages. Let us assume the perspective of the channel illustrated

in Figure 2.3.

1. When the channel starts, it begins with one task, task 0. In our case, the initial state is empty.

2. In our toy example, task 0 is hardcoded to read data from A and B of the first stage, and task

2 is hardcoded to process data from C and D. This means that task 0 need to wait until A

and B are ready. Similarly, when task 0 is finished and assuming C and D are not produced,

task 2 cannot start.

3. Instead of hardcoding task depedencies between tasks of one channel and those of an upstream

channel, we can let the channel decide for itself. For example, when the node finishes executing

task 0 of the channel and only the data for C is present, task 1 of this channel could just kick

off with C. This is referred to as dynamic lineage. The channel could make the decision

based on heuristics or some user-defined policy.5

4. This implies that in a pipelined system with dynamic lineage, the total number of tasks per

channel is not fixed. Instead a channel terminates when it no longer receives eligible inputs to

schedule for the next task.

More recent distributed query engines such as the newest Amazon RedShift version determine

task adopt dynamic lineage [31], inspired by multicore database innovations such as work-stealing

and morsel-driven parallelism [89]. We shall henceforth refer to pipelined query engines with dynamic

lineage as dynamic pipelined query engines.

5This is a form of distributed task scheduling. Similar to how distributed routing protocols can alleviate network
congestion, good task scheduling policies by channels can make the data go through the query engine faster.

CHAPTER 2. IMPROVING PROCESSING: FAULT TOLERANCE 19

Table 2.1: Fault tolerance design choices in data processing systems.
Trino SparkSQL Kafka

Streams
Flink StreamScopeQuokka

Description Pipelined
SQL

Stagewise
SQL

Dataflow Dataflow Dataflow Pipelined
SQL

Spooling ✓ ✗ ✓ ✗ ✗ ✗

State
Check-
point

✗ ✗ ✓ ✓ ✓ ✗

Lineage ✓ ✓ ✓ ✗ ✓ ✓

2.3 Background II: Fault Tolerance Challenges

The principal question we aim to answer in this chapter is: how to support fault tolerance for dynamic

pipelined query engines with low overhead and fast recovery? As discussed, pipelined query egnines

consist of a collection of channels scheduled across different nodes. When a node dies, some of those

channels may fail and need to be recovered.

In this section, we explore existing approaches and describe their weaknesses.

Most distributed pipelined query engines do not support intra-query fault tolerance, instead

relying on query-retries when a cloud worker instance fails [31, 48]. Only Trino recently added

support for intra-query fault tolerance based on HDFS spooling of shuffle partitions [7].

While the literature on intra-query fault tolerance has been relatively meager, we should also

mention stream processing systems based on the dataflow model [104]. These systems also often

consist of a collection of stateful actors scheduled across different nodes, which differ from pipelined

query engines mainly in the granularity of the data that is passed between different tasks. Fault

tolerance for such streaming systems has been thoroughly studied in the past decade, with strategies

coalescing around three core techniques, similar to the taxonomy proposed by Falkirk Wheel [64]:

• Lineage: Lineage refers to the dependencies between data partitions. In systems with dynamic

lineage, the lineage can be persisted to be consulted upon failure to facilitate recovery.6 For

example, in Figure 2.5, we would write down that task 2 depends on input C and D.

• Spooling vs Upstream Backup: Input data to tasks, like C and D in Figure 2.5, may be

stored reliably (spooling), unreliably, e.g. on local disk of the producer (upstream backup), or

not at all.

• Checkpointing: state variables, like S1 in Figure 2.5, can be persisted.

Table 2.1 summarizes the fault tolerant systems we compare in this section, along with which of

the three strategies they employ. Trino and SparkSQL are distributed query engines, while Kafka

6In systems with static lineage, this information is trivially known before execution, so no persisting is required.

CHAPTER 2. IMPROVING PROCESSING: FAULT TOLERANCE 20

S1

A B C D

S0

2

Task
0

Task
2

Failure

Spooling

Checkpointing

Figure 2.5: The inputs to task 2 are marked in green boxes, while its output is in blue dashed box.
Spooling would mean persisting C and D, whereas checkpointing would persist S1.

Streams, Flink and StreamScope are stream processing engines. We explain how each of the three

strategies are applied in these five systems.

2.3.1 Lineage

Tracking lineage allows a task to guarantee a fixed output by remembering what inputs were used,

assuming the task is deterministic.

Of all the systems, Flink is the only one which does not track lineage [42]. Upon fault recovery,

failed tasks that need to be relaunched can use different inputs the second time around [4]. Critically,

this decision means tasks could emit different outputs and workers who previously consumed the

outputs of the failed task also have to be rewound, which typically results in expensive coordinated

global rollbacks of all the channels in the entire system, even the channels that did not fail!

All the other systems listed in Table 1 determine lineage statically. Trino and Spark determine

task dependencies before the query graph is executed [7,152], while real-time systems such as Kafka

Streams and StreamScope rely on the unique event time associated with each record to impose a

deterministic execution order among inputs [82, 93]. In either case, this lineage is assumed to be

available after a worker fails.

2.3.2 Upstream Backup / Spooling

If we decide to track lineage, making use of it upon fault recovery requires some way of replay-

ing a task’s inputs using the lineage, which typically requires storing intermediate data partitions.

CHAPTER 2. IMPROVING PROCESSING: FAULT TOLERANCE 21

MapReduce pioneered this approach by persisting reducer outputs in GFS to provide fault tolerance

boundaries between different stages [51]. Trino stores intermediate data partitions durably in HDFS

or an object storage like S3, while Kafka Streams persists them in Kafka topics [7, 82].

However, persisting data partitions, a.k.a spooling, can introduce severe overheads in normal

operation, especially in batch analytics. Persisting a data partition in a distributed cluster where

workers might fail means either replicating the data partition across the cluster, e.g. Kafka topic or

HDFS, or writing the data partition to a blob storage, e.g. Amazon S3. In either case, this operation

consumes precious network I/O resources that could be used for the task itself.

In contrast, Spark relies on unreliable upstream backup of data partitions to local disk of the

producer, which is assumed to be lost upon worker failure. Instance-attached NVMe drives have

become ubiquitous on public cloud providers, making writing to local disk very efficient compared

to persistent writes to HDFS or S3, though the contents of such drives are lost upon worker failure.

Avoiding spooling is a key reason why Spark is faster than MapReduce [152].

A bigger problem for spooling in a pipelined engine is that it might not save that much work

upon failure. The core benefit of spooling is the localization of task retries. In a system relying on

upstream backup, if the input to a task that must be retried is also lost, then the task that generated

that input must also be retried. Spooling avoids this problem, but only if all of the inputs for the

failed task have been persisted.

Unfortunately, in pipelined query engines, tasks also depend on the channel’s state variable. In

Figure 2.5, we illustrate what data partitions are persisted in a typical spooling strategy. If we only

persisted data partitions C and D and the channel experiences a failure after executing task 2, it

cannot skip re-executing task 0 because task 2 depends on the state variable S1. Streaming engines

that perform spooling also commonly “checkpoint” these state variables.

2.3.3 Checkpointing

We could prevent restarting the failed channel from scratch if we periodically persist the lost state

variables. Checkpointing executor state periodically is a popular fault tolerance strategy in real-

time streaming systems such as Apache Flink, Kafka Streams and StreamScope. Since jobs in

these systems could be continuously operating for days, restarting a channel entirely might cause

unacceptable fault recovery performance. Checkpointing also allows the system to garbage collect

spooled data partitions, since a data partition does not have to be replayed if its effect has been

persisted into a state checkpoint.

However, checkpointing can be even more expensive than spooling for pipelined query engines

optimized for SQL queries on large batches of data. Streaming systems typically go to great lengths to

ensure that the state of an operator is bounded in size. SQL query engines have no such requirements:

consider an operator that builds a hash table for joins. The size of the hash table grows linearly

with the number of unique keys it sees. Assuming new keys arrive at a constant rate, naive periodic

CHAPTER 2. IMPROVING PROCESSING: FAULT TOLERANCE 22

checkpointing will incur O(N2) storage complexity where N is the number of unique keys, which

can be very large.

Incremental checkpointing could be employed to checkpoint only differences between adjacent

checkpoints. While we can easily devise incremental checkpointing strategies for individual stateful

operators, efficient generic incremental checkpointing strategies for arbitrary data structures is still

an open research problem. Current approaches include persisting a “changelog” of the state as in

Kafka Streams or leveraging RocksDB’s compaction mechanism as in Apache Flink [42, 82]. Both

impose heavy constraints on the underlying data structures of the state variable, which is not

desirable for a high performance query engine.

2.3.4 Priorities

The key issue is that techniques like spooling and checkpointing are developed for streaming systems

where the priority in fault recovery is fast recovery latency. This is relevant for streaming systems

powering critical real-time services like fraud detection or trading systems, but less relevant for

distributed query engines.

In the context of pipelined query execution, fault tolerance’s first priority should be low overhead.

If we cannot achieve low overhead in normal pipelined execution, we are better off running without

fault tolerance and retrying queries that fail or using blocking alternatives such as SparkSQL. This

analysis naturally leads us to rule out considering spooling and checkpointing.

Having satisfied low overhead, we can accept high fault recovery latency as long as we have good

fault recovery throughput. It is acceptable to recompute a lot of data partitions, as long as we can do

so in parallel by leveraging the ample amount of parallelism typically present in a distributed query

engine. This philosophy is similar to that of Spark, which chose to store data in memory instead of

disk to lower overhead in normal execution [151].

2.4 Write-ahead Lineage

We propose a simple fault tolerance strategy for distributed query engines called write-ahead

lineage. Shown in Algorithm 1, the strategy simple: as tasks process data partitions, the dynamically

determined lineage is persisted to a transactional data store, the GCS7, before the output can be

consumed by downstream tasks. Importantly, tasks can only consume data partitions with committed

lineage. This means that in the example shown in Figure 2.5, a downstream task can only consume

data partition 2 marked in the blue dashed box when task 2 has persisted its lineage to the GCS.

When a task fails, this logged lineage can be consulted to recover from the failure by replaying data

partitions and retrying tasks, similar to how Spark uses its statically determined lineage for recovery

and how ACID databases recover data from the write-ahead log [151].

7Global Control Store, inspired by Ray

CHAPTER 2. IMPROVING PROCESSING: FAULT TOLERANCE 23

Algorithm 1 Write-ahead Lineage

Given task τ on worker ω, with GCS G, where G.L stores

committed lineages, G.T stores outstanding tasks

A ← all data partitions pushed to ω

B ← all possible inputs to τ

I ← {x ∈ A ∩ B | x ∈ G.L}
if I = ∅ then

return ▷ No inputs with committed lineage available

end if

Execute τ , push results downstream

Store results locally on disk (upstream backup)

if push results failed then

return ▷ Downstream worker failure, do not commit

end if

Set τ to I in G.L, remove τ from G.T in a single transaction.

return ▷ Success

Intuitively, write-ahead lineage upholds the core invariant of lineage-based recovery: tasks con-

sume only objects with committed lineage. This ensures that a task’s output stays the same after

failure recovery, so channels that did not suffer failures do not have to be rewound. There are two

classes of channels to consider here: those whose output is consumed by the failed task and those

who consume the output of the failed task. For the first class, because all past outputs are backed

up to local disk, outputs can be replayed. Channels in the second class simply ignore the recovered

task’s re-transmitted output until the failed channel has recovered to the state before failure.8

There are two ways to enforce the core invariant: check lineage before consuming inputs or

commit lineage before pushing outputs. Quokka adopts the former approach to minimize write

transactions to the GCS, which lets the lineage be written as the last step of the algorithm. Quokka

can then bundle this write with other writes to the GCS, like removing τ from the task queue and

adding the next task in the channel, as a single transaction.

Only eventual consistency is required for the lineage. If a task does not immediately see a

required input’s lineage in the GCS, it will simply exit without being executed. The task will be

tried again later and successfully execute when the lineage becomes visible.

8In systems based on Chandy-Lamport without lineage tracking, a failed worker can process inputs in different
orders upon recovery, causing it to retransmit different messages than before failure. In Falkirk Wheel, this is called
the “no messages are duplicated” constraint. This typically results in expensive coordinated rollbacks of all channels
to a globally consistent state in these systems, which we avoid [42,64].

CHAPTER 2. IMPROVING PROCESSING: FAULT TOLERANCE 24

Stage 1 Channel 1

Stage 2 Channel 1

Stage 1 Channel 3

Stage 2 Channel 3

1,2,1 1,2,2

2,2,1 2,2,2
1,2,1 1,2,2 2,2,1 2,2,2

Stage 1 Channel 2

Stage 2 Channel 2

Stage 1
Executor 1

Stage 2
Executor 1

Stage 1
Executor 3

Stage 2
Executor 3

1,2,1 1,2,2

2,2,1 2,2,2

1,2,1

2,2,1

1,2,2

2,2,2

Worker 1 Worker 2 Fails Worker 3

Worker 1 Worker 2 Fails Worker 3

Spark: Data Parallel Recovery

Quokka: Pipeline Parallel Recovery

Stage 2 Executor 2

Stage 1 Executor 2

Figure 2.6: We show a job with 3 workers and 2 sequential stages. We assume worker 2 fails, and
we have to reconstruct the outputs of its 4 tasks across two stages. In the case of data parallel
recovery, each surviving worker would handle 1 task of each stage. For pipelined parallel recovery,
each surviving worker would handle tasks of an entire stage. The effective parallelism achieved is
similar in this case.

CHAPTER 2. IMPROVING PROCESSING: FAULT TOLERANCE 25

2.4.1 Lineage Naming Scheme

Recording lineage requires a naming scheme for tasks and their outputs. In Quokka, we introduce a

naming scheme that allows a very succinct representation of the lineage to minimize logging overhead.

The name of a task is a tuple of the form (stage, channel, sequence number). The sequence number

increases monotonically within each channel. A task’s output has the same name as the task. Tasks

must consume their inputs in order. As an example, in a query with two stages and two channels

in each stage, a task in channel 1 in stage 2 could depend on outputs from tasks in either channel

in stage 1. However, it must consume output from task (1,1,0) before task (1,1,1). In Quokka, we

further restrict tasks to consume from one upstream channel at a time. A task decides at runtime

how many task outputs from that channel to consume.

Under this execution model, a task’s input requirement B can be described as a vector of length

C, where C is the number of upstream channels it could depend on. The ith element denotes

the number of consumed outputs from channel i similar to a watermark. A task’s lineage can be

described with just two numbers, i and K, the upstream channel it consumed from and how many

outputs it consumed (recall we limit tasks to consume from one channel at a time in Quokka). This

is much less information to log than a naive scheme where we assign unique names to all outputs in

the system and track all input names for each task.

Our experiments indicate that write-ahead lineage’s overhead in normal operation typically re-

sults from the disk writes needed for upstream backup.9 Quokka’s upstream backup is similar to

Spark, with the key difference being that in Quokka, multiple stages could be writing shuffle parti-

tions at the same time, exerting higher disk pressure than Spark. We believe this design is reasonable

as fast instance-attached NVMe SSDs are becoming more popular on public clouds, and network

throughput used in shuffling data partitions will be saturated before disk throughput used in backing

them up. The total amount of data stored for the entire job is the same between Quokka and Spark,

as Spark typically maintains shuffle partitions of all stages.

2.4.2 Pipeline Parallel Recovery

When a worker fails, the channels scheduled on it will lose their current active tasks, the associated

state variables, and some cached data partitions. Quokka attempts to recover these channels to their

previous state before failure by reconstructing lost partitions and state based on the logged lineage.

Tasks in channels that do not contain state variables, typically input readers from object storage

or stateless user defined functions, can be recovered in parallel across the cluster similar to Spark.

However, within a failed channel with state variables, tasks must be reconstructed in sequence.

Even though tasks must be reconstructed in sequence within a stateful channel, Quokka can still

accomplish parallel recovery between channels, as illustrated in Figure 2.6. In Quokka, if the query

9Recall upstream backup means storing task outputs in ephemeral storage instead of persisting them (spooling).

CHAPTER 2. IMPROVING PROCESSING: FAULT TOLERANCE 26

TaskManager 1

Data Partition Disk Spill

1,1,0

Worker Machine Coordinator Machine

Fault
Recovery

Coordinator

Redis GCS

Assigned Tasks

Replay
(0,1,5)

(2,1,0)

TaskManager

(1,1,2)

Client Machine

Submit
Tasks

Metrics and
Results

Arrow Flight
Server

0,2,0,2,0

0,2,0,2,1

0,1,1,2,0

1,1,1,2,0

State
1,1,2

1,1,1 1,2,0 1,2,1

Figure 2.7: Quokka’s architecture. Note that instead of having components communicate with each
other through RPC calls, all coordination is done through the GCS. The client also communicates
with the cluster through the GCS.

contains multiple stages (e.g. a multi-way join), a failed worker contains many stateful channels that

need to be reconstructed. These stateful channels belonging to different stages can be scheduled on

different workers, in a pipelined parallel fashion.

Compared to Spark where the degree of parallelism is proportional to the number of tasks per

node in a stage, the degree of parallelism here is proportional to the number of pipelined stages in

the query. In production workloads, we find these two numbers to often be quite similar.

2.5 Implementation

We now describe how write-ahead lineage fits with other pieces of the query engine in Quokka. A

simplified schematic of Quokka’s architecture is shown in Figure 2.7.

2.5.1 Architecture

Quokka uses a cluster of worker machines, which might fail at any time, e.g. due to spot instance

pre-emptions or Kubernetes pod evictions. Quokka also needs a head node, which could be one

CHAPTER 2. IMPROVING PROCESSING: FAULT TOLERANCE 27

of the worker machines, or a separate instance. Like Spark, Quokka assumes the head node does

not fail [152], which can be achieved by using on-demand instances that cannot be preempted, or

Kubernetes scheduling policies. In addition, we assume there is a client machine, which could be

the user’s laptop or another cloud instance, that submits jobs to this cluster.

TaskManagers

Quokka is implemented on top of Ray, a Python-based actor framework [103]. Each physical worker

node is assigned a TaskManagers similar to Apache Flink [42]. As discussed, in Quokka each node

is assigned a collection of channels, each of which has one active task at a time. The TaskManager

is in charge of scheduling the next active task(s) to run on that worker node. For example, the

TaskManager shown in Figure 2.7 is assigned channel 1 from stages 1 and 2. It can decide between

active tasks (2,1,0) (the first task in cahnnel 1 for stage 2) and (1,1,2).

Task dependencies in Quokka are determined dynamically at runtime by the TaskManager, in a

distributed fashion without coordination. Each TaskManager looks at its available tasks and input

data partitions and decide based on heuristics or some user-defined policy. We believe that studying

intelligent task scheduling strategies is a promising future research area.

While Quokka supports multiple scheduling strategies, the results presented in this Chapter

adopts a simple strategy: each task executes as soon as there is any available inputs. Some of

Quokka’s single-node kernels (i.e. joins with Polars/DuckDB) might prefer larger batch sizes, so

this strategy might not be optimal for them. In these cases, Quokka might give up a bit of single

task efficiency but would retain the benefit of lower pipeline latency. The strategy is also self-healing.

When a TaskManager executes a task with very little data, it gives upstream channels more time

to buffer up outputs, leading to the next task being more efficiently executed on more data.

Push-based

Quokka employs a push-based query execution model where producer tasks actively send their

outputs directly to the TaskManagers hosting consumer tasks. The system operates on a static

channel-to-TaskManager mapping, enabling producers to determine the destination TaskManager

for their outputs at runtime.

A key feature of Quokka is its support for dynamic lineage—tasks can decide which upstream

outputs to batch together during execution rather than having this predetermined. While this

flexibility exists at the task level, the channel routing remains deterministic: producer tasks always

know which channels should receive their outputs, even though they may not know the specific task

within that channel that will ultimately consume the data.

All the TaskManagers on the same machine share access to an Apache Arrow Flight server, which

manages zero-serialization data communication between different machines [1]. In Quokka a task

pushes its outputs directly to the Arrow Flight servers of all its downstream consumer channels.

CHAPTER 2. IMPROVING PROCESSING: FAULT TOLERANCE 28

We found the performance of this approach exceeds moving data via Ray’s built-in object store and

offers more flexibility in terms of handling disk spilling and chunking shuffle batches.

In addition to sending the task output downstream, the TaskManager would store the task output

locally in case it needs to be replayed. All TaskManagers on the same machine share access to the

instance-attached disk. Since the naming scheme described in Section 2.4.1 ensures that the task

outputs from different channels are named differently, there is no need for synchronization among

different TaskManagers for writes.

2.5.2 Coordination through Transactions

The write-ahead lineage algorithm requires a persistent transactional data store, which we call the

GCS. Quokka uses a Redis server on the head node to implement the GCS. Since we assume the

head node does not fail during the job, anything logged to the Redis server is considered “persisted”.

If head node failure is a concern, DynamoDB can be used instead.

The use of a GCS is inspired by the design of modern distributed systems like Kubernetes and

Ray that offload the control plane to a data store such as etcd or Redis [40, 103]. In addition to

the lineage, the GCS holds the single source of truth for the execution state of the entire system in

Quokka, such as the tasks assigned to each TaskManager and what data partitions are present on

which machines. Individual TaskManagers are stateless and actively poll the GCS for tasks assigned

to them to execute the write-ahead lineage algorithm in Algorithm 1.

The coordinator periodically polls TaskManagers to see if any of them have failed. Once a

failure is detected, the coordinator sets a control flag in the GCS. TaskManagers periodically poll

this flag. If they see the flag is set, they abort their current tasks and wait. This barrier effectively

implements a GCS-level lock to guarantee the coordinator exclusive read-write access to the GCS

without potential conflicts. The coordinator then proceeds to schedule pipelined parallel recovery

of tasks as described in Section 2.4.2.

The usage of a centralized GCS greatly simplifies the implementation of the coordinator. The

coordinator’s fault recovery routine simply updates the GCS transactionally with the tasks that need

to be retried instead of interacting directly with TaskManagers. We rely on the strong read-after-

write consistency properties of the GCS to ensure that all TaskManagers have the latest correct

view of the updated pending tasks after the TaskManagers restart.

This separation provides us the key advantage that the coordinator does not have to assume

the remaining TaskManagers are all alive, simplifying the handling of nested failures. We found

this design to be much simpler and less error-prone than a traditional approach where different

components of the system interact through RPC calls between the coordinator and TaskManagers,

and allows us to avoid some SparkSQL fault recovery problems we encounter in practice on AWS

EMR described in Section 2.6.4.

A potential trade-off of a centralized GCS is performance and GCS memory footprint, especially

CHAPTER 2. IMPROVING PROCESSING: FAULT TOLERANCE 29

when every task has to write to the GCS. Ray now uses the concept of Ownership to conduct

distributed lineage tracking to reduce lineage logging and storage overhead [141], where a task

commits its lineage to other tasks who have a claim to its results. However, with the optimized task

naming scheme described in Section 2.4.1, both the GCS logging overhead and its memory footprint

become negligible in Quokka.

One might question the scalability of a design that relies on a centralized GCS on the hot path

of task processing. Running Redis benchmark on the head node used in our experiments yielded a

throughput of 75K RPS for 10KB-payload SET operations with 1000 concurrent clients. Assuming

each task processes 40MB of data for each GCS operation, this caps the data processing throughput

across all stages at 3TB/s. Assuming five stages, the input throughput is limited to 600GB/s, which

corresponds to 480 worker machines at 10Gbps download throughput per machine, which is much

larger than the typical cluster sizes used in practice [138]. If Redis on the head node becomes a

bottleneck, it can be replaced by a Redis cluster or DynamoDB.

2.5.3 Failure Recovery

We have already described Quokka’s pipeline parallel recovery at a high level in Section 2.4.2. Here

we walk through its implementation in Quokka’s architecture.

The failure recovery implementation is motivated by Kubernetes’ philosophy of reconciliation.

When a failure occurs, the GCS now contains inconsistent information, such as tasks assigned to

failed workers. During fault recovery, the coordinator updates it to a consistent state satisfying the

following constraints:

• Lost tasks are rescheduled on live TaskManagers.

• All the input data partitions needed for any existing or rescheduled task will be replayed or

recomputed.

The algorithm used by the coordinator in Quokka is shown in Algorithm 2 with simplifications10.

It implements pipeline parallel recovery described in Section 2.4.2 by assigning different rewound

stateful channels to different workers.

A concrete example is shown in Figure 2.9 for a Quokka application with three stages. Stage

0 is stateless and stage 1 and stage 2 make use of state variables. After a TaskManager fails,

the coordinator will first reschedule all its tasks, (1,2,1) and (2,2,1) in this example, to other live

TaskManagers. The channels associated with the failed tasks are restarted from the initial state,

so the tasks that need to be launched are (1,2,0) and (2,2,0), which can be relaunched on different

machines.

The coordinator now traverses the stages in reverse topological order and checks if the required

data partitions for the relaunched tasks are still present. If so, e.g. (0,0,0), (0,1,0) ... , replay tasks

10In Algorithm 2, we assume there are no lost replay or input tasks, though Quokka handles those as well.

CHAPTER 2. IMPROVING PROCESSING: FAULT TOLERANCE 30

Algorithm 2 Failure Recovery Algorithm

Assume GCS G, where G.L stores committed lineages, G.T stores outstanding tasks

X ← the set of all tasks assigned to the failed worker

R ← {(τ.stage, τ.channel) | τ ∈ X} (Set of rewind requests)

for each (stage, channel) in reverse topological order do

if (stage, channel) ∈ R then

Identify required inputs I for (stage, channel) from lineages of channel outputs in G.L
for each data partition (stage, channel, seq) in I do

If exists, add replay task to the owner worker

Else if stage is input, add input task to any node

Else, add (stage, channel, 0) to R
end for

end if

end for

for each (stage, channel, 0) in R do

Remove (stage, channel, seq) from G.T
Assign (stage, channel, 0) to a random worker in G.T

end for

(2,2,0)

(1,2,0)

(0,2,0) (0,2,1)

(1,1,0)

(0,1,0) (0,1,1)

(2,0,0)

(1,0,0)

(0,0,0)

Tasks Pre
Recovery

Tasks
Post

Recovery

(1,0,1) (2,0,1)

(0,0,1)

(1,1,1) (2,1,0) (1,2,1) (2,2,1)

(1,0,1) (2,0,1)

(0,0,1) (0,2,0)

(1,2,0) replay

FAILED

(1,1,1) (2,1,0)

(0,2,1) (2,2,0)

replay

Backed
Up Data
Partitions

Figure 2.8: An example fault recovery procedure when one out of three workers fail. Pink shade
represents data partitions that have been generated by past tasks and stored on the TaskManager.
Recovery tasks are shaded in light blue.

CHAPTER 2. IMPROVING PROCESSING: FAULT TOLERANCE 31

Figure 2.9: A channel’s execution timeline showing a strict ordering: historical tasks (filled circles)
with committed lineages always precede future tasks (empty circles) with undetermined lineages.

are pushed to TaskManagers that hold them. If not, the data partition must be regenerated by

rewinding other channels. This is typically due to tasks on the failed machine depending on data

partitions held by the same machine, i.e. (0,2,0) and (0,2,1).

As mentioned in Section 2.4, Quokka can engage in pipelined parallel recovery between channels,

so (1,2,0) and (2,2,0) can be rescheduled to be recovered on different workers. Quokka can also

parallelize recovery between tasks in the same channel if there is no state dependencies involved. For

example, (0,2,0) and (0,2,1) can be rescheduled on different workers. In total four data partitions

need to be reconstructed in this failure scenario, which corresponds to the total number of data

partitions stored on the failed machine.

When a rewound task (such as (1,2,0) or (2,2,0)) retraces its execution path, it loses the freedom

to dynamically select input data partitions. Instead, it must consult the Global Control Store (GCS)

to retrieve the exact lineage required to regenerate each output partition. This constraint ensures

that rewound channels produce identical outputs to their pre-failure state.

From a conceptual perspective, each channel’s execution history forms a sequence of naturally

numbered tasks. This sequence comprises two distinct categories: historical tasks with committed

lineages and future tasks with undetermined lineages. The system can rewind a channel multiple

times while preserving correctness by adhering to a simple principle: follow the persisted lineage

for any task whose execution history has been recorded. Only when encountering a task without

persisted lineage can the channel resume dynamic decision-making about its execution path.

This design elegantly separates deterministic recovery from dynamic execution – tasks bound by

history must faithfully reproduce their past behavior, while tasks venturing into uncharted territory

CHAPTER 2. IMPROVING PROCESSING: FAULT TOLERANCE 32

1 2 3 4 5 6 7 8 9 10111213141516171819202122
4 workers

1

2

3

4
Q

uo
kk

a
Sp

ee
du

p
vs. SparkSQL
vs. Trino

1 2 3 4 5 6 7 8 9 10111213141516171819202122
16 workers

1

2

3

4
vs. SparkSQL
vs. Trino

Figure 2.10: Comparing the performance of fault-tolerant data processing systems (Trino with FT,
SparkSQL and Quokka) on the TPC-H queries (query number indicated on x-axis) on a) 4-worker
cluster and b) 16-worker cluster. Quokka outperforms Trino and SparkSQL in most cases.

retain full autonomy over deciding their inputs.

2.6 Evaluation

We test Quokka’s performance, fault tolerance and scalability on the full TPC-H benchmark (scale

factor 100) with input in Parquet format stored on AWS S3. We then select 8 representative queries

in three different categories:

• I: simple aggregations (1, 6)

• II: simple pipelined joins (3, 10)

• III: queries with multiple join pipelines (5, 7, 8, 9)

We perform detailed ablation studies of different design choices and measure fault recovery per-

formance on these representative queries. These queries are chosen because they contain mostly just

one join tree, reducing confounding variables on performance.

Quokka is run on a Ray cluster with Ray version 2.4 on AWS EC2 on-demand instances. We

use two cluster configurations. The first configuration uses four r6id.2xlarge worker machines. The

second uses 16 r6id.xlarge machines. An r6id.2xlarge instance has 8 vCPUs, 64GB of RAM ad

474GB of instance attached NVMe SSD. An r6id.xlarge instance has exactly half of those resources.

For comparison, we benchmark SparkSQL 3.3 and Trino 398 on AWS EMR 6.9.0 on the same

cluster configurations. AWS EMR configures Spark to also use NVMe SSDs for potential spilling.

CHAPTER 2. IMPROVING PROCESSING: FAULT TOLERANCE 33

We further optimize the network and shuffle retry configurations of SparkSQL to start fault recovery

in two seconds, instead of the default two minutes on AWS EMR, to match the behavior of Quokka.

Trino is benchmarked with and without fault tolerance by HDFS spooling. SparkSQL is fault

tolerant by default. Before running the queries, ANALYZE commands are run for both SparkSQL and

Trino to ensure cardinality-based optimizations are enabled.

Unless otherwise noted, all timing results are from the mean of three independent measurements,

with standard deviation shown as error bars when applicable.

2.6.1 Quokka vs. Trino vs. SparkSQL

In Figure 2.10, we compare Quokka’s performance to Trino with spooling-based fault tolerance

and SparkSQL on the full TPC-H benchmark. We see that for most queries across both cluster

configurations, Quokka is the most performant among all three query engines. Compared to Trino,

Quokka achieves 25% geometric mean speedup on the 4-worker cluster and 70% on the 16-worker

cluster. Compared to SparkSQL, Quokka achieves 2.1x geometric mean speedup on the 4-worker

cluster and 1.9x on the 16-worker cluster.

It is important to note that a lot of factors could contribute to these results. All three systems

employ different kernels to implement SQL operators such as join and filter, libraries for networked

communication and task scheduling systems. However, these results do indicate that Quokka’s im-

plementation is competitive with state-of-the-art data processing systems. We hypothesize Quokka’s

speedup over Spark is mostly due to blocking vs pipelined execution and Quokka’s speedup over

Trino is due to Trino’s high spooling overhead.

We note that Quokka’s performance against SparkSQL and Trino is worst for complicated queries

that contain nested subqueries and might require materialization of intermediate results (e.g. 2,

4, 20, 21) and better for simpler queries like 8, 9 or 12 that contain one join tree. The reason

for this discrepancy is Quokka currently must perform expensive global synchronization between

pipelines, making complicated queries that contain multiple pipelines slow. In addition, Quokka’s

implementations of semi-joins and anti-joins, required to unnest subqueries, are not yet very efficient.

Quokka’s advantage against SparkSQL and Trino is maintained on the 16-worker cluster com-

pared to the 4-worker cluster, suggesting that Quokka’s design is scalable to larger cluster sizes.

2.6.2 Why Dynamic Pipelined Execution?

We now show that dynamic pipelined query execution leads to significant performance gains com-

pared to both stagewise execution and pipelined query execution with static task dependencies to

motivate the need for a fault tolerance algorithm specifically designed for dynamic pipelined query

engines.

CHAPTER 2. IMPROVING PROCESSING: FAULT TOLERANCE 34

TP
CH

-1

TP
CH

-6

TP
CH

-3

TP
CH

-1
0

TP
CH

-5

TP
CH

-7

TP
CH

-8

TP
CH

-9

4 workers

5

10

15

20

25

30

35

Ru
nt

im
e

(s
)

A Pipelined Execution
Stagewise Execution

TP
CH

-1

TP
CH

-6

TP
CH

-3

TP
CH

-1
0

TP
CH

-5

TP
CH

-7

TP
CH

-8

TP
CH

-9

16 workers

5

10

15

20

25
B Pipelined Execution

Stagewise Execution

Figure 2.11: Pipelined Quokka vs Stagewise (blocking) Quokka execution times on the TPC-H
queries on the a) 4-worker cluster and b) 16-worker cluster. Pipelined execution outperforms in all
cases.

TP
CH

-1

TP
CH

-6

TP
CH

-3

TP
CH

-1
0

TP
CH

-5

TP
CH

-7

TP
CH

-8

TP
CH

-9

4 workers

5

10

15

20

25

30

Ru
nt

im
e

(s
)

A Dynamic Task Dependencies
Static Lineage 1
Static Lineage 2

TP
CH

-1

TP
CH

-6

TP
CH

-3

TP
CH

-1
0

TP
CH

-5

TP
CH

-7

TP
CH

-8

TP
CH

-9

16 workers

5

10

15

20

25

30

35

40 B Dynamic Task Dependencies
Static Lineage 1
Static Lineage 2

Figure 2.12: Performance of Quokka with dynamic task dependencies vs. two different static lineage
strategies on the a) 4-worker cluster and b) 16-worker cluster. Strategy 1 (batch size 8) outperforms
strategy 2 (batch size 128) on the 4-worker cluster but greatly underperforms on the 16-worker
cluster. Enabling dynamic task dependencies allows Quokka to match the better performing static
strategy in most cases.

CHAPTER 2. IMPROVING PROCESSING: FAULT TOLERANCE 35

TP
CH

-1

TP
CH

-6

TP
CH

-3

TP
CH

-1
0

TP
CH

-5

TP
CH

-7

TP
CH

-8

TP
CH

-9

4 workers

1.0

1.5

2.0

2.5

3.0

O
ve

rh
ea

d

A Trino
Quokka Spool
Write-ahead Lineage

TP
CH

-1

TP
CH

-6

TP
CH

-3

TP
CH

-1
0

TP
CH

-5

TP
CH

-7

TP
CH

-8

TP
CH

-9

16 workers

1

2

3

4

5 B Trino
Quokka Spool
Write-ahead Lineage

Figure 2.13: Trino’s HDFS spooling fault tolerance overhead, Quokka S3 spooling overhead and
write-ahead lineage overhead on the a) 4-worker cluster and b) 16-worker cluster. Overhead of 1
means no overhead.

Pipelined vs Blocking Execution

We modify Quokka to execute in a stage-wise fashion similar to SparkSQL and examine its perfor-

mance degradation. Results for both cluster sizes are shown in Figure 2.11.

Across the eight selected queries across the two different cluster setups pipelined execution con-

sistently outperforms stagewise execution. The speedups are especially significant for queries in

category III, which involve multiple joins that can be pipelined. On queries 1 and 6 in category I

where the query consists of essentially just the read stage, the pipelined execution does not improve

runtime, as expected.

Overall, pipelined execution leads to 26% geometric mean speedup on the queries in categories

II and III on the 4-worker cluster and 22% speedup on the 16-worker cluster. On queries with deep

join trees like query 8, the speedup is as large as 28%.

Dynamic vs Static Lineage

If we could achieve good performance with static task dependencies determined before query exe-

cution, we would not need to log the lineage during query execution. In a static lineage strategy,

a task consumes a fixed number of input data partitions at a time. If this number is too small,

its outputs will also be smaller and there will be more tasks required for each channel, resulting in

a higher volume of smaller partitions will be transmitted across the network, diminishing network

efficiency. However, if this number is too big, effective pipelining cannot occur, and the system ef-

fectively executes in a stage-wise fashion similar to SparkSQL. It is very difficult to statically choose

this number correctly in practice, since the sizes of data partitions can depend on the size of the

cluster, data distributions and join and filter selectivity.

CHAPTER 2. IMPROVING PROCESSING: FAULT TOLERANCE 36

To demonstrate this difficulty, we show the performance of two static lineage strategies across

the selected queries on the 4-worker and 16-worker clusters in Figure 2.12. In the first strategy,

stateful operators batch together 8 input data partitions for each execution. In the second strategy,

they batch together 128.

Similar to the previous experiment, performance differences between these strategies are not

apparent for the simple queries in category I. However, differences become more significant with

join queries in category II and more so with more complex joins in category III. We see that on the

4-worker cluster, a batch size of 8 is clearly superior to a batch size of 128, while the reverse is true

on the 16-worker cluster.

On the 16-worker cluster, a batch size of 8 causes very small partitions to flow through the

system, causing a marked decrease in CPU utilization and network I/O efficiency during shuffles.

On the 4-worker cluster, the partition slices shuffled were larger due to the reduced parallelism,

causing batch size 8 to instead outperform batch size 128.

Using dynamic task dependencies allows Quokka to achieve similar or better performance than

the better of the two static lineage strategies in both cluster settings for most queries.

2.6.3 Write-ahead Lineage Overhead

In this section, we benchmark the overhead imposed by Quokka’s write-ahead lineage algorithm

during normal execution and compare it to spooling based options. We turn Trino’s fault tolerance

off to measure the overhead added by its HDFS spooling in Figure 2.13.11

Across the selected queries, Trino’s spooling adds a geometric mean 1.5x overhead on the 4-

worker cluster and 2.7x overhead on the 16-worker cluster, reaching up to 4.8x in the case of query

9. The overhead is considerably worse on the 16-machine cluster compared to the four-machine

cluster. We believe that as the data partitions that need to be spooled to HDFS become smaller,

HDFS efficiency markedly decreases. We also experimented with S3-based spooling for Trino, which

led to much worse results.

We also implemented S3-based spooling in Quokka and observed similar overhead to Trino, as

shown in Figure 2.13. Note Quokka’s spooling overhead is minimal for the two queries in category

I since Quokka’s aggregation pushdown makes the spooled data size insignificant. It appears Trino

does not perform this optimization. Quokka’s spooling overheads are similar for simple joins in

category II and complex joins in category III since most of the spooled data comes from the lineitems

table, referenced by all the queries.

In comparison, the overhead of Quokka’s write-ahead lineage strategy is an order of magnitude

better than the spooling options, only 15% on the 4-worker cluster and 6% on the 16-worker cluster.

Like Spark, Quokka backs up partitions unreliably in the worker’s local disk instead of RAM to save

11The overhead is defined by the ratio of ratio of runtimes with and without fault tolerance. A value of 1 means
there is no overhead.

CHAPTER 2. IMPROVING PROCESSING: FAULT TOLERANCE 37

TP
CH

-1

TP
CH

-6

TP
CH

-3

TP
CH

-1
0

TP
CH

-5

TP
CH

-7

TP
CH

-8

TP
CH

-9

Worker Fails at 50%

1.00

1.05

1.10

1.15

1.20
O

ve
rh

ea
d

A

Spark Overhead
Quokka Overhead

16.6% 33.3% 50% 66.7% 83.3%

TPC-H 9 Case Study

1.0

1.2

1.4

1.6

1.8 B Spark Overhead
Quokka Overhead
Restart Baseline
Quokka Speedup

Figure 2.14: Quokka vs SparkSQL’s fault recovery behavior. a) Quokka vs Spark fault recovery
performance on the 16-worker cluster where a random worker is killed at 50% query completion
during each query. b) A case study for TPC-H 9 where worker dies at varying points during the
execution. We also show Quokka’s end-to-end speedup over Spark on the same y-axis scale.

memory. However these local disk writes are a lot more efficient than networked HDFS or S3 writes,

and can typically be hidden by computation and network IO.

Compared to Spark, Quokka also needs to consistently log the lineage of each spilled partition,

which currently happens via the Redis GCS on the head node. We find this cost to be negligible in

our benchmark as optimizations described in Section 2.4.1 greatly simplified the lineage. Virtually

all the overhead results from the disk writes.

In addition to spooling, we also benchmarked Quokka with custom checkpointing strategies to S3.

Even with incremental checkpointing, we observe severe overhead in normal operation. The biggest

overheads come from operators whose state increases over time, like building the hash table for a

shuffle hash join. While the exact overhead depends on the checkpointing interval, any reasonable

interval that is useful for recovery performs much worse than spooling to S3.

2.6.4 Fault Recovery Performance

We now compare Quokka’s fault recovery performance compared to SparkSQL. Instead of Spark-

SQL’s data parallel recovery, Quokka engages in pipelined parallel recovery as described in Section

2.4.2.

The first fault recovery experiment consists of running each of our representative queries on

the 16-worker cluster. A worker machine is killed halfway through the query based on its normal

execution runtime. The fault recovery overhead, defined by total runtime with failure divided by

normal runtime without failure, is shown in Figure 2.14a for both systems.

We observe that Quokka and SparkSQL have similar recovery overhead, with Quokka’s overhead

CHAPTER 2. IMPROVING PROCESSING: FAULT TOLERANCE 38

better by a geometric mean of 1%. We see that for both SparkSQL and Quokka, simpler queries in

Category I tend to have lower recovery overhead compared to more complicated joins in Categories

II and III. While Quokka is faster than SparkSQL at fault recovery in Category I, it is slightly slower

than SparkSQL in Category III. Note that in every case, we significantly outperform the baseline of

just restarting the query from scratch on the remaining workers, which corresponds to an overhead

of 1.5x.

In Figure 2.14b, we show a case study on TPC-H query 9 where we show SparkSQL and Quokka’s

fault recovery performance when the query experiences a failure at different points throughout the

query. As expected, Quokka incurs higher fault recovery overhead if the failure occurs late in the

query, as there is more work to be redone. SparkSQL exhibits the same behavior. However in all

cases, Quokka and SparkSQL’s fault recovery performances significantly beat the simple baseline of

restarting the query from scratch after failure. Even though Quokka has more recovery overhead,

it still outperforms Spark end-to-end with the failure in all cases since it is much faster in normal

execution.

We notice that despite SparkSQL’s usual good fault recovery performance, it occasionally fails

to recover by continuing to make RPC requests to the dead worker, which is a known problem

for open-source Spark on AWS EMR [6]. Our results only included trials where this problem is

not encountered, which strictly improved SparkSQL’s fault recovery results. Quokka’s choice to

communicate only through the GCS to avoid all direct RPCs between different components preclude

it from this class of problems.

2.6.5 Scalability

Performance

We test the scalability of Quokka and write-ahead lineage with 32 rd6id.xlarge workers on the TPC-

H benchmark queries with the same dataset. Figure 2.15a shows the speedup Quokka achieves vs.

Spark and Trino in this setting. The speedup profile across the queries is largely similar to the

4-worker and 16-worker settings. Quokka achieves geomean 1.92x speedup over Spark and 1.86x

over Trino. Quokka’s speedup over SparkSQL is stable while its speedup over Trino improves with

the number of machines, confirming our observations in Section VIC that Trino’s spooling overhead

gets worse with the number of machines.

Fault Recovery

Figure 2.15b repeats the experiment shown in Figure 2.14a, where a worker machine is killed 50% of

the way through a representative query, for the 32-worker setting. We see that compared to the 16-

worker setting, the recovery performance of Quokka deteriorates compared to Spark. On average,

Quokka has 12% worse geomean recovery overhead in this case, vs. 1% better in the 16-worker

CHAPTER 2. IMPROVING PROCESSING: FAULT TOLERANCE 39

1 2 3 4 5 6 7 8 9 10111213141516171819202122
32 workers

1

2

3

4

Q
uo

kk
a

Sp
ee

du
p A vs. SparkSQL

vs. Trino

TP
CH

-1
TP

CH
-6

TP
CH

-3
TP

CH
-1

0
TP

CH
-5

TP
CH

-7
TP

CH
-8

TP
CH

-9

1.0

1.2

1.4

1.6

1.8

2.0

O
ve

rh
ea

d

B Spark Overhead
Quokka Overhead
Quokka Speedup

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 2.15: Experiments on 32 workers in terms of a) normal execution performance without failures
compared to Spark and Trino with FT (TPC-H query number on x-axis) and b) fault recovery
overheads where a random worker is killed at 50% completion. Quokka is still faster end-to-end on
each query compared to SparkSQL (right y-axis, solid red line).

setting. However, even though Quokka has more recovery overhead, it both outperforms the restart

baseline (1.5x overhead) in all cases and outperforms Spark end-to-end with the failure in all cases

due to its faster normal execution performance.

Quokka’s degraded fault recovery performance at 32 nodes can be understood from the discussion

in Section 2.4.2. Unlike Spark’s data parallel recovery, pipelined parallel recovery only leverages

parallelism up to the number of stages in the query, not the number of workers in the cluster. As

a result, increasing the worker count from 16 to 32 improves Spark’s recovery performance but not

Quokka’s. Our design point exploits the fact that it is rare to see more than 16 nodes in practice,

even for very large workloads [138].

2.6.6 Thinking about Mean Time Between Failures

We establish that Quokka has 1.92x speedup over Spark on 32 workers, with 12% worse geomean

recovery overhead. If we assume that each failure introduces the same amount of fault recovery

overhead, then Quokka and Spark’s performance would breakeven when there are 5 failures given

32 workers. If we assume that Quokka’s speedup and recovery overhead is stable across data scales

and thus total runtime, then we can reason about the breakeven point of Quokka vs. Spark based

on the relationship between the total runtime (X) and the mean time between failures (MTBF):

• Total system failure rate = 32λ where λ is individual worker failure rate

• Set expected failures: 5 = 32λ ·X

CHAPTER 2. IMPROVING PROCESSING: FAULT TOLERANCE 40

• Solve for failure rate: λ = 5
32X

• Convert to MTBF: MTBF = 1
λ = 32X

5 = 6.4X

This means for cases when the MTBF is less than 6.4 times the expected runtime of the job,

Spark is expected to be more performant than Quokka end-to-end. While the total runtime can

evidently change, so can the MTBF, based on the priority of the job, congestion on shared compute

resources etc.

2.7 Discussion

We present write-ahead lineage, a novel fault tolerance mechanism for pipelined query engines with

low overhead and fast recovery times. We showcase its implementation in a real query engine,

Quokka, achieving 1.9x speedup against SparkSQL and 1.7x against Trino in normal operation

on a 16-machine cluster on TPC-H, while matching SparkSQL in fault recovery performance. On

32 machines, Quokka maintains its strong performance while degrading slightly in fault recovery

performance due to the reasons explained in Section 2.6.5. Ablation studies shown in Figure 7, 8 and

9 confirm Quokka’s dynamic pipelined execution brings concrete performance benefits while write-

ahead lineage incurs an order of magnitude less overhead compared to spooling-based alternatives.

2.7.1 Data vs Compute Fault Tolerance

This chapter talks a lot about fault tolerance in pipelined query engines. But why is it needed?

Pipelined query engines were originally designed to be part of a database server. When a machine

failed, the first concern was preventing data loss and minimizing system downtime, not recovering

a transient user query [86]. Intra-query fault tolerance became relevant in the era of decoupled

compute and storage. Cloud storage now typically guarantees many nines of data durability, resolv-

ing concerns of data loss. On the other hand, computation is increasingly conducted by ephemeral

resources that might fail or be pre-empted at any time.

In this setting, it makes sense to study how to recover from computation failures while assum-

ing the input data is persistent and replayable, leading to popular fault-tolerant systems such as

MapReduce and Spark [51, 152]. However, their stagewise design leads to inefficiencies in query

execution. Pipelined query engines such as Trino have attempted to add fault tolerance, though its

spooling based approach has high overhead [7]. Hosted query engines such as Snowflake are also

fault tolerant to the user, but they simply restart failed queries under the hood [3].

CHAPTER 2. IMPROVING PROCESSING: FAULT TOLERANCE 41

2.7.2 Design Motivations and Novelty

Fault tolerance is a well-studied field with multiple established techniques such as lineage, spooling

and checkpointing. While pipelined systems like Trino or StreamScope typically adopt a combina-

tion of spooling and checkpointing to achieve fault tolerance, we find these techniques cause high

overheads in normal execution, as shown in Figure 2.13 [7, 82,93].

Quokka’s write-ahead lineage combines persistent lineage logging with upstream backup, similar

to Spark. However, important differences exist due to Quokka’s novel setting of pipelined query

execution with dynamic task dependencies. In contrast to Spark’s static lineage, write-ahead lineage

logs the lineage as it is determined during query execution. We show this imposes negligible overhead

in normal execution in Figure 2.13. Instead of Spark’s data parallel recovery, Quokka adopts pipeline

parallel recovery, whose degree of parallelism scales with the number of stages in the pipeline instead

of the number of workers. We show that Quokka has comparable fault recovery overhead to Spark on

the most common workloads with up to 16 workers, only tailing off at 32 nodes while still maintaining

an end-to-end performance improvement because of the benefits of pipelined execution.

2.7.3 Pre-emption Warnings and Fault Tolerance

While Kubernetes pods can be killed without much warning, on popular public clouds such as AWS

and GCP today, preemption notices ranging from 30 seconds to 2 minutes are sent out before a spot

instance is reclaimed [20, 66]. Quokka does not currently account for such preemption warnings.

Accounting for such warnings hold the promise of drastically speeding up fault recovery.

A simple approach could work as follows:

• When a TaskManager is notified that the worker node it is on will shut down soon, it will look

at its assigned channels and the latest executable in each. The coordinator, also aware of this

information, will dispatch to the TaskManager where each of those channels are rescheduled.

• The affected TaskManager will then stop making forward progress and instead try to use its

remaining time alive sending all the state variables for these channels to the new TaskManagers.

It should prioritize using its network bandwidth to send “complete” state snapshots, as partial

transmissions are useless.

• If the new TaskManager received a complete copy of the state variable right before the current

task of the affected channel, then the channel does not have to restart from the beginning,

minimizing the amount of recomputation and data replays upon fault recovery.

2.7.4 Implementation

We believe simplicity is the most important part of distributed system design. Quokka’s imple-

mentation is inspired by the design philosophy of outsourcing the control plane to an external data

CHAPTER 2. IMPROVING PROCESSING: FAULT TOLERANCE 42

store [40,82,103,127]. This design choice greatly simplified the core runtime implementation.

We have open sourced Quokka on Github12 to facilitate data systems research and applications.

Quokka supports a DataFrame API similar to Spark and Polars, and has already been used to support

emerging data engineering applications like vector search on data lakes [8]. We believe write-ahead

lineage can easily be added to any distributed pipelined query engine, where a distributed key-value

store like DynamoDB or FoundationDB can be used to track metadata [48,126,156].

12https://github.com/marsupialtail/quokka

Chapter 3

Improving Processing: Cluster

Heterogeneity

3.1 Motivations

In the previous chapter, we demonstrate a new fault tolerance algorithm for pipelined query engines

to take advantage of the elasticity of the cloud. In this chapter, we examine how to leverage

heterogeneity – where the compute resources used to execute a query could be composed of many

different instance types.

While a large volume of work has focused on optimizing distributed query execution on a fixed

cluster configuration, we focus on the emerging problem of optimizing the cluster configuration

for a particular query. This issue is gaining relevance as the fast VM spin-up time on public clouds

has made it practical to spin up a dedicated cluster for each query instead of sharing a fixed cluster

among queries, which enables highly desirable performance and security isolation amongst different

data processing jobs. While already viable for long-running queries prevalent in data pipelines, new

developments in micro-VMs promise to unlock this potential even for interactive queries [11].

The performance and cost-efficiency of a distributed query engine on any particular query could

vary drastically depending on the VM instance types on which it is executed. EMR, the hosted

Hadoop service offering SparkSQL and Trino on AWS, supports more than 400 VM options. Instance

types on cloud providers like AWS belong to different classes, some optimized for compute with a

higher vCPU to memory ratio, while others are tailored for IO performance. Figure 3.1 displays the

computed cost per GB of memory and cost per Gbps of network bandwidth of different instance

types on AWS. There can be a 14.7x difference in dollar cost per GB of RAM and a 61.7x (!)

difference in dollar cost per Gbps of bandwidth between instances. Even among the much smaller

set of instance types typically used for Spark or Trino clusters in practice, we commonly observe 3x

43

CHAPTER 3. IMPROVING PROCESSING: CLUSTER HETEROGENEITY 44

0.02 0.04 0.06 0.08
$ Cost per GB of RAM

0

10

20

30

40

50
Co

un
t

0.0 0.5 1.0 1.5
$ Cost per Gbps of Bandwidth

0

10

20

30

40

50

60

Figure 3.1: Histograms of memory and bandwidth costs of available instance types on AWS.

differences.

To the best of our knowledge, all current work on optimizing the cluster configuration for query

processing has focused on homogeneous clusters, where the distributed query engine executes the

entire query on a cluster consisting of a single instance type [15, 37, 73, 90, 150]. These systems

vary in terms of the approach adopted to determine the optimal configuration (e.g. using Bayesian

Optimization [15,73]), the execution of this approach (i.e., online vs. offline modeling), and the type

of data integrated into the model (e.g. coarse-grained instance-level information, low-level metrics,

etc.). These frameworks, however, ultimately consider only clusters of one specific instance type.

Of particular interest is recent work by Leis and Kuschewski that proposes a mental model for

optimizing instance type selection based on the Pareto optimal frontier of the query’s total cost and

the total execution time [90].

While an important first step, we believe homogeneous clusters do not fully exploit the resource

flexibility offered on the public cloud today. This chapter studies the optimal cluster configuration

problem for heterogeneous clusters, which might contain more than one instance type. We make the

following contributions:

• We propose a Pareto optimal framework for evaluating cluster configurations in the context

of heterogeneous clusters based on iso-cost curves, instead of the iso-instance curves proposed

in [90].

• We apply the framework to left-deep join trees in pipelined query engines and provide intuition

on why heterogeneous clusters are beneficial for cost efficiency.

• We evaluate heterogeneous clusters in a real pipelined query engine, showing performance

benefits over homogeneous clusters on an example join.

CHAPTER 3. IMPROVING PROCESSING: CLUSTER HETEROGENEITY 45

Total Completion Time (s)

To
ta

l W
or

kl
oa

d
Co

st
 (

$)

Pareto Optimal Frontier

Instance Type X
Instance Type Y
Instance Type Z

Figure 3.2: The model in [90] based on iso-instance curves.

This chapter is more about raising questions than answering them. We hope the reader will see

that the discussion that ensues barely scratches the surface of this interesting topic, and naturally

leads to many promising future research directions.

3.2 What is Optimal?

In this section, we propose a method to evaluate the optimality of a cluster configuration given a

fixed query. Let us assume we have a distributed query engine and a query we would like to execute

on some fixed input data. The distributed engine could be run on a homogeneous cluster, consisting

of one instance type, or a heterogeneous cluster, with multiple different instance types.

The key question is: How do we know the cluster configuration we picked is the best one?

3.2.1 Pareto Optimality

To answer this question, we expand on the framework developed by Leis and Kuschewski [90],

which only considered homogeneous clusters. The framework considers a graph with the x-axis

representing the total execution time of the query and the y-axis representing the workload cost, as

shown in Figure 3.2. Each point on the plot corresponds to a cluster configuration: if we assume

that, given a cluster configuration, there is one way for the query engine to execute the query, then

each configuration has exactly one fixed total completion time and workload cost.

The Pareto optimal frontier represents the lowest total workload cost for a fixed completion

time. We should aim to pick cluster configurations that lie on this frontier. The Pareto frontier is

parameterized by the query engine, the input data, and the query. Enhancing the engine’s efficiency

CHAPTER 3. IMPROVING PROCESSING: CLUSTER HETEROGENEITY 46

Total Completion Time (s)

To
ta

l W
or

kl
oa

d
Co

st
 (

$)

Pareto Optimal Frontier

2 $/hour
4 $/hour
8 $/hour

Figure 3.3: Our proposed framework based on iso-cost curves.

or simplifying the query shifts the curve to the left.

Leis and Kuschewski propose a model that predicts how the total workload cost and completion

time vary as a function of the number of VMs in a homogeneous cluster for a specific instance type.

This approach results in an iso-instance curve in the graph for each instance type. An iso-instance

curve could intersect the Pareto frontier at more than one point, as shown in Figure 3.2.

3.2.2 Iso-instance vs. Iso-cost Curves

If we consider heterogeneous clusters, there are a very large number of such curves to draw since

the potential cluster configurations grow exponentially with the number of different instance types

considered. An alternative approach is to consider cluster configurations with the same cost per hour

instead of the same instance type. Cluster configurations with the same unit-cost can be described

by a straight line from the origin as shown in Figure 3.3, with the slope equal to the cost per hour of

the cluster configurations on that line. We will refer to these lines as iso-cost curves (alternatively

iso-cost lines). Importantly, iso-cost refers to the same cost per unit time. As one moves along the

iso-cost curve, the total cost changes!

An iso-cost curve by itself is not tied to a specific query and is purely based on available cluster

configurations by the cloud provider and instance costs. Given the query, the runtimes of the cluster

configurations described by the curve will map to a set of points on this curve. However, the Pareto

frontier is tied to a specific query, and it intersects these iso-cost curves at different points for different

queries. We will show some real examples of iso-cost curves in Section 3.4.

An important benefit of thinking about cluster configurations in terms of these iso-cost curves

is that, unlike iso-instance curves, each iso-cost curve intersects the Pareto frontier at exactly one

CHAPTER 3. IMPROVING PROCESSING: CLUSTER HETEROGENEITY 47

point. In other words, among all possible cluster configurations with a particular cost per hour,

there is only one cluster configuration that is optimal for a particular query.

In a heterogeneous cluster, a single cluster configuration could map to multiple points along

the iso-cost curve if the query engine explores different mapping strategies of the query onto the

processors, i.e. using different instance types for different stages1. Therefore, the optimal point on

an iso-cost curve corresponds to the optimal mapping strategy of the optimal cluster configuration.

We can thus approach our key question using constrained optimization: Among cluster con-

figurations with the same cost per hour, which is the most efficient for the given query

engine and query?

3.2.3 Heterogeneity = More Choice

We hypothesize that the optimal point along an iso-cost curve is more likely to correspond to a

heterogeneous cluster than a homogeneous cluster. To see why, let us introduce some formalism to

describe a cluster configuration.

We assume our cluster is composed of instances from a set of N instance types, described by

length-N vectors c, cpu, mem, and io. These vectors represent the per-hour cost, number of vCPUs,

available RAM, and network bandwidth of each instance type. The cluster configuration can then

be described by another vector n denoting how many of each instance type is in the cluster.

If we assume that the runtime for the optimal mapping strategy of a cluster configuration is a

function H of the cluster’s total resources, then we arrive at the following constrained optimization

problem for the optimal configuration along an iso-cost curve:

minimize
n

H(cpu · n, io · n,mem · n)

subject to c · n = C
(3.1)

We define new variables for total resources, cpu = cpu · n, and similarly for mem and io. If we

also define the set of all possible combinations of these values given the total cost constraint to be

P , then we can rewrite Equation 3.1 in terms of total resources:

minimize
cpu,mem, io

H(cpu,mem, io)

subject to (cpu,mem, io) ∈ P

(3.2)

The problem boils down to optimizing a potentially hard-to-evaluate function H over a constraint

set P , as shown in Figure 3.4. We refer to the constraint set as the resource constraint polytope.

The benefit of using heterogeneous clusters lies in greatly expanding the size of this polytope by

leveraging the vastly different resource-per-unit-cost characteristics of cloud instances. Note as

1This observation applies to homogeneous clusters as well, though it is not considered in [90].

CHAPTER 3. IMPROVING PROCESSING: CLUSTER HETEROGENEITY 48

Optimal Point

Figure 3.4: Optimizing H over the constraint polytope. For simplicity, the IO axis is ignored in the
plot.

shown in Figure 3.4, H might not be continuous, but should be generally decreasing with increasing

resources.

This model can be extended to incorporate resource types other than vCPU, IO, and total

memory to account for different vCPU types like Gravitron or AMD. The constraint polytope would

remain linear if the amount of this new resource increases linearly with the number of instances.

Figure 3.5 shows the significant resource flexibility achieved through heterogeneous instances,

specifically in terms of total vCPU and RAM. The different colors represent constraint polytopes

corresponding to different total cluster costs. For instance, the purple region in Figure 3.5 represents

all possible combinations of total vCPU and RAM achievable for both (a) heterogeneous clusters

and (b) homogeneous clusters with a total cost of $4/hour, using three different instance types.

Homogeneous clusters provide only three choices, where the maximum number of instances available

for each type is selected within the cost constraint. In contrast, heterogeneous cluster configurations

”connect” the vertices identified by the homogeneous clusters with the same cost.

Importantly, instead of allowing the users to obtain more of a particular resource type like total

vCPUs for a particular price, heterogeneity offers more fine-grained flexibility in terms of trade-offs

between different resource types.

3.3 Why is More Choice Beneficial?

Increasing the space of potential total resource combinations does not guarantee better query per-

formance. For example, if the query engine is entirely CPU-bound, the optimal cluster configuration

CHAPTER 3. IMPROVING PROCESSING: CLUSTER HETEROGENEITY 49

Figure 3.5: Available total resource combinations for fixed total cost for a) heterogeneous clusters
and b) homogeneous clusters. Different colors correspond to different total cost per hour from $.5
to $5/hour in increments of $0.5 from lower left to upper right.

CHAPTER 3. IMPROVING PROCESSING: CLUSTER HETEROGENEITY 50

⨝ B

⨝ A

 σ σ

 σ

 T S

 R

Figure 3.6: A left deep join tree. The query engine builds hash tables R and S (build side), and
table T is probed against A and B in a pipeline to perform the three way join between tables R, S
and T.

should consist solely of the instance type with the lowest cost per vCPU per hour.2

As illustrated in Figure 3.5, if the best performance is achieved by maximizing one resource

type, homogeneous clusters would suffice. However, real query engines typically exhibit different

resource demands when executing different parts of a query, which makes the increased flexibility in

navigating the total resource space beneficial.

3.3.1 Query and Query Engine

To illustrate the potential benefits of this flexibility, we focus on the query execution of multi-stage

joins in pipelined query engines, such as Snowflake, SingleStore, Trino, and DuckDB [43,48,89,124].

These queries are ubiquitous in production data pipelines.

The query planner typically executes a multi-stage join with a left-deep join tree as shown in

Figure 3.6, which executes a series of distributed hash joins in a pipeline. Typically, the largest table

is selected as a probe table, and the other tables serve as build tables. The join is executed in two

phases. In the build phase, build tables R and S are read in parallel and hashed in memory with

possible disk spilling. In the probe phase, probe table T is read and joined against the pre-built

hash tables in a pipeline.

In a typical star-schema data warehouse, the build tables are a lot smaller than the probe

table, which leads to the probe phase being the bottleneck. In this work, we will focus on the

2In this chapter, let’s assume different CPU types like Arm and x86 have roughly the same performance.

CHAPTER 3. IMPROVING PROCESSING: CLUSTER HETEROGENEITY 51

performance of the probe phase. Consequently, our key question becomes very specific: among

cluster configurations on a fixed iso-cost curve, which is the best for the probe phase

pipeline in a multi-stage join?

3.3.2 A Concrete Example

We have seen that different cluster configurations allow us to navigate within the resource constraint

polytope to optimize H as given in Equation 2. However, up until this point we have avoided

speculating on the shape of H. How do we relate the total amount of resources to the runtime of

the query?

For simplicity, let’s consider just a two-stage probe phase pipeline, for example, this SQL query

on the TPC-H dataset, which joins the lineitem table against the orders table.

Listing 3.1: Example join query

1 SELECT sum(l_quantity) as sum_qty ,

2 sum(l_extendedprice) as sum_base_price ,

3 sum(l_discount) as sum_disc ,

4 sum(l_tax) as sum_tax ,

5 max(l_shipdate) as max_shipdate ,

6 max(l_commitdate) as max_commitdate ,

7 max(l_receiptdate) as max_receiptdate ,

8 sum(o_totalprice) as sum_charge ,

9 max(o_orderdate) as max_orderdate

10 FROM lineitem , orders

11 WHERE l_shipmode in (’SHIP’, ’MAIL’)

12 and l_orderkey = o_orderkey;

Assuming lineitem is the probe table, a pipelined query engine like Trino would execute the

probe phase pipeline as a sequence of a scan stage followed by a join stage [89, 124]. For example,

here the scan stage would read lineitem table and filter on l shipmode, whereas the join stage will

probe the results of the scan stage against a hash table built on the orders table.

Batches produced by tasks in the scan stage can (and should) be consumed immediately by tasks

in the join stage to avoid materializing the intermediate results as much as possible. The two stages

effectively proceed concurrently, sharing resources in the cluster.

To understand how the performance of these two stages varies with the amount of vCPU, memory,

and IO assigned to each stage, we benchmark the performance of the scan stage and the join stage

independently. We assign various combinations of vCPU, memory, and IO resources to each stage,

using the query shown in Listing 3.1 on TPC-H SF-100 with input in Parquet format stored on AWS

S3.

CHAPTER 3. IMPROVING PROCESSING: CLUSTER HETEROGENEITY 52

Figure 3.7: Performance for A) scan stage B) join stage as a function of assigned vCPU.

We use an open-source distributed query engine Quokka in our experiments [142]. Quokka’s

architecture resembles that of Trino, where tasks belonging to different stages in a pipeline are

scheduled to executors on different machines by a centralized scheduler. On the TPC-H query

benchmark, Quokka is able to achieve competitive results with Trino and SparkSQL. We select

Quokka because it offers a simple interface to spin up heterogeneous clusters and it allows us to

assign different resources to different query stages, a functionality missing in Trino or SparkSQL.

The benchmark results are shown in Figure 3.7. For the scan stage, we find that on the instance

types we selected, the workload is entirely CPU-bound, as evidenced by a straight line fit the log-log

plot of vCPUs against runtime. While one might expect network bandwidth to be the bottleneck,

Quokka relies on open-source Parquet readers, which cannot saturate the high available network

bandwidth per core. High-performance query engines like Clickhouse and DuckDB have developed

their own highly optimized Parquet readers to mitigate this issue [45, 117], but other query engines

like SparkSQL and Trino share this problem. In practice, we observe no performance difference

when using network-optimized AWS instances and regular instances on TPC-H-like workloads on

Trino, SparkSQL, or Quokka. In terms of memory, a fixed amount of memory is required by the

tasks to parse Parquet files. Additional memory does not lead to a speedup.

The join stage’s performance is dominated by both the available memory and the number of

vCPUs. When there is not enough memory, Quokka has to spill the build side to disk, leading

to substantial performance degradation. For both disk-based and in-memory joins, increasing the

number of vCPUs results in increased performance. Like other open-source query engines, Quokka

CHAPTER 3. IMPROVING PROCESSING: CLUSTER HETEROGENEITY 53

A B

C

D

CPU
R
A
M

Figure 3.8: Illustration of the best cluster configurations achieved by heterogeneous clusters (D) vs
homogeneous clusters (B). D has more CPU than B at the same cost per hour.

does not support graceful performance degradation.3 Once the necessary amount of RAM is available

to perform the in-memory join, additional RAM does not improve performance. Similar to the scan

stage, we did not observe much impact on performance from the network bandwidth.

These results suggest that the shape of H resembles the surface in Figure 3.4: there is a qualitative

shift in the shape of the function when there is enough RAM to perform an in-memory join. This

analysis suggests a simple heuristic to select the optimal cluster configuration:

• If the largest total memory in the constraint polytope is less than what is needed for an in-

memory join, the amount of total memory in the cluster becomes less relevant than the total

number of vCPUs. We should just maximize the number of vCPUs in the cluster. Since the

query is bottlenecked by one resource (vCPU), heterogeneous clusters will not help.

• If the polytope contains configurations with enough memory to perform an in-memory join,

then use the configuration that has exactly this much memory and as many vCPUs as possible,

since additional memory does not contribute to higher performance. Heterogeneous clusters

are helpful in this case.4

Figure 3.8 illustrates why heterogeneous clusters are useful in the latter case. We have denoted

the polytope in blue. As we have shown before in Figure 3.5, homogeneous clusters only hit the

vertices. However, the most efficient total resource combination occurs on the line that connects

vertices B and C, which can be approached more accurately with a heterogeneous cluster. To

construct cluster configurations that connect B and C, one simply has to combine the instance types

that would have made up the homogeneous clusters at B and C and mix the two in different ratios.

CHAPTER 3. IMPROVING PROCESSING: CLUSTER HETEROGENEITY 54

10 20 30 40 50 60
Total Completion Time (s)

0.02

0.03

0.04

0.05

0.06

0.07

0.08

To
ta

l W
or

kl
oa

d
Co

st
 (

$)
R8

C6R5

C8R4

C16

Pareto Frontier

Figure 3.9: Speedups achieved by using heterogeneous clusters along the iso-cost curve with a unit
cost of $4.8/hour. C8R4 denotes cluster configuration with eight c6gd.2xlarge and four r6id.2xlarge.

Instance Type (Abbreviation) vCPUs RAM (GB) $/hr
r6id.2xlarge (R) 8 64 0.61
c6gd.2xlarge (C) 8 16 0.31
m6id.2xlarge (M) 8 32 0.48

Table 3.1: AWS EC2 instance specifications and pricing

3.4 Evaluation

We take the query shown in Listing 1 and explore whether using heterogeneous clusters can lead to

real speedups in the pipelined probe phase. We consider heterogeneous clusters consisting of only

two instance types, r6id.2xlarge and c6gd.2xlarge. We will consider another instance type in a more

complex example to follow.5 All instance types and their specs are shown in Table 3.1. The hourly

on-demand pricing for the r6id.2xlarge instance is approximately double that of the c6gd.2xlarge

instance. The two have the same number of vCPUs while the former has 4x the RAM per instance,

which makes the former more cost-efficient for RAM and the latter more cost-efficient for vCPUs.

We consider a cost budget of using eight r6id.2xlarge instances or sixteen c6gd.2xlarge instances.

We could trade off one r6id.2xlarge instance for two c6gd.2xlarge instances in our cluster while

maintaining the same cost per hour, which in terms of total resources amounts to moving on the

line between points B and C in Figure 3.8.

3Trino would typically run out of memory while SparkSQL defaults to a more expensive disk-based join.
4One would still need to be intelligent about instance selection to support mapping.
5We do not consider different sizes of each instance (i.e. 4xlarge, 8xlarge, etc.), as distributed database offerings

typically rely on a fixed instance size. The 2xlarge setting (8 vCPUs) appears to be what Snowflake uses in practice [5]
and what Databricks used for the TPC-DS benchmark [2].

CHAPTER 3. IMPROVING PROCESSING: CLUSTER HETEROGENEITY 55

R3

C6

vCPUs

R
A

M
 (G

B
)

M4

R2C2

R1C4

M2C3

192

128

160

8 10 12

Threshold 1:
120GB

Threshold 2:
150GB

Figure 3.10: Illustration of the polytope depicted in Figure 3.8 for r6id.2xlarge, m6id.2xlarge and
c6gd.2xlarge instance types with a total cost of around $1.8 an hour on demand. Valid cluster
configurations are shown by solid dots.

Figure 3.9 shows the concrete performance tradeoffs made as we explore heterogeneous cluster

configurations that lie on that line. We start from eight r6id.2xlarge instances (R8)—offering the

most RAM but the fewest CPUs—which allows us to do an in-memory join with a total completion

time of 27s. As we use more c6gd.2xlarge instances in our cluster, we move to configurations such

as C8R4 (eight c6gd.2xlarge and four r6id.2xlarge instances) and C6R5. These configurations have

less RAM but still enough to execute the hash join purely in memory. However, these configurations

have more CPUs, leading to a much faster total runtime of 20s and 21s, amounting to a 35% speedup

over the R8 configuration. As we move purely to c6gd.2xlarge instances we have much less RAM and

cannot execute the join in memory, which forces the query engine to use disk-spilling and severely

degrades performance, leading to a runtime of 50s, more than two times slower than the C8R4

configuration.

The evaluation illustrated in Figure 3.9 uses the framework laid out in Section 3.2, where we

move along an iso-cost curve. We see that the heterogeneous cluster configurations bring us closer

to the hypothetical Pareto optimal frontier to the lower left. Since we are only exploring a very

limited subspace of cluster configurations on this iso-cost curve, we cannot definitively state that

any of our sampled configurations are “Pareto optimal”. However, we see that the heterogeneous

configurations C8R4 and C6R5 perform strictly better than the homogeneous configurations R8 and

C16.

3.4.1 A More Complex Example

We now consider a more complex example with three different instance types, r6id.2xlarge, c6gd.2xlarge

and m6id.2xlarge. For about $1.8/hour, we can have a cluster of three r6id.2xlarge instances, or four

m6id.2xlarge instances or six c6gd.2xlarge instances. We consider a more complicated join query

involving three tables based on TPC-H 3, shown in Listing 2:

CHAPTER 3. IMPROVING PROCESSING: CLUSTER HETEROGENEITY 56

10 15 20 25 30
Total Completion Time (s)

0.004

0.006

0.008

0.010

0.012

0.014

To
ta

l W
or

kl
oa

d
Co

st
 (

$)

R1C4

C6 (Disk)

R2C2

M4

M2C3 (Disk)

R3

a $1.8/hour

10 15 20 25 30
Total Completion Time (s)

0.004

0.006

0.008

0.010

0.012

0.014

C6 (Disk)

R1C4 (Disk)

R2C2

M2C3 (Disk)
R3

M4 (Disk)

b $1.8/hour

Figure 3.11: Runtimes of cluster configurations in Figure 3.10 assuming a disk-spilling threshold of
a) 120GB and b) 150GB. The best performing cluster configuration is on the lower left.

Listing 3.2: Multi-stage join query

1 SELECT l_orderkey , o_orderdate , o_shippriority

2 sum(l_extendedprice * (1 - l_discount))

3 as revenue ,

4 FROM customer , orders , lineitem

5 where c_custkey = o_custkey

6 and l_orderkey = o_orderkey

7 and o_orderdate < date ’1995 -03 -15’

8 and l_shipdate > date ’1995 -03 -15’

9 group by l_orderkey , o_orderdate , o_shippriority

In Figure 3.10 we show what the constraint polytope shown abstractly in Figure 3.8 looks like

for these three instance types. Besides the homogenous cluster configurations, we also consider

three heterogeneous cluster configurations: R2C2 (two r6id.2xlarge instances and two c6gd.2xlarge

instances), R1C4 and M2C3.

We consider two different benchmakrs with different RAM thresholds to force disk-spilling of

the joins at 120GB and 150GB. The performance of each cluster configuration under these two

settings is shown in Figure 3.11 along the iso-cost curve with slope $1.8/hour. We mark what

cluster configurations are forced to disk-spill for the join in each case.

We briefly discuss how to interpret the results. For Figure 3.11a where the threshold is 120GB,

we can see in Figure 3.10 that R1C4, the cluster configuration that performs the best, is directly

above the cutoff, meaning it has the most vCPUs out of all cluster configurations that do not have

CHAPTER 3. IMPROVING PROCESSING: CLUSTER HETEROGENEITY 57

to disk spill.

However, for a threshold of 150GB, the analogous cluster configuration R2C2 is outperformed by

both R1C4 and C6, which use disk spilling. The query in Listing 2 is impacted by disk spilling less

than the query in Listing 1, and the extra vCPUs overcome the benefits of avoiding disk spills. This

example suggests that for some queries, there is a need for more accurate performance modeling

than our simple heuristic to obtain the most CPUs without disk spilling.

Another observation is that cluster configurations involving the m6id.2xlarge (M) instance type

are not among the top-performing configurations in either case—see Figure 3.10. Note that for any

valid cluster configuration that includes an M instance, we can find a configuration consisting of

only R and C instances by finding its horizontal or vertical projection onto the line connecting R3

and C6. Examples are shown for the cluster configuration M4 and M2C3, which suggests that the

m6id.2xlarge instance type is not as cost effective as the r6id.2xlarge and c6gd.2xlarge instance types

in terms of RAM or CPU.

3.5 Conclusion

In this chapter, we show that using different instance types in the same cluster can speed up query

execution. We introduce iso-cost curves, which offer a simple method to reason about the optimality

of a cluster configuration when optimizing query runtime with constraints on overall resources. We

demonstrate that the key benefit of cluster heterogeneity is expanding the space of total resources

available, leading to concrete performance benefits for the probe phase of a pipelined join.

This chapter is meant to raise questions, not answer them. We believe we have barely scratched

the surface on the promising area of effectively leveraging cluster heterogeneity. For example, here

are three promising directions to pursue for future work:

• Different mapping strategies While we focused on optimizing different cluster configura-

tions, pipelined query engines support different ways to execute a query given a fixed set of

instances. 6 Being able to quickly decide on the strategy given a query, a query engine, and

a cluster configuration is far from trivial. Techniques employed in prior work such as Selecta

and FineQuery could be applied to this problem [81,139].

• Model-guided cluster configuration optimization This chapter presents a heuristic for

a given query pattern based on performance benchmarking. It is impractical for practitioners

to benchmark every query they encounter. A solution could be extensive offline benchmarking

of different query execution stages coupled with a fast online cost-function-guided search for

6Assume we have a single join stage following a scan stage and two worker machines with two executor slots per
machine. The engine could assign one executor slot per machine to each stage, the default strategy used in experiments
here, or assign one machine completely to each stage.

CHAPTER 3. IMPROVING PROCESSING: CLUSTER HETEROGENEITY 58

a new query. We believe this approach, pioneered by FlexFlow for deep learning problems,

holds great promise in making heterogeneous clusters practical for real query workloads [78].

• Virtual clusters In cases where a cluster manager like Kubernetes is used, the question then

becomes how to properly configure the resource requirements of different pods used in a data

processing job. The per unit resource cost of a pod is much harder to reason about than VM

on-demand pricing, as it may involve business costs of preempting other jobs. Heterogeneity

is still interesting, as e.g. using a mix of high and low-memory pods for a job might be easier

to schedule than uniformly mid-memory pods.

Chapter 4

Improving Storage: Indexing Data

Lakes

4.1 Motivations

Chapters 2 and 3 focus on improving distributed query processing. We now turn our attention to

data storage. As discussed at the end of Chapter 1, data lakes have become the storage mechanism

of choice for analytical data processing on the cloud today. Data lakes typically consist of Parquet

files on object storage such as AWS S3 organized by a table format like Delta Lake, Iceberg or

Hudi [24–28]. The Parquet files are queried on-demand with engines such as Trino, Databricks,

Snowflake, or DuckDB [10, 29, 49, 108, 134]. These data lakes, or “lakehouses”, have become the de

facto centralized analytical data store for many organizations. However, they are still unsuitable for

emerging workloads that are search-oriented. These workloads, such as high-cardinality time series,

text, and embedding analytics typically need to quickly drill down to a very small subset of the data

and perform complex aggregations on this subset. In most cases, the minimal indexing available

in current Parquet-based data lakes does not allow efficient evaluation of the filter conditions (e.g.

UUID match, text regex, approximate nearest neighbors), making these workloads inefficient for

query engines like SparkSQL or Trino [30,134]. As a result, the lakehouse paradigm breaks for these

workloads – organizations have to duplicate their data to a specialized data management system like

Clickhouse, ElasticSearch or Qdrant to perform efficient search analytics, as shown in Figure 4.1.

Some examples of search workloads:

• High-cardinality filtering, i.e. exact-matching on a column with an extremely high number

of unique string values, such as UUIDs or sha256 hashes. Examples include observability

workloads (filtering by Kubernetes pod name) and blockchain analytics (filtering by transaction

hash).

59

CHAPTER 4. IMPROVING STORAGE: INDEXING DATA LAKES 60

Figure 4.1: Typical enterprise data stack. For workloads where directly querying the data lake with
a query engine like Trino is too inefficient, a specialized system like Clickhouse, ElasticSearch or
Qdrant is used.

• Substring search, such as log search or text analytics. For example, to detect if evaluation

datasets are leaked in the pretraining corpus, one could perform a substring search against the

training records, which might be stored as a text column in a data lake.

• Vector embedding search, i.e. approximate nearest neighbor search. Examples include

retrieval-augmented-generation (RAG) and recommendation systems.

Why do Parquet-based data lakes struggle on those workloads?

1. Useless indices. Parquet-based data lakes rely on sort orders to enable file skipping for good

read performance by query engines. In search workloads, it is often infeasible to keep the data

sorted on the column you want and maintain insertion performance. For example, time series

data such as IT monitoring and blockchain logs are naturally sorted by timestamp, and sorting

them based on UUID tags amount to an extremely expensive transpose. Natural sort-orders do

not exist for text or vector embeddings. These two factors render min-max indices on column

chunks useless for search workloads.

2. Read granularity. Even if an appropriate index exists, column chunks corresponding to text

or binary data types typically tend to be tens to hundreds of MBs in size due to Parquet’s

design (further explored in Section 4.4.1). This means for highly selective search queries,

current query engines have to retrieve many MBs of data from object storage just to return a

result that is tens of bytes.

CHAPTER 4. IMPROVING STORAGE: INDEXING DATA LAKES 61

4.1.1 Existing Approaches

Today practitioners commonly employ two approaches to tackle such search workloads, ETL and

brute force scan. We also mention an emerging third approach, which is new data formats.

Copy Data

Practitioners today commonly copy data from the data lake back into specialized systems tailor-made

for their workload, such as Clickhouse [45], ElasticSearch [57], vector databases like Qdrant [115], or

simply cache results of selective table scans [121] (Figure 4.1). While this approach guarantees the

best performance for those queries by leveraging specialized systems, it largely negates the benefits

of the data lake for the data in question. These systems tend to be compute-storage integrated

and are expensive to manage. In addition, the data pipelines duplicate data and reintroduce data

consistency and staleness issues that data lakes seek to address in the first place.

While we believe that this is the best approach if the search queries are frequent or require

strict latency SLAs, e.g. a search engine like Google, we observe that many important workloads

do not have such requirements. For example, an LLM pretraining data exploration system might

serve only up to 100 internal users while query latencies up to a minute are acceptable. Similarly, a

log management system might serve only a particular SRE team where query latencies up to a few

seconds are acceptable.

Brute Force Scan

Another popular approach is to simply pay the high IO and compute cost of these queries by

horizontally scaling the query engine and scan everything, such as with Spark [30]. Cloud vendors

are especially incentivized to take this approach as they typically charge based on the amount of

data scanned. For example, AWS Athena (based on Trino) has been heavily used by cybersecurity

professionals to query logs, with a pricing model that reflects the brute-force scanning approach.

This approach is the simplest and most economical if querying is highly infrequent, since it incurs

no upfront indexing compute or storage costs. However, it simply defers those costs to query time.

While we believe this may be the best approach for workloads that might not ever read most of the

data (e.g. log analytics), if most data will be read at least a couple of times over its lifetime, some

form of indexing becomes attractive.1

New File Format

A third approach is to replace Parquet files with new file formats, such as Lance and Nimble [59,87].

While these new file formats are purposefully designed to excel at these new search-style workloads,

they have not yet achieved the widespread ecosystem integrations that made Parquet appealing in

1Of course, this trade-off depends on the cost of computing and storing the index.

CHAPTER 4. IMPROVING STORAGE: INDEXING DATA LAKES 62

the first place. For example, all three major data lake formats only support Parquet today [24,25,28].

As a result, it is impractical today for most organizations to adopt them as the ground truth data

store. This means in practice organizations still have to keep data in Parquet, making this no

different than the copy-data approach.

Another similar approach is recent modifications to the Parquet file itself, for example column

indices and bloom filters [32, 75]. While these approaches could be somewhat effective in some

search queries that involve high cardinality tags, they do not help for text or vector searches. More

importantly, they assume a Parquet writer that generates these additional indexing structures, which

in practice is quite rare.

4.2 Rottnest Search Indices

Inspired by prior works which added transactional support to data lakes by adopting lightweight

metadata alongside the Parquet files [24, 27, 62], we explore if we could support these novel search

workloads through additional lightweight index files on top of transactional data lakes. We build

Rottnest, a system that augments data lakes with external indices resident on object storage for

workloads such as high cardinality analytics, full text search, and vector embedding search.

The transactional semantics of current data lakes are not meant to replace dedicated transactional

databases in online workloads due to their high latency and low throughput. However, they are

“good enough” for many offline workloads that require certain transactional semantics on big data.

Similarly, Rottnest does not aim to replace specialized full-text or vector databases for online serving

scenarios with high throughput and low latency SLAs. However, we believe it can be the most

compelling option for most offline workloads such as historical log analytics and LLM pretraining

data exploration.

Rottnest is designed to be the most economical solution for offline or human-interactive workloads

with medium total query load, as shown in Figure 4.2. Similar to brute-force, Rottnest cannot

support workloads below a certain latency threshold, typically a few hundred milliseconds, due to

its need to access object storage. However, as we will show, this threshold is much lower for Rottnest

compared to brute force.2

The design of Rottnest indices focuses on maximizing the purple-shaded area in Figure 4.2. On

the left side, brute force requires no indexing cost but incurs very high search cost. The cheaper it is

to construct a Rottnest index, the lower the total query load at which Rottnest pays back this cost

through cheaper searches. On the right side, dedicated systems like ElasticSearch or vector databases

require high upfront costs to store the index in SSDs or memory, yet search is fast and almost free.

If we lower the cost of querying Rottnest indices, the relative search advantage of dedicated systems

2Recent technologies like S3 Express have theoretically lowered this latency threshold, though it remains unlikely
for the Parquet data lake to be stored entirely in this tier due to cost.

CHAPTER 4. IMPROVING STORAGE: INDEXING DATA LAKES 63

La
te

nc
y

Total Query Load

Offline
Recommendation

Interactive
Analytics

Log
Search

Brute
Force

Rottnest
Index

Copy
Data

Online Recommendation

Google
Search

Figure 4.2: The most economical approach given latency and throughput requirements of the appli-
cation. Some example applications are shown in each category.

decrease and Rottnest remains more economical at higher query load. This analysis leads us to our

first two design goals:

• Low indexing cost, consisting of both the compute cost to construct and maintain the index,

as well as the storage cost for the index files themselves.

• Efficient querying of the index files and relevant parts of the raw data.

Our objective of easy integration with existing data lakes to reduce data silos leads us to two

more design goal:

• On demand consistency with the underlying data lake. Index construction should be com-

pletely decoupled from and invisible to current data ingestion and maintenance jobs. Rather

than constructing the index when the data is ingested, the index should be constructed in a

separate process at a time of the user’s choosing. It is unacceptable to slow down or otherwise

complicate existing write and read workloads. Ideally, the Rottnest index should be invisible

to all writers and readers who do not need to use it. This marks a key difference between

Rottnest and current database or data lake indices like Postgres indices and Hudi’s upsert

index, which slow down writes.

• Generality: Rottnest indices should be general and support a variety of different search query

types. Ideally, we keep a single copy of the data, and simply “bolt-on” different indices.

CHAPTER 4. IMPROVING STORAGE: INDEXING DATA LAKES 64

4.2.1 Design Decisions

To achieve the design goals, we outline a sequence of core design choices of Rottnest. We justify

how each design choice furthers one design goal at the expense of another.

Object-store Native Indices

Abiding by the design philosophy of data lakes, which put additional metadata structures on ob-

ject stores, Rottnest indices are by design stored on object stores. Benefits of this design include

compatibility, cost, and scalability as outlined in [27]. While this makes accessing the indices more

expensive, Rottnest employs numerous optimizations to mitigate this, described in Section 4.4.2.

Eager vs. Lazy Indexing

Typically, indices in databases are updated upon data insertion or mutation. This “eager” indexing

is natural when the same system, e.g. Postgres, is in charge of both maintaining the index and

writing the data. However, Rottnest is aimed at speeding up certain classes of queries. It is not

acceptable for its construction or maintenance to slow down data lake maintenance, data ingestion

jobs, or other queries.

We opt for lazy indexing, where the Rottnest index is kept consistent with the underlying data

lake on-demand, or periodically through a separate service like Airflow [23]. This means that the

newest data to be queried will often be unindexed and has to be full-scanned similar to memtables

in LSM-based data stores like RocksDB [53].

In-Situ Indexing

To lower the indexing overhead, the index files do not store a copy of the data, instead opting to

query the data in-situ in the Parquet files, inspired by previous work such as NoDB [14]. Assuming

the index structure is smaller than the compressed raw data, this drastically lowers the index storage

overhead. We will show that useful indices can be constructed for search workloads that are much

smaller than the compressed data. The techniques employed generalize over different workloads, e.g.

substring, UUID and vector nearest neighbor search.

This design choice sacrifices query efficiency for low indexing overhead. Recent work has sug-

gested that Parquet files have efficiency issues that limit their performance on highly selective search

queries [83, 153]. However we will show most of these issues can be circumvented with a custom

Parquet reader implementation described in Section 4.4.1, leading to search performance that rivals

custom formats like Lance [87].

CHAPTER 4. IMPROVING STORAGE: INDEXING DATA LAKES 65

4.2.2 Summary and Implementation

To summarize, Rottnest constructs object-storage native index files that are kept lazily up to date

with the underlying data lake. Each index file points a search query at physical locations in a

collection of Parquet files. The index files are uploaded to an object storage bucket. Rottnest also

keeps a metadata table that track the relationship between index files and the underlying Parquet

files. The metadata table must support transactional updates, similar to the data lake we are trying

to index. In fact, Rottnest defaults to use Apache Iceberg to implement this metadata table.

Searchers interact first with the metadata table, then reads Rottnest index files and Parquet files

from the underlying data lake directly from object storage to complete the query.3 Similar to data

lakes, the Rottnest index files can be compacted and vacuumed.

Similar to delta-rs [119], the Rust-based client of Delta Lake, and pyiceberg, the Python client

of Apache Iceberg, Rottnest is designed as an embedded library with index management APIs in

Python. In the next section, we will explain Rottnest’s index, search and compaction protocol in

much more detail.

4.3 Index Protocol

The Rottnest client library supports four APIs: index, search, compact and vacuum. Of these,

index, compact, and vacuum mutate the Rottnest index, maintaining two invariants that together

guarantee correct search:

• Existence: all indexed files referenced in the metadata table are present in the object storage

bucket.

• Consistency: an index file correctly indexes the associated Parquet files if they still exist.

We now discuss the four APIs.

4.3.1 Building a Rottnest Index

index(table, column, index dir, type):

table: the data lake table to index.

column: the column in the data lake on which to build an index. Typically this is a string or binary

column.

index dir: the object storage bucket to store the index files. This can also be a local directory on

disk for testing purposes.

3Rottnest by default does not assume or require any form of caching.

CHAPTER 4. IMPROVING STORAGE: INDEXING DATA LAKES 66

type: the type of index to build (BM25, keyword, high cardinality, ANN, etc.). Each type of index

might also have associated keyword parameters.

Indexers call this API to keep the Rottnest index at index dir up to date with the current

snapshot of the data lake table. (Data lakes support time travel; a snapshot is a point-in-time copy

of the data represented by a list of Parquet files in the snapshot.) The design would be simple

for append-only data lakes where Parquet files can only be added: when index is called, build a

new index file covering the new Parquet files. However, data lakes support operations that may

invalidate existing Parquet files (e.g., compactions, vacuums, Z-order, and CRUD operations) as

well as produce custom files such as deletion vectors which record individual rows of a table that

have been deleted [100, 133]. Because our indices point to physical locations, index files may be

invalidated by such operations.

We propose a simple protocol to ensure consistency in the face of these different data lake

operations: index all new Parquet files written to the data lake, regardless of whether they result

from insertions, compactions or updates. While searching, search only index files that include

physical locations included in the snapshot. An index file might also map a query term to physical

locations not in the snapshot – such locations are filtered out during the search.

To facilitate this process, Rottnest keeps track of the list of Parquet files it has already indexed

in the Rottnest metadata table, which is implemented as a Delta Lake table itself resident on object

storage. In principle, any transactional data store, e.g. Postgres, can be used for this purpose.

The indexing works as follows (example shown in Figure 4.3):

1. Plan: Look at the manifest list of the latest data lake snapshot and find the Parquet files

that are in the current snapshot but not yet indexed. Rottnest only indexes new data files (d,

e.parquet in Figure 4) and not deletion files (dv.bin).

2. Index: Rottnest proceeds to build an index file (ac02.index) that covers all the new Parquet

files, and uploads it to index dir.4 If, for some reason, a file is no longer available to read

during the indexing process, e.g. due to garbage collection of the data lake, the index API

aborts and needs to be retried.

3. Commit: After the new index file has been uploaded to object storage, the indexer inserts a

record into the Rottnest metadata table transactionally. Note that the metadata table shown

in Figure 4.3 is simplified, in practice other metadata information such as total number of rows

indexed and index timestamp can be recorded as well.

4. Timeout: If the index operation is not completed within a set timeout, it will abort and needs

to be retried. The timeout is critical for garbage collection, as described later in vacuum.

4Some types of indexes (such as vector indexes) might have a minimum size limit. If the total number of rows in
the new files falls below this limit, the indexing will be aborted in favor of brute force scan.

CHAPTER 4. IMPROVING STORAGE: INDEXING DATA LAKES 67

f4d1.index

a.parquet b.parquet

c.parquet

d.parquet

Index File Parquet Files

09xf [a, b]

f4d1 c

e.parquet

1. Plan: need to index d.parquet, e.parquet

_delta
_log/

2. Index: compute, upload ac02.index

ac02.index

09xf.index

3. Commit: write to metadata table.

ac02 [d,e]

Rottnest Metadata Table Rottnest Index Bucket Underlying Delta Table

Rottnest Indexing Client

Rottnest Indexing
Protocol

dv.bin

Figure 4.3: Rottnest Indexing Protocol. Since the last index call b.parquet and c.parquet has been
compacted into d.parquet, and an update was written with the update file e.parquet and deletion
vector dv.bin.

CHAPTER 4. IMPROVING STORAGE: INDEXING DATA LAKES 68

We do not require all index files present in the Rottnest index bucket to have an associated entry

in the metadata table, which might occur if the indexer fails during commit. These index files will

be garbage collected separately, described Section 4.3.3. We also do not require all Parquet files

referenced by index files to still be active in the underlying data lake. Indeed, it is expected that

some index files might cover Parquet files removed by compactions.

Although the indexing API is internally parallel, it should not be called on the same table column

across multiple processes. While doing so will not violate any safety guarantees, the same Parquet

files would be needlessly re-indexed multiple times.

One might argue that indexing every new Parquet file in the data lake is inefficient, as new

Parquet files written by special processes such as Z-order or compaction could be more efficiently

indexed by simply remapping the existing posting list values without recomputing the entire index.

However, this procedure is significantly more complex with dangerous pitfalls: e.g. the original

Parquet files that were compacted might have been removed, making the remapping impossible.

4.3.2 Searching a Rottnest Index

search(table, snapshot, index dir, query, K):

table: the data lake table to search.

snapshot: the snapshot to search (Rottnest supports time travel).

index dir: the location of the Rottnest index.

query: the query term. For full text indices this could be a keyword whereas for ANN indices this

could be a vector embedding.

K: top-K results. This could have different meaning for exact match queries like regex (any K that

satisfy predicate) and scoring queries like vector search (top K ranked based on score).

The search procedure follows these steps, with an example illustrated in Figure 4.4:

1. Plan: Rottnest first queries the data lake for the manifest list for the specified snapshot, which

contains a list of Parquet files that make up the snapshot along with potential deletion vector

files. Rottnest queries the metadata table in index dir to determine which index files cover

the Parquet files and which Parquet files have no index and must be brute-force scanned. In

Figure 4.4, 09xf and ac02.index must be queried.

2. Query Index: Each Rottnest index file is queried independently in parallel for physical

locations in the underlying Parquet files. The index files are queried on object storage directly,

with optimization techniques described in Section 4.4.2. For example, 09xf.index might return

[(a.parquet, 10), (a.parquet, 20)], where 10 and 20 denote locations in the Parquet file. Rottnest

CHAPTER 4. IMPROVING STORAGE: INDEXING DATA LAKES 69

a.parquet b.parquet

c.parquet

d.parquet

Index File Parquet Files

09xf [a, b]

f4d1 c

ac02 [d,e]

1. Plan: 09xf, ac02 cover active Parquets

_delta
_log/

2. Query: query index files

09xf.index

3. Probe: read raw Parquets as required,
reconcile updates and deletes.

Rottnest Metadata Table Rottnest Index Bucket Underlying Delta Table

Rottnest Search Client

Rottnest Searching
Protocol

dv.bin

f4d1.index

ac02.index

f.parquet

e.parquet

Figure 4.4: Rottnest Search Protocol based on the running example in Figure 4.3. Assume that
after the index call, f.parquet is added to the table and is un-indexed.

CHAPTER 4. IMPROVING STORAGE: INDEXING DATA LAKES 70

indices are allowed to return false positives (e.g. bloom filter), so the top-K filter is not applied

at this stage. Instead, we just filter out locations that correspond to Parquet files not in the

specified snapshot. This step might fail. In this case, the entire search aborts and restarts.

3. In-situ Probing: The physical locations in the Parquet files are downloaded and scanned

with the actual predicate to filter out false positives. Rottnest efficiently random accesses

Parquet files, explained in more detail in Section 4.4.1. Deletion files, i.e. dv.bin, are applied if

they exist. The unindexed Parquet files are only scanned if the filtered results are not sufficient

to satisfy an exact-match top K query or for a scoring query, which must rank all data items.

The correctness of this procedure follows from the two invariants (existence and consistency)

described at the start of Section 4.3. No row in the data lake will be “missed” since it is either

covered by an index file or is in a Parquet file that would be exhaustively scanned. Different from

the index API, the search API is read-only for the data lake and the Rottnest index. It is meant

to be called in parallel by independent processes and concurrently with the index, compaction and

vacuum APIs described in the next section.

Note that the search operation is safe with respect to compaction and vacuum operations of the

underlying data lake. For example, assume a data lake compaction occured after the latest Rottnest

indexing operation, e.g. replacing Parquet files a.parquet and b.parquet with c.parquet. In the Plan

stage, Rottnest would recognize that c.parquet needs to be exhaustively scanned, because it is a

“new Parquet” in the data lake, even though it was just a replacement for a.parquet and b.parquet.

In the Query Index stage, index search results corresponding to a.parquet and b.parquet would be

discarded. In the final stage, c.parquet would be exhaustively scanned. This suggests that data lake

compactions result in less efficient, but correct, search if the Rottnest index is not updated.

In the case of a vacuum operation of the underlying data lake, old Parquet files are deleted. This

is effectively a no-op with respect to Rottnest search efficiency because those files would be marked

as skip any way in the first Plan stage.

It is important to note that even though the search operation is safe, it might not be available.

If a concurrent vacuum operation on the Rottnest index starts and finishes between the Plan and

Query Index stages of a search operation, a Rottnest index file might be deleted. In this case, the

Rottnest searcher can simply abort and restart the entire search process.

4.3.3 Index Maintenance

To avoid querying many small index files as the data grows, Rottnest supports compacting indices

similar to log-structured merged tree (LSM) mechanisms employed in databases such as RocksDB

and Clickhouse [45,53]. Multiple small index files are compacted into larger files and older index files

can be garbage collected. In Rottnest, the indices are compacted independently of the data mainte-

nance process of the underlying data lake, which might perform its own LSM-style compactions.

CHAPTER 4. IMPROVING STORAGE: INDEXING DATA LAKES 71

Rottnest supports the following compaction API, which can be called by the indexer or in a

separate process.

compact(table, index dir, index args):

table: the underlying data lake table.

index dir: the location of the Rottnest index.

index args: index-specific arguments that control how certain types of indices are merged.

The compaction process proceeds in three steps:

1. Plan: determine which index files to merge. In general, index files that cover small numbers of

Parquet files or rows can be merged into larger ones, while it maybe less important (and more

expensive) to merge indices that already cover a large number of files. The default behavior of

Rottnest is to merge index files that is smaller than a configurable threshold in a bin-packing

strategy.

2. Merge: build the merged index files. This step could be computationally intensive and might

require reading the raw Parquet files. After the new index files are built, upload them to

index dir.

3. Commit: insert metadata about the merged index files into the metadata table.

It is important to note that the compaction process does not consult the log of the data lake at

all, and is completely decoupled from the compaction process of the data lake itself. How exactly

multiple index files are combined into one depends on the index type, some examples of which will

be given in Section 4.5.2.

Similar to how compaction works in data lakes, Rottnest index compaction does not delete index

files, which is the responsibility of a separate garbage collection process, commonly referred to as

vacuum. There are multiple reasons an index file may be eligible for garbage collection:

• It was written by a failed indexer or compactor before a successful commit to the metadata

table.

• It has undergone compaction, i.e. a new index file covers the Parquet files that this file covers.

• It points to Parquet files that are no longer part of a supported snapshot of the underlying

data lake.

Rottnest offers the following API to remove those files:

vacuum(table, index dir, snapshot id):

table: the underlying data lake table.

CHAPTER 4. IMPROVING STORAGE: INDEXING DATA LAKES 72

index dir: the location of the Rottnest index.

snapshot id: the minimum snapshot of the underlying data lake to support time travel from, to

determine the set of active Parquet files.

The vacuum process happens with three steps:

1. Plan: determine which index files in the metadata table to keep based on snapshot id.

Rottnest currently uses a simple heuristic: it first computes all Parquet files included in all the

snapshots past snapshot id. Then it greedily selects index files that cover the most number

of active Parquet files to keep. The procedure stops when the number of covered Parquet

files cannot be increased. This procedure maximizes the number of covered Parquet files while

heuristically minimizing the number of index files.

2. Commit: Delete the rows in the metadata table corresponding to index files that are no

longer necessary as determined by the last step.

3. Remove: Physically remove the index files from object storage that are no longer in the

metadata table and older than the index timeout. Removing these “invisible” files require an

expensive LIST operation against index dir, which is acceptable because vacuum calls are not

expected to be frequent or real-time.

We remove after commit in vacuum instead of commit after upload in index and compact. This

ensures index files included in the metadata table are physically present to preserve the first invariant.

It is critical that vacuum uses the timestamps associated with objects to only remove objects

older than the index timeout, since from its perspective there is no difference between index files

written but not yet committed and index files that were written but failed to commit. Since the

index operation has a timeout, vacuum knows files older than this timeout are in the second category

and can be removed. Note that this timeout is against the object store’s clock, which is valid because

modern object stores provide strong consistency, and thus have a single global clock [35].

4.3.4 Invariants Proof of Correctness

Due to the loose synchronization between the index files, the underlying data lake, and the processes

that modify them, Rottnest’s protocols are carefully designed to ensure that data is either indexed

correctly, or not at all, by maintaining the existence and consistency invariants. If M is the set of

files referenced by the metadata table, and B is the set of files in the bucket, the following holds:

Existence: all indexed files referenced in the metadata table are present in the object storage

bucket (i.e. ∀f ∈M : f ∈ B) We prove the result by induction. Initially, M = ∅ and the invariant

trivially holds.

CHAPTER 4. IMPROVING STORAGE: INDEXING DATA LAKES 73

For the inductive step, assume the invariant holds before launching some number of index-

modifying processes (either index, compact, or vacuum). There are three states these processes can

be in:

before upload, before commit, and during delete. First, notice that the indexing and com-

paction processes follow the same pattern of plan, upload, and commit. For both indexing and com-

paction in the before upload state, both M and B are unmodified, so the invariant holds. In the

before commit state, B can only have grown with the new file fnew, and so ∀f ∈M : f ∈ B∪{fnew}
is true. Lastly, the commit will update M to contain fnew, and so ∀f ∈M∪{fnew} : f ∈ B∪{fnew}.
Note that concurrent updates do not change the nature of the proof, since updates to M are trans-

actional and files uploaded to B are owned exclusively by the process.

For vacuum, suppose we decide to delete some files F . First note that a concurrent indexing or

compaction operation may have introduced some files to B but not M . Since these operations are

guaranteed to take less time than the global timeout (they abort otherwise), we know that it is not

safe to delete files younger than the timeout, and any such files are skipped by the vacuum process.

These files therefore cannot be in F , and so will never be deleted before they are written to M .

By the induction hypothesis, in the before commit state, the invariant holds. After transitioning

to the during delete state, M is updated to M \ F ; since M shrank, ∀f ∈ M \ F : f ∈ B holds.

Following the during delete state, B is updated to B \ F and we have ∀f ∈ M \ F : f ∈ B \ F .

Consistency: an index file correctly indexes the associated Parquet files if they still exist. In other

words, let df be the associated data file for index file f . Then ∀f ∈ B : ¬exists(df)∨ indexes(f, df).

Take an arbitrary Rottnest file f ∈ B. Once f is built, it correctly indexes df . Since both Rottnest

and underlying data files are both immutable, the indexes(f, df) will always be true unless either

f or df is deleted. If f is deleted, then f¬ ∈ B, so the invariant holds. If df is deleted, then

¬exists(df) is true, and so the invariant also holds.

4.4 Index Implementation

So far we have limited our discussion to maintaining consistency between inverted indices and phys-

ical locations. This section discusses our implementation decisions to achieve low indexing overhead

and efficient querying. Rottnest queries have two main sources of latency. Section 5.1 discusses how

we read the underlying data. Section 5.2 discusses how we optimize the layout of our indices to

minimize round trips to object storage.

4.4.1 In-situ Querying

It might seem surprising from our discussion in Section 4.1 that keeping the original data in Parquet

on object storage could lead to efficient querying. A typical layout of a Parquet file is shown in

Figure 4.5. Since Parquet writers typically write 128MB row groups, and we are interested in

CHAPTER 4. IMPROVING STORAGE: INDEXING DATA LAKES 74

Metadata & Statistics

Row Group

Page

Page

Page

Column
Chunk

Page

Page

Page

Column
Chunk

Page

Page

Page

Column
Chunk

Parquet File

Traditional
Parquet
Reader

Rottnest
Parquet
Reader

Figure 4.5: Traditional Parquet readers read entire column chunks. Rottnest’s reader reads individ-
ual pages, and notably bypasses the file metadata.

indexing wide columns (vectors and text), the row group’s space is dominated by our column’s

column chunk (typically 100 of 128 MB goes to our column). 5 For highly selective search queries,

reading and decompressing 100MB of data from object storage to retrieve just a few rows is not

efficient.

To mitigate this issue, we observe that the minimal access granularity in a Parquet file is actually

a data page, whose size is independent of the row group size. Typically, the physical size of a data

page is equal to the compressed size of 1MB of raw data, which is around a few hundreds KBs for

text or vector data types. We will show in Section 4.5.5 that reading at this granularity is as efficient

as using custom data formats like Lance [87].

Similar to NoDB which maintains position zone maps on raw data [14], Rottnest maintains

page tables that associate a unique ID for each data page to the offsets and sizes of the data page.

Rottnest’s indices are built at the granularity of these pages. In other words, the posting lists do not

point to individual rows but to data pages. While this adds additional filtering work at query time

and might complicate the design of indices which rely on posting list intersections (e.g. BM25), it

significantly reduces the index storage footprint and speeds up index construction.

The dominant part of the index is typically the posting lists, which appear in both full text search

indices and vector indices (via some variant of K-means). For instance, despite using state-of-the-art

5This is an inherent flaw in Parquet’s design, because all column chunks in a row group must have the same number
of rows.

CHAPTER 4. IMPROVING STORAGE: INDEXING DATA LAKES 75

compression algorithms like RoaringBitmaps [91], ElasticSearch’s posting lists often eclipse the size

of the underlying compressed text. However, since Rottnest’s posting lists store just data page IDs

instead of document IDs, the dynamic range of the posting list elements is an order of magnitude

smaller, greatly improving the performance of compression algorithms, making Rottnest’s posting

lists of similar size to the compressed underlying data.

4.4.2 Optimizing for Object Storage Accesses

Object storage is a high-latency but high-throughput storage medium that favors large sequential

range requests issued in parallel (access width) over sequences of small requests (access depth).6

The straightforward approach is to take the in-memory data structure, serialize and compress it,

and then upload it to object storage. To query the data structure, simply download and decompress

it in memory. We find compression to be a natural step after serialization, because it usually

drastically reduces both the index file’s size and the bytes that must be read upon query. The IO

benefit almost always dominates the added compute cost of decompression. While this approach

leads to large sequential reads and adequate parallelism assuming simultaneous querying of multiple

index files, it can be wasteful for random-access indices where most of the data structure is not

accessed.

An opposite approach could consist of “memory-mapping” the data structure to object storage,

where memory accesses are directly translated to object store requests. This approach has the benefit

of reading only the bytes required, however it could lead to long chains of dependent object-storage

requests. In addition, it foregoes the compression benefits offered by the former approach.

An intermediate approach that we employ, which we term componentization, consists of breaking

up a data structure into several serializable components. Each component is then compressed and

concatenated to form the index file, which also contains an offset array of the location of each

component. Each data structure access only reads the components it needs, while the total number

of dependent requests is reduced because each component could capture multiple requests.

An example of this approach applied to a binary search tree (BST) is illustrated in Figure

4.6. Each query must read the “root” component and one leaf component. The other three leaf

components are not read. The memory-mapped approach for each query would have required four

sequential requests, while this approach requires only two.

The key observation that enables componentization is that most data structures employed in

indices have some degree of “access locality”. This approach would not work if after an access into

the data structure, the next access address is completely random or data dependent. In these cases,

alternative data structures might have to be considered.

6For a more in depth discussion of object store performance characteristics, we refer the reader to the original
motivations of Delta Lake [27] and the AWS Performance Guide [21].

CHAPTER 4. IMPROVING STORAGE: INDEXING DATA LAKES 76

Figure 4.6: Breaking a BST into serializable components.

4.5 Evaluation

In Figure 4.2, we presented intuition for how Rottnest compares to two other approaches: copy

data into a dedicated system or brute force scan the data lake. We now follow up with a much more

quantitative evaluation framework that seeks to answer under what exact conditions is one approach

better than another to ground our evaluation results. We apply this framework to three Rottnest

indices we constructed for three example applications: UUID, substring and vector search.

4.5.1 Evaluating Rottnest

We assume we are operating in a regime where we are not latency constrained in Figure 4.2. While

the minimum latency threshold of an approach is an important metric, a better way to evaluate

these three approaches beyond the threshold is using cost: the total cost of ownership (TCO) of the

system under a fixed query load and operating duration. In this situation, comparing query latency

is less appropriate since the brute force approach can trivially reduce query latency by scaling search

horizontally.7

Since all three approaches can be more efficient if the query only has to search part of the data

lake, e.g. due to a filter on a structured attribute like timestamp, we consider the cost per normalized

query, where the brute force approach must scan the entire dataset. Note that Rottnest can leverage

structured filters by building indices on different partitions of the data clustered by the structured

attribute. Indexing systems like ElasticSearch or vector databases also have optimizations for this

use case [110,140].

7In practice, the scaling is not perfect and the cost can still increase. We will examine this later in Section 4.5.3.

CHAPTER 4. IMPROVING STORAGE: INDEXING DATA LAKES 77

10 2 10 1 100 101

Months

102

103

104

105

106

107
To

ta
l N

or
m

al
iz

ed
 Q

ue
ri

es Copy data

Rottnest

Brute force

a

10 2 10 1 100 101

Months

102

103

104

105

106

107

To
ta

l N
or

m
al

iz
ed

 Q
ue

ri
es Copy data

Rottnest

Brute force

b

Figure 4.7: Phase change diagrams for a) Substring search and b) UUID search. Note log-log axes.
Explained in Section 4.5.4.

To compare the TCO of these three approaches, we can plot a quadrant with the total number

of normalized queries on the y-axis and the number of months we are operating the system on the

x-axis. For a particular point (months, queries) on this quadrant, we can estimate the TCO of each

of the three approaches as index cost + cost per month ×months + cost per query × queries:

• Copying data into an dedicated system typically incurs a high cost per month for a cluster

of always-on servers. On the other hand, the indexing and query cost can be folded into this

constant monthly operating cost. TCO = cpm i×months, where cpm i is the cost per month.

• Brute force incurs no indexing cost and a very low cost per month (S3 storage of compressed

data). However it has very high cost per query : TCO = cpm bf ×months + cpq bf × queries,

where cpm bf and cpq bf represent the cost per month and per query respectively.

• Rottnest indices incur a one-time index cost, relatively higher cost per month (to store

and maintain the index structures) but a much lower cost per query compared to brute force.

TCO = ic r + cpm r ×months + cpq r × queries, where ic r denotes the index cost.

Using this model we can plot a “phase change” diagram that indicates the most economical

solution for each point in the quadrant, a couple examples of which are shown in Figure 4.7. The

lines indicate boundaries between regions where a different approach is optimal in terms of TCO.

CHAPTER 4. IMPROVING STORAGE: INDEXING DATA LAKES 78

This phase change graph allows a practitioner to easily figure out the most economical approach

based on the estimated usage characteristics of the search workload. For example, at 10 months and

104 total normalized queries, Rottnest is the most cost efficient approach for substring search.

Rottnest typically becomes most economical when:

1. The dataset needs to be queried more than some minimum number of times to amortize the

index cost.

2. The number of queries is large enough that brute force is too expensive but not large enough

to justify copying the data into an always-on index.

The parameters cpm i , cpm bf , cpq bf , ic r , cpm r and cpq r , which directly determine the

shape of the graph, are generally dependent on the search workload and data distribution. We will

discuss how changing them affects the phase change diagram in Section 4.5.6.

4.5.2 Example Rottnest Indices

In this section, we describe example Rottnest indices for the search workloads described in Section

4.1: UUID, substring and vector search. As discussed, current data lake query engines struggle to

perform well on these workloads. While the Rottnest indices are based on classic indices such as

binary tries and FM-indices, we explain how to adapt them to object storage and to support the

efficient merging required for compaction.

High-cardinality UUIDs

We design an index to enable fast exact UUID matching using a binary trie, where each UUID

defines a unique path through the trie structure. Following the design principles outlined in Section

4.4.2, we decompose the binary trie into modular components as illustrated in Figure 4.6.

To optimize storage efficiency, the binary trie indexes only the minimum number of bits required

to uniquely distinguish each UUID. Rather than computing the exact longest common prefix (LCP)

for each UUID, we estimate the required indexing depth based on the entropy derived from the

alphabet size and corpus size. Since indices may be merged dynamically, we cannot determine precise

LCP values in advance. To accommodate this uncertainty and potential estimation errors, we index

up to 8 additional bits beyond our entropy-based estimate for each UUID, while allowing leaf nodes

to reference multiple UUIDs when this extra depth proves insufficient for unique identification.

The Rottnest index framework naturally accomodates false positives that may occur due to

insufficient indexing depth, as even true positive matches require subsequent full page scans of the

corresponding Parquet pages. When false positives occur, additional Parquet pages must be read

and scanned, resulting in increased I/O overhead and slower query performance downstream.

CHAPTER 4. IMPROVING STORAGE: INDEXING DATA LAKES 79

We implement a further optimization by replacing the trie’s first 8 levels with a direct lookup

table, thereby reducing the number of sequential memory accesses required during traversal. The

fundamental principle guiding this approach is that optimal binary trie performance requires trie

depth to closely match the expected longest common prefix among all indexed keys, minimizing false

matches during lookup operations.

Exact Substring Matching

We employ the FM-index based on the Burrows-Wheeler Transform [41, 60] with a sampled suffix

array. The data structures are adapted to object storage with the componentization approach

described in Section 4.4.2. To merge indices, we employ the technique described in [72] with bounded

interleave iterations. We will explain the FM-index in much more detail in the following chapter.

Vector ANN Index

Vector indices are typically graph based (e.g. Vamana, HNSW) or clustering based (IVF-PQ)

[77,79,97]. Our ANN index is based on IVF-PQ. While graph-based indices provide superior recall-

speed tradeoffs in memory or even on disk, we find the graph structure incurs a long sequence of

dependent requests and is not easy to break down into non-overlapping components. As a result

we opt for a simpler index based on IVF-PQ and adjust recall by increasing the nprobe and refine

parameters.

Evaluation Methodology

We use AWS OpenSearch for the copy data approach for substring and UUID search and LanceDB

for vector search. [87]. We use PySpark on AWS EMR for the brute force approach.8 We use the C4

dataset included in FineWeb for substring search, which is 304GB compressed in Parquet format,

containing around 0.8 trillion characters [111]. We use 2 billion randomly generated 128-byte hashes

for UUID search, 131 GB in Parquet format. We use the SIFT dataset for vector search containing

1 billion 128 dimensional vectors, which is 137 GB compressed in Parquet format [94].

For cpm i , we include the EBS cost required to replicate the primary index three times for

OpenSearch or LanceDB as well as three r6g.large instances. cpm r and cpm bf are computed based

on the cost of storing the raw data and the raw data plus the Rottnest index on S3 respectively.

cpq bf and cpq r are computed from query latency times the hourly cost of the EC2 instances on

which the queries are executed. The indexing cost ic r , includes both the EC2 instance cost for

Rottnest to compute initial indices and adequate compaction.9 Technically, ic r , cpq bf and cpq r

8Vector search is implemented with a UDF using the mapInArrow API.
9Compaction could also be counted in cpm r . For the append-heavy datasets here, data no longer needs to be

compacted once they are in adequately sized indices, making it more appropriate to include compaction cost in the
upfront indexing cost.

CHAPTER 4. IMPROVING STORAGE: INDEXING DATA LAKES 80

8 16 32 64

20

40

60

La
te

nc
y

(s
)

a Brute Force

1 2 41
2
3
4
5
6
7

La
te

nc
y

(s
)

c Rottnest
Substring
UUID
Vector ANN

8 16 32 64
Worker Instances

0.05

0.10

0.15

0.20

0.25

Co
st

 (
$)

b

1 2 4
Worker Instances

0.01

0.02

0.03

Co
st

 (
$)

d

Figure 4.8: Brute force approach latency (a) and cost (b) scaling with cluster size. Rottnest latency
(c) and cost (d) scaling with cluster size. Worker instance used is r4i with 16 vCPUs. The graphs
show that both Rottnest and brute force approaches cannot achieve arbitrarily low latency by simply
scaling up compute – there is some lower limit due to the need for object storage access.

should include the cost of S3 requests. In practice, we find them eclipsed by compute resource costs

so focus on the latter for the evaluation.

4.5.3 Minimum Acheivable Latency and Maximum Tolerable Latency

Before we address TCO, we seek to determine the minimum achievable latency of Rottnest and the

brute force approach for the three applications. We examine how horizontally scaling the number

of machines impact the latency and the query cost, as described in the last section, in Figure 4.8.

From Figure 4.8a and 4.8b, we see that Spark is fairly horizontally scalable up to 32 worker

instances across the three query types. Scaling to 64 workers leads to a marked decrease in latency

improvement and therefore a large increase in cost per query. The latency at 64 workers can be taken

as an estimate of the minimum achievable latency where brute force becomes a viable approach.

Rottnest is not easily horizontally scalable, since it is often latency bound instead of throughput

bound: as discussed in Section 4.4.2, we find ourselves bottlenecked by the depth of our object storage

reads instead of the width. As a result, Figure 4.8c and 4.8d show the latency barely improving with

more searchers, while the cost almost linearly increases. Indeed, Rottnest is designed to be operated

in practice with a shared-nothing architecture.

We note that for all three query types, Rottnest’s latency on one worker still outperforms brute

force latency on 64 workers by a large margin: 4.3x for substring and UUID search, and 5.4x for

vector search. This means Rottnest has a much lower minimum achievable latency: 4.6s for substring

CHAPTER 4. IMPROVING STORAGE: INDEXING DATA LAKES 81

10 2 10 1 100 101

Months

102

103

104

105

106

107

To
ta

l N
or

m
al

iz
ed

 Q
ue

ri
es

Copy data

Rottnest

Brute force

Copy data

Rottnest

Brute force

Copy data

Rottnest

Brute force

Recall = 0.87
Recall = 0.92
Recall = 0.97

Figure 4.9: Phase change diagrams for vector search at different recall targets. Note log-log axes.

search, 1.7s for UUID search and 2.3s for vector search.

These results mean that if the system requires sub-second latencies, Rottnest and brute force

and unfortunately unsuitable.

4.5.4 Total Cost of Ownership

We now apply our TCO evaluation framework described in Section 4.5.1. We use 8 worker instances

for brute force and a single instance for Rottnest. Note they are the most cost efficient configurations

explored in the last section for both approaches. We separate the three applications into exact queries

(substring and UUID) and scoring queries (vector), where the evaluation is complicated slightly by

recall tradeoffs.

Exact Queries

We first evaluate the exact match queries, i.e. UUID and substring search. The phase diagrams

are plotted on Figure 4.7. We see that the point at which Rottnest becomes a competitive option

starts very early for both applications (2 days for substring search and less than 1 day for UUID

search). As the number of months increase, the range of total query numbers in which Rottnest is

most economical grow to span more than 4 orders of magnitude: from around 8 × 102 to 4 × 106

total queries at 10 months for substring search and from 3× 102 to 107 for UUID search.

We see a curvature up in the boundary between Rottnest and brute force for substring search

since the Rottnest indices are almost as large as the compressed Parquets in this case. This makes

brute force increasingly economical as the operating duration increases. For the UUID search, the

indices are much smaller, so the boundary stays flat. This behavior will be discussed in detail in

Section 4.5.6.

CHAPTER 4. IMPROVING STORAGE: INDEXING DATA LAKES 82

103 105 107

Access Granualarity (Bytes)

102

103

104

Ti
m

e
(M

ill
is

ec
on

ds
)

a
1 reads
4 reads
32 reads
128 reads
512 reads
Page Size
Row Group Size

1 4 32 128 512
Number of Reads

50

100

150

Ti
m

e
(M

ill
is

ec
on

ds
)

b
Parquet page
Byte-range

Figure 4.10: Parquet reading benchmarks showing how a) read latency increases with read gran-
ularity at different number of concurrent reads and b) the latency of reading 300KB byte ranges
compares to reading real Parquet pages.

Scoring Queries

The evaluation approach for vector search needs to be modified since query cost can be traded off

with recall for Rottnest. We assume that changing the recall target has negligible effect on the

TCO of the other two approaches. This is definitely the case for brute force, where the recall is

always perfect. This is less true for copy data approach, where the recall target could degrade the

throughput of the vector database which might require more servers to hit a QPS target. We ignore

this consideration here, which makes the copy data baseline stronger in the evaluation presented.

The Rottnest vector index is based on IVF-PQ [9,54]. We tune the nprobe and refine parameters

to hit different recall@10 targets: 0.87, 0.92 and 0.97. The former controls how many centroids

to probe and PQ vectors to rank, whereas the latter controls how many full precision vectors to

download and rerank. Increasing these parameters improves recall but also increases search latency

and cpq r.

We show the phase diagrams corresponding to the different recall targets in Figure 4.9. In our

experiments, a recall target of 0.97 leads to a higher search latency, and thus cpm r, 35% worse

compared to a recall of 0.87. However this difference barely changes the area Rottnest wins in the

log-log plot, which covers around 4 orders of magnitude at 10 months. Indeed, given the large orders

of magnitude differences between cpm i and cpm r, the small changes in cpq r does not move the

boundary significantly. Concretely, this means building a Rottnest index is most likely still a good

decision if recall target changes due to business requirements or if different queries have different

recall requirements.

CHAPTER 4. IMPROVING STORAGE: INDEXING DATA LAKES 83

4.5.5 In-situ Querying

A key decision point for Rottnest is to read raw data from the underlying Parquet files, instead

of copying the raw data into a custom storage format. This decreases both ic r and cpm r as it

reduces storage requirements. The Rottnest index is typically much smaller than the compressed

data itself, so storing a copy of the data would multiply the storage overhead several fold. In Figure

4.11, we show the effect including a copy of the data would have on the phase diagram of the UUID

search. On longer time horizons at around 10 months, it reduces the range of total queries where

Rottnest is more cost-effective than brute force by a few times and the cost benefit compared to

brute force in general.

The catch is that keeping the data in Parquet makes querying more challenging, as open source

Parquet reader implementations cannot efficiently perform random access on this data, increasing

cpq r . In Figure 4.11 we show that without a custom reader, Rottnest becomes less efficient than

the copy data approach over several orders of magnitude. Rottnest resolves this by designing its

own optimized Parquet reader that reads only the required column pages (∼300KB) vs entire row

groups (∼128MB).

Compared to an ideal custom format that allows the reader to fetch only the bytes necessary for

a data item (typically 0.1-4KB) without decompression, our Parquet reader has a read granularity

of 300KB and must decompress the whole read to fetch any item. We experimentally validate

that our Parquet reader makes our in-situ querying likely as efficient as using this ideal custom

format. We first show in Figure 4.10a that byte-range read request latency to S3 is stable in terms

of read granularity until around 1MB, at which point it increases linearly with the read size. This

observation holds for different numbers of concurrent reads from 1 to 512. While the size of Parquet

row groups puts it in the throughput bound regime, the size of Parquet pages puts it squarely in

the latency bound regime. Concretely, this means using a custom storage format to perform more

granular reads is unlikely to result in improved performance. In addition, we show in Figure 4.10b

that there is little difference in terms of performance between reading 300KB byte ranges and reading

and decoding actual Parquet pages in our Parquet reader, showing that decompression overhead is

not a concern.

To further evaluate this key design choice, we directly compare Rottnest’s query performance to

LanceDB cold cache mode which uses its own custom Lance format. In contrast to the LanceDB

configuration used to benchmark the copy-data approach above where the index is kept in memory,

we keep the index on S3 and query it directly similar to Rottnest, using optimized configurations

tuned by a core LanceDB maintainer. Rottnest achieves comparable search latency at all recall

targets: 2.09s (Rottnest) vs 1.90s (Lance) at 0.87, 2.30s vs 1.94s at 0.92 and 2.81s vs 2.72s at 0.97.

This experimentally validates that using a custom format is unlikely to significantly improve query

performance compared to in-situ querying with Rottnest’s custom Parquet reader.

CHAPTER 4. IMPROVING STORAGE: INDEXING DATA LAKES 84

10 2 10 1 100 101

Months

102

103

104

105

106

To
ta

l N
or

m
al

iz
ed

 Q
ue

ri
es

a Substring

10 2 10 1 100 101

Months

b UUID

10 2 10 1 100 101

Months

c Vector
In Situ
Store Copy
No Custom Reader

Figure 4.11: Changes to the phase diagram if Rottnest keeps a copy of the data in custom format
or if it did not use an optimized custom Parquet reader.

4.5.6 Sensitivity Analysis

Parameter Robustness

The last section has demonstrated that changing cpq r and cpm r have dramatic effects on the phase

diagram. In this section, we systematically examine the impact of changing cpq r, ic r and cpm r

on the phase diagram to understand the effects of optimizing each. Figure 4.12 demonstrates how

the phase diagrams shift for vector search (0.92 recall) when each of these parameters are multiplied

by the shown factor. For cpm r, we show the result of scaling cpm r − cpm bf , or just the storage

cost associated with the Rottnest index files. Two observations:

1. Decreasing Rottnest search latency (cpq r) makes it more competitive against copy data, with

virtually no benefit against brute force. Decreasing the Rottnest index size (cpm r) does

exactly the opposite.

2. Reducing the indexing cost (ic r) reduces the minimum operating months at which Rottnest

becomes worthwhile compared to the other approaches. On the other hand, it does little to

the asymptotic boundary between Rottnest and the other two approaches at longer operating

time horizons.

These observations inform how optimizations in Rottnest directly benefit different classes of use

cases: making the search faster benefits high query load applications; making the index smaller

benefits low load applications and making the index construction cheaper benefits applications with

CHAPTER 4. IMPROVING STORAGE: INDEXING DATA LAKES 85

10 2 10 1 100 101

Months

102

103

104

105

106

107

To
ta

l N
or

m
al

iz
ed

 Q
ue

ri
es

aaaaa cpq_r sensitivity
0.01
0.1
1
10
100

10 2 10 1 100 101

Months

bbbbb cpm_r sensitivity
0.01
0.1
1
10
100

10 2 10 1 100 101

Months

ccccc ic_r sensitivity
0.01
0.1
1
10
100

Figure 4.12: Sensitivity analysis of cpq r, ic r and cpm r for vector search application at recall 0.92.
Contours indicate phase diagrams if each of the parameter is multiplied by the denoted factor. The
actual diagram is in red.

short operational lifetimes.

Dataset Size Robustness

So far, all the parameters are computed based on fixed dataset sizes, as described in Section 4.5.2.

While the key parameters cpm i , cpm bf , cpq bf , ic r , cpm r and cpq r are evidently dependent

on the data distribution in complex nonlinear ways10, most are almost perfectly linearly correlated

with dataset size assuming the same data distribution, which would imply no change in the phase

diagram.

While cpq r generally scales with the number of index files queried, which generally increases

linearly with dataset size, Rottnest compactions could greatly reduce this number to dramatic effect

as seen in Figure 4.13. For the case of UUID search, we also see nonlinear scaling due to AWS

list request throttling issues. Post compaction, the Rottnest search latency is effectively constant

irrespective of the dataset size, which means that as data volume increases, cpq r stays relatively

constant while all other parameters increase linearly, making Rottnest more attractive against the

copy data approach as shown in Figure 4.12a.

10For example, entropy influences compression efficacy for text datasets.

CHAPTER 4. IMPROVING STORAGE: INDEXING DATA LAKES 86

100 200 300
Number of Index Files

48
16
32

64

La
te

nc
y

(s
)

a

100 200
Number of Index Files

1
2
3
4
5

b
Uncompacted
Compacted

Figure 4.13: Search latency on uncompacted vs. compacted index files for a) substring (100x com-
paction factor) and b) UUID search (25x compaction factor). Compaction greatly reduces search
latency when there is a large number of index files.

Throughput Limitations

While our evaluation framework covers concerns such as search latency, total operating cost and

operating duration, we did not discuss the maximum throughput supported by the three approaches.

While the copy data approach is typically bottlenecked by the disk IOPs and CPUs of the dedicated

servers, Rottnest and the brute force approach are bottlenecked by S3’s limit of 5500 GET RPS

per prefix. While the number of requests Rottnest makes is heavily dependent on the query11, this

typically caps Rottnest’s QPS at 10-100. However, from Figure 4.7 and Figure 4.9, Rottnest already

underperforms copy-data approach at these QPS levels (10QPS = 2.52 × 107 total queries at 10

months). As a result, these throughput limits do not significantly change the conclusions drawn

here.

4.6 Discussion

Current cloud OLAP systems fall into two main categories: compute-storage integrated and disag-

gregated systems. Integrated systems like Clickhouse, ElasticSearch, and Splunk operate as server

clusters with data sharded across RAM/SSDs [46,57,130]. While these systems enable millisecond-

latency queries through warm storage, they require long-running servers and data replication, re-

sulting in high operating costs and scaling challenges [80].

11Exact queries like UUID and substring search send a couple hundred requests to the Rottnest index files but only
up to a dozen requests to the underlying data lake, whereas vector queries can send hundreds of requests to both the
index files and the data lake.

CHAPTER 4. IMPROVING STORAGE: INDEXING DATA LAKES 87

These limitations led to compute-storage disaggregated systems like Snowflake, BigQuery, and

data lakehouses [17, 29, 48, 62, 99]. These systems query data stored in object storage with hor-

izontally scaled workers. While offering serverless pricing and unlimited scalability, their limited

indexing capabilities (such as Parquet’s block min-max indexes [22] and Grafana Loki’s attribute-

level indexing [67]) lead to higher per-query costs due to extensive data scanning.

Rottnest represents an emerging third category: indexed disaggregated systems, which use

object-store-native, domain-specific indices to accelerate queries. Similar approaches include Indexed

DataFrames for Spark joins [135], Apache Hudi’s B-Tree indices [149] and Hyperspace’s external in-

dices [112,113]. Rottnest addresses certain limitations in previous systems, while focusing on search

workloads. For instance, Microsoft’s Hyperspace system is limited to cloud storage backends that

support atomic compare and swap. Similarly, Apache Hudi’s indexing subsystem is tightly integrated

with the data lake’s metadata table, while Rottnest can be bolted on to any data lake [131].

We show how Rottnest is the most cost-effective solution across several orders of magnitude of

total query load across a wide range of operating durations for the exemplar applications listed

in Section 4.1. While Rottnest incurs a couple seconds minimum latency, we believe most of these

applications are tolerant to search latency as they are either human interactive, or the search latency

is eclipsed by other sources of latency, such as LLM generation latency (on the order of 10 seconds

for 500 tokens [114]).

Besides the TCO considerations presented, there are practical benefits to deploying Rottnest in

the aforementioned, typically spiky workloads. Dedicated clusters like ElasticSearch take minutes

to scale up and down, making it difficult to rightsize them for the load. Brute force approaches

requiring distributed compute is hard to deploy in practice: either a shared cluster is used or each

query spins up its own cluster. The former leads to poor performance isolation between different

user queries and the latter can incur significant spinup overheads.

Since Rottnest is designed to provide acceptable search latencies from one search instance with

object storage as the only shared state, it easily supports scalable shared-nothing deployment archi-

tectures with serverless functions like AWS Lambda or client machines (e.g. a data scientist’s devbox

inside the organization’s cloud account), greatly reducing infrastructure complexity and cost. We

have open sourced Rottnest12 to facilitate further research.

12https://github.com/marsupialtail/rottnest

Chapter 5

Storage: Detailed Example for

Observability Data

5.1 Motivation

In Chapter 4, we introduced Rottnest, a system for building external indices on data lakes to support

diverse search workloads. We demonstrated its effectiveness across three representative applications:

high-cardinality UUID filtering, substring search, and vector embeddings. Among these, substring

search on machine-generated logs stands out as a particularly compelling use case that warrants

deeper exploration.

Log analytics represents one of the most challenging search workloads in modern cloud infrastruc-

ture. Organizations generate terabytes of logs daily from their distributed systems, microservices,

and cloud applications. These logs must be searchable for troubleshooting incidents, debugging

performance issues, and conducting security audits [50, 56, 129]. The search patterns are inherently

unpredictable—an engineer might search for a specific Kubernetes pod ID, a partial IP address, or

a stack trace fragment. This variety makes traditional indexing approaches that rely on predefined

sort orders ineffective.

The current landscape of log management systems exemplifies the exact trade-offs we discussed in

Chapter 4. On one end, systems like ElasticSearch, Splunk, and DataDog provide millisecond-latency

searches through sophisticated full-text indices, but require expensive always-on infrastructure and

can consume storage approaching the size of the raw logs themselves [107, 118, 129, 147]. On the

other end, brute-force approaches that store compressed logs in systems like Scalyr, Loki, or simply

as Parquet files on object storage achieve an order of magnitude reduction in storage costs but make

interactive searching prohibitively expensive [67,122,123].

This dichotomy makes log analytics an ideal candidate for Rottnest’s indexed disaggregated

88

CHAPTER 5. STORAGE: DETAILED EXAMPLE FOR OBSERVABILITY DATA 89

approach. Logs exhibit several characteristics that align perfectly with Rottnest’s design principles:

• Append-heavy workload: Logs are rarely updated after creation, making lazy indexing

particularly suitable.

• Moderate query frequency: Most logs are queried only during incidents or investigations,

falling squarely in Rottnest’s optimal TCO range.

• Tolerance for multi-second latency: Interactive debugging can tolerate search latencies of

several seconds, well above Rottnest’s minimum threshold.

In this chapter, we present LogCloud, a specialized Rottnest index implementation optimized

for log data. While Chapter 4 demonstrated the general applicability of external indices across

diverse workloads, LogCloud shows how domain-specific optimizations can push the boundaries of

what’s possible with object-storage-native indices. Building on the general framework presented by

Rottnest [112,149], LogCloud addresses two key technical challenges unique to log search:

First, logs contain a mix of static templates and dynamic variables (like pod IDs or request

identifiers), allowing for specialized compression techniques that dramatically reduce the data volume

to be indexed. We leverage LogGrep’s state-of-the-art log compression to break logs into template

and variable components [147], then construct inverted indices specifically on the variables.

Second, the substring search requirements of log analytics demand more sophisticated index

structures than the binary tries used for UUID search in Chapter 4. To address this challenge,

we employ the FM-index based on the Burrows Wheeler Transform (BWT). While prior research

has explored various FM-index implementations, they have focused primarily on disk/RAM settings

[12,41,61,65,69], which are unsuitable for object storage’s high-latency characteristics. We propose

a novel implementation optimized for object storage that significantly improves search latency while

maintaining compression efficiency.

Through LogCloud, we demonstrate that by combining Rottnest’s external indexing approach

with log-specific optimizations, we can achieve interactive search performance comparable to ded-

icated log services while maintaining less than 10% of their storage footprint. This results in up

to 10x total cost of ownership savings for large-scale log datasets, validating Rottnest’s promise of

enabling new workloads on data lakes without sacrificing the benefits of disaggregated storage.

5.2 Background

5.2.1 Inverted Indices after Log Compression

Recent work like CLP and LogGrep has demonstrated that logs are highly repetitive and can be ef-

fectively compressed by exploiting static and runtime patterns, as shown in Figure 5.1 [118,147,148].

Almost all logs can be decomposed into repeated templates and variable components (e.g., request

CHAPTER 5. STORAGE: DETAILED EXAMPLE FOR OBSERVABILITY DATA 90

2018-06-27 00:00:07,771 DEBUG org.apache.hadoop.hdfs.server.datanode.DataNode:
Sending heartbeat with 1 storage reports from service actor: Block pool
BP-596011733-172.18.0.2-1528179317196 (Datanode Uuid
c3bb40ae-c869-4ea0-ad0a-94f4f39bb5c6) service to master/ 172.18.0.2:8200

Figure 5.1: Logs are typically made up of fixed templates and changing variables, which are high-
lighted in yellow. Logs that do not fit into common templates are called outliers.

IDs or pod names, typically long pseudo-random alphanumeric URIs). LogCloud uses LogGrep to

first decompose logs and indexes the variable components only. The templates, typically small in

size, can be brute force searched.

To build the index itself, we leverage an inverted index structure that maps each variable to a

posting list - an ordered collection of document IDs and positions where the token appears. These

tokens are stored in a term dictionary, a collection of all unique tokens with pointers to their

posting lists. The challenge lies in efficiently managing the secondary index needed to quickly look

up tokens in this term dictionary, which can grow to multiple GBs when dealing with URI-style

variables. Two popular approaches for this secondary index are finite state transducers (FST), used

by ElasticSearch, OpenSearch, and M3DB [57,95,101,107], and sorted string tables (SSTables) [109],

adopted by systems like Cassandra and Quickwit [52,85,116].

5.2.2 Challenge: Substring Searches on URIs

While both FSTs and SSTables enable efficient prefix (query∗) and exact-match string queries on

these variable tokens, they lack support for efficient substring (∗query∗) searches. Some systems

(Quickwit, Cassandra) simply do not support substring search, while others (ElasticSearch) cannot

efficiently use the secondary index and perform expensive scans of the term dictionary [57,85,116].

In search engine use cases, a term dictionary scan is acceptable, as the size of the language

vocabulary does not grow linearly with the amount of text being indexed. However, as shown in

Figure 5.1, the term dictionary here consists of unique resource identifiers (URIs)1 whose number

increases linearly with the size of logs being indexed. We will show in Section 5.2 that scanning this

term dictionary can be very expensive for larger datasets.

Substring searches are critical for observability and cybersecurity use cases [33, 80, 128]. For

example, an engineer troubleshooting a service outage might search for a partial URI ‘172.18.0.2’

embedded in a larger URI, as shown in Figure 5.1, to correlate across log sources. As a second

example, a security analyst investigating potential threats needs to search for partial IP addresses or

domain fragments in network logs to identify suspicious traffic patterns (e.g., searching for ”10.0.0.”

to find all matching IPs, or ”.xyz” to detect traffic to suspicious top-level domains). In addition to

these practical use cases, users often rely on substring queries rather than prefix or exact matches

1e.g. BP-59601* in Figure 5.1, not URLs on the web!

CHAPTER 5. STORAGE: DETAILED EXAMPLE FOR OBSERVABILITY DATA 91

$BANAN A

A$BANA N

ANA$BA N

ANANA$ B

BANANA $

NANA$B A

NA$BAN A

$ A B N

0 0 0 0

0 1 0 0

0 1 1 0

0 1 1 1

0 1 1 2

1 1 1 2

1 2 1 2

BWT:ABNN$AA FM Index

Sorted Suffixes

0 1 0 0

0 0 1 1 0 0

0 1

0 1
A B

N

Root NodeWavelet
Tree FM
Index

Each leaf node corresponds to a character in the alphabet,
where the path to the leaf node corresponds to the character's
binary encoding.

Figure 5.2: Summary of BWT and FM-index on the input string BANANA. For a more illustrated
reference see [136]. We show a simple FM Index and a wavelet tree FM-index. To compute rank(B, 4)
with a wavelet tree, we first lookup B’s binary representation 01. Since the first digit is 0, we find
rank(0, 4) = 2 in the bitvector at the root node. Then we go down the left branch and find
rank(1, 2) = 1 as the result.

to ensure comprehensive results, particularly when the log management framework’s tokenization

scheme is unfamiliar and missing matches is unacceptable.

In the authors’ experience operating large-scale distributed systems in industry, substring queries

dominate incident response workloads to debug failures and detect intrusions. Efficient support for

substring queries is thus a basic requirement for LogCloud.

5.2.3 Solution: The BWT and FM-index

What object-storage based secondary index would allow efficient substring searches on the term

dictionary? Apart from FSTs and SSTables, two other full-text indexing approaches have been

proposed in literature. The first are grammar-based compression approaches like Sequitur [38,

44, 106, 154, 155] and the second are succinct data structures like the Burrows Wheeler Transform

(BWT) [12,41,61,92]. We choose the second approach in LogCloud for two reasons. First, grammar-

based approaches heavily rely on repeated subwords that occur frequently in natural language text

but rarely occurs in the URIs that we are indexing. Second, while the compression costs of Sequitur-

based algorithms can be prohibitively high, efficient industrial-grade implementations for performing

the BWT exist [92,102,154].

LogCloud uses the FM-index based on the BWT, an example of which is shown in Figure 5.2. The

FM-index is a common data structure typically used in bioinformatics to perform substring searches

CHAPTER 5. STORAGE: DETAILED EXAMPLE FOR OBSERVABILITY DATA 92

in DNA read mapping. While we will attempt to give a brief tutorial of the BWT in this chapter,

the reader is recommended to read the amazing post here: https://curiouscoding.nl/posts/bwt/, or

watch the BWT tutorial by Prof. Langmead on Youtube.

To obtain the BWT of an input text corpus (the term dictionary in our case), generate a matrix

of cyclic permutations of the corpus, i.e. all the rotations of BANANA in the example. Then, these

permutations are sorted lexicographically. The last column from the array of suffixes, highlighted in

the red box, is called the BWT [60].

Algorithm 3 Iterative Substring Search using FM-index with BWT

1: procedure FM Search(P,BWT) ▷ P is the substring to search
2: l← 0, r ← |BWT |
3: C ← counts of each character in BWT
4: for i← |P | down to 1 do
5: l← C[P [i]] + rank(P [i], l)
6: r ← C[P [i]] + rank(P [i], r)
7: if l ≥ r then return ”Pattern not found”
8: end if
9: end for

10: return Pattern found between BWT positions l and r
11: end procedure=0

The BWT is used to construct the FM-index, which allows efficient substring searches. The FM-

index enables efficient computation of rank(c, i), defined as how many times character c has appeared

up to position i in the BWT. Assuming rank(c, i) can be efficiently computed for all characters in

the alphabet and all positions in the BWT, Algorithm 3 is commonly used to find all occurrences of

a substring P in the input text corpus using the rank operation repeatedly [61]. Figure 5.2 shows

the simplest FM-index, which just records this number for all c and all positions.

The FM-index is typically implemented with a wavelet tree in RAM or disk-based used cases

[69, 84, 96]. The wavelet tree compresses the BWT into a binary tree, where each node contains a

bitvector. To retrieve the rank of a character, the tree is traversed from the root with rank operations

done on the bitvectors at each node. A tree traversal for the BWT ”ABNNAA” is in Figure 5.2.

The result of Algorithm 3 indicates the query pattern is found between positions l and r of the

BWT , which needs to be mapped back to locations in the original text corpus. This can be done

very quickly with a list that records the offset in the original corpus that corresponds to each position

in the BWT, called the suffix array. However, this is a list of integers as long as the original text

corpus, and is in general very poorly compressible. A common technique used in literature is the

sampled suffix array, which stores only offsets for every K positions. If a position i’s offset is not

stored, the FM-index has to be repeatedly consulted to relate position i’s offset to i−1’s offset until

a sampled location is hit [12,61].

CHAPTER 5. STORAGE: DETAILED EXAMPLE FOR OBSERVABILITY DATA 93

5.2.4 Challenge: Query Latency on Object Storage

To the best of our knowledge, all existing implementations of the FM-index have targeted disk or

in-memory scenarios. This is because the FM-index is typically used to map short reads against a

reference genome, which rarely exceeds several GBs in size. However, in our scenario, we would like

the index to reside on object storage, which has a higher read latency of tens of milliseconds [55].

This raises two critical challenges for the standard wavelet tree FM-index implementation.

The first challenge is the latency of substring search with the wavelet tree. In a wavelet

tree, each rank operation takes O(HC) sequential random reads, where HC denotes the entropy of

the alphabet. Since we are constructing the index on pseudorandom variables like URIs, the entropy

is the log of the size of the alphabet. Thus for alphanumeric variables, around six sequential reads to

object storage are required to compute one rank operation with the wavelet tree. Algorithm 3 shows

that we compute |P | rank operations sequentially. Long queries such as ‘nginx-554b9c67f9-c5cv4‘

can require tens of rank operations, which translates to hundreds of sequential read requests to the

object storage.

The second challenge relates to the latency of accessing the sampled suffix array

used to map BWT positions back to locations in the input text. While accessing the FM-index up

to K times for each mapped BWT position can be acceptable when the FM-index is in memory

or on disk, it incurs unacceptable latency for object storage. This is particularly problematic as

hundreds of positions potentially have to be mapped. Even though querying each position can

be parallelized, making thousands of small concurrent requests to object storage may run into S3

request throttling [16]. Alternatively, one could opt to store the full suffix array, but it has a very

high storage footprint, which would annul the benefits we obtain from log compression [61].

5.3 Object Store Native Inverted Index

LogCloud effectively tackles the two challenges by focusing on the IO-bound and latency-bound

nature of object storage, where data retrieval is significantly more expensive compared to processing

the data and retrieving 1 byte and 1 MB have similar latency.

Based on these observations, we introduce two key innovations: (1) a custom object storage-

optimized FM-index that reduces sequential requests for substring queries from O(HC |P |) to O(|P |),
and (2) a range-reduced full suffix array approach that maintains performance while drastically

reducing storage requirements through effective compression. Together, these innovations adapt the

FM-index and suffix array to address the challenges of efficient log search on object storage.

5.3.1 Fast Search with Custom FM-Index

We tackle the first challenge through a novel object-storage-optimized implementation

of the FM-index, reducing the sequential requests for a substring query of length P from O(HC |P |)

CHAPTER 5. STORAGE: DETAILED EXAMPLE FOR OBSERVABILITY DATA 94

to O(|P |) versus the standard wavelet tree implementation. The BWT is divided into fixed-size

chunks, and we compress each chunk and store the rank of every character in the BWT up to the

beginning of the chunk in each chunk. The details are in Algorithm 4. The built chunks can be

stored contiguously on object storage together with an offsets array that contains the byte range of

each chunk. Algorithm 5 can then be used to compute rank(c, i).

Algorithm 4 Build Chunks for Custom FM Index

1: function BuildChunks(BWT, chunk size(cs) = 4M)
2: chunks← [], ranks← {c : 0 for c ∈ Σ}
3: for i← 0 to ⌈|BWT |/cs⌉ − 1 do
4: chunk ← (compress(BWT [i · cs : (i + 1) · cs]), ranks)
5: ranks[c]← ranks[c] + count(c,BWT [i · cs : (i + 1) · cs]) for c ∈ Σ ▷ Update global ranks

with counts in this chunk.
6: chunks.append(chunk)
7: end for
8: return chunks
9: end function

Algorithm 5 Rank Computation using Custom FM Index

1: function Rank(c, i, chunks, chunk size (cs))
2: chunk ← chunks[⌊i/cs⌋] ▷ Locate chunk containing pos i
3: text, ranks← chunk ▷ Chunk contains compressed BWT and the ranks of each character

up to the start of the chunk
4: local pos← i mod cs
5: decompressed← decompress(text)
6: local count← 0 ▷ Compute rank of c in this chunk.
7: for j ← 0 to local pos do
8: if decompressed[j] = c then
9: local count← local count + 1

10: end if
11: end for
12: return ranks[c] + local count ▷ Final rank = rank up to this chunk + local rank.
13: end function

This approach requires reading just one chunk to compute the rank and is much simpler than the

wavelet tree design. This implementation, inspired by the original FM-index implementation based

on the occurrences matrix and Jacobson’s rank [60, 76], is not popular for typical disk/RAM-based

FM-index implementations because the rank calculation within the chunk is now done on characters,

which is much more compute-intensive than rank calculations on bits that have hardware acceleration

like popcnt instructions. However, in our IO-bound scenario this computation cost is easily eclipsed

by the read cost.

Another reason why this approach is not typically preferred is because uncompressed, it takes

around the same space as the input corpus. The wavelet tree representation comes with native

CHAPTER 5. STORAGE: DETAILED EXAMPLE FOR OBSERVABILITY DATA 95

Chunk 1
12824, 5948,
10000, 24 …

Chunk 2
28364, 100, 5400,
13232 …

Chunk 1
3, 1, 2, 1 …

Chunk 2
2, 1, 3 …

term 1: posting list

term 2: posting list

term 3: posting list

Chunk 1
term 1: ...
term 2: …
…
term 420: …

Chunk 2
term 421: …
term 422: …
…
term 1000: …

Suffix Array

term 1000: …

Term Dictionary Suffix Array Term Dictionary

Term dictionary
chunk number
-> byte offset

. . .

a b

Figure 5.3: Range reduction to compress the suffix array.

compression as the storage footprint of each character is the size of its binary encoding (e.g. Huffman

code). However, we can compress each character chunk in our FM-index using generic compression

like Zstd [58] and decompress the chunk upon reading. Decompression adds too much overhead

for disk/RAM-based FM-indices since reading is fast, but again acceptable in our IO-bound case:

decompressing a chunk in memory is much faster than downloading the chunk from object storage.

For example, downloading 512 300KB Zstd compressed chunks from S3 in parallel is only 5% slower

than downloading and decompressing them concurrently, compared to 70% slower from NVMe SSD

on an r6id.2xlarge instance on AWS.

5.3.2 Full Suffix Array with Range Reduction

We resolve the second challenge by storing a heavily compressed full suffix array instead

of a sampled suffix array. The FM-index points us to positions l and r in the BWT. We rely

on the suffix array to map these positions back to offsets in the term dictionary. As discussed in

Section 2.3, the suffix array contains as many 64 bit integers as characters in the term dictionary,

whose massive size can negate any of our log compression benefits.

Similar to the FM-index, we store the full suffix array in chunks, and compress each chunk. To

fetch positions l to r, the chunks containing those positions are downloaded and filtered for these

positions. However, if the chunks contain byte offsets of the posting lists in the term dictionary

(Figure 5.3a), they are still very poorly compressible because they would contain a wide range of

large integers with minimal patterns or repetition, making standard compression algorithms like

Zstd ineffective at reducing their size.

In LogCloud, instead of storing offsets into the original term dictionary, we break the term

dictionary into chunks, and only record the chunk number in the suffix array (Figure 5.3b). Even

though we still have to store the same number of integers as the naive approach, the dynamic range

CHAPTER 5. STORAGE: DETAILED EXAMPLE FOR OBSERVABILITY DATA 96

LogCloud
Index

Parquet

Parquet

Parquet

Parquet

Parquet

Parquet

Parquet

Parquet

Object Storage

LogCloud
Index

Indexing
Service

Reads Parquet files

Constructs index
and uploads to
object storage

Ingestion
Service

Grafana Server

LogCloud
Search
Client

Write latest data to
Parquet files

Figure 5.4: LogCloud’s architecture.

of each integer is reduced by several orders of magnitude. Subsequent positions in the suffix array

are also now more likely to be identical. This makes generic compression like Zstd very effective on

the suffix array. We call this optimization technique range reduction .

This optimization is motivated by the observation that byte-range GET requests on object storage

up to around 1MB are all latency bound and have roughly the same speed. As a result, it is

unnecessary for the secondary index to point us to the exact 20-byte term in the term dictionary. It

is sufficient to point to the 1MB chunk that contains the term, then download and scan the chunk

exhaustively to locate the term. The scan cost is usually insignificant compared to the download.

5.4 LogCloud Architecture

We now discuss how the novel object-storage native inverted index fits in the overall architecture of

LogCloud. LogCloud consists of two key components, indexing and querying, shown in Figure 5.4.

LogCloud is implemented as a Rottnest index. In the previous chapter, we explained how Rottnest

provides an API for clients to keep an index up to date and query indices. Here, we show how a

Rottnest index can be run in production as part of a system.

CHAPTER 5. STORAGE: DETAILED EXAMPLE FOR OBSERVABILITY DATA 97

5.4.1 Indexing

Similar to other compute-storage decoupled log management systems, LogCloud runs an ingestion

pipeline that dumps logs in Parquet format on object storage. What sets LogCloud apart from

other such systems is that it also runs an indexing service. The indexing service periodically runs

the Rottnest ‘index‘ API described in Chapter 4. Once a configurable amount of new logs have been

collected, a LogCloud inverted index is built on the new data. By default the data is converted to

Parquet and stored on object storage as a directory of Parquet files. Since LogCloud is implemented

as a Rottnest index, it can also directly index log data already stored in data lakes from another

ingestion service [19,47,123].

During indexing, we first use LogGrep [147] to break down ingested logs into template and

variable components, categorizing variables into 64 types based on their character composition (e.g.

only numeric, alphanumeric etc) [147]. For each type, LogCloud builds an inverted index with a

term dictionary divided into 1MB chunks, as described in Section 3.2. The posting list points to

Parquet pages, which are chunks of a few hundred KBs of compressed data. We find that we can

download and search hundreds of Parquet pages in parallel in hundreds of milliseconds from an EC2

instance with a heavily optimized custom Parquet reader in Rust.

If the compressed term dictionary exceeds 5MB, we construct the secondary FM index and suffix

array described in Section 3.1 to efficiently look up term dictionary chunk numbers from substring

queries. Otherwise, we simply scan the term dictionary. Altogether, a LogCloud index file contains

the templates, term dictionary chunks, and optionally the FM index and suffix array.

We can avoid storing a copy of the logs by piecing together matching logs from their templates

and variables as in LogGrep, we found this approach requires too many random accesses when

the variables are stored in object storage, making search prohibitively expensive. In addition, the

Parquet files allow us to easily augment LogCloud with tools like SparkSQL and AWS Athena for

more complex analytics.

5.4.2 Searching

One can use Rottnest’s embedded client library to search a LogCloud index and Parquet files on

object storage. This offers flexible deployment options anywhere that can access the object storage

bucket containing these files, such as on a Grafana server or on a serverless function. The search

functionality operates completely independently from indexing and requires no always-on servers.

The search process for a top-K substring query is illustrated in Figure 5.5. The latest unindexed

data is scanned in Parquet directly. LogCloud queries all the built LogCloud indices in parallel. To

query each index, the following steps occur:

• The extracted templates are downloaded from object storage and searched exhaustively. If the

substring query matches here, the searcher will simply abort using the index and brute force

CHAPTER 5. STORAGE: DETAILED EXAMPLE FOR OBSERVABILITY DATA 98

Common tokens, templates

Type 1
variables

Type 53 variables

Inverted
Index

Top K search *nginx-554b9c6*

FM Index

Suffix Array

Term
Dictionary
Chunks

Search indices
of all matching
variables types

Index 0

Index 1

Figure 5.5: Searching workflow in LogCloud. All data structures shown in boxes are stored on object
storage.

search all the Parquet files since the target substring occurs frequently.

• URI substring searches, e.g. “∗55493∗”, will not match common templates, leading the searcher

to search the inverted indices for the variables, described in Section 5.3. The LogGrep type

of the query is determined and the inverted indices for all “compatible” types are searched in

parallel. A compatible type is a type that could contain the type of the query. For example, if

the query contains only numbers (type 1 in LogGrep), the type containing all alphanumerics

also must be searched (type 53).2

• The search client first queries our custom FM-index to find positions l and r in the suffix array

as described in Algorithm 1, then retrieves term dictionary chunk numbers from the suffix

array between these positions. The chunks are downloaded and regex searched for matches,

with any matches leading to retrieval and search of the referenced Parquet file pages.

Certain parts of the index, like the templates and FM-index metadata, are small and accessed

repeatedly across queries. While these characteristics make them ideal candidates for client-side disk

caching, we do not explore this in our evaluation to maintain a straightforward comparison with

other systems due to the high variability in cache-hit rates across various log analytics use cases.

2A current limitation is LogCloud cannot search queries that span templates and URIs. This is exceedingly rare
in practice.

CHAPTER 5. STORAGE: DETAILED EXAMPLE FOR OBSERVABILITY DATA 99

Hdfs Hadoop Windows Thunderbird Cluster

101

102

103

104

105

Si
ze

 (
M

B)

Uncompressed
OpenSearch
LogGrep
LogCloud Parquet
LogCloud
LogCloud Index

Figure 5.6: Storage footprint comparisons across five datasets.

5.5 Results

We compare LogCloud against two representative baseline systems: OpenSearch UltraWarm, which

exemplifies compute-storage integrated indices, and LogGrep, which represents the compute-storage

disaggregated approach of downloading and scanning compressed logs [18, 147]. For the LogGrep

baseline, we compress the logs using LogGrep and store them in object storage. During search, the

compressed logs are downloaded and searched on NVMe SSD.

We use four LogHub datasets, HDFS (1.5GB), Thunderbird (30GB), Hadoop (17GB), Windows

(26GB) [147, 157], as well as a 429GB dataset named Cluster from [118]. For each dataset, we test

three search queries: common keyword, exact-match URI, and substring URI, returning top 1000

results. For example, on the Hadoop dataset, we search for ‘blk 1076115144∗’, ‘∗1076115144∗’ and

ERROR.

We run LogCloud and LogGrep searcher on a single r6i.xlarge EC2 instance (4 vCPUs, 32GB

RAM) [137], with LogCloud indices, Parquet files and LogGrep compressed files stored on AWS S3

in the same region. AWS OpenSearch UltraWarm uses three r7g.large nodes (2vCPU, 16GB RAM)

and three ultrawarm1.medium instances (2 vCPUs, 15.25GB RAM). All measurements are repeated

five times, with the standard deviation shown where applicable.

5.5.1 Storage Footprint

First, we compare the storage footprint of the different log management solutions in Figure 5.6.

For LogCloud we show both the size of just the Parquet files and the total size with the index

files. Across all five datasets, LogCloud (Parquet + index) achieves 11.8x geomean lower storage

footprint against OpenSearch and 2.8x larger storage footprint compared to LogGrep. The LogCloud

index itself achieves 93x geomean lower storage footprint compared to OpenSearch and 2.8x lower

CHAPTER 5. STORAGE: DETAILED EXAMPLE FOR OBSERVABILITY DATA 100

compared to LogGrep. We make the following observations:

[leftmargin=*]Consistent with prior findings [118, 147], OpenSearch exhibits poor space effi-

ciency, with its index size approaching that of the raw uncompressed logs. Moreover, OpenSearch

UltraWarm incurs additional operational costs due to its requirement for continuously running

servers, described more in Section 5.5.3. For most log types, LogCloud storage size is dom-

inated by the Parquet files. As expected, LogGrep’s storage footprint is smaller since its

log-specific compression outperforms the Zstd compression used in Parquet [147].

The second observation raises the question if we can further improve the storage footprint by

moving away from Parquet: instead of Parquet’s zstd compression, we could use LogGrep to compress

chunks of logs and have LogCloud’s posting lists point to those chunks. However, this would sacrifice

crucial interoperability with external SQL engines and data lakes [27,62,123].

5.5.2 Search Latency

In Figure 5.7 we show the search performance of the three different query types on the five log

datasets with OpenSearch, LogGrep and LogCloud. We break down the LogGrep runtime into the

time it takes to download the compressed logs and the time to search the downloaded files on disk.

We break down the LogCloud runtime into searching the index on object storage and downloading

and filtering the matched Parquet pages.

On the queries on common tokens such as “ERROR” that match log templates, LogCloud

sidesteps the inverted index and directly searches Parquet files, spending almost no time in index

search. This leads to a 2.2x geomean speedup over OpenSearch and 5.0x over LogGrep, consistent

over almost all log types.

For URI queries, LogCloud’s index search dominates query time over Parquet page retrieval, as

expected for an effective inverted index. OpenSearch UltraWarm’s FST-based secondary index out-

performs LogCloud on exact matches (2.5x geomean faster on average), except for Windows. How-

ever, LogCloud is 3.6x faster on substring queries which bypass OpenSearch’s FST index, achieving

up to 7.5x speedup on the largest Cluster dataset. Most notably, LogCloud matches this performance

using only S3 storage instead of OpenSearch’s disk/RAM-based indices, demonstrating competitive

serverless query performance without the costs of warm storage.

On the small dataset Hdfs, LogGrep performs better than LogCloud since the compressed logs

can be quickly downloaded and scanned. However, it performs over 10x worse on the larger datasets

like Hadoop and Cluster, where the search time on disk actually eclipses download time. Since

LogGrep does not rely on indices, it has to exhaustively scan all the variables, causing its poor

scalability. As a result, on URI queries, LogCloud is 22x geomean faster than LogGrep for Hadoop

and 12x for Cluster.

CHAPTER 5. STORAGE: DETAILED EXAMPLE FOR OBSERVABILITY DATA 101

51.2 62.8 75.7 70.057.2

Figure 5.7: Search times for different query types across five public log datasets with breakdowns
between search and download for LogGrep and index and Parquet for LogCloud. Bars exceeding
the y-axis are annotated.

CHAPTER 5. STORAGE: DETAILED EXAMPLE FOR OBSERVABILITY DATA 102

5.5.3 Total Cost of Ownership

Our analysis so far across log volumes ranging from 1.5GB to 429GB demonstrates that LogCloud

consistently maintains a middle ground between LogGrep and OpenSearch in terms of storage foot-

print and search latency. We now examine how these performance characteristics, combined with

indexing costs, influence the total cost of ownership (TCO) of the log management system.

The precise question we seek to answer is given a log dataset and a fixed operating horizon, say

12 months, what is the most cost effective system for a particular total query load? To answer this

question, we estimate the TCO of OpenSearch, LogGrep and LogCloud as follows:

••• OpenSearch UltraWarm is typically operated as a longrunning cluster, where the cost

consists of many components such as searcher nodes, UltraWarm nodes, EBS cost and S3

cost for UltraWarm. While the operating cost of the smallest OpenSearch cluster could easily

exceed $1500/month [18], we adopt a strict lower bound of this TCO here, which is just the

storage cost of the primary shard of the index in S3 and the smallest required UltraWarm node

($174/month), ignoring ingestion cost.

• LogGrep’s cost can be estimated as: compression cost (compression time × cost of EC2

instance) + storage cost (compressed logs size × S3 cost) + search cost (representative search

latency × cost of EC2 searcher instance × the total number of queries).

• LogCloud’s operating cost can be computed with the same components as LogGrep. In this

case, the storage footprint contains both the Parquet and the LogCloud index. LogCloud

builds more indices on top of LogGrep, having a 10.7x geomean higher indexing cost on all

the log types. However, the absolute cost is still quite low, only $3.6 on the 429GB Cluster

dataset and less than $1 on all other datasets.

• In addition, we add another TCO comparison against Datadog Flex logs. We use the Flex

“Starter” pricing at $0.1/GB ingested and $0.6 per million records per month. Datadog also

offers Flex pricing with $0.05 per million record per month with a fixed compute commitment,

though the smallest such commitment would exceed the cost of all other systems considered

here [132]. We also considered Grafana Loki [68], though we found LogGrep to be more

economical in all cases.

We estimate the representative search latency for LogGrep and LogCloud here by averaging the

latencies of different types of queries in our benchmark. Based on this estimate of the representative

search latency, we can then compute the TCO at different query loads and plot the phase diagrams

as explained in Chapter 4, shown in Figure 5.8.

In Figure 5.9, we plot LogCloud’s TCO saving over the next best approach at different query

loads for the different log types with a 12 months operating horizon. This amounts to drawing a

vertical line on the phase diagram at 12 months, but in addition shows the quantitative TCO wins

CHAPTER 5. STORAGE: DETAILED EXAMPLE FOR OBSERVABILITY DATA 103

10 3 10 1 101

Months

102

103

104

105

106

107

To
ta

l N
or

m
al

iz
ed

 Q
ue

ri
es

Hdfs

10 3 10 1 101

Months

Hadoop

10 3 10 1 101

Months

Thunderbird

10 3 10 1 101

Months

Cluster

Figure 5.8: Phase diagrams for the four different log types.

103 105 107

Total Queries

0

5

10

15

TC
O

 S
av

in
gs

 o
f L

og
Cl

ou
d

Hdfs (1.5GB)
Hadoop (16GB)
Windows (27GB)
Thunderbird (30GB)
Cluster (429GB)

Figure 5.9: LogCloud’s TCO savings compared to the cheaper of LogGrep and OpenSearch Ultra-
Warm at 12 months. Each solid curve corresponds to a different log type. The line at 1 represents
where LogCloud outperforms baselines.

CHAPTER 5. STORAGE: DETAILED EXAMPLE FOR OBSERVABILITY DATA 104

Hd
fs

Ha
do

op
Th

un
de

rb
ird

Cl
us

te
r0

5

10

Ru
nt

im
e

(s
)

Exact

LogCloud
Wavelet Tree

Hd
fs

Ha
do

op
Th

un
de

rb
ird

Cl
us

te
r0

5

10

Ru
nt

im
e

(s
)

Substring

LogCloud
Wavelet Tree

103
105

107

Total Queries

0

5

10

15

TC
O

 S
av

in
gs

Hdfs
Hadoop
Thunderbird
Cluster

Figure 5.10: LogCloud index search times for exact and substring queries with custom FM-index vs
wavelet tree. The solid line denotes the TCO profile of the custom FM-index, whereas the dashed
line indicates that of the baseline wavelet tree.

of LogCloud over competing methods. The plot exhibits a distinctive peak shape. OpenSearch

UltraWarm and Datadog have free search cost but high storage cost, LogGrep is the opposite, while

LogCloud is in between the two approaches. As a result, at very low query loads LogGrep is more

cost efficient whereas at high query loads OpenSearch is more efficient. The peak occurs where

OpenSearch or Datadog surpasses LogGrep in terms of cost efficiency: we find OpenSearch to be

more cost efficient than Datadog for Thunderbird and Cluster, with Datadog better on the other

three datasets. These systems surpass LogCloud in cost efficiency at around 107 queries.

For large-scale datasets like Hadoop and Cluster, LogCloud achieves optimal cost-efficiency in a

”sweet spot” query volume range spanning around four magnitude from 1000 to 107 total queries,

where it can be up to 15x cost-effective than alternatives. Importantly, we note that the total range

of queries where LogCloud wins is consistent across the different log types, enabling practitioners to

reliably predict its effectiveness for new log sources.

5.5.4 Ablation Studies

LogCloud’s main technical novelty lies in the custom FM-index described in Section 5.3. In Figure

5.10, we show LogCloud’s index search time with an optimized wavelet tree implementation [61,70].

The subsequent Parquet access speed is not compared as it is the same between the two strategies,

which download the same pages. We skip this analysis for the Windows dataset as no secondary

CHAPTER 5. STORAGE: DETAILED EXAMPLE FOR OBSERVABILITY DATA 105

Hdfs Hadoop Windows Thunderbird Cluster0.0

0.5

1.0

1.5

2.0

2.5
Si

ze
 B

re
ak

do
w

n
Pr

op
or

ti
on

s

Templates/Outliers
Term Dictionary
Posting Lists
FM Index
Suffix Array
Parquet

Figure 5.11: LogCloud component sizes with (left bars) and without (right bars) the range reduction
optimization.

index was constructed. Across the remaining queries, our custom FM-index achieves a geomean 2.2x

speedup over the wavelet tree baseline, significantly increasing LogCloud’s TCO advantage.

In Section 5.3.2, we introduce the range reduction optimization that compresses the suffix array

by storing term dictionary chunk numbers instead of individual term offsets. In Figure 5.11, we show

that for three log types, the suffix array was the largest component before this optimization. The

optimization reduces the suffix arrays’ size by geomean 8.8x, after which the Parquet files dominate

the storage footprint, marking diminishing returns for further index size optimizations. Tuning the

term dictionary chunk size provides direct control over the suffix array size - Figure 5.12a shows

we can reduce it by nearly 90% (from 286MB to 30MB) simply by adjusting the chunk size from

10KB to 4MB, while the FM-index size remains relatively stable. However, this reduction has a

tradeoff: as shown in Figure 5.12b, larger chunks require more exhaustive scanning during searches,

increasing substring query times from 1.7s to 3s.

5.5.5 Scalability

Our evaluation shows that LogCloud maintains both low storage footprint and search latency scaling

to datasets up to 429GB, achieving up to 10x TCO savings by avoiding OpenSearch and LogGrep’s

poor scalability at high scale due to the lack of appropriate indexing support. In this section, we

control for the variability in log content and examine LogCloud’s scaling along two axes, dataset

size and operating horizon, by examining just the Cluster dataset.

In Figure 5.13a, we plot the TCO savings curve for the Cluster dataset at different subsampled

sizes. We see that the cost benefits of LogCloud increases significantly at larger dataset sizes over a

stable range of total queries of around four orders of magnitude, confirming LogCloud’s advantage

at higher scales over OpenSearch UltraWarm and brute-force scanning with LogGrep.

CHAPTER 5. STORAGE: DETAILED EXAMPLE FOR OBSERVABILITY DATA 106

10KB 100KB 1MB 4MB
Term Dictionary Chunk Size
0

50

100

150

200

250

300

350

Si
ze

 (
M

B)

a FM Index
Suffix Array

Exact Substring
Query Type

0

2

4

6

Ru
nt

im
e

(s
)

b 10KB
100KB
1MB
4MB

Figure 5.12: a) Term dictionary target chunk size vs index size. b) Search latency by type vs. term
dictionary chunk size.

103 104 105 106 107

Total Queries
0

5

10

15

20

TC
O

 s
av

in
gs

 o
f L

og
Cl

ou
d

a
85GB
171GB
257GB
343GB
429GB

103 104 105 106 107

Total Queries
0

5

10

15

20b
3 months
6 months
12 months
18 months
24 months

Figure 5.13: How the TCO ratio curve for Cluster shifts at a) different dataset scales and b) different
operating horizons.

CHAPTER 5. STORAGE: DETAILED EXAMPLE FOR OBSERVABILITY DATA 107

Prefix Exact Substring

147 438 138 409 148 449

Figure 5.14: a) Storage footprint and b) Search times of ElasticSearch, LogGrep and LogCloud.

Figure 5.13b shows how operating horizons affect LogCloud’s TCO curve. LogCloud’s cost

advantages increase with longer durations before converging. With longer operating times, LogCloud

becomes cost-effective at higher query volumes but maintains advantages at high loads. This shift

is beneficial since longer operations typically involve higher query volumes.

5.5.6 Production Test Case

We also tested LogCloud on the real production logs generated by a hosted service of a major public

cloud provider, with the biggest around 1.2TB in size. The logs are produced in Json format and

currently stored and queried in self-hosted ElasticSearch hot-tier with a set retention period. We

tested LogGrep and LogCloud using the same configurations as the open source datasets.

Figure 5.14 shows that similar to the public log datasets, LogCloud significantly reduces storage

footprint compared to ElasticSearch, achieving geomean 8x on the five datasets. We also show

the performance of nine URI substring queries on log types C, D and E. As expected, LogGrep

performs acceptably on the smaller dataset C, but is much worse than the other two options on the

larger datasets D and E. In contrast to OpenSearch UltraWarm used on the public log datasets,

the ElasticSearch hot-tier service stores the index entirely in memory/SSD, leading to even lower

search latencies for prefix and exact URI queries. However, it is still significantly slower for substring

queries, particularly for very large datasets such as E. For these queries, we see LogCloud’s pure

object-storage based design can still outperform ElasticSearch by geomean 2x.

CHAPTER 5. STORAGE: DETAILED EXAMPLE FOR OBSERVABILITY DATA 108

5.6 Conclusion

In this chapter, we show how Rottnest can be leveraged to provide a compelling log management

system for observability applications. We envision LogCloud to be used alongside existing log man-

agement solutions like ElasticSearch, Splunk or DataDog in practice [50,57,129]. Near-line logs can

be offloaded to LogCloud to reduce cost while critical online log analytics remain on the existing

solutions. Future work could include an efficient pipe-based query language like Splunk’s SPL and

better integration with other query engines like Trino.

Chapter 6

Conclusion

Now I will talk about what I have learned about distributed systems theory and practice in my PhD.

6.1 The Impermanence of Forms and The Eternity of Essence

Distributed systems face the formidable challenge of managing terabytes of state – from shuffle

batches flowing through compute clusters to vast tabular datasets in data lakes. The key to tractable

state management lies in a powerful abstraction: rather than persisting massive data volumes di-

rectly, systems maintain compact metadata that serves as both a succinct representation and a

replayable log of system state. This approach exploits a fundamental duality – while the actual data

remains logically immutable (ensuring deterministic recovery), its physical manifestation can be en-

tirely ephemeral, allowing systems to dynamically optimize where and how data is stored, cached,

or regenerated based on current resource availability and performance requirements.

6.1.1 The Power of State Tracking

State tracking in distributed systems enables transformative capabilities. This dissertation demon-

strates through multiple case studies how careful state management unlocks features that would

otherwise be impossible or prohibitively expensive. Quokka leverages state tracking to enable fault

recovery – when failures occur, the system can “rewind” to a consistent state and resume processing

without losing correctness. Rottnest uses historical state snapshots to perform incremental indexing,

computing only what changed between two points in time rather than reprocessing entire datasets.

These capabilities fundamentally depend on the system’s ability to capture and reason about its

state over time.

109

CHAPTER 6. CONCLUSION 110

6.1.2 The Fundamental Challenge: Data Volume

The core challenge in state management stems from the sheer volume of data that distributed systems

process. Consider the scale: in Quokka, the “state” includes all data batches flowing through every

operator across the entire cluster. In Rottnest and other data lake systems, it encompasses every

Parquet file or index file stored on object storage. Naively persisting all this data for fault tolerance

or versioning would overwhelm any storage system and make recovery impossibly slow.

This volume challenge forces us to think differently about state representation. We cannot afford

to checkpoint GBs or TBs of raw data continuously. Instead, we need a more sophisticated approach

that succinctly captures the essence of the system state.

6.1.3 The Key Insight: Metadata as State Through Immutability

The breakthrough that makes practical state management possible is a simple but powerful obser-

vation: when data objects are immutable, we can use metadata as a perfect proxy for the data

itself. This immutability creates a one-to-one mapping between a piece of metadata and the data it

represents.

In Quokka, once a data batch is created with specific lineage information, its contents never

change. The lineage metadata – which task created it, with what inputs, at what sequence number

– uniquely identifies that batch forever. As long as we persist this lineage metadata, the underlying

data can always be reconstructed. Similarly, in data lake systems like Iceberg and Delta, Parquet

files are immutable. A simple filename suffices to represent megabytes or gigabytes of actual data.

It thus suffices to only record what filenames a Rottnest index file points to, not the actual data.

Even systems like Apache Kafka leverage this principle: once a message is written to a partition

at a specific offset, it becomes immutable. Consumers need only track their offset metadata – a

single integer per partition – to know exactly what they have and haven’t processed. The actual

message data need not be duplicated in consumer state.

However, not all systems can leverage this approach. PostgreSQL’s Write-Ahead Log (WAL)

represents the opposite extreme: it must record actual data changes, not just metadata, because

rows in tables are mutable. When a transaction updates a row, PostgreSQL must log the actual

before and after values to ensure durability and enable replication. There’s no stable metadata proxy

for mutable data.

This insight transforms an intractable problem into a manageable one. Instead of persisting

massive amounts of data, we persist compact metadata that can reconstruct or reference that data

when needed – but only when immutability guarantees exist.

CHAPTER 6. CONCLUSION 111

6.1.4 Flexibility Through Logical State Representation

Metadata representation provides another crucial benefit: it separates logical state from physical

implementation. When Quokka recovers from a failure, it doesn’t need to restore the exact physical

state – channels can be scheduled on different machines, and data might be received out of order on

the consumer. However, the metadata tells the tasks in those channels exactly how to re-sequence

their out-of-order inputs to reproduce their outputs.

This separation is evident across many systems. Kubernetes exemplifies this principle: it persists

the desired state as YAML specifications in etcd – how many replicas should run, what resources

they need, which nodes they prefer. The actual physical state – which pods run on which nodes,

their IP addresses, their current resource usage – is ephemeral. Kubernetes continuously reconciles

physical reality with logical intent, allowing pods to be rescheduled, nodes to fail, and IPs to change

while maintaining the same logical application state.

Similarly, Apache Spark’s RDD lineage tracking separates logical computation graphs from phys-

ical execution. An RDD’s lineage describes what transformations to apply, not where or how to

execute them. During recovery, Spark can recompute lost partitions on any available executor.

This separation enables powerful optimizations. During recovery, Quokka can schedule compu-

tation on completely different workers based on current cluster availability. Data lakes and Rottnest

can compact, sort, or reorganize files between snapshots; as long as queries return the same logical

rows, the physical layout is irrelevant. This flexibility is only possible because metadata captures

what the state should be rather than what it physically is.

6.1.5 Logical Immutability Affords Physical Ephemerality

The apparent tension between this physical ephemerality and the immutability principle from the

previous section resolves when we recognize they operate at different levels. Immutability applies

to logical data objects: once created, a Quokka data batch with specific lineage, a Parquet file with

particular contents, or a Kafka message at a given offset never changes. This immutability enables

metadata to serve as a reliable proxy.

Physical ephemerality, on the other hand, refers to where and how these immutable objects

are stored or computed. It is precisely because objects are logically immutable that they can be

physically ephemeral, because we always know how to reconstruct them. A Parquet file remains

logically immutable even as it moves between storage tiers or gets cached on different nodes. A

Quokka data batch can be recomputed on any machine because its lineage metadata guarantees it

will have identical contents. The key insight is that immutable logical objects can have ephemeral

physical manifestations – the metadata serves as the bridge between these two levels, ensuring logical

consistency while enabling physical flexibility.

CHAPTER 6. CONCLUSION 112

6.1.6 Choosing What to Track

Even with metadata as our representation, critical decisions remain about what information to

persist. These decisions involve fundamental trade-offs:

Minimalist approaches persist only the bare minimum required for correctness. Quokka ex-

emplifies this philosophy – its task lineage and sequence numbers form an extremely concise rep-

resentation. Apache Flink takes a middle ground with its asynchronous checkpoints: it snapshots

operator state and in-flight records at coordinated points, but doesn’t persist all intermediate data.

During recovery, the system must recompute all intermediate data from these sparse breadcrumbs.

This approach minimizes storage overhead but sacrifices recovery time.

Comprehensive approaches persist additional auxiliary state to speed recovery. Redis, for

instance, offers both RDB snapshots (complete memory dumps) and AOF logs (every write oper-

ation). Apache Samza similarly checkpoints all task state to a changelog topic in Kafka, enabling

near-instantaneous recovery at the cost of continuous state replication.

The optimal choice depends on system-specific factors: How expensive is recomputation rela-

tive to storage? How frequently do failures occur? Are inputs replayable? There’s no universal

answer—each system must analyze its own requirements and constraints.

6.1.7 Persistence Technologies and Access Patterns

Beyond choosing what to represent, systems must decide how to persist their metadata based on

access patterns:

Single-state systems like Kubernetes only need the current desired state. They continuously

reconcile actual state with desired state, never needing historical versions. For these systems, a

transactional key-value store like etcd provides fast access to the current state with strong consistency

guarantees. Apache Mesos and HashiCorp Consul follow similar patterns, maintaining only current

cluster state in their respective stores.

Time-travel systems like data lakes and Rottnest need access to historical states. They must

support queries like “what data existed at timestamp T” or “what changed between T1 and T2.”

These systems typically use append-only logs that store state deltas. Git exemplifies this approach

at a different scale: it stores content-addressed objects (blobs, trees, commits) immutably and uses

references (branches, tags) as mutable pointers into this immutable history.

Hybrid systems might need both patterns, for example when the system requires time-travel

(e.g. rollbacks) as well as a materialization of the current state for purposes such as querying.

Elasticsearch maintains current cluster state in-memory with disk persistence while also writing an

operations log (translog) for durability. PostgreSQL maintains current table state on disk while

using WAL for both crash recovery and replication to standby servers.

CHAPTER 6. CONCLUSION 113

6.1.8 Design Principles for Practical State Management

This dissertation’s case studies reveal three fundamental principles for designing state management

in distributed systems:

1. Identify and persist minimal required state: Determine what information is absolutely

necessary for correctness. This forms the non-negotiable core that must be persisted reliably,

whether it’s Quokka’s lineage information or a data lake’s file metadata.

2. Leverage immutability for compact representation: Use metadata as a proxy for data

wherever possible. This requires careful system design to ensure immutability guarantees, but

enables orders-of-magnitude reductions in state size.

3. Match persistence strategy to access patterns: Choose storage technologies and granu-

larities based on how state will be accessed. Don’t over-engineer – a system that only needs

current state shouldn’t pay the complexity cost of temporal versioning.

6.2 The Cloud as a New Computing Medium

Cloud is a new compute medium with interesting and evolving properties. Unlike traditional com-

puting environments with fixed resources, the cloud offers elasticity, heterogeneity, and disaggregated

storage – but also introduces new challenges like spot instance preemptions and higher storage access

latencies. More importantly, the cloud offers a new set of primitives, like persistent key-value stores,

cheap and reliable long-term storage and serverless compute, that can provide a basis to build new

distributed systems.

6.2.1 The Research Gap in Cloud Engineering

It is my belief that there is a paucity of research in this new field of “cloud engineering”. There are

major gaps not covered by both industry standard infrastructure-as-code (IaC) tools like Terraform

and Pulumi and academic research projects like Hydroflow [120].

While modern IaC tools allow users to easily provision and configure individual resources in

AWS, they are typically focussed on spinning up common backend infrastructures for applications.

They leave all state management and fault tolerance logic to the user, and are not meant to build

new distributed systems like Quokka or Rottnest.

On the other hand, tools like Hydroflow are very low level. While one could conceivably build a

new key-value store with such tools, it does not allow users to easily integrate with existing key-value

stores like DynamoDB as part of their applications.

CHAPTER 6. CONCLUSION 114

6.2.2 Future Directions

Future work in this area could include better DSLs to build distributed systems based on existing

cloud primitives (i.e. persisting state snapshots to managed key-value stores like DynamoDB or

log entries to object storage like S3), which would greatly simplify the construction of systems like

Quokka.

Another interesting direction might be a new protobuf-like storage format specification that

formalizes the componentization optimizations for Rottnest indices. An in-memory data structure

would be automatically decomposed into components based on expected data access patterns, where

different compression algorithms and storage lifecycle management policies could be applied to the

different components to target different latency and throughput tradeoffs. For example, in Figure

4.6, the root component in the binary search tree might be automatically optimized to a look up

table cached in an in-memory key-value store like Redis, whereas the leaf components might be

serialized and compressed on S3.

6.3 Bridging Theory and Practice

Ultimately, this dissertation demonstrates that building successful cloud-native systems requires a

deep integration of distributed systems theory with cloud engineering practice. The theoretical foun-

dations of state persistence trade-offs, consistency models, and fault tolerance mechanisms provide

the correctness guarantees and conceptual frameworks necessary for reasoning about distributed

behavior. However, theory alone is insufficient; the practice of cloud engineering – optimizing for

object storage latency characteristics, exploiting heterogeneous instance types, and leveraging man-

aged services – determines whether a system is actually viable in production.

Bibliography

[1] Arrow flight. https://arrow.apache.org/blog/2019/10/13/introducing-arrow-flight/.

[2] Databricks tpc-ds. https://www.tpc.org/results/fdr/tpcds/databricks~tpcds~10000

0~databricks_sql_8.3~fdr~2021-11-02~v01.pdf. Accessed on May 29, 2023.

[3] Mythbusting snowflake pricing! all the cool stuff you get with 1 credit. https://medium.com

/snowflake/mythbusting-snowflake-pricing-all-the-cool-stuff-you-get-with-1-c

redit-f3daad217a98.

[4] An overview of end-to-end exactly-once processing in apache flink. https://flink.apache.o

rg/features/2018/03/01/end-to-end-exactly-once-apache-flink.html.

[5] Snowflake debugging info. https://stackoverflow.com/questions/58973007/what-are-t

he-specifications-of-a-snowflake-server. Accessed on May 29, 2023.

[6] Spark enhancements for elasticity and resiliency on amazon emr. https://aws.amazon.com

/blogs/big-data/spark-enhancements-for-elasticity-and-resiliency-on-amazon-e

mr/.

[7] Trino fault tolerance. https://github.com/trinodb/trino/wiki/Fault-Tolerant-Execu

tion.

[8] Vector data lakes, 2023. [Accessed: 29-November-2023].

[9] Index ivfpq - lancedb documentation, 2024. Accessed: 2024-08-26.

[10] What is delta lake? https://docs.databricks.com/en/delta/index.html, 2024.

[11] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf Neugebauer,

Phil Piwonka, and Diana-Maria Popa. Firecracker: Lightweight virtualization for serverless

applications. In 17th USENIX symposium on networked systems design and implementation

(NSDI 20), pages 419–434, 2020.

115

BIBLIOGRAPHY 116

[12] Rachit Agarwal, Anurag Khandelwal, and Ion Stoica. Succinct: Enabling queries on com-

pressed data. In 12th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 15), pages 337–350, 2015.

[13] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh Haberman, Reuven Lax,

Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle. Millwheel: Fault-tolerant

stream processing at internet scale. Proceedings of the VLDB Endowment, 6(11):1033–1044,

2013.

[14] Ioannis Alagiannis, Renata Borovica, Miguel Branco, Stratos Idreos, and Anastasia Ailamaki.

Nodb: efficient query execution on raw data files. In Proceedings of the 2012 ACM SIGMOD

International Conference on Management of Data, pages 241–252, 2012.

[15] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkataraman, Minlan Yu,

and Ming Zhang. {CherryPick}: Adaptively unearthing the best cloud configurations for big

data analytics. In 14th USENIX Symposium on Networked Systems Design and Implementa-

tion (NSDI 17), pages 469–482, 2017.

[16] Amazon Web Services. Optimizing s3 performance. https://docs.aws.amazon.com/Amazon

S3/latest/userguide/optimizing-performance.html, 2023.

[17] Amazon Web Services. Amazon athena, 2024. Accessed: 2024-06-29.

[18] Amazon Web Services. Amazon OpenSearch service pricing, 2024. Accessed: 2024-12-09.

[19] Amazon Web Services. Orca security’s journey to a petabyte-scale data lake with Apache

Iceberg and AWS analytics. AWS Big Data Blog, 2024. Accessed: December 2024.

[20] Amazon Web Services. Spot instance interruption notices. https://docs.aws.amazon.com/

AWSEC2/latest/UserGuide/spot-instance-termination-notices.html, 2024. Amazon

EC2 User Guide.

[21] Amazon Web Services. Amazon Simple Storage Service (S3) Documentation, Latest.

[22] Apache Parquet. Apache parquet: Columnar storage for hadoop, 2024. Accessed: 2024-07-03.

[23] Apache Software Foundation. Apache airflow, 2024.

[24] Apache Software Foundation. Apache hudi. https://hudi.apache.org, 2024. Accessed:

2024-08-31.

[25] Apache Software Foundation. Apache iceberg. https://iceberg.apache.org, 2024. Ac-

cessed: 2024-08-31.

BIBLIOGRAPHY 117

[26] Apache Software Foundation. Apache parquet. https://parquet.apache.org, 2024. Ac-

cessed: 2024-08-31.

[27] Michael Armbrust, Tathagata Das, Liwen Sun, Burak Yavuz, Shixiong Zhu, Mukul Murthy,

Joseph Torres, Herman van Hovell, Adrian Ionescu, Alicja Luszczak, et al. Delta lake: high-

performance acid table storage over cloud object stores. Proceedings of the VLDB Endowment,

13(12):3411–3424, 2020.

[28] Michael Armbrust, Tathagata Das, Liwen Sun, Burak Yavuz, Shixiong Zhu, Mukul Murthy,

Joseph Torres, Herman van Hovell, Adrian Ionescu, Alicja Luszczak, et al. Delta lake: high-

performance acid table storage over cloud object stores. Proceedings of the VLDB Endowment,

13(12):3411–3424, 2020.

[29] Michael Armbrust et al. Lakehouse: a new generation of open platforms that unify data

warehousing and advanced analytics. In Proceedings of CIDR, volume 8, 2021.

[30] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K Bradley,

Xiangrui Meng, Tomer Kaftan, Michael J Franklin, Ali Ghodsi, et al. Spark sql: Relational

data processing in spark. In Proceedings of the 2015 ACM SIGMOD international conference

on management of data, pages 1383–1394, 2015.

[31] Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh Chainani, Kiran

Chinta, Venkatraman Govindaraju, Todd J Green, Monish Gupta, Sebastian Hillig, et al.

Amazon redshift re-invented. In Proceedings of the 2022 International Conference on Man-

agement of Data, pages 2205–2217, 2022.

[32] Databases at CERN. Enhancing apache spark and parquet efficiency: A deep dive into column

indexes and bloom filters. CERN Database Blog, 2024. Accessed: 2024-08-31.

[33] Mark Atkins. Find strings within strings faster with the new Elasticsearch wildcard field, 2021.

[34] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neuge-

bauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. ACM SIGOPS

operating systems review, 37(5):164–177, 2003.

[35] Jeff Barr. Amazon s3 update – strong read-after-write consistency. AWS News Blog, 2020.

Accessed: 2024-08-31.

[36] Alexander Behm, Shoumik Palkar, Utkarsh Agarwal, Timothy Armstrong, David Cashman,

Ankur Dave, Todd Greenstein, Shant Hovsepian, Ryan Johnson, Arvind Sai Krishnan, et al.

Photon: A fast query engine for lakehouse systems. In Proceedings of the 2022 International

Conference on Management of Data, pages 2326–2339, 2022.

BIBLIOGRAPHY 118

[37] Muhammad Bilal, Marco Canini, and Rodrigo Rodrigues. Finding the right cloud configuration

for analytics clusters. In Proceedings of the 11th ACM Symposium on Cloud Computing, pages

208–222, 2020.

[38] Philip Bille, Anders Roy Christiansen, Patrick Hagge Cording, and Inge Li Gørtz. Finger

search in grammar-compressed strings. arXiv preprint arXiv:1507.02853, 2015.

[39] Peter A Boncz, Marcin Zukowski, and Niels Nes. Monetdb/x100: Hyper-pipelining query

execution. In Conference on Innovative Data Systems Research, volume 5, pages 225–237,

2005.

[40] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes. Borg,

omega, and kubernetes. Communications of the ACM, 59(5):50–57, 2016.

[41] Michael Burrows. A block-sorting lossless data compression algorithm. SRS Research Report,

124, 1994.

[42] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas

Tzoumas. Apache flink: Stream and batch processing in a single engine. Bulletin of the IEEE

Computer Society Technical Committee on Data Engineering, 36(4), 2015.

[43] Jack Chen, Samir Jindel, Robert Walzer, Rajkumar Sen, Nika Jimsheleishvilli, and Michael

Andrews. The memsql query optimizer: A modern optimizer for real-time analytics in a

distributed database. Proceedings of the VLDB Endowment, 9(13):1401–1412, 2016.

[44] Francisco Claude and Gonzalo Navarro. Self-indexed grammar-based compression. Funda-

menta Informaticae, 111(3):313–337, 2011.

[45] Clickhouse. Clickhouse. https://github.com/ClickHouse/ClickHouse, 2023. Accessed on

July 10, 2023.

[46] ClickHouse, Inc. Clickhouse: Fast open-source olap dbms, 2024. Accessed: 2024-07-03.

[47] Cribl. Parquet schemas - Cribl Stream documentation, 2024. Accessed: December 2024.

[48] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin Avanes, Jon

Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel, Jiansheng Huang, et al.

The snowflake elastic data warehouse. In Proceedings of the 2016 International Conference on

Management of Data, pages 215–226, 2016.

[49] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin Avanes, Jon

Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel, Jiansheng Huang, Allison W.

Lee, Ashish Motivala, Abdul Q. Munir, Steven Pelley, Peter Povinec, Greg Rahn, Spyridon

Triantafyllis, and Philipp Unterbrunner. The snowflake elastic data warehouse. In Proceedings

BIBLIOGRAPHY 119

of the 2016 International Conference on Management of Data, SIGMOD ’16, page 215–226,

New York, NY, USA, 2016. Association for Computing Machinery.

[50] DataDog. Datadog, 2023.

[51] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters.

Communications of the ACM, 51(1):107–113, 2008.

[52] Siying Dong, Mark Callaghan, Leonidas Galanis, Dhruba Borthakur, Tony Savor, and Michael

Strum. Optimizing space amplification in rocksdb. In CIDR, volume 3, page 3, 2017.

[53] Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael Stumm. Rocksdb: Evolution of

development priorities in a key-value store serving large-scale applications. ACM Transactions

on Storage (TOS), 17(4):1–32, 2021.

[54] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-

Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. arXiv

preprint arXiv:2401.08281, 2024.

[55] Dominik Durner, Viktor Leis, and Thomas Neumann. Exploiting cloud object storage for

high-performance analytics. Proceedings of the VLDB Endowment, 16(11):2769–2782, 2023.

[56] Elastic. Elastic kibana, 2023.

[57] ElasticSearch NV. Elasticsearch. https://github.com/elastic/elasticsearch, 2024.

Accessed: 2024-08-31.

[58] Facebook. Zstandard - Fast real-time compression algorithm. https://github.com/faceboo

k/zstd, 2023. Original-source code available at https://github.com/facebook/zstd.

[59] Facebook, Inc. Nimble. https://github.com/facebookincubator/nimble, 2024. Accessed:

2024-08-28.

[60] Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications. In

Proceedings 41st annual symposium on foundations of computer science, pages 390–398. IEEE,

2000.

[61] Paolo Ferragina and Giovanni Manzini. Indexing compressed text. Journal of the ACM,

52(4):552–581, 2005.

[62] Apache Software Foundation. Apache iceberg. https://github.com/apache/iceberg, 2024.

Accessed: 2024-05-04.

[63] Alan Gates and Daniel Dai. Programming pig: Dataflow scripting with hadoop. ” O’Reilly

Media, Inc.”, 2016.

BIBLIOGRAPHY 120

[64] Ionel Gog, Michael Isard, and Mart́ın Abadi. Falkirk wheel: Rollback recovery for dataflow

systems. In Proceedings of the ACM Symposium on Cloud Computing, pages 373–387, 2021.

[65] Simon Gog, Juha Kärkkäinen, Dominik Kempa, Matthias Petri, and Simon J Puglisi. Fixed

block compression boosting in fm-indexes: Theory and practice. Algorithmica, 81:1370–1391,

2019.

[66] Google Cloud. Use preemptible vms to run fault-tolerant workloads. https://cloud.goog

le.com/kubernetes-engine/docs/how-to/preemptible-vms, 2024. Google Kubernetes

Engine (GKE) Documentation.

[67] Grafana. Grafana loki oss — log aggregation system, 2023.

[68] Grafana Labs. Understanding Grafana Cloud Logs Billing. Grafana Cloud Documentation,

2024. Accessed: 2024-02-23.

[69] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-compressed text

indexes. 2003.

[70] Roberto Grossi, Jeffrey Scott Vitter, and Bojian Xu. Wavelet trees: From theory to practice. In

2011 First International Conference on Data Compression, Communications and Processing,

pages 210–221. IEEE, 2011.

[71] Stavros Harizopoulos, Vladislav Shkapenyuk, and Anastassia Ailamaki. Qpipe: A simultane-

ously pipelined relational query engine. In Proceedings of the 2005 ACM SIGMOD interna-

tional conference on Management of data, pages 383–394, 2005.

[72] James Holt and Leonard McMillan. Merging of multi-string bwts with applications. Bioinfor-

matics, 30(24):3524–3531, 2014.

[73] Chin-Jung Hsu, Vivek Nair, Vincent W Freeh, and Tim Menzies. Arrow: Low-level aug-

mented bayesian optimization for finding the best cloud vm. In 2018 IEEE 38th International

Conference on Distributed Computing Systems (ICDCS), pages 660–670. IEEE, 2018.

[74] Yin Huai, Ashutosh Chauhan, Alan Gates, Gunther Hagleitner, Eric N Hanson, Owen

O’Malley, Jitendra Pandey, Yuan Yuan, Rubao Lee, and Xiaodong Zhang. Major techni-

cal advancements in apache hive. In Proceedings of the 2014 ACM SIGMOD international

conference on Management of data, pages 1235–1246, 2014.

[75] InfluxData. Using parquet’s bloom filters for efficient query performance. InfluxData Blog,

2024. Accessed: 2024-08-31.

[76] Guy Joseph Jacobson. Succinct static data structures. Carnegie Mellon University, 1988.

BIBLIOGRAPHY 121

[77] Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar Krish-

nawamy, and Rohan Kadekodi. Diskann: Fast accurate billion-point nearest neighbor search

on a single node. Advances in Neural Information Processing Systems, 32, 2019.

[78] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond data and model parallelism for deep

neural networks. Proceedings of Machine Learning and Systems, 1:1–13, 2019.

[79] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus.

IEEE Transactions on Big Data, 7(3):535–547, 2019.

[80] Suman Karumuri, Franco Solleza, Stan Zdonik, and Nesime Tatbul. Towards observability

data management at scale. ACM SIGMOD Record, 49(4):18–23, 2021.

[81] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. Selecta: Heterogeneous cloud storage

configuration for data analytics. In 2018 USENIX Annual Technical Conference (USENIX

ATC 18), pages 759–773, 2018.

[82] Jay Kreps, Neha Narkhede, Jun Rao, et al. Kafka: A distributed messaging system for log

processing. In Proceedings of the NetDB, volume 11, pages 1–7, 2011.

[83] Maximilian Kuschewski, David Sauerwein, Adnan Alhomssi, and Viktor Leis. Btrblocks: effi-

cient columnar compression for data lakes. Proceedings of the ACM on Management of Data,

1(2):1–26, 2023.

[84] Julian Labeit, Julian Shun, and Guy E Blelloch. Parallel lightweight wavelet tree, suffix array

and fm-index construction. Journal of Discrete Algorithms, 43:2–17, 2017.

[85] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured storage system.

ACM SIGOPS operating systems review, 44(2):35–40, 2010.

[86] Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben Vandier, Lyric Doshi,

and Chuck Bear. The vertica analytic database: C-store 7 years later. arXiv preprint

arXiv:1208.4173, 2012.

[87] LanceDB. Introducing lance v2. https://blog.lancedb.com/lance-v2/, 2024. Accessed on

[Insert access date here].

[88] Christian Lauer. Google bigquery introduces apache iceberg tables. Medium.

[89] Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann. Morsel-driven parallelism:

a numa-aware query evaluation framework for the many-core age. In Proceedings of the 2014

ACM SIGMOD international conference on Management of data, pages 743–754, 2014.

[90] Viktor Leis and Maximilian Kuschewski. Towards cost-optimal query processing in the cloud.

Proceedings of the VLDB Endowment, 14(9):1606–1612, 2021.

BIBLIOGRAPHY 122

[91] Daniel Lemire, Gregory Ssi-Yan-Kai, and Owen Kaser. Consistently faster and smaller com-

pressed bitmaps with roaring. Software: Practice and Experience, 46(11):1547–1569, 2016.

[92] Heng Li and Richard Durbin. Fast and accurate short read alignment with burrows–wheeler

transform. bioinformatics, 25(14):1754–1760, 2009.

[93] Wei Lin, Zhengping Qian, Junwei Xu, Sen Yang, Jingren Zhou, and Lidong Zhou. Streamscope:

Continuous reliable distributed processing of big data streams. In 13th USENIX Symposium

on Networked Systems Design and Implementation, pages 439–453, 2016.

[94] David G Lowe. Distinctive image features from scale-invariant keypoints. International journal

of computer vision, 60:91–110, 2004.

[95] M3DB. M3: Open source metrics engine, 2023.

[96] Christos Makris. Wavelet trees: A survey. Computer Science and Information Systems,

9(2):585–625, 2012.

[97] Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor

search using hierarchical navigable small world graphs. IEEE transactions on pattern analysis

and machine intelligence, 42(4):824–836, 2018.

[98] James Malone. Iceberg tables: Powering open standards with snowflake innovations, 2022.

[99] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt

Tolton, and Theo Vassilakis. Dremel: interactive analysis of web-scale datasets. Proceedings

of the VLDB Endowment, 3(1-2):330–339, 2010.

[100] Alex Merced. Understanding apache iceberg delete files. Medium, 2022. Accessed: 2024-08-31.

[101] Mehryar Mohri. Weighted finite-state transducer algorithms. an overview. Formal Languages

and Applications, pages 551–563, 2004.

[102] Yuta Mori. libdivsufsort: A lightweight suffix sorting library. https://github.com/y-256/l

ibdivsufsort. Accessed: 2024-06-22.

[103] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric

Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan, et al. Ray: A distributed

framework for emerging ai applications. In 13th USENIX Symposium on Operating Systems

Design and Implementation, pages 561–577, 2018.

[104] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and Mart́ın

Abadi. Naiad: a timely dataflow system. In Proceedings of the Twenty-Fourth ACM Symposium

on Operating Systems Principles, pages 439–455, 2013.

BIBLIOGRAPHY 123

[105] Thomas Neumann. Efficiently compiling efficient query plans for modern hardware. Proceedings

of the VLDB Endowment, 4(9):539–550, 2011.

[106] Craig G Nevill-Manning and Ian H Witten. Identifying hierarchical structure in sequences: A

linear-time algorithm. Journal of Artificial Intelligence Research, 7:67–82, 1997.

[107] OpenSearch. Opensearch, 2023.

[108] Ron Ortloff and Steve Herbert. Unifying iceberg tables on snowflake. https://www.snowfl

ake.com/blog/unifying-iceberg-tables/, Aug 2023.

[109] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. The log-structured

merge-tree (lsm-tree). Acta Informatica, 33:351–385, 1996.

[110] Liana Patel, Peter Kraft, Carlos Guestrin, and Matei Zaharia. Acorn: Performant and

predicate-agnostic search over vector embeddings and structured data. Proceedings of the

ACM on Management of Data, 2(3):1–27, 2024.

[111] Guilherme Penedo, Hynek Kydĺıček, Anton Lozhkov, Margaret Mitchell, Colin Raffel, Leandro

Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text

data at scale. arXiv preprint arXiv:2406.17557, 2024.

[112] Rahul Potharaju, Terry Kim, Eunjin Song, Wentao Wu, Lev Novik, Apoorve Dave, Andrew

Fogarty, Pouria Pirzadeh, Vidip Acharya, Gurleen Dhody, et al. Hyperspace: The indexing

subsystem of azure synapse. Proceedings of the VLDB Endowment, 14(12):3043–3055, 2021.

[113] Rahul Potharaju, Terry Kim, Wentao Wu, Vidip Acharya, Steve Suh, Andrew Fogarty,

Apoorve Dave, Sinduja Ramanujam, Tomas Talius, Lev Novik, et al. Helios: hyperscale

indexing for the cloud & edge. Proceedings of the VLDB Endowment, 13(12):3231–3244, 2020.

[114] Taivo Pungas. Gpt-3.5 and gpt-4 api response time measurements - fyi, May 2023.

[115] Qdrant, Inc. Qdrant. https://github.com/qdrant/qdrant, 2024. Accessed: 2024-08-31.

[116] Quickwit. Quickwit, 2023.

[117] Mark Raasveldt and Hannes Mühleisen. Duckdb: an embeddable analytical database. In

Proceedings of the 2019 International Conference on Management of Data, pages 1981–1984,

2019.

[118] Kirk Rodrigues, Yu Luo, and Ding Yuan. Clp: Efficient and scalable search on compressed text

logs. In 15th USENIX Symposium on Operating Systems Design and Implementation (OSDI

21), pages 183–198, 2021.

BIBLIOGRAPHY 124

[119] Delta rs Contributors. delta-rs: Native rust bindings for delta lake. https://github.com/d

elta-io/delta-rs, 2024. Accessed: 2024-05-27.

[120] Mingwei Samuel, Joseph M Hellerstein, and Alvin Cheung. Hydroflow: A Model and Run-

time for Distributed Systems Programming. PhD thesis, Master’s thesis. EECS Department,

University of California, Berkeley. http . . . , 2021.

[121] Tobias Schmidt, Andreas Kipf, Dominik Horn, Gaurav Saxena, and Tim Kraska. Predicate

caching: Query-driven secondary indexing for cloud data warehouses. 2024.

[122] SentinelOne. DataSet, 2023. Accessed: 2023-11-27.

[123] Amazon Web Services. Security data management - amazon security lake, 2021.

[124] Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips, Wenlei Xie, Yutian Sun,

Nezih Yegitbasi, Haozhun Jin, Eric Hwang, Nileema Shingte, et al. Presto: Sql on everything.

In 2019 IEEE 35th International Conference on Data Engineering, pages 1802–1813. IEEE,

2019.

[125] Amir Shaikhha, Mohammad Dashti, and Christoph Koch. Push versus pull-based loop fusion

in query engines. Journal of Functional Programming, 28:e10, 2018.

[126] Swaminathan Sivasubramanian. Amazon dynamodb: a seamlessly scalable non-relational

database service. In Proceedings of the 2012 ACM SIGMOD International Conference on

Management of Data, pages 729–730, 2012.

[127] Athinagoras Skiadopoulos, Qian Li, Peter Kraft, Kostis Kaffes, Daniel Hong, Shana Mathew,

David Bestor, Michael Cafarella, Vijay Gadepally, Goetz Graefe, et al. Dbos: a dbms-oriented

operating system. Proceedings of the VLDB Endowment, 15(1):21–30, 2021.

[128] Splunk. How to extract bunch of UUIDs from a string using regex, 2022.

[129] Splunk. Splunk, 2023.

[130] Splunk Inc. Indexing and search architecture, 2024. Accessed: 2024-07-03.

[131] Sagar Sumit. Asynchronous indexing using hudi.

[132] Sumo Logic. What you should know about Datadog Flex Logs and Pricing. Sumo Logic Blog,

2023. Accessed: 2024-02-23.

[133] Delta Lake Team. Introducing deletion vectors in delta lake: Streamlined data deletion for

faster queries. Delta.io Blog, 2023. Accessed: 2024-08-31.

[134] Trino Software Foundation. Trino. https://trino.io, 2024. Accessed: 2024-08-31.

BIBLIOGRAPHY 125

[135] Alexandru Uta, Bogdan Ghit, Ankur Dave, Jan Rellermeyer, and Peter Boncz. In-memory

indexed caching for distributed data processing. In 2022 IEEE International Parallel and

Distributed Processing Symposium (IPDPS), pages 104–114. IEEE, 2022.

[136] Joris van der Walker. The burrows-wheeler transform. https://curiouscoding.nl/posts

/bwt/, 2023. Accessed on 2024-10-20.

[137] Vantage. Aws ec2 r6i.xlarge on-demand instance pricing. https://instances.vantage.sh

/aws/ec2/r6i.xlarge, 2024. Accessed on [Insert Access Date].

[138] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan Truong, Ashish Motivala, and

Thierry Cruanes. Building an elastic query engine on disaggregated storage. In 17th USENIX

Symposium on Networked Systems Design and Implementation, pages 449–462, 2020.

[139] Dalin Wang, Feng Zhang, Weitao Wan, Hourun Li, and Xiaoyong Du. Finequery: Fine-grained

query processing on cpu-gpu integrated architectures. In 2021 IEEE International Conference

on Cluster Computing (CLUSTER), pages 355–365. IEEE, 2021.

[140] Mengzhao Wang, Lingwei Lv, Xiaoliang Xu, Yuxiang Wang, Qiang Yue, and Jiongkang Ni.

An efficient and robust framework for approximate nearest neighbor search with attribute

constraint. Advances in Neural Information Processing Systems, 36, 2024.

[141] Stephanie Wang, Eric Liang, Edward Oakes, Ben Hindman, Frank Sifei Luan, Audrey Cheng,

and Ion Stoica. Ownership: A distributed futures system for {Fine-Grained} tasks. In 18th

USENIX Symposium on Networked Systems Design and Implementation, pages 671–686, 2021.

[142] Ziheng Wang. Quokka documentation. https://marsupialtail.github.io/quokka/.

[143] Ziheng Wang, Emanuel Adamiak, and Alex Aiken. A model for query execution over hetero-

geneous instances. In CIDR, 2024.

[144] Ziheng Wang and Alex Aiken. Efficient fault tolerance for pipelined query engines via write-

ahead lineage. In 2024 IEEE 40th International Conference on Data Engineering (ICDE),

pages 436–448. IEEE, 2024.

[145] Ziheng Wang, Sasha Krassovsky, Conor Kennedy, Alex Aiken, Weston Pace, Rain Jiang, Huayi

Zhang, Chenyu Jiang, and Wei Xu. Rottnest: Indexing Data Lakes for Search . In 2025 IEEE

41st International Conference on Data Engineering (ICDE), pages 1814–1827, Los Alamitos,

CA, USA, May 2025. IEEE Computer Society.

[146] Ziheng Wang, Junyu Wei, Alex Aiken, Guangyan Zhang, Jacob O. Tørring, Rain Jiang,

Chenyu Jiang, and Wei Xu. Logcloud: Fast search of compressed logs on object storage.

Proceedings of the VLDB Endowment, 18(8):2362–2370, 2025.

BIBLIOGRAPHY 126

[147] Junyu Wei, Guangyan Zhang, Junchao Chen, Yang Wang, Weimin Zheng, Tingtao Sun, Jiesh-

eng Wu, and Jiangwei Jiang. Loggrep: Fast and cheap cloud log storage by exploiting both

static and runtime patterns. In Proceedings of the Eighteenth European Conference on Com-

puter Systems, pages 452–468, 2023.

[148] Junyu Wei, Guangyan Zhang, Yang Wang, Zhiwei Liu, Zhanyang Zhu, Junchao Chen, Tingtao

Sun, and Qi Zhou. On the feasibility of parser-based log compression in {Large-Scale} cloud

systems. In 19th USENIX Conference on File and Storage Technologies (FAST 21), pages

249–262, 2021.

[149] Shiyan Xu and Sivabalan Narayanan. Record level index: Hudi’s blazing fast indexing for

large-scale datasets, 2023. Accessed: 2024-04-08.

[150] Neeraja J Yadwadkar, Bharath Hariharan, Joseph E Gonzalez, Burton Smith, and Randy H

Katz. Selecting the best vm across multiple public clouds: A data-driven performance modeling

approach. In Proceedings of the 2017 Symposium on Cloud Computing, pages 452–465, 2017.

[151] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy Mc-

Cauly, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets: A

fault-tolerant abstraction for {In-Memory} cluster computing. In 9th USENIX Symposium on

Networked Systems Design and Implementation, pages 15–28, 2012.

[152] Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur

Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J Franklin, et al. Apache

spark: a unified engine for big data processing. Communications of the ACM, 59(11):56–65,

2016.

[153] Xinyu Zeng, Yulong Hui, Jiahong Shen, Andrew Pavlo, Wes McKinney, and Huanchen Zhang.

An empirical evaluation of columnar storage formats. arXiv preprint arXiv:2304.05028, 2023.

[154] Feng Zhang, Jidong Zhai, Xipeng Shen, Onur Mutlu, and Wenguang Chen. Efficient document

analytics on compressed data: Method, challenges, algorithms, insights. Proceedings of the

VLDB Endowment, 11(11):1522–1535, 2018.

[155] Feng Zhang, Jidong Zhai, Xipeng Shen, Dalin Wang, Zheng Chen, Onur Mutlu, Wenguang

Chen, and Xiaoyong Du. Tadoc: Text analytics directly on compression. The VLDB Journal,

30:163–188, 2021.

[156] Jingyu Zhou, Meng Xu, Alexander Shraer, Bala Namasivayam, Alex Miller, Evan Tschannen,

Steve Atherton, Andrew J Beamon, Rusty Sears, John Leach, et al. Foundationdb: A dis-

tributed unbundled transactional key value store. In Proceedings of the 2021 International

Conference on Management of Data, pages 2653–2666, 2021.

BIBLIOGRAPHY 127

[157] Jieming Zhu, Shilin He, Pinjia He, Jinyang Liu, and Michael R Lyu. Loghub: A large collection

of system log datasets for ai-driven log analytics. arXiv e-prints, pages arXiv–2008, 2020.

