
FAST ALGORITHMS FOR HIGH-PRECISION

FLOATING-POINT ARITHMETIC

A DISSERTATION

SUBMITTED TO THE INSTITUTE FOR

COMPUTATIONAL AND MATHEMATICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

David Kai Zhang

December 2025

© 2025 by David Kai Zhang. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.
https://creativecommons.org/licenses/by-nc/3.0/legalcode

This dissertation is online at: https://purl.stanford.edu/gt930wy1453

ii

https://creativecommons.org/licenses/by-nc/3.0/legalcode
https://creativecommons.org/licenses/by-nc/3.0/legalcode
https://purl.stanford.edu/gt930wy1453

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

Alex Aiken, Primary Advisor

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

Gianluca Iaccarino

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

Fredrik Kjoelstad

Approved for the Stanford University Committee on Graduate Studies.

Kenneth Goodson, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format.

iii

Abstract

Modern scientific computing faces a dilemma. Large-scale problems demand both high

performance, to solve systems with billions of variables and terabytes of data, and high pre-

cision, to ensure that calculations are not invalidated by numerical rounding errors. These

demands lie in tension, since existing methods for high-precision computer arithmetic are

typically thousands of times slower than native machine-precision computation. Moreover,

the 64-bit double precision standard, used by virtually all computers today, is no longer

sufficient for challenging exascale workloads.

This dissertation presents a class of algorithms called floating-point accumulation net-

works (FPANs) for fast high-precision floating-point arithmetic. FPANs are the fastest

known algorithms for this task, outperforming all existing software libraries by at least an

order of magnitude. They reduce high-precision (128/192/256-bit) operations to branch-free

sequences of several dozen machine-precision (64-bit) operations, enabling efficient parallel

execution on modern SIMD CPUs and GPUs. To prove the correctness of these algo-

rithms, we introduce a novel formal verification technique called the SELTZO abstraction

that enables SMT solvers to analyze floating-point operations in a precision-independent

fashion. We also describe an evolutionary search procedure used to discover new FPANs

and benchmark the performance of our new algorithms.

iv

Acknowledgments

My six-year journey at Stanford has been filled with adventure and excitement, love and

loss, heartbreak and joy, and innumerably many unforgettable memories. If I were to give

proper thanks to all of the wonderful people who have entered and influenced my life during

the course of my Ph.D., I could easily fill up another dissertation. Instead, I will try to

limit myself to a more reasonable (though inadequate) number of words of appreciation.

My first and foremost thanks go to my doctoral advisor, Alex Aiken. Alex took me

under his wing when I was a fledgling Ph.D. student wandering aimlessly in the throes of

the COVID-19 pandemic. He knows better than anyone else that my Ph.D. got off to a

particularly rocky start. Nonetheless, Alex continued to assert his faith in my ability to

succeed as a researcher, even at times when I found it difficult to believe in myself. He

was always there to celebrate my successes and help me get back on my feet after failures.

I thank Alex for improving my writing, lending me perspective, and most importantly,

teaching me how to develop and pursue my own research ideas.

I also thank the other members of my doctoral committee, Fred Kjolstad, Gianluca

Iaccarino, Eric Darve, and Li-Yang Tan, for their thoughtful and enthusiastic feedback on

my dissertation and defense. Special thanks go to Gianluca and Eric for their steadfast

leadership of ICME, keeping our community together in difficult and uncertain times.

Being at Stanford has given me the opportunity to learn from some of the most brilliant

teachers and inspiring minds of our generation. I give particular thanks to Mary Wooters,

Lisa Sauermann, Tadashi Tokieda, Emmanuel Candès, Dawson Engler, and Li-Yang Tan

for teaching truly exceptional courses whose ways of thinking continue to influence me. I

v

also thank Keith Winstein and Clark Barrett for memorable lessons outside the classroom.

I also participated in a variety of internships that exposed me to many intriguing corners

of research outside academia. I thank Antoine Dujardin, Patrick Gill, and Pat McCormick

for these enjoyable and informative experiences, and I hope we one day find an opportunity

to work together again.

Turning now to my fellow students, I thank my colleagues in ICME, Tiffany Fan, Shaun

Datta, Devansh Jalota, Josh Rozner, Yiping Lu, Tanya Parshakova, and Izzy Aguiar, for a

fun and fulfilling first year with so many memorable days of teaching, learning, and solving

problem sets together. In Computer Science, I thank Matthew Sotoudeh, Shiv Sundram,

Zachary Yedidia, Rohan Yadav, AJ Root, Chris Gyurgyik, Alex Ozdemir, Anjiang Wei,

Olivia Hsu, Scott Kovach, Prasanna Ramakrishnan, and Rohit Nema for all the entertaining

and thought-provoking office conversations that kept bringing me into Gates and CoDa.

Outside of academics, Stanford also gave me a chance to explore the performing arts

through its thriving student music scene. I give my thanks to all of the many students

involved in Stanford’s a cappella and musical theater organizations, with particular fondness

for O-Tone, the group that took me in my first year. Becoming the director of O-Tone was

the single experience that taught me the most about what it means to lead, inspire, and

bring together a group of people. I’ve made too many lasting O-Tone friends to list here,

but to name a few, I thank Vickie Wang, Stella Su, Thomas Knowles, Cynthia Liang,

Jingwen Wu, Shina Peñaranda, Michelle Zheng, Ywen Lau, Sherwin Lai, Justin Huang,

Sarah MacHarg, Valerie Tang, Nikhil Lyles, Ailsa Song, Parker Grove, Adam Sun, Kevin

Chen, Jingbo Li, and Justin Park for the years we spent making music together.

I thank Hanna Lachnitt and Rebecca Grekin for our seemingly endless nights slaying

demons in Gloomhaven together, and I congratulate both of you on our utterly heroic

victory over the blood cultists.

I thank my old friend Jason Mitrovich for staying in touch after undergrad, making

several trips out to the Bay Area, and regularly rekindling my interest in pure mathematics.

I thank Anthony Xie, Alan Cheng, Rowena Chen, and Carolyn Zou for the close personal

bonds we’ve shared over the years and for all the help you’ve given me in particularly difficult

vi

times. I owe you all an immense debt of gratitude. I also thank Rachel Guo, Vivian Zhong,

Michelle Cen, Lauren Ramlan, and Frieda Rong for your memorable contributions to my

Stanford experience.

I of course give immense thanks to my family, my mother and father, my brother Alex

and my sister Sunny, for bringing me to where I am today and supporting me through this

difficult journey. And I give special thanks to all the members of the David Zhang Fan

Club, who have made an effort to stay in touch with me through so many chapters of life.

Finally, my most heartfelt thanks go to my beloved partner, Lucy Zhang, who met me

through O-Tone and supported me through so much of my directorial and doctoral journey.

Lucy has always been there to lend a loving hand and a thoughtful ear, putting up with my

long workdays and odd sleeping hours. She holds the singular distinction of being the one

person who has brought me the most joy in my time at Stanford—a truly high bar. Words

cannot express the love and gratitude I feel to have her in my life.

vii

Contents

Abstract iv

Acknowledgments v

1 Introduction 1

2 Background 6

2.1 Floating-Point Numbers . 6

2.2 Floating-Point Formats . 9

2.3 Floating-Point Arithmetic . 14

2.4 Quantifying Rounding Errors . 18

2.5 Error-Free Transformations . 21

2.6 Beyond Machine Precision . 26

3 Algorithms 30

3.1 Assumptions . 30

3.2 Floating-Point Expansions . 32

3.2.1 Alternative Nonoverlapping Conditions 35

3.2.2 Uniqueness and Renormalization . 39

3.3 Floating-Point Accumulation Networks . 41

3.4 Arithmetic with Expansions . 46

viii

4 Verification 50

4.1 The SELTZO Abstraction . 53

4.2 The SE and SETZ Abstractions . 58

4.3 TwoSum Lemmas . 59

4.4 Verifier Implementation . 64

4.5 Verifier Evaluation . 68

5 Synthesis 74

5.1 Evolutionary Search . 74

5.2 Addition FPANs . 82

5.3 Multiplication FPANs . 84

6 Evaluation 89

7 Conclusion 96

7.1 Related Work . 97

7.2 Future Work . 100

A SETZ Lemmas 104

Bibliography 118

ix

List of Tables

2.1 Parameters of the floating-point formats defined by IEEE Standard 754 and

the nonstandard bfloat16 format commonly used in deep learning acceler-

ators. Two parametric families, binary{k} and decimal{k}, are defined for

values of k ≥ 128 that are divisible by 32. Here, ⌊x⌉ denotes x rounded to

the nearest integer. Note that bfloat16, binary16, and binary32 are special

cases that do not follow the general pattern for binary{k}. 10

4.1 Execution time for various SMT solvers to verify property P expressed in

the theory of floating-point numbers (QF FP) compared to the theory of lin-

ear integer arithmetic (QF LIA) via the SELTZO abstraction. A “DNF” entry

indicates that a solver did not terminate within three days, while an “N/A”

entry indicates that a solver rejected the problem as unsolvable. These bench-

marks were performed on an AMD Ryzen 9 9950X processor using Z3 4.13.4,

CVC5 1.2.0, MathSAT 5.6.11, Bitwuzla 0.7.0, and Colibri2 0.4. SELTZO

satisfiability problems were solved using Z3 4.13.4. 72

4.2 Strongest relative error bounds for ddadd and madd that are provable in the

SE, SETZ, and SELTZO abstractions. 73

6.1 Measured AXPY performance, in billions of extended-precision operations

per second, of multiprecision libraries at 53-bit, 103-bit, 156-bit, and 208-bit

precision on a 16-core AMD Zen 5 CPU (Ryzen 9 9950X). “N/A” entries

indicate lack of library support for a specific precision level. 91

x

6.2 Measured DOT performance, in billions of extended-precision operations per

second, of multiprecision libraries at 53-bit, 103-bit, 156-bit, and 208-bit

precision on a 16-core AMD Zen 5 CPU (Ryzen 9 9950X). “N/A” entries

indicate lack of library support for a specific precision level. 91

6.3 Measured GEMV performance, in billions of extended-precision operations

per second, of multiprecision libraries at 53-bit, 103-bit, 156-bit, and 208-bit

precision on a 16-core AMD Zen 5 CPU (Ryzen 9 9950X). “N/A” entries

indicate lack of library support for a specific precision level. 92

6.4 Measured GEMM performance, in billions of extended-precision operations

per second, of multiprecision libraries at 53-bit, 103-bit, 156-bit, and 208-bit

precision on a 16-core AMD Zen 5 CPU (Ryzen 9 9950X). “N/A” entries

indicate lack of library support for a specific precision level. 92

6.5 Measured AXPY performance, in billions of extended-precision operations

per second, of multiprecision libraries at 53-bit, 103-bit, 156-bit, and 208-bit

precision on a 12-core ARMv8.6-A CPU (Apple M3 Pro). “N/A” entries

indicate lack of library support for a specific precision level. 92

6.6 Measured DOT performance, in billions of extended-precision operations per

second, of multiprecision libraries at 53-bit, 103-bit, 156-bit, and 208-bit

precision on a 12-core ARMv8.6-A CPU (Apple M3 Pro). “N/A” entries

indicate lack of library support for a specific precision level. 93

6.7 Measured GEMV performance, in billions of extended-precision operations

per second, of multiprecision libraries at 53-bit, 103-bit, 156-bit, and 208-bit

precision on a 12-core ARMv8.6-A CPU (Apple M3 Pro). “N/A” entries

indicate lack of library support for a specific precision level. 93

6.8 Measured GEMM performance, in billions of extended-precision operations

per second, of multiprecision libraries at 53-bit, 103-bit, 156-bit, and 208-bit

precision on a 12-core ARMv8.6-A CPU (Apple M3 Pro). “N/A” entries

indicate lack of library support for a specific precision level. 93

xi

6.9 Measured GPU performance, in billions of extended-precision operations per

second, of our FPAN-based algorithms on an AMD RDNA 3 GPU (RX 7900

XTX). 95

xii

List of Figures

2.1 IEEE encoding of 2−3×1.25 = 0.15625 in the binary32 format with exponent

width w = 8. Here, (01111100)2 = 124 is the biased exponent, and 2w−1−1 =

127 is the exponent bias. Recall that the mantissa leading bit m0 = 1 is not

explicitly stored. 11

3.1 S-nonoverlapping, P-nonoverlapping, and strongly nonoverlapping floating-

point expansions of a real number C with terms of precision p = 6. Light

blue digits represent a shift stored in the exponent and are not explicitly

represented in the mantissa. The strongly nonoverlapping expansion rounds

x0 up instead of down, causing x1 to be negative and the mantissa of x1 to

contains the one’s complement of the corresponding bits in C. This allows

the sign bit of x1 to provide an extra implicit bit of precision. 33

3.2 Pseudocode and FPAN representations of Dekker’s add2 algorithm. Note

that the intermediate variables s0, s1, t, u are anonymous in the FPAN rep-

resentation, implicitly represented by the wire segments running between

TwoSum gates. 44

3.3 FPAN diagram for Kahan–Babuška–Neumaier summation applied to five in-

puts. This double staircase accumulation pattern generalizes to any number

of inputs. 46

4.1 Schematic representation of several representative interlacing patterns that

two floating-point expansions of length four can exhibit. 51

xiii

4.2 FPAN representation of the ddadd algorithm due to Li et al. [64]. 52

4.3 FPAN representation of madd, our new improved algorithm for double-double

addition. 69

4.4 Augmented FPAN representations of ddadd (left) and madd (right) with error

terms (w0, w1) explicitly computed and named. The extra TwoSum gate used

to compute (w0, w1) serves only to facilitate our analysis and should not be

included in an actual implementation of either algorithm. 69

5.1 Provably optimal FPAN with size 6 and depth 4 for double-word addition.

Here, (x0, x1) and (y0, y1) denote the input expansions to be added, and

(z0, z1) denotes the output expansion. The relative error of sums computed

by this FPAN is at most 2u2 +O(u3). 83

5.2 FPAN with size 16 and depth 10 for triple-word addition. Here, (x0, x1, x2)

and (y0, y1, y2) denote the input expansions to be added, and (z0, z1, z2) de-

notes the output expansion. The relative error of sums computed by this

FPAN is at most 8u3 +O(u4). 84

5.3 FPAN with size 31 and depth 13 for quad-word addition. Here, (x0, x1, x2, x3)

and (y0, y1, y2, y3) denote the input expansions to be added, and (z0, z1, z2, z3)

denotes the output expansion. The relative error of sums computed by this

FPAN is at most 8u4 +O(u5). 84

5.4 Provably optimal FPAN with size 3 and depth 3 for commutative double-

word multiplication. Here, (x0, x1) and (y0, y1) denote the input expansions

to be multiplied, (pi,j , ei,j) := TwoProd(xi, yj) denote the FPAN inputs, and

(z0, z1) denotes the output expansion. The relative error of products com-

puted by this FPAN is at most 8u2 +O(u3). 86

xiv

5.5 FPAN with size 13 and depth 8 for commutative triple-word multiplication.

Here, (x0, x1, x2) and (y0, y1, y2) denote the input expansions to be multiplied,

(pi,j , ei,j) := TwoProd(xi, yj) denote the FPAN inputs, and (z0, z1, z2) denotes

the output expansion. The relative error of products computed by this FPAN

is at most 64u3 +O(u4). 87

5.6 FPAN with size 31 and depth 14 for commutative quad-word multiplica-

tion. Here, (x0, x1, x2, x3) and (y0, y1, y2, y3) denote the input expansions to

be multiplied, (pi,j , ei,j) := TwoProd(xi, yj) denote the FPAN inputs, and

(z0, z1, z2, z3) denotes the output expansion. The relative error of products

computed by this FPAN is at most 256u4 +O(u5). 88

xv

Chapter 1

Introduction

Computers are indispensable tools in modern science and engineering. Computational mod-

eling and simulation allow us to turn mathematical formulas and scientific theories into

operational tools that solve problems and improve our understanding of the world. The

successes of scientific computing abound in modern daily life, ranging from the nonlin-

ear solvers used to design electrical grids to the molecular dynamics simulations used to

discover new pharmaceuticals. Our vehicles are made safer and more energy-efficient by

computational fluid dynamics and finite element analysis, while numerical weather predic-

tion allows us to forecast floods, hurricanes, and other natural disasters, providing valuable

early warnings that help avert the loss of human life.

Today, we live in the era of exascale computing, which means that our largest com-

puter systems can execute more than 1,000,000,000,000,000,000 (one billion billion, or 1018)

arithmetic operations per second [92]. This immense computational power allows us to con-

struct higher-fidelity models, simulate larger systems, and solve more challenging problems

than ever before. However, this increase in scale is accompanied by increasingly stringent

demands on numerical precision.

Since the 1980s, virtually all general-purpose computers have used 64-bit floating-point

arithmetic to store and manipulate real numbers, an IEEE standard known as double preci-

sion or binary64 [44, 45, 46]. This is an inexact representation that computes each operation

1

CHAPTER 1. INTRODUCTION 2

and rounds each number to a relative precision of roughly 16 decimal places. In other words,

every time two numbers are added, subtracted, multiplied, or divided on a double-precision

processor, the result carries a small rounding error of roughly one part in 1016.

Historically, double precision has been sufficient for the majority of practical scientific

computing tasks. However, in the exascale era, it is becoming increasingly common for

a single simulation workload to involve 1018 or more floating-point operations. While an

individual rounding error of one part in 1016 is relatively innocuous, the accumulation of

1018 such rounding errors can easily overwhelm a computation with noise and invalidate

its results. This issue is even more pronounced in problems that exhibit numerical insta-

bility, i.e., heightened sensitivity to rounding errors, such as linear systems that are nearly

singular. In the presence of numerical instability, even small-scale calculations can become

unacceptably inaccurate when executed in double precision.

Numerical precision has become a practical concern in a variety of scientific fields,

including computational fluid dynamics [7], numerical weather prediction [41], nonlinear

dynamical systems [31], energy grid optimization [103], quantum chemistry [33, 34], lat-

tice quantum chromodynamics [1], and full-genome metabolic modeling [67]. In response

to these issues, scientific programmers have made repeated calls for the development and

adoption of high-precision floating-point arithmetic [3, 4, 43, 66, 75].

Despite this growing threat to the accuracy, robustness, and reproducibility of scientific

software, high-precision floating-point arithmetic is rarely employed in demanding compu-

tational workloads because current methods are tens to thousands of times slower than

double precision. Conventional multiprecision libraries, such as GMP [38], MPFR [32],

and Boost.Multiprecision [68], simulate high precision using software algorithms that often

involve branching and dynamic memory allocation. Compared to double-precision compu-

tations, which use single-cycle operations natively supported in hardware, these software

libraries are dramatically slower because they reimplement the logic of floating-point rep-

resentation from scratch. This performance gap is even wider on data-parallel processors,

such as SIMD CPUs and GPUs, since branching and dynamic memory allocation prevent

efficient parallel execution.

CHAPTER 1. INTRODUCTION 3

An alternative approach that better leverages the capabilities of existing hardware is

to use error-free transformations [79] to extend the precision of a floating-point proces-

sor. Error-free transformations are floating-point algorithms that exactly compute their

own rounding errors, allowing them to be tracked and corrected or compensated for in a

numerical program. For example, the Møller–Knuth TwoSum algorithm [60, 74] takes a

pair of floating-point numbers (x, y) and computes both their rounded floating-point sum

s := x⊕ y and the exact rounding error e := (x+ y)− (x⊕ y) incurred in that sum. Here,

⊕ denotes rounded floating-point addition, while + denotes exact mathematical addition.

Error-free transformations are useful algorithmic building blocks that have been em-

ployed by numerical programmers for over 50 years. They are used in dozens of software

packages [5, 22, 28, 42, 55, 65, 87, 91, 99], including the Python [83] and Julia [93] standard

libraries, and have been applied to solve problems in dense [64] and sparse [29] numerical

linear algebra, high-precision quadrature [6], computational fluid dynamics [7, 41], robust

computational geometry [89], quantum chemistry [33, 34], transcendental function evalua-

tion [22, 91], and the discovery of new mathematical identities [3].

Unfortunately, the use of error-free transformations is laden with pitfalls. Tracking and

correcting rounding errors is so tricky that even world experts in numerical analysis have

made subtle mistakes in published research [54, 64, 73]. The fundamental issue is that

different inputs to the same program can produce wildly different patterns of rounding

error accumulation and propagation. A scheme for tracking and correcting these rounding

errors must take all possible error patterns into account, and an oversight in just one

pattern can produce catastrophic loss-of-precision bugs. In fact, some numerical analysts

have called error-free transformations “an attractive nuisance, like an unfenced backyard

swimming pool” [64], luring in unsuspecting programmers with promises of high precision

and performance only to ensnare them in hidden depths of complexity.

To address these challenges, this dissertation introduces a class of algorithms called

floating-point accumulation networks (FPANs) for fast high-precision floating-point arith-

metic. FPANs are branch-free linear sequences of TwoSum operations that are used to

CHAPTER 1. INTRODUCTION 4

implement high-precision arithmetic operations, including addition, subtraction, multipli-

cation, division, and square root. As their name suggests, FPANs perform the task of

accumulation, i.e., high-precision summation of multiple floating-point inputs with round-

ing errors explicitly tracked and corrected. By identifying FPANs as key subroutines that

delimit the propagation of rounding errors, we reduce the analysis of all possible error

patterns to a standardized subproblem with well-defined correctness conditions.

We then introduce a computer-aided verification technique called the SELTZO abstrac-

tion that leverages SMT solvers to automate the extensive casework of rounding error

analysis. The SELTZO abstraction uses a coarse-grained representation of floating-point

numbers to isolate the relevant variables involved in the FPAN correctness conditions. This

dramatic reduction of the search space makes verification in the SELTZO abstraction mil-

lions of times faster than existing floating-point verification methods, such as bit-blasting.

By reducing the analysis of thousands of rounding error patterns to an efficient computer-

checkable form, our technique enables the development of FPANs with rigorous correctness

guarantees and error bounds that provably hold for all inputs.

The availability of an efficient automatic verification procedure allows us to systemati-

cally explore the space of all FPANs to find the fastest possible algorithms for high-precision

floating-point arithmetic. To achieve this, we present a stochastic search procedure that

combines an evolutionary metaheuristic with simulated annealing to optimize over the space

of FPANs that accomplish a specified task. Our search strategy models efficiency (which

favors fewer operations) and robustness (which favors more operations) as competing evo-

lutionary pressures whose interaction creates algorithms that are both fast and correct.

Using this evolutionary search procedure, we have discovered novel branch-free data-

parallel algorithms for addition, subtraction, multiplication, division, and square root of

two-term, three-term, and four-term floating-point expansions. These algorithms extend

the effective precision of a floating-point processor to double, triple, or quadruple its native

precision. Thus, on a double-precision processor, our algorithms provide fast, branch-free

arithmetic operations at roughly quadruple, sextuple, or octuple precision. We present the

best FPANs discovered for these tasks and benchmark their performance, demonstrating

CHAPTER 1. INTRODUCTION 5

that our new algorithms significantly outperform all existing high-precision floating-point

software libraries by 11.7×–69.3× in typical scientific computing workloads.

In summary, this dissertation makes the following contributions:

1. We introduce floating-point accumulation networks (FPANs) as a class of floating-

point algorithms (Sections 3.1–3.3) and show that FPANs can be used to implement

addition, subtraction, multiplication, division, and square root of floating-point ex-

pansions in a branch-free fashion (Section 3.4).

2. We formulate correctness conditions for FPANs that reduce the analysis of floating-

point rounding errors to an efficiently computer-checkable form (Section 3.3).

3. We define the SELTZO abstraction, an abstract domain for reasoning about error-free

transformations (Sections 4.1–4.2), and state a procedure that expresses the FPAN

correctness conditions as SELTZO satisfiability problems (Sections 4.3–4.4).

4. We demonstrate that our procedure is millions of times faster than existing floating-

point reasoning tools for verifying the FPAN correctness conditions (Section 4.5).

5. We devise an evolutionary search procedure that systematically explores the space of

all FPANs to find fast candidate algorithms for a specified task (Section 5.1)

6. We present five novel FPANs with formally-verified error bounds for addition (Sec-

tion 5.2) and multiplication (Section 5.3) of floating-point expansions with two, three,

or four terms.

7. We demonstrate that our algorithms significantly outperform state-of-the-art software

floating-point libraries in benchmarks of extended-precision BLAS kernels (Chapter 6).

Chapter 2

Background

Floating-point representation is the standard technique used to approximately represent

real numbers in discrete information processing systems, such as digital computers. It is

formally defined by IEEE Standard 754 [44, 45, 46] and used in virtually all general-purpose

computing systems that exist today.

Despite its pervasive use, floating-point representation is often regarded as a difficult,

esoteric subject whose details are poorly understood even among scientific and numerical

programmers. Familiarity with those details is necessary to understand the main ideas

of this dissertation, so in this chapter, we provide a concise, self-contained exposition of

floating-point numbers, formats, and arithmetic.

2.1 Floating-Point Numbers

We begin by defining floating-point representations and their associated terminology. We

must be careful to distinguish floating-point representations from floating-point numbers

because a single number can have multiple distinct representations.

Definition 1 (floating-point representation, base, precision, sign bit, exponent, mantissa,

digit). A floating-point representation in base b ∈ N with precision p ∈ N is an ordered

triple (s, e,m) consisting of a sign bit s ∈ {0, 1}, an exponent e ∈ Z, and a mantissa

6

CHAPTER 2. BACKGROUND 7

m = (m0, . . . ,mp−1), which is an ordered sequence of p digits m0, . . . ,mp−1 ∈ {0, . . . , b−1}.

The many-to-one correspondence between floating-point representations and floating-

point numbers is specified by the real value function.

Definition 2 (real value, RealValb,p). Let (s, e,m) be a floating-point representation in base

b ∈ N with precision p ∈ N. The real value of (s, e,m), denoted by RealValb,p(s, e,m) ∈ R,

is the following real number:

RealValb,p(s, e,m) := (−1)s × (m0.m1m2 . . .mp−1)b × be = (−1)s
p−1∑
k=0

mkb
e−k (2.1)

Here, (m0.m1m2 . . .mp−1)b denotes the real number with integer part m0 and fractional

part 0.m1m2 · · ·mp−1 in base b, akin to a decimal expansion of the form 3.14159265.

Definition 3 (floating-point number). A real number x ∈ R is a floating-point number in

base b ∈ N with precision p ∈ N if there exists a floating-point representation (s, e,m) such

that x = RealValb,p(s, e,m).

Example 1. The real number 2.25 = 21 + 2−2 is a floating-point number in base b = 2

with any precision p ≥ 4. It has multiple representations whenever p ≥ 5. For example, in

precision p = 6, it admits three distinct floating-point representations:

2.25 = RealVal2,6(0, 1, (1, 0, 0, 1, 0, 0)) = 1 · 21 + 0 · 20 + 0 · 2−1 + 1 · 2−2 + 0 · 2−3 + 0 · 2−4

2.25 = RealVal2,6(0, 2, (0, 1, 0, 0, 1, 0)) = 0 · 22 + 1 · 21 + 0 · 20 + 0 · 2−1 + 1 · 2−2 + 0 · 2−3

2.25 = RealVal2,6(0, 3, (0, 0, 1, 0, 0, 1)) = 0 · 23 + 0 · 22 + 1 · 21 + 0 · 20 + 0 · 2−1 + 1 · 2−2

Note that 2.25 is not a floating-point number in base b = 2 with precision p = 3, but it is

a floating-point number in base b = 6 with precision p = 3.

2.25 = RealVal6,3(0, 0, (2, 1, 3)) = 2 · 60 + 1 · 6−1 + 3 · 6−2

In general, the property of being a floating-point number is both base-dependent and

CHAPTER 2. BACKGROUND 8

precision-dependent. By definition, every floating-point number is a rational number whose

denominator divides some power bk of the base b, so in particular, no irrational number has

a floating-point representation in any base with any precision.

To eliminate the ambiguity of a single number having multiple floating-point represen-

tations, we introduce a criterion that designates a particular canonical representation.

Definition 4 (normalized). A floating-point representation is normalized if the first digit

of its mantissa is nonzero.

Proposition 1 (Uniqueness of normalized representation). Every nonzero real number has

at most one normalized floating-point representation in a particular base b ≥ 2 with a

particular precision p ∈ N.

Proof. Let b ≥ 2 and p ∈ N be given. Suppose x ∈ R \ {0} has normalized floating-point

representations x = RealValb,p(s, e,m) = RealValb,p(s
′, e′,m′). We will show that (s, e,m)

and (s′, e′,m′) coincide. Clearly, s = s′, since no real number is simultaneously positive and

negative. Moreover, normalization implies that |x| lies in the half-open interval [be, be+1).

Intervals of this form are disjoint for distinct values of e, which implies e = e′. Next, observe

that we can write

x = RealValb,p(s, e,m) = (−1)sbe−(p−1)
p−1∑
k=0

mkb
(p−1)−k = (−1)sbe−(p−1)M (2.2)

where M denotes the integer mantissa of the floating-point representation (s, e,m), i.e., the

integer whose base-b expansion is the sequence (m0, . . . ,mp−1).

M :=

p−1∑
k=0

mkb
(p−1)−k ∈ Z (2.3)

We similarly have x = (−1)sbe−(p−1)M ′ where M ′ :=
∑p−1

k=0m
′
kb

(p−1)−k. Now, if mi ̸= m′
i

at any index i, then M and M ′ are distinct integers, which implies that:

|RealValb,p(s, e,m)− RealValb,p(s
′, e′,m′)| = be−(p−1)|M −M ′| ≥ be−(p−1) (2.4)

CHAPTER 2. BACKGROUND 9

This contradicts the assumption that RealValb,p(s, e,m) = RealValb,p(s
′, e′,m′). Hence, we

conclude that m = m′, which completes the proof.

The only real number that does not satisfy this uniqueness property is zero, which

admits infinitely many floating-point representations of the form (s, e, (0, . . . , 0)), none of

which are normalized. We will later see that zero is separately handled as a special case in

practical floating-point implementations.

2.2 Floating-Point Formats

To efficiently store and manipulate floating-point numbers in a digital computer, it is useful

to encode them as bit vectors of a fixed finite size (usually 32 or 64 bits). This requires

specifying a fixed base b ∈ N, precision p ∈ N, and exponent range e ∈ {emin, . . . , emax} ⊂ Z.

A choice of these parameters is known as a floating-point format.

Definition 5 (floating-point format, minimum normalized exponent, maximum exponent).

A floating-point format is an ordered quadruple (b, p, emin, emax) consisting of a base b ∈ N,

a precision p ∈ N, a minimum normalized exponent emin ∈ Z, and a maximum exponent

emax ∈ Z satisfying b ≥ 2 and emin ≤ emax.

IEEE Standard 754 [44, 45, 46] defines a collection of binary (b = 2) and decimal

(b = 10) floating-point formats whose parameters are listed in Table 2.1. Among these, the

most widely used in practice are binary32 and binary64, also known1 as single precision and

double precision or float and double in many programming languages. Smaller formats,

such as binary16 and the nonstandard bfloat16 format, are becoming popular in machine

learning applications where the precision of any single number is less important than the

ability to manipulate large collections of numbers. However, outside this setting, binary32

and binary64 remain the primary workhorses of general-purpose and scientific computation.

1The original 1985 version of IEEE Standard 754 [44] referred to binary32 and binary64 as “single precision”
and “double precision”, respectively. These names were changed in the 2008 revision [45] to avoid ambiguity
with the newly added decimal32 and decimal64 formats, but in colloquial usage outside the standard, the
names “single precision” and “double precision” are overwhelmingly more common.

CHAPTER 2. BACKGROUND 10

Format Base b Precision p Exponent range {emin, . . . , emax}
bfloat16 b = 2 p = 8 e ∈ {−126, . . . ,+127}
binary16 b = 2 p = 11 e ∈ {−14, . . . ,+15}
binary32 b = 2 p = 24 e ∈ {−126, . . . ,+127}
binary64 b = 2 p = 53 e ∈ {−1022, . . . ,+1023}
binary128 b = 2 p = 113 e ∈ {−16382, . . . ,+16383}
binary{k} b = 2 p = k − ⌊4 log2 k⌉+ 13 e ∈ {−2k−p−1 + 2, . . . , 2k−p−1 − 1}
decimal32 b = 10 p = 7 e ∈ {−95, . . . ,+96}
decimal64 b = 10 p = 16 e ∈ {−383, . . . ,+384}
decimal128 b = 10 p = 34 e ∈ {−6143, . . . ,+6144}
decimal{k} b = 10 p = 9k/32− 2 e ∈ {−3 · 2k/16+3 + 1, . . . , 3 · 2k/16+3}

Table 2.1: Parameters of the floating-point formats defined by IEEE Standard 754 and the
nonstandard bfloat16 format commonly used in deep learning accelerators. Two parametric
families, binary{k} and decimal{k}, are defined for values of k ≥ 128 that are divisible by
32. Here, ⌊x⌉ denotes x rounded to the nearest integer. Note that bfloat16, binary16, and
binary32 are special cases that do not follow the general pattern for binary{k}.

With these formats defined, we now describe the standard scheme for encoding floating-

point numbers as fixed-size bit vectors. To simplify our exposition, we consider only base

b = 2; other bases introduce additional complications that are irrelevant for our purposes.

Definition 6 (IEEE binary compatible, exponent width). We say that a floating-point

format (b, p, emin, emax) is IEEE binary compatible if b = 2 and emax = 1− emin = 2w−1 − 1

for some w ∈ N, which is called the exponent width of the format.

Definition 7 (IEEE encoding, biased exponent). Let (s, e,m) be a normalized floating-

point representation in an IEEE binary compatible format (2, p, emin, emax) with exponent

width w. Assume emin ≤ e ≤ emax. The IEEE encoding of (s, e,m) is the following bit

vector (bk−1, . . . , b0) of size k := w + p:

• The most significant bit bk−1 := s is the sign bit.

• The next w bits (bk−2, . . . , bp−1) are the binary expansion of the positive integer

E := e− emin + 1, which is called the biased exponent.

• The final p − 1 bits (bp−2 := m1, bp−3 := m2, . . . , b0 := mp−1) are the elements of the

CHAPTER 2. BACKGROUND 11

0

31

0

30

1

29

1

28

1

27

1

26

1

25

0

24

0

23

0

22

1

21

0

20

0

19

0

18

0

17

0

16

0

15

0

14

0

13

0

12

0

11

0

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

sign
(+)

exponent (8 bits)
(124− 127 = −3)

mantissa (23 bits)
(1 · 20 + 1 · 2−2 = 1.25)

Figure 2.1: IEEE encoding of 2−3 × 1.25 = 0.15625 in the binary32 format with exponent
width w = 8. Here, (01111100)2 = 124 is the biased exponent, and 2w−1 − 1 = 127 is the
exponent bias. Recall that the mantissa leading bit m0 = 1 is not explicitly stored.

mantissa, ordered from most to least significant, omitting the leading bit m0.

To accord with common practice in computer science, we use opposite indexing con-

ventions for bit vectors (bk−1 most significant, b0 least significant) and mantissas (m0 most

significant, mp−1 least significant). The biased exponent E lies in the range 1 ≤ E ≤ 2w−2,

so its binary expansion always fits into w bits. Moreover, m0 = 1 is guaranteed by the re-

quirement that (s, e,m) be normalized, so there is no need to explicitly store m0. An

example of IEEE encoding in the binary32 format is illustrated in Figure 2.1.

The corresponding decoding scheme is obtained by reversing this process. Namely,

given a bit vector (bk−1, . . . , b0), we extract the sign bit s = bk−1, the biased exponent

E = bk−2 ·2w−1+ · · ·+ bp−1 ·20 (from which we recover the exponent e = E+ emin−1), and

the mantissa m = (1, bp−2, . . . , b0). To fully specify the decoding process, we must define

the interpretation of E = 0 and E = 2w − 1, the two cases not permitted by Definition 7.

IEEE Standard 754 uses E = 0 to represent numbers with very small magnitudes, including

zero, while E = 2w − 1 encodes special non-numeric values that are used for detecting and

reporting error conditions.

Definition 8 (floating-point domain, FP(b, p, emin, emax), normal values, subnormal values,

positive zero, +0.0, negative zero, -0.0, positive infinity, +Inf, negative infinity, -Inf,

not-a-number, NaN, floating-point values, finite values, special values). Let (b, p, emin, emax)

be a floating-point format. Its floating-point domain, denoted by FP(b, p, emin, emax), is the

set consisting of:

CHAPTER 2. BACKGROUND 12

• all nonzero real values RealValb,p(s, e,m) of normalized floating-point representations

satisfying emin ≤ e ≤ emax, which are called normal values;

• all nonzero real values RealValb,p(s, emin,m) of floating-point representations satisfying

e = emin and m0 = 0, which are called subnormal values;

• the symbol +0.0, called positive zero;

• the symbol -0.0, called negative zero;

• the symbol +Inf, called positive infinity ;

• the symbol -Inf, called negative infinity ;

• the symbol NaN, called not-a-number.

The elements of FP(b, p, emin, emax) are called floating-point values. The normal values,

subnormal values, positive zero, and negative zero are collectively called finite values. The

symbols +0.0, -0.0, +Inf, -Inf, and NaN are collectively called special values.

This definition introduces a distinction between floating-point numbers, which are real

numbers that admit a floating-point representation, and floating-point values, which include

the nonzero floating-point numbers and the special values +0.0, -0.0, +Inf, -Inf, and NaN.

Definition 9 (IEEE value, IEEEVal2,p,w). Let (2, p, emin, emax) be an IEEE binary com-

patible floating-point format with exponent width w. The IEEE value of a bit vector

(bk−1, . . . , b0) of size k = w + p, denoted by IEEEVal2,p,w(bk−1, . . . , b0), is the element of

FP(2, p, emin, emax) obtained as follows. Let s := bk−1 and E := bk−2 · 2w−1 + · · ·+ bp−1 · 20.

1. (Zero case.) If E = 0 and bp−2 = · · · = b0 = 0, then:

IEEEVal2,p,w(bk−1, . . . , b0) :=


+0.0 if s = 0

-0.0 if s = 1

(2.5)

CHAPTER 2. BACKGROUND 13

2. (Subnormal case.) If E = 0 and any of the bits (bp−2, . . . , b0) are nonzero, then:

IEEEVal2,p,w(bk−1, . . . , b0) := RealValb,p(s, emin, (0, bp−2, . . . , b0)) (2.6)

3. (Normal case.) If 1 ≤ E ≤ 2w − 2, then:

IEEEVal2,p,w(bk−1, . . . , b0) := RealValb,p(s, E + emin − 1, (1, bp−2, . . . , b0)) (2.7)

4. (Infinity case.) If E = 2w − 1 and bp−2 = · · · = b0 = 0, then:

IEEEVal2,p,w(bk−1, . . . , b0) :=


+Inf if s = 0

-Inf if s = 1

(2.8)

5. (Not-a-number case.) If E = 2w − 1 and any of (bp−2, . . . , b0) are nonzero, then:

IEEEVal2,p,w(bk−1, . . . , b0) := NaN (2.9)

In summary, zero and subnormal values have biased exponent E = 0, normal values

have 1 ≤ E ≤ 2w − 2, and infinity and not-a-number values have E = 2w − 1. Aside from

NaN, which is represented by many different bit patterns, all other floating-point values have

a unique IEEE encoding. In particular, there is no overlap between normal values (which

have magnitude ≥ bemin) and subnormal values (which have magnitude < bemin).

In many cases, analysis involving floating-point numbers is considerably simplified by

ignoring the bounded exponent range emin ≤ e ≤ emax, the multiple representations +0.0

and -0.0 of zero, and the special values +Inf, -Inf, and NaN. For these situations, we

introduce the unbounded floating-point domain.

Definition 10 (unbounded floating-point domain, FP(b, p)). Let b ≥ 2 and p ∈ N. The

unbounded floating-point domain, denoted by FP(b, p), is the set consisting of all real val-

ues RealValb,p(s, e,m) of floating-point representations (s, e,m) in base b with precision p,

CHAPTER 2. BACKGROUND 14

including zero, with no restriction on the exponent e ∈ Z.

Note that FP(b, p) is a subset of R while FP(b, p, emin, emax) is not. Similarly, FP(b, p)

contains the real number zero while FP(b, p, emin, emax) only contains the special symbols

+0.0 and -0.0.

2.3 Floating-Point Arithmetic

To perform calculations with floating-point numbers, we must define mathematical oper-

ations on the floating-point domain FP(b, p, emin, emax). This is nontrivial even for basic

arithmetic operations, such as addition and subtraction, because the sum or difference of

two elements of FP(b, p, emin, emax) may not lie in FP(b, p, emin, emax). Therefore, the result

of each operation must be rounded to the nearest floating-point number. We begin our

discussion of floating-point arithmetic by formally defining this rounding procedure.

Definition 11 (unbounded rounding function, RNEb,p). Let b ≥ 2 and p ∈ N. The un-

bounded rounding function RNEb,p : R → FP(b, p) sends each real number x ∈ R to the

closest element of FP(b, p). When x is equidistant to two adjacent floating-point numbers

x1, x2 ∈ FP(b, p), we define RNEb,p(x) to be whichever of x1 and x2 has a mantissa whose

least significant digit is even, or if both have the same2 parity, whichever of x1 and x2 is

larger in magnitude.

We now extend this rounding procedure from the unbounded floating-point domain

FP(b, p) to the standard floating-point domain FP(b, p, emin, emax). Here, we make use of

the special symbols +0.0, -0.0, +Inf, and -Inf to absorb numbers that fall outside the

bounded exponent range.

Definition 12 (rounding function, RNEb,p,emin,emax , overflow, underflow).

Let (b, p, emin, emax) be a floating-point format. The rounding function RNEb,p,emin,emax :

2The same-parity case occurs in pathological situations, such as precision p = 1. In base b = 2, 1.5 is
equidistant to 1.0 = 20 × 1 and 2.0 = 21 × 1, both of which have an odd mantissa. Thus, RNE2,1(1.5) := 2.0.

CHAPTER 2. BACKGROUND 15

R \ {0} → FP(b, p, emin, emax) sends each nonzero real number x ∈ R \ {0} to the floating-

point value defined as follows. Let RNEb,p(x) = RealValb,p(s, e,m) denote the result of the

unbounded rounding function.

• If emin ≤ e ≤ emax, then:

RNEb,p,emin,emax(x) := RealValb,p(s, e,m) (2.10)

• If e > emax, then:

RNEb,p,emin,emax(x) :=


+Inf if s = 0

-Inf if s = 1

(2.11)

In this situation, we say that overflow has occurred.

• If e < emin, then RNEb,p,emin,emax(x) is defined to be the closest element to x in the set

{RealValb,p(s, emin,m
′) : m′

0 = 0} of subnormal floating-point numbers, breaking ties

by the parity of the mantissa as in Definition 11. If the closest element is zero, then

we define RNEb,p,emin,emax(x) to be +0.0 if s = 0 and -0.0 if s = 1. When x ̸= 0 and

RNEb,p,emin,emax(x) is zero, we say that underflow has occurred.

It follows from this definition that overflow occurs when |x| ≥ bemax(b − 1
2b

−(p−1)) and

underflow occurs when 0 < |x| ≤ 1
2b

emin−(p−1). To simplify notation, whenever the floating-

point format (b, p, emin, emax) is clear from context, we simply write RNE(x).

The rounding function RNE described above is one of five rounding-direction attributes

defined by IEEE Standard 754 [44, 45, 46], therein named roundTiesToEven. This is specified

to be the default rounding-direction attribute in all conforming floating-point implemen-

tations and is by far the most widely used in practice. In fact, roundTiesToEven is the

only rounding-direction attribute available in many common programming environments,

including Python, JavaScript, and WebAssembly [27, 85]. In analyses of floating-point arith-

metic [11, 12], it is common to assume that roundTiesToEven is the only rounding-direction

attribute in use. We adopt this standard assumption throughout this dissertation.

CHAPTER 2. BACKGROUND 16

Assumption 1. All floating-point operations are rounded to nearest with ties broken to

even (i.e., executed with the roundTiesToEven rounding-direction attribute).

The rounding function RNE allows us to define mathematical operations on the floating-

point domain FP(b, p, emin, emax) by composing RNE with the corresponding operations on

the real numbers R. To complete such a definition, we must also decide how to handle the

special values {+0.0, -0.0, +Inf, -Inf, NaN} and how to round zero, since RNE is defined on

R \ {0}. The general principle adopted by IEEE Standard 754 [46, Section 6.1] is to regard

+0.0, -0.0, +Inf, and -Inf as representations of one-sided limiting processes. For example,

the floating-point quotient 1⊘ (+0.0) is regarded as the one-sided limit limx→0+ 1/x = +∞

and is hence defined to be +Inf. Similarly, (-0.0)⊕ (-0.0) is regarded as the double limit

limx→0−,y→0− x+ y, which approaches zero from below, and is hence defined to be -0.0.

The special value NaN is returned by operations that produce indeterminate limiting

processes, such as limx→+∞,y→−∞ x + y, which can take on any real value as x → +∞

and y → −∞. Hence, (+Inf) ⊕ (-Inf) is defined to be NaN. Most3 operations specified

by IEEE Standard 754 [46, Section 9.2.1] return NaN when any input is NaN, causing NaN

to propagate through floating-point operations in an infectious manner. This virus-like

mechanism is designed to allow floating-point programs to signal the occurrence of an error

without trapping or otherwise interrupting program control flow.

To demonstrate the application of these principles, we state the formal definition of

floating-point addition below. Observe that, outside a single invocation of RNE(x+ y), the

rest of the definition merely specifies behavior on special values and the sign of zero.

Definition 13 (floating-point sum, ⊕). Let (b, p, emin, emax) be a floating-point format.

Given two floating-point values x, y ∈ FP(b, p, emin, emax), the floating-point sum of x and

y, denoted by x⊕ y ∈ FP(b, p, emin, emax), is the floating-point value defined as follows:

• If x is NaN or y is NaN, then x⊕ y is defined to be NaN.

3The only exceptions to this rule are the minimumNumber and maximumNumber operations, which
discard NaN inputs; the copySign operation, which discards NaN as its second input; the hypot operation,
which discards NaN when its other input is infinity; and the power operations (pow and pown), which are
defined so that NaN0 = 1NaN = 1.

CHAPTER 2. BACKGROUND 17

• If x and y are both infinity with the same sign, then x⊕ y is defined to be infinity of

the same sign as x and y.

• If x and y are both infinity with opposite signs, then x⊕ y is defined to be NaN.

• If x is infinity (of either sign) and y is finite, then x⊕ y is defined to be x. Similarly,

if x is finite and y is infinity, then x⊕ y is defined to be y.

• If x and y are both finite and the exact real value of the sum x + y is nonzero, then

x ⊕ y is defined to be RNE(x + y). Here, +0.0 and -0.0 are both interpreted as the

real number 0 for the purpose of determining the exact result x+ y.

• If x and y are both finite, the exact real value of the sum x + y is zero, and at least

one of x and y is not -0.0, then x⊕ y is defined to be +0.0.

• If x = -0.0 and y = -0.0, then x⊕ y is defined to be -0.0.

Although these rules are intuitively reasonable in light of the preceding discussion, they

have many counterintuitive consequences demonstrated by the following examples.

Example 2. The function x 7→ x⊕(+0.0) is not the identity function on FP(b, p, emin, emax)

because it sends -0.0 to +0.0. In contrast, the function x 7→ x ⊕ (-0.0) is the identity

function. This means that the instruction x 7→ x⊕ (-0.0) can be safely optimized out of a

floating-point program, while the instruction x 7→ x ⊕ (+0.0) cannot be removed without

potentially changing the behavior of the program on some inputs.

Example 3. Floating-point addition is not associative. Indeed, consider 100⊕4⊕2 in base

b = 10 with precision p = 2. If this sum is associated to the left, then its value is 100, since

100⊕4 = RNE(104) = 100 and 100⊕2 = RNE(102) = 100. On the other hand, if associated

to the right, its value is 110, since 4⊕ 2 = RNE(6) = 6 and 100⊕ 6 = RNE(106) = 110.

For the sake of brevity, we omit full formal definitions of the remaining floating-point

operations. We merely introduce our notation and give summary remarks. Following

CHAPTER 2. BACKGROUND 18

Knuth’s convention [60], we use circled operators to distinguish rounded operations on

FP(b, p, emin, emax) from their exact counterparts on R.

x⊕ y := RNE(x+ y)

x⊖ y := RNE(x− y)

x⊗ y := RNE(xy)

x⊘ y := RNE(x/y)

◦√x := RNE(
√
x)



when x and y are finite

and the argument of RNE

is well-defined and nonzero

(2.12)

Floating-point subtraction x⊖y is formally defined as x⊕(−y), where −y is obtained from y

by flipping its sign bit (−NaN = NaN). The sign of the result in floating-point multiplication

and division is determined by taking the logical exclusive-or of the signs of the inputs.

This, in particular, defines the sign of zero when it arises as a product or quotient. The

floating-point square root of zero is defined to be zero with the same sign as the input (in

particular, ◦√-0.0 := -0.0), while ◦
√
x := NaN for all nonzero negative x.

Most floating-point processors today also support a fused multiply-add operation, which

combines multiplication and addition into a single operation that is only rounded once.

FMA(x, y, z) := RNE(xy + z) (2.13)

The lack of intermediate rounding causes FMA(x, y, z) to be more accurate than x⊗ y ⊕ z

in many useful situations, such as the evaluation of polynomials and vector dot products.

2.4 Quantifying Rounding Errors

The presence of rounding causes each floating-point operation to introduce a small round-

ing error into a numerical program. These rounding errors can compound when multiple

floating-point operations are chained together, significantly degrading the accuracy of the

final result. In general, it can be very difficult to determine what floating-point precision p

is necessary for a given algorithm to achieve a specified final error bound ϵ. The field of

CHAPTER 2. BACKGROUND 19

numerical analysis, which spans hundreds of textbooks and thousands of research papers,

aims to answer this very question [94].

We begin by considering the rounding error introduced by a single application of RNE to

a real number x ∈ R. The distance between x and RNE(x) is characterized by a numerical

constant called4 the unit roundoff [86] defined for each floating-point format as follows.

Definition 14 (unit roundoff, u). Let (b, p, emin, emax) be a floating-point format. The unit

roundoff for this format, denoted by u ∈ R, is the following5 real constant:

u :=
1

2
b−(p−1) (2.14)

Intuitively, the unit roundoff is defined so that ux is an upper bound on the distance from

x to RNE(x). In other words, u is an upper bound on the relative error |RNE(x) − x|/|x|,

as shown by the following proposition in the unbounded floating-point domain FP(b, p).

Proposition 2 (Unit roundoff bounds relative rounding error). Let b ≥ 2 and p ∈ N, and

let RNE : R → FP(b, p) denote the unbounded rounding function. For every x ∈ R, there

exists δ ∈ R such that:

RNE(x) = (1 + δ)x where |δ| ≤ u (2.15)

Proof. Let x ∈ R be given. If x ∈ FP(b, p), then x = RNE(x) and the claim holds trivially.

Otherwise, assume without loss of generality that x > 0, and let x1, x2 ∈ FP(b, p) denote

the immediate predecessor and successor of x in FP(b, p), respectively. Let e ∈ Z denote

the exponent of x1. By definition, x1 and x2 are adjacent integer multiples of be−(p−1), so

the distance from x to the closer of x1 and x2 is at most 1
2b

e−(p−1). Moreover, x ≥ be, so

4Some sources refer to this constant as the machine epsilon ϵmach. We avoid this term because it has
several inequivalent definitions in common use. Some sources use machine epsilon synonymously with unit
roundoff (ϵmach = u), while others define machine epsilon as the distance between consecutive floating-point
numbers (ϵmach = 2u).

5Our definition of the unit roundoff u := 1
2
b−(p−1) is appropriate when rounding to the nearest floating-

point number. In other rounding modes, the alternative definition u := b−(p−1) is used instead.

CHAPTER 2. BACKGROUND 20

we can write

|RNE(x)− x| ≤ 1

2
be−(p−1) ≤ ux (2.16)

which implies

(1− u)x ≤ RNE(x) ≤ (1 + u)x (2.17)

from which the desired claim immediately follows.

The interpretation of u is more complicated in the standard floating-point domain

FP(b, p, emin, emax) due to the presence of subnormal numbers. The leading zeros in the

mantissa of a subnormal number reduce its effective precision, causing the distance between

x and RNE(x) to sometimes exceed ux. Instead of the relative error bound

|RNE(x)− x| ≤ u|x| when bemin ≤ |x| ≤ bemax

(
b− 1

2
b−(p−1)

)
(2.18)

which holds when RNE(x) is normalized, subnormal numbers are instead subject to a weaker

absolute error bound:

|RNE(x)− x| ≤ 1

2
bemin−(p−1) when |x| < bemin (2.19)

To avoid this complication, it is common for analyses of floating-point algorithms to either

assume that every nonzero floating-point number satisfies the hypotheses of Equation (2.18),

or when special values are irrelevant, to work in the unbounded floating-point domain

FP(b, p). This assumption is usually benign when working in the binary64 format, as is

typical in scientific computing, since the binary64 exponent range (2−1022 ≈ 2.2 × 10−308

to 21023 ≈ 1.8 × 10308) is wide enough that overflow and underflow seldom occur. Indeed,

the binary64 exponent range is wide enough to cover the dynamic range of the observable

universe, which spans sixty orders of magnitude6 from the quantum scale to the cosmological

6The range of any physical quantity, such as length, is bounded by the ratio of the longest theoretically
measurable length (the diameter of the observable universe) to the shortest theoretically measurable length
(the Planck length). This ratio is ℓuniverse/ℓPlanck ≈ 5 × 1061. The corresponding ratios for mass and time
(muniverse/mPlanck ≈ 6×1060 and tHubble/tPlanck ≈ 8×1060) are both roughly 1060. Even derived quantities,
such as [Force] = [Length] · [Mass] · [Time]−2 ≤ 10240, fall well under the binary64 overflow threshold.

CHAPTER 2. BACKGROUND 21

scale, ten times over.

2.5 Error-Free Transformations

Beyond prescribing a universal bound u on the relative magnitude of all rounding errors, in

some cases, it is possible to exactly calculate the rounding error of a specific floating-point

operation. Remarkably, this can often be done using additional floating-point operations

executed in the same precision. Algorithms of this type are called error-free transformations

and form the building blocks of the techniques developed in this dissertation.

The first error-free transformation, known as the TwoSum algorithm, was discovered

by Ole Møller in 1965 [74] and later proven correct by Donald Knuth in 1969 [60]. Given

two floating-point numbers x, y ∈ FP(b, p, emin, emax), the TwoSum algorithm computes

both their floating-point sum s := x ⊕ y and, assuming that no overflow occurs, the exact

rounding error e := (x+ y)− (x⊕ y) incurred in that sum. It is somewhat surprising that

this task is even possible, since it is not obvious a priori that the rounding error e always

admits a floating-point representation in the same format as the addends. It is therefore

doubly surprising that this is not only possible, but achieved by a remarkably simple and

elegant algorithm consisting only of floating-point addition and subtraction.

Algorithm 1: (s, e) := TwoSum(x, y)

Input: x, y ∈ FP(b, p, emin, emax)
Output: s, e ∈ FP(b, p, emin, emax) such that s = x⊕ y and, if all values are finite

and no overflow occurs, then e = (x+ y)− (x⊕ y) exactly.

1 s := x⊕ y;
2 xeff := s⊖ y;
3 yeff := s⊖ xeff;
4 δx := x⊖ xeff;
5 δy := y ⊖ yeff;
6 e := δx ⊕ δy;
7 return (s, e);

Intuitively, the values xeff and yeff represent the effective values that x and y contribute

to the rounded sum x⊕y. Indeed, it can be shown that xeff+yeff = x⊕y holds exactly in the

CHAPTER 2. BACKGROUND 22

absence of overflow. The rounding error is then reconstructed by measuring the difference

between the true and effective values, as illustrated in the following example.

Example 4. Consider TwoSum(93.7, 7.54) in base b = 10 with precision p = 3.

1. s := x⊕ y = 93.7⊕ 7.54 = RNE(101.24) = 101

Here, a rounding error of 0.24 was lost in the floating-point sum.

2. xeff := s⊖ y = 101⊖ 7.54 = RNE(93.46) = 93.5

Even though x is truly 93.7, it only managed to contribute 93.5 to the sum.

3. yeff := s⊖ xeff = 101⊖ 93.5 = RNE(7.5) = 7.5

Similarly, y := 7.54 only managed to contribute 7.5 to the sum. Observe at this step

that the effective values 93.5 and 7.5 exactly add up to the rounded sum 101.

4. δx := x⊖ xeff = 93.7⊖ 93.5 = RNE(0.2) = 0.2

5. δy := y ⊖ yeff = 7.54⊖ 7.5 = RNE(0.04) = 0.04

Note that δx and δy can be computed in parallel on a superscalar processor.

6. e := δx ⊕ δy = 0.2⊕ 0.04 = RNE(0.24) = 0.24

By adding the discrepancies between the true and effective values, we exactly recon-

struct the rounding error 0.24 that was lost in the initial rounded sum.

Proving the correctness of TwoSum requires lengthy analysis of what Knuth calls “a

rather tedious list of special cases,” enumerating all of the possible ways in which the

mantissas of x and y can overlap each other [60, Section 4.2.2, Theorem A]. A formal

computer-verified proof of the correctness of TwoSum is provided in the Flocq library [13].

Note that our formulation of TwoSum (Algorithm 1) only works under Assumption 1,

or more generally, when all floating-point operations are rounded to nearest using any

tie-breaking rule. More complicated variants of TwoSum are available for use with other

rounding-direction attributes [72, Section 4.3.3], but this dissertation only uses Algorithm 1.

CHAPTER 2. BACKGROUND 23

The preconditions for the correctness of TwoSum stipulate that all values must be finite

and that overflow must not occur. If either of the inputs, x or y, is non-finite, or if the

initial sum s := x⊕y overflows, then the error term e computed by TwoSum is obviously not

meaningful. In all such cases, e is NaN. What is less obvious is that, even when both x and

y are finite and the sum x⊕y does not overflow, an overflow can occur later in the TwoSum

algorithm, spuriously causing e to be NaN when the exact rounding error (x+ y)− (x⊕ y)

does have a finite floating-point representation. In base b = 2, this failure mode can only

occur when one of the addends is the largest representable floating-point number.

Proposition 3 (TwoSum is nearly immune to overflow). Let x, y ∈ FP(2, p, emin, emax) be

finite floating-point values in a base-2 floating-point format, and let Ω := 2emax(2− 2−(p−1))

denote the largest finite value representable in this format. If |x| < Ω and x ⊕ y is finite,

then no overflow occurs in the execution of TwoSum(x, y).

Proof. See [11, Theorem 6.2].

The TwoSum algorithm has a special property when executed in base b = 2 or b = 3. In

these bases, one of the effective values xeff or yeff always coincides with the corresponding

exact value, depending on which of the addends x or y is larger in magnitude. Thus, if the

relative ordering of |x| and |y| is known in advance, several steps can be omitted from the

TwoSum algorithm to produce a faster variant, known appropriately as FastTwoSum [25].

Algorithm 2: (s, e) := FastTwoSum(x, y)

Input: x, y ∈ FP(b, p, emin, emax), where b = 2 or b = 3, such that |x| ≥ |y|.
Output: s, e ∈ FP(b, p, emin, emax) such that s = x⊕ y and, if all values are finite

and no overflow occurs, then e = (x+ y)− (x⊕ y) exactly.

1 s := x⊕ y;
2 yeff := s⊖ x;
3 e := y ⊖ yeff;
4 return (s, e);

Although FastTwoSum is usually stated with the precondition |x| ≥ |y|, recent work of

Jeannerod and Zimmermann [51] shows that this requirement can be significantly weakened.

CHAPTER 2. BACKGROUND 24

Proposition 4 (Generalized preconditions for FastTwoSum). Let x, y ∈ FP(2, p, emin, emax)

be floating-point values in base b = 2 with precision p ≥ 2. If x and y satisfy any of the

following preconditions, then they are valid inputs to FastTwoSum, even if |x| < |y|.

• At least one of x or y is +0.0 or -0.0.

• Both x and y are finite, nonzero, and normalized, and their exponents ex, ey ∈ Z

satisfy ex+ntzx ≥ ey, where ntzx denotes the number of trailing zeros in the mantissa

of x.

Proof. See [51, Theorem 1].

We will later see that the appearance of the trailing zero count ntzx in this result is no

mere coincidence. Hypotheses on the pattern of nonzero bits appearing in the mantissa of a

floating-point number are central to the analysis techniques presented in this dissertation.

Surprisingly, FastTwoSum is more robust to internal overflow than TwoSum because it

omits the problematic operations where spurious overflow can occur.

Proposition 5 (FastTwoSum is immune to overflow). Let x, y ∈ FP(2, p, emin, emax) be

finite floating-point values in a base-2 floating-point format, and suppose their exponents

ex, ey ∈ Z satisfy ex ≥ ey. If x ⊕ y is finite, then no overflow occurs in the execution of

FastTwoSum(x, y).

Proof. See [11, Theorem 5.1].

An important algebraic property of the TwoSum and FastTwoSum algorithms is that

they are idempotent operations, i.e., after they are applied to any pair of inputs once,

applying them again produces no further change. This property is crucial to establish the

uniqueness of a special type of floating-point representation discussed in Section 3.2.

Proposition 6 (TwoSum is idempotent). Let x, y ∈ FP(b, p, emin, emax) be finite floating-

point values. If no overflow occurs in the computation of (s, e) := TwoSum(x, y), then

TwoSum(s, e) = (s, e).

CHAPTER 2. BACKGROUND 25

Proof. Let (s′, e′) := TwoSum(s, e). By definition, s+ e = x+ y, so we can write:

s′ = RNE(s+ e) = RNE(x+ y) = s (2.20)

We also have s′ + e′ = s+ e by definition, from which subtracting s′ = s yields e = e′.

The equivalence of TwoSum and FastTwoSum implies that Proposition 6 also applies to

FastTwoSum when the preconditions of Algorithm 2 or Proposition 4 are satisfied.

Floating-point multiplication also admits an error-free transformation called TwoProd,

which is particularly simple to state using the FMA operation.

Algorithm 3: (p, e) := TwoProd(x, y)

Input: x, y ∈ FP(b, p, emin, emax)
Output: p, e ∈ FP(b, p, emin, emax) such that p = x⊗ y and, if all values are finite

and no overflow or underflow occurs, then e = xy − (x⊗ y) exactly.

1 p := x⊗ y;
2 e := FMA(x, y,−p);
3 return (p, e);

The definition of FMA makes the correctness of Algorithm 3 follow trivially from the

observation that the product of two p-digit numbers can have at most 2p digits. In situations

where FMA is not available, an alternative TwoProd algorithm can be stated using only⊕, ⊖,

and ⊗, based on a technique known as Veltkamp splitting [95, 96, 25]. This algorithm is more

computationally intensive, using five additions, five subtractions, and seven multiplications,

compared to Algorithm 3, which uses just one multiplication and one FMA. We refer to the

Handbook of Floating-Point Arithmetic [72, Section 4.4.2] for details.

Note that the preconditions for the correctness of TwoProd include a prohibition against

underflow, in contrast to TwoSum and FastTwoSum, which only prohibit overflow. Under-

flow cannot occur in floating-point addition or subtraction because the exact result is always

an integer multiple of bemin−(p−1), the smallest nonzero subnormal number. Multiplication

does not have this property. Even when both factors are an integer multiple of bemin−(p−1),

their product can be much smaller than bemin−(p−1), which introduces underflow as a possible

CHAPTER 2. BACKGROUND 26

failure mode of the TwoProd algorithm.

Error-free transformations do not exist for floating-point division ⊘ and square root ◦
√
,

since rounding errors for these operations do not, in general, admit exact floating-point

representations. Indeed, experience with schoolbook arithmetic shows that addition, sub-

traction and multiplication are finite procedures that always terminate, while long division

and square root can produce infinitely many nonzero digits. The FMA operation does admit

an error-free transformation [14], but we do not use this algorithm in this dissertation.

The existence of error-free transformations challenges the widely held misconception

that floating-point rounding errors are random noise. Although it is common to model

rounding errors as though they were random in numerical analysis, the determinism of

the RNE procedure (Definitions 11 and 12) can be exploited to extend the precision of a

floating-point computation beyond the precision p of the underlying floating-point format.

This key idea underpins all of the techniques developed in this dissertation.

2.6 Beyond Machine Precision

The largest floating-point format supported by the vast majority of computer processors

today is binary64, a status quo that has not changed since the publication of IEEE Stan-

dard 754 in 1985. To our knowledge, only IBM POWER9 and POWER10 CPUs include

hardware support for binary128 and decimal128; no processors have ever featured hard-

ware support7 beyond 128-bit (quadruple precision) formats. Intel and AMD x86 CPUs

nominally support an 80-bit extended floating-point format, but this is retained only for

backward compatibility with the x87 floating-point coprocessor and is not intended for use

in modern high-performance applications. Execution of x87 instructions is not pipelined and

carries a significant performance penalty for switching in and out of legacy execution mode.

Floating-point formats beyond binary64 are also completely absent from GPUs, which pro-

vide the bulk of computational horsepower in modern supercomputers. In practice, machine

7Quadruple-precision floating-point arithmetic is specified as an optional extension in the PA-RISC,
SPARC, and RISC-V architectures, but to our knowledge, no hardware implementation of these architectures
has ever implemented such an extension.

CHAPTER 2. BACKGROUND 27

precision is almost always synonymous with binary64.

This limitation raises a natural question: what can we do when machine precision is

insufficient to solve a particular numerical problem?

One obvious answer is to build a machine that supports larger floating-point formats.

However, the cost of designing a new high-performance computer processor, estimated to

lie in the billions of U.S. dollars [90, 39, 36], makes this avenue economically infeasible

for all but the largest commercial-scale applications. Programmable logic devices, such

as FPGAs [16, 50, 48, 49], can be cheaper than fully custom hardware but still carry

significant development, validation, and deployment costs. Notably, FPGAs are rarely

found in commodity computing resources, such as cloud providers and scientific computing

clusters. None of the 100 fastest supercomputers on the June 2025 TOP500 list [92] use

FPGAs to provide any significant fraction of their computational throughput.

Another approach, favored by numerical analysts, is to improve the numerical stability

of the underlying numerical algorithm, i.e., redesign the algorithm to reduce its sensitiv-

ity to rounding errors. A more numerically stable algorithm can compute a final answer

with greater accuracy even when executed in the same floating-point precision. However,

techniques for improving numerical stability are typically restricted to specific classes of

problems, and developing new techniques for a novel problem class requires deep math-

ematical expertise. Even within well-studied problem classes, a technique that improves

numerical stability in one instance (say, an eigenvalue problem from quantum chemistry)

might be useless, or even counterproductive, on another instance of the same problem (such

as an eigenvalue problem from geoscience or medical imaging).

A third option, which is the primary focus of this dissertation, is to implement higher-

precision floating-point operations in software. This option is particularly attractive be-

cause it is low-cost, requiring no specialized hardware, and highly general, applicable to

any numerical algorithm with only superficial code changes. However, this approach is gen-

erally avoided in demanding high-performance applications because software floating-point

emulation has historically been thousands of times slower than native machine-precision

CHAPTER 2. BACKGROUND 28

arithmetic. To make matters worse, software algorithms for floating-point arithmetic typi-

cally involve complex branching patterns that are ill-suited to data-parallel processors, such

as SIMD CPUs and GPUs, which simultaneously execute each instruction on multiple in-

puts in parallel. If different inputs take distinct pathways through a branching program,

then a data-parallel processor must either explore all branches or revert to serial execution,

severely degrading performance. A 10× to 100× slowdown is typical in this situation.

Among software floating-point implementations, it is important to distinguish extended-

precision libraries, which implement floating-point arithmetic at a specific fixed precision

(e.g., binary128 or decimal128), from arbitrary-precision or multiprecision libraries, which

provide generic algorithms for floating-point arithmetic at any precision requested by the

user, limited only by the memory capacity of the machine. Although arbitrary-precision

libraries are more flexible, generic precision-agnostic algorithms are significantly more com-

plicated to implement and provide fewer avenues for performance optimization. Moreover,

scientific and engineering applications rarely8 need truly arbitrary precision. A modest

multiple of machine precision, such as binary128 or binary256, is usually9 sufficient to cor-

rect the numerical deficiencies of computing in machine precision. Thus, extended-precision

software libraries are typically preferred in scientific computing.

The conventional approach to extended- or arbitrary-precision floating-point arithmetic

in software is to first implement big integers in software, i.e., integers exceeding the capacity

of one machine word, typically 232−1 or 264−1. Floating-point operations are then expressed

in terms of big integer operations. The most common big integer implementation strategy,

adopted by the GMP [38], MPFR [32], FLINT [40], and Boost.Multiprecision [68] libraries,

is to use arrays of machine words to represent digits in base 232 or 264.

An alternative technique, implemented in the MPRES-BLAS library [47], is to store a

big integer N as a sequence of remainders ri := N modmi modulo pairwise coprime divisors

m1,m2, . . . ,mn. Certain arithmetic operations, including addition and multiplication, can

8Fields that truly demand arbitrary precision, such as cryptography and computational number theory,
treat numbers as data or purely mathematical objects rather than measurements of the physical world.

9As previously noted, the scale of the observable universe spans roughly 60 orders of magnitude in all
physical dimensions, so a hypothetical “octuple precision” floating-point format (binary256 or decimal256)
would be sufficient to store any measurement possible under current models of fundamental physics.

CHAPTER 2. BACKGROUND 29

be performed directly on this sequence of remainders, and the Chinese Remainder Theorem

allows N to be uniquely reconstructed from r1, r2, . . . , rn and m1,m2, . . . ,mn.

Regardless of which big integer representation is used, implementing floating-point arith-

metic on top of an integer abstraction requires sophisticated conditional logic to handle

mantissa alignment, rounding, and normalization. Libraries that adopt this approach un-

avoidably include complex branching code that substantially degrades performance com-

pared to native machine arithmetic.

Another approach that sidesteps big integers entirely is to directly reduce extended-

precision floating-point arithmetic to machine-precision floating-point operations. In this

framework, a high-precision constant C ∈ R is represented as a floating-point expansion,

i.e., a sequence of successive machine-precision approximations of the following form:

x0 := RNE(C)

x1 := RNE(C − x0)

x2 := RNE(C − x0 − x1)

...

xn−1 := RNE(C − x0 − x1 − · · · − xn−2)

C ≈ x0 + x1 + x2 + · · ·+ xn−1

(2.21)

Provided that no overflow or underflow occurs in this process, the final n-term expansion

(x0, . . . , xn−1) approximates C with precision no less than np. This approach forms the

primary focus of this dissertation and is developed in the following chapter.

Chapter 3

Algorithms

In this chapter, we introduce floating-point accumulation networks (FPANs), a class of

algorithms that perform extended-precision floating-point arithmetic using a linear branch-

free sequence of TwoSum operations. Although particular instances of FPAN-like algorithms

have been studied in prior work [25, 64, 42, 63, 56, 55, 30], to our knowledge, this dissertation

and its supporting papers [100, 101] are the first research works to propose a common

theoretical framework that unifies all algorithms of this type. This unification allows us

to formulate a computer-aided verification technique that automatically constructs a proof

of correctness for a given FPAN (Chapter 4) and an evolutionary search strategy that

systematically explores the space of all FPANs to find the fastest possible algorithm for

a given task (Chapter 5). When combined, these techniques enable us to discover novel

algorithms for extended-precision floating-point arithmetic that are faster than all known

algorithms.

3.1 Assumptions

Before we proceed, we recall a critical assumption made in the previous chapter.

Assumption 1. Throughout this dissertation, all floating-point operations are assumed to

be rounded to nearest with ties broken to even (i.e., executed with the roundTiesToEven

30

CHAPTER 3. ALGORITHMS 31

rounding-direction attribute).

We also introduce two additional assumptions that hold throughout the remainder of

this dissertation. Both of these assumptions are carefully formulated to accord with common

practice in numerical analysis and scientific computing, considerably simplifying our analysis

while retaining as much generality as possible in our results.

Assumption 2. From this point onward, we work exclusively in base b = 2 and fix some

precision p ≥ 2, which we call the machine precision.

Binary floating-point arithmetic is overwhelmingly more common than floating-point

arithmetic in any other base, due not only to the intrinsic binary nature of digital circuits,

but also the fact that base b = 2 minimizes the relative representation error of storing an

arbitrary real number [72, Section 2.7.1]. For these reasons, it is completely standard to

assume b = 2 both inside and outside the floating-point research community [11, 12, 51].

The fixed machine precision p is intended to represent the largest floating-point format

supported by a given processor, which is p = 53 (binary64) in almost all cases of cur-

rent practical interest. To develop efficient algorithms for extended-precision floating-point

arithmetic, it is preferable to work in the largest native format available. Nonetheless,

the results presented in this dissertation apply to binary floating-point arithmetic in any

precision p ≥ 2. We do not consider algorithms that mix multiple floating-point formats.

Assumption 3. All floating-point numbers are henceforth assumed to lie in the unbounded

floating-point domain FP(2, p) (see Definition 10), and all nonzero floating-point numbers

are assumed to be normalized. This means we identify +0.0 with -0.0, exclude the special

values +Inf, -Inf, and NaN, and ignore overflow, underflow, and subnormal numbers.

The algorithms developed in this dissertation use TwoSum, FastTwoSum, and TwoProd

as basic building blocks. These operations are no more susceptible to overflow or underflow

than the underlying operations ⊕ and ⊗ (see Propositions 3 and 5 and the discussion in

Section 2.5). The binary64 exponent range (2−1022 ≈ 2.2× 10−308 to 21023 ≈ 1.8× 10308) is

wide enough that overflow and underflow essentially never occur outside exceptional situ-

ations with known remedies (e.g., working with log-likelihood instead of direct likelihood).

CHAPTER 3. ALGORITHMS 32

In particular, this range is wide enough to represent any physically measurable quantity

and hence implement any physics simulation (see footnotes in Sections 2.5 and 2.6).

Although +0.0 and -0.0 are technically distinct floating-point values with different

IEEE encodings, it is standard to treat zero as an unsigned quantity. In fact, IEEE Standard

754 defines the floating-point equality operator to regard +0.0 and -0.0 as equal, so that

+0.0 == -0.0 evaluates to true in any conforming programming environment.

3.2 Floating-Point Expansions

The algorithms presented in this dissertation work with extended-precision numbers repre-

sented as sequences of multiple machine-precision numbers. A representation of this type

is called a floating-point expansion and uses n machine-precision terms, each with a p-bit

mantissa, to collectively represent a single number with at least np bits of precision.

Definition 15 (floating-point expansion, length, term, real value, RealVal(x0, . . . , xn−1)).

A floating-point expansion of length n ∈ N is an ordered n-tuple of floating-point numbers

(x0, . . . , xn−1) ∈ FP(2, p)n. The elements of the tuple are called the terms of the expansion.

The real value of a floating-point expansion (x0, . . . , xn−1) is the exact sum of its terms.

RealVal(x0, . . . , xn−1) := x0 + · · ·+ xn−1 (3.1)

An example of a floating-point expansion in precision p = 6 is shown in Figure 3.1. This

example demonstrates that the terms of a floating-point expansion should be nonoverlapping

in order to maximize the overall precision of the expansion. In other words, no bit in

the binary expansion of the constant C ∈ R should be redundantly represented in the

mantissa of more than one term. Several inequivalent ways to formalize this notion have

been presented in the research literature [72, Section 14.2]. The definition that we adopt

is particularly strong and simple to state, but it is often cumbersome to work with in

traditional pen-and-paper mathematical proofs.

CHAPTER 3. ALGORITHMS 33

high-precision constant C = 1 0 1 . 0 1 1 1 0 1 1 0 1 0 1 1 . . .

S-nonoverlapping precision < 2p
x0 = 1 0 1 . 0 0 0
x1 = 0 . 0 1 1 1 0 1 1

P-nonoverlapping precision ≥ 2p
x0 = 1 0 1 . 0 1 1
x1 = 0 . 0 0 0 1 0 1 1 0 1

strongly nonoverlapping precision ≥ 2p+ 1
x0 = 1 0 1 . 1 0 0
x1 = − 0 . 0 0 0 0 1 0 0 1 0 1

Figure 3.1: S-nonoverlapping, P-nonoverlapping, and strongly nonoverlapping floating-
point expansions of a real number C with terms of precision p = 6. Light blue digits
represent a shift stored in the exponent and are not explicitly represented in the mantissa.
The strongly nonoverlapping expansion rounds x0 up instead of down, causing x1 to be
negative and the mantissa of x1 to contains the one’s complement of the corresponding bits
in C. This allows the sign bit of x1 to provide an extra implicit bit of precision.

Definition 16 (strongly dominates, ≻). Let x and y be floating-point numbers. We say

that x strongly dominates y, denoted by x ≻ y, if x⊕ y = x.

Note that x ≻ y implies |x| ≥ |y|, but x ≻ y neither implies, nor is implied by, x > y.

Every floating-point number, including zero, strongly dominates zero.

Definition 17 (strongly nonoverlapping). A floating-point expansion (x0, . . . , xn−1) is

strongly nonoverlapping if xk−1 ≻ xk for all k = 1, . . . , n− 1.

The intuitive meaning of x ≻ y is to assert that y is too small to push x even halfway to-

ward either of its closest floating-point neighbors. This captures a strong notion of nonover-

lapping. Indeed, if the mantissa of y were to overlap the mantissa of x, then the overlapping

bits in y would flip the corresponding bits in x when added together, causing x ⊕ y to be

different from x. The condition x⊕ y = x prohibits this.

The error-free transformations TwoSum, FastTwoSum, and TwoProd can all be used to

create strongly nonoverlapping expansions. The following proposition shows that the sum

or product always strongly dominates the rounding error computed by these operations.

Proposition 7 (Result strongly dominates rounding error). Let x and y be arbitrary

floating-point numbers.

CHAPTER 3. ALGORITHMS 34

• If (s, e) := TwoSum(x, y), then s ≻ e.

• If (p, e) := TwoProd(x, y), then p ≻ e.

Proof. The defining property of TwoProd (Algorithm 3) stipulates that its outputs (p, e)

are the unique floating-point numbers satisfying p = RNE(xy) and p+ e = xy. Hence,

p⊕ e = RNE(p+ e) = RNE(xy) = p (3.2)

which, by definition, proves p ≻ e. The same argument applies to TwoSum by replacing xy

with x+ y throughout the proof.

It is natural to ask why floating-point expansions based on machine-precision numbers

should be preferable to direct implementation of a larger floating-point format. After all,

how can it be more efficient to manipulate n independent floating-point numbers, each

with its own sign, exponent, and mantissa, than a single large number? The answer lies in

the branching nature of floating-point representation, which is fundamentally defined using

case analysis (Definition 9). Every floating-point arithmetic operation involves branching

steps, such as mantissa alignment, rounding, and normalization, that significantly degrade

performance when implemented in software, particularly on data-parallel processors. Al-

gorithms based on floating-point expansions avoid implementing these steps in software by

leveraging the native mantissa alignment, rounding, and normalization circuitry built into

a floating-point processor. Computing with floating-point expansions requires more work

in an absolute sense, but this work maps more efficiently onto existing hardware.

The performance advantage of floating-point expansions diminishes as the number of

terms increases. At a certain length, the increasing cost of the arithmetic workload exceeds

the fixed cost of branching, and direct implementation of a larger floating-point format

becomes faster. The exact crossover point depends on the underlying computer architecture,

occurring at roughly 4–8 terms on modern SIMD CPUs [102].

Long floating-point expansions are also impractical for another reason. Floating-point

CHAPTER 3. ALGORITHMS 35

expansions cannot be made arbitrarily precise because they are subject to the same over-

flow and underflow thresholds as the underlying native format. A strongly nonoverlapping

expansion can only hold ⌈(emax − emin + p)/(p+ 1)⌉ terms before all subsequent terms are

guaranteed to underflow. This theoretical limit is 39 terms in binary64 and only 12 terms

in binary32. (The appearance of p + 1 in the denominator is explained in Section 3.2.2.)

Moreover, a floating-point expansion can only reach this theoretical limit if its terms span

the full exponent range from emax to emin. The practical limit for the majority of numerical

applications, which do not make use of this full range, is considerably smaller.

For these reasons, floating-point expansions are typically used with a small fixed length,

such as n = 2, 3, or 4 terms [64, 63, 22, 91, 42]. These fixed-length expansions are

called double/triple/quad-word or double/triple/quad-double numbers. The latter names

are used when the underlying machine-precision format is binary64, but many algorithms

for double/triple/quad-double arithmetic are precision-agnostic and also work in other for-

mats. In particular, the algorithms presented in this dissertation work in any underlying

machine precision p ≥ 2.

3.2.1 Alternative Nonoverlapping Conditions

For completeness, we also state definitions for several alternative nonoverlapping condi-

tions that appear in other work. The S-nonoverlapping and P-nonoverlapping conditions

appear in research by Shewchuk [89] and Priest [82], while ulp-nonoverlapping and QD-

nonoverlapping are used throughout the algorithms implemented in the CAMPARY [55]

and QD [42] software libraries. As its name suggests, strong nonoverlapping is a strictly

stronger condition than all of these alternative conditions.

Definition 18 (S-dominates, ≻S , P-dominates, ≻P , ulp-dominates, ≻ulp, QD-dominates,

≻QD). Let x, y ∈ FP(2, p), and let ex, ey ∈ Z denote their exponents (undefined if x or y is

zero). If x is nonzero, let ntzx denote the number of trailing zeros in its mantissa.

• We say that x S-dominates y, denoted by x ≻S y, if y is zero, or if x and y are both

nonzero and ex ≥ ey + (p− ntzx).

CHAPTER 3. ALGORITHMS 36

• We say that x P-dominates y, denoted by x ≻P y, if y is zero, or if x and y are both

nonzero and ex ≥ ey + p.

• We say that x ulp-dominates y, denoted by x ≻ulp y, if |y| ≤ 2ex−(p−1).

• We say that x QD-dominates y, denoted by x ≻QD y, if |y| ≤ 2ex−p.

Definition 19 (S-nonoverlapping, P-nonoverlapping, ulp-nonoverlapping, QD-nonover-

lapping). A floating-point expansion (x0, . . . , xn−1) is S-nonoverlapping if xk−1 ≻S xk

for all k = 1, . . . , n − 1. We similarly define P-nonoverlapping, ulp-nonoverlapping, and

QD-nonoverlapping expansions with ≻P , ≻ulp, and ≻QD replacing ≻S in the preceding

definition.

These alternative nonoverlapping conditions are not used to establish the main results

of this dissertation. Nonetheless, the verification technique that we develop in Chapter 4 is

general enough to subsume all of these conditions as special cases. Thus, our work remains

applicable in settings where these alternative conditions may be more appropriate than

strong nonoverlapping.

We state the following proposition to precisely characterize the gap in logical strength

between strong nonoverlapping and the weaker alternative nonoverlapping conditions. The

striking complexity of this logical characterization explains why strong nonoverlapping,

despite having a simple definition, is more difficult to work with in mathematical proofs

than the alternative nonoverlapping conditions.

Definition 20 (signed power of two). A signed power of two is a number of the form ±2k

for any k ∈ Z.

Equivalently, a signed power of two is a floating-point number whose mantissa has

exactly one nonzero bit. Note that zero is not a signed power of two.

Proposition 8 (Characterization of strong nonoverlapping). Let x and y be floating-point

numbers, and let sx and sy denote their sign bits. If x and y are nonzero, let ex and ey

denote their exponents. Then x ≻ y if and only if one of the following conditions holds:

CHAPTER 3. ALGORITHMS 37

1. y is zero.

2. x and y are both nonzero and ex > ey + (p+ 1).

3. x and y are both nonzero, ex = ey + (p + 1), and at least one of the following sub-

conditions holds:

(a) sx = sy.

(b) x is not a signed power of two.

(c) y is a signed power of two.

4. x and y are both nonzero, ex = ey + p, y is a signed power of two, the trailing bit of

the mantissa of x is zero, and at least one of the following sub-conditions holds:

(a) sx = sy.

(b) x is not a signed power of two.

Proof. Case 1 is immediate. To analyze the remaining cases, let x and y be nonzero, and

assume without loss of generality that x is positive. Define h := 2ex−(p−1) and suppose first

that x is not a signed power of two. Under this assumption, the immediate floating-point

predecessor and successor of x are x ± h. In Cases 2 and 3, we have |y| < 2ex−(p+1) = 1
4h

and |y| < 2ex−p = 1
2h respectively, both of which guarantee that x+ y lands in the interval

of real numbers that round to x. In Case 4, if y is a signed power of two, then y = ±1
2h,

which means that RNE(x+ y) = x if and only if the trailing bit of the mantissa of x is zero.

If y is not a signed power of two, then |y| > 1
2h, which implies RNE(x+ y) ̸= x.

On the other hand, if x is a signed power of two, then its immediate floating-point

predecessor is x− 1
2h while its immediate successor is x+h. The analysis proceeds identically

as before if x and y have the same sign, but if x and y have different signs, then the threshold

at which RNE(x + y) ̸= x is reduced by a factor of 2. We leave it to the reader to verify

that the statements of Cases 3 and 4 correctly account for this reduction.

Signed powers of two play a special role in the analysis of strong nonoverlapping because

they are the critical step sizes that can push a floating-point number precisely halfway

CHAPTER 3. ALGORITHMS 38

to its neighbor. When this occurs, we must explicitly invoke the RNE tie-breaking rule

(Definition 11) to determine whether x strongly dominates y. This can create a tangled

web of logical conditions, splitting the analysis of a numerical algorithm into a myriad of

cases depending on the mantissa parity of each floating-point number involved.

To complete our discussion of alternative nonoverlapping conditions, we make the follow-

ing observations to compare their logical strength. These claims are stated without proof

and are not used in the remainder of this dissertation; they merely serve to situate our

results about strong nonoverlapping in the context of the floating-point research literature.

• Strong nonoverlapping implies QD-nonoverlapping. Indeed, the gap between strong

nonoverlapping and QD-nonoverlapping is precisely that QD-nonoverlapping ignores

the parity of the mantissa to avoid explicit analysis of the RNE tie-breaking rule.

Outside these tie-breaking cases, strong nonoverlapping and QD-nonoverlapping are

otherwise synonymous.

• QD-nonoverlapping implies P-nonoverlapping.

• P-nonoverlapping most directly captures the intuitive meaning of nonoverlapping. i.e.,

each mantissa bit should represent a distinct place value. However, it is difficult to

maintain P-nonoverlapping as an algorithmic invariant because many floating-point

operations can create one bit of overlap.

• P-nonoverlapping implies ulp-nonoverlapping. The gap between these conditions is

that x ≻ulp y allows y to overlap the trailing bit of x when y is a signed power of two.

• P-nonoverlapping also implies S-nonoverlapping.

• S-nonoverlapping and ulp-nonoverlapping are incomparable (i.e., neither logically im-

plies the other).

• Despite being one of the weakest nonoverlapping conditions, S-nonoverlapping is

useful in practice because there are particularly simple algorithms that produce S-

nonoverlapping floating-point expansions [72, Section 14.2].

CHAPTER 3. ALGORITHMS 39

3.2.2 Uniqueness and Renormalization

Just as a single floating-point number can have multiple representations, it is possible for

distinct floating-point expansions to share the same real value. For example, any permuta-

tion of the terms of a floating-point expansion (x0, . . . , xn−1) is another expansion with the

same real value. Similarly, the real value remains unchanged when any two terms (xi, xj)

are replaced by TwoSum(xi, xj). It is natural to ask whether a condition analogous to

normalization can be imposed to eliminate this ambiguity.

Strong nonoverlapping is a clear candidate for this criterion. It requires the terms of

a floating-point expansion to be sorted in magnitude from largest to smallest, eliminating

permutation ambiguity, and ensures that the terms remain unchanged by the application of

TwoSum. Indeed, it is possible to bring any floating-point expansion into strongly nonover-

lapping form by repeatedly applying TwoSum to its terms until no overlap remains, a proce-

dure known as renormalization [72, Section 14.2.1]. Intuitively, each application of TwoSum

redistributes mantissa bits between a given pair of terms (xi, xi+1) to clear away overlap-

ping bits. This redistribution may create new overlap in the adjacent pairs (xi−1, xi) and

(xi+1, xi+2), but it can be shown that this process reaches a fixed point in a finite number

of applications of TwoSum [12], producing a strongly nonoverlapping expansion.

Surprisingly, it is possible for two distinct floating-point expansions, both fully renor-

malized, to share the same real value. In other words, strong nonoverlapping is not strong

enough to guarantee uniqueness of representation. To understand why this is the case, we

first introduce a procedure that truly guarantees uniqueness by algorithmically constructing

a distinguished floating-point expansion for any real number.

Definition 21 (canonical floating-point expansion). Let C ∈ R and n ∈ N. The canonical

floating-point expansion of C with length n is the floating-point expansion (x0, . . . , xn−1)

CHAPTER 3. ALGORITHMS 40

computed as follows:

x0 := RNE(C)

x1 := RNE(C − x0)

x2 := RNE(C − x0 − x1)

...

xn−1 := RNE(C − x0 − x1 − · · · − xn−2)

(3.3)

The canonical floating-point expansion (x0, . . . , xn−1) defined above is the maximally

accurate floating-point expansion in the sense that, for each k = 1, . . . , n, the k-term ap-

proximation error |C − x0 − · · · − xk−1| is minimized. Any other floating-point expansion

either differs only in RNE tie-breaking or has a strictly larger k-term approximation error

for some value of k.

The relative k-term approximation error |C − x0 − · · · − xk−1|/|C| of the canonical

floating-point expansion is at most 2−np−(n−1). The appearance of np in the exponent is

unsurprising since each of the n terms has a p-bit mantissa, but this does not account for

the unexpected appearance of n − 1 additional bits. These additional bits arise from the

sign bit of each subsequent term providing an extra implicit bit of precision between terms,

as shown in Figure 3.1. This extra implicit precision occurs only when rounding to nearest,

which provides a significant advantage over other rounding strategies.

With the canonical floating-point expansion defined, we are now prepared to understand

why a strongly nonoverlapping expansion can fail to be canonical. The issue, perhaps

unsurprisingly, arises from tie-breaking. In particular, two consecutive rounding midpoints

can occur in an expansion with three or more terms. When considered together, these

consecutive midpoints imply that the expansion, as a whole, is non-canonical. However, the

TwoSum algorithm, which only operates on two terms at a time, is unable to correct this.

Example 5. The floating-point expansion (1, 2−p, 2−2p) is strongly nonoverlapping. To

see this, observe that 1 + 2−p lies exactly in the middle of two neighboring floating-point

numbers, 1 and 1 + 2−(p−1). The rounding function RNE prefers the former because the

final entry of its mantissa (1, 0, . . . , 0) is even, so 1⊕2−p = RNE(1+2−p) = 1. An analogous

CHAPTER 3. ALGORITHMS 41

calculation shows that 2−p ⊕ 2−2p = 2−p.

However, (1, 2−p, 2−2p) is not canonical because RNE(1+ 2−p+2−2p) ̸= 1. This number

slightly exceeds the midpoint 1 + 2−p, so it rounds up to the subsequent floating-point

number 1 + 2−(p−1). Therefore, the canonical floating-point expansion of 1 + 2−p + 2−2p is

(1 + 2−(p−1),−2−p + 2−2p, 0), which has fewer nonzero terms than (1, 2−p, 2−2p).

Although this chain-of-midpoints phenomenon demonstrates that strongly nonoverlap-

ping expansions are not necessarily unique, in practice, it is exceedingly rare for such a chain

of midpoints to arise without being deliberately crafted using pathological input data. Thus,

in non-adversarial settings, it is typically safe to assume that any strongly nonoverlapping

floating-point expansion is the canonical expansion of its real value.

3.3 Floating-Point Accumulation Networks

As their name suggests, floating-point accumulation networks (FPANs) perform the task of

accumulation, i.e., extended-precision summation of multiple floating-point numbers. Al-

though this task may seem modest, we will see that accumulation encapsulates the essential

difficulties of computation with floating-point expansions. Once accumulation is solved, all

remaining arithmetic operations, including addition, subtraction, multiplication, division,

and square root, follow in a straightforward fashion.

To understand why accumulation is a nontrivial task, consider the problem of adding

two floating-point expansions, (x0, . . . , xn−1) and (y0, . . . , yn−1). We want to compute a

floating-point expansion (z0, . . . , zn−1) such that RealVal(z0, . . . , zn−1) is as close as possible

to the exact sum RealVal(x0, . . . , xn−1) + RealVal(y0, . . . , yn−1). One näıve approach is to

add the inputs term-by-term:

z0 := x0 ⊕ y0

...

zn−1 := xn−1 ⊕ yn−1

(3.4)

This strategy, while intuitively appealing, is completely incorrect, producing a result that

CHAPTER 3. ALGORITHMS 42

is no more accurate than the machine-precision sum x0 ⊕ y0. There are two issues at play:

• Each of the floating-point sums xi⊕ yi is rounded, and the rounding error (xi + yi)−

(xi ⊕ yi) must be accounted for when computing the subsequent term xi+1 ⊕ yi+1.

• If the result of xi ⊕ yi is smaller in magnitude than xi or yi, then it may overlap the

result of xi+1 ⊕ yi+1. Mantissa bits must then be redistributed between these two

terms in order to maintain the nonoverlapping invariant.

Both of these issues can be resolved by using the TwoSum and FastTwoSum operations

to compute and propagate rounding errors and to clear overlapping mantissa bits between

adjacent terms (Proposition 7). These capabilities make error-free transformations funda-

mental building blocks for computation with floating-point expansions.

However, even with these powerful tools in hand, the development of branch-free al-

gorithms for floating-point expansion arithmetic remains challenging. To construct such

an algorithm, we must devise a single, fixed sequence of error-free transformations that

correctly propagates rounding errors while removing overlapping bits between all adjacent

terms. It is not difficult to find such a sequence for a particular input, but it is very difficult

to construct a single sequence that does the job for all possible inputs. Designing sequences

of error-free transformations with correct error propagation and nonoverlapping semantics

is a remarkably difficult problem; the literature on this subject is punctuated by refutations

and corrections [54, 73]. Some general constructions are known, but these algorithms are far

from optimal, particularly when the number of inputs is small [21, 72]. This fundamental

challenge motivates the study of floating-point accumulation networks.

We formally define floating-point accumulation networks as a class of branch-free algo-

rithms using a graphical notation inspired by sorting networks [61].

Definition 22 (floating-point accumulation network, FPAN, wire, gate, discarded). A

floating-point accumulation network (FPAN) is a diagram consisting of horizontal wires

and vertical gates. Each gate connects exactly two input wires to one or two output wires.

The input wires are drawn to the upper-left and lower-left of the gate, and the output wires

CHAPTER 3. ALGORITHMS 43

are drawn to its upper-right and (if two output wires are present) its lower-right. If there

is only one output wire, then we say that the lower wire is discarded. We define three types

of gates corresponding to floating-point addition, TwoSum, and FastTwoSum, respectively:

x s

y
s := x⊕ y (3.5)

x s

y e
(s, e) := TwoSum(x, y) (3.6)

x s

y e
(s, e) := FastTwoSum(x, y) (3.7)

The downward-pointing arrowhead on the FastTwoSum gate is intended to serve as a

mnemonic reminder that the top input, if nonzero, must be larger in magnitude than the

bottom input. Similarly, the larger-magnitude output is always placed on top.

An FPAN with n wires, of which k are discarded, represents the following algorithm with

n floating-point inputs and n − k floating-point outputs. Each input value (x0, . . . , xn−1)

enters on the left-hand side of each wire, ordered top-to-bottom unless otherwise specified

by explicit labels. The values flow left-to-right along the wires, and whenever two values

(xi, xj) encounter a gate, they are updated as specified by Equations (3.5), (3.6), and (3.7).

After all gates have been executed, all values on non-discarded wires are returned in top-

to-bottom order. To illustrate this definition, Figure 3.2 presents equivalent pseudocode

and network diagram representations of Dekker’s add2 algorithm, the first algorithm ever

proposed for double-double addition [25].

The intended operation of an FPAN is to compute a strongly nonoverlapping floating-

point expansion of the exact sum of its input values. By the defining property of TwoSum

(Algorithm 1), this value is invariant under the application of a TwoSum gate to any two

wires; it is only ever changed by discarding a wire. Therefore, an FPAN is correct if and

only if the following correctness conditions hold:

CHAPTER 3. ALGORITHMS 44

Algorithm 4: add2((x0, x1), (y0, y1))

Input: floating-point expansions
(x0, x1) and (y0, y1).

Output: floating-point expansion
(z0, z1) for x+ y.

1 (s0, s1) := TwoSum(x0, y0);
2 t := x1 ⊕ y1;
3 u := s1 ⊕ t;
4 (z0, z1) := FastTwoSum(s0, u);
5 return (z0, z1);

x0 z0

y0 z1

x1

y1

Figure 3.2: Pseudocode and FPAN representations of Dekker’s add2 algorithm. Note that
the intermediate variables s0, s1, t, u are anonymous in the FPAN representation, implicitly
represented by the wire segments running between TwoSum gates.

• The inputs of every FastTwoSum gate must satisfy the hypotheses of Proposition 4.

• The output values must be strongly nonoverlapping for all possible input values.

• The rounding errors discarded by addition gates must be small relative to the leading

output term z0. In particular, an FPAN has q-bit precision if the absolute value of

the sum of all discarded values is at most 2−q|z0|.

Verifying these properties requires extensive case analysis of all possible rounding error

patterns that can be created by a given sequence of sum, TwoSum, and FastTwoSum opera-

tions. This combinatorial explosion of cases is challenging and tedious to analyze by hand;

we refer the reader to the proof of [54, Theorem 3.1] for an example of this phenomenon.

Dekker’s add2 algorithm (Algorithm 4) is notable for having an extremely weak error

bound that violates the third correctness condition. Assuming P-nonoverlapping inputs

(x0, x1) and (y0, y1), Dekker proved [25] that the relative difference between the sum (z0, z1)

computed by add2 and the true sum x0 + x1 + y0 + x1 is bounded above by:

|(z0 + z1)− (x0 + x1 + y0 + y1)|
|x0 + x1 + y0 + y1|

≤ 4u2
|x0 + x1|+ |y0 + y1|
|x0 + x1 + y0 + y1|

(3.8)

Although this relative error bound is reasonably tight when (x0, x1) and (y0, y1) have the

CHAPTER 3. ALGORITHMS 45

same sign, it can be extremely loose when (x0, x1) and (y0, y1) have different signs, which can

cause |x0 + x1|+ |y0 + y1| to be orders of magnitude larger than |x0 + x1 + y0 + y1|. Joldes,

Muller, and Popescu [54] identified example inputs for which add2 computes sums with

100% relative error, i.e., zero accurate bits compared to the true value of x0 + x1 + y0 + y1.

This observation highlights the surprising difficulty of computing accurate floating-point

sums, even for as few as four inputs. At first glance, the network diagram shown in Figure 3.2

may not appear to have any obvious deficiencies. Indeed, when interpreted as a sorting

network, this diagram gives a correct algorithm for partially sorting four inputs satisfying

the preconditions x0 > x1 and y0 > y1. However, there are two fundamental differences

that make floating-point accumulation harder than sorting. First, the outputs of an FPAN

not only need to be sorted by magnitude, but also require a degree of mutual separation in

order to be strongly nonoverlapping. Second, unlike a comparator which merely reorders

its inputs, a TwoSum gate actually modifies its inputs, potentially introducing new overlap

and ordering issues with every operation.

Kahan–Babuška–Neumaier (KBN) summation is another example of an FPAN-like al-

gorithm proposed in prior work [58, 2, 76]. This algorithm uses FastTwoSum to compute

floating-point sums with a running compensation term to improve the accuracy of the final

result. This technique is frequently used in floating-point programs and is implemented in

both the Python and Julia standard libraries. In particular, Python’s built-in sum() func-

tion uses KBN summation when given floating-point inputs [83]. In our graphical FPAN

notation, the KBN algorithm has a double staircase structure illustrated in Figure 3.3.

The first staircase computes the näıve floating-point sum of the inputs, while the second

staircase computes the running compensation term used to correct the näıve sum.

In addition to quantifying the number of bits of precision, an FPAN is also parameterized

by its size (its total number of gates) and its depth (the number of gates encountered on the

longest directed path from an input node to an output node). To maximize computational

efficiency, it is desirable to minimize size and depth while maximizing precision.

CHAPTER 3. ALGORITHMS 46

x5 s

x4

x3

x2

x1

Figure 3.3: FPAN diagram for Kahan–Babuška–Neumaier summation applied to five inputs.
This double staircase accumulation pattern generalizes to any number of inputs.

3.4 Arithmetic with Expansions

With FPANs formally defined, we are now prepared to state branch-free algorithms for

addition, subtraction, multiplication, division, and square root of floating-point expansions.

These algorithms are presented as abstract procedure templates that call FPANs as black-

box subroutines to perform extended-precision accumulation. The actual FPANs that we

plug into these templates to produce concrete implementable algorithms are produced by a

stochastic program synthesis technique and are shown in Chapter 5.

Algorithms for floating-point expansion arithmetic proposed in prior work typically con-

sist of two steps: an arithmetic step that produces an overlapping expansion, followed by

a renormalization step that repeatedly applies TwoSum operations to produce a nonover-

lapping expansion [42, 55, 21, 56]. This renormalization step is usually expensive and

involves branching and/or looping to identify all pairs of potentially overlapping terms to

which TwoSum must be applied. In contrast, the algorithms presented in this dissertation

eliminate the need for an separate renormalization step by using FPANs to simultaneously

perform arithmetic and renormalization in a single branch-free step.

Addition and subtraction are the most straightforward operations to implement using

FPANs, which naturally compute extended-precision sums. Given two floating-point expan-

sions, (x0, . . . , xn−1) and (y0, . . . , yn−1), we construct an FPAN with 2n interleaved inputs

(x0,±y0, . . . , xn−1,±yn−1) and n strongly nonoverlapping outputs, with + signs chosen for

CHAPTER 3. ALGORITHMS 47

addition and − signs chosen for subtraction. We assume the input expansions (x0, . . . , xn−1)

and (y0, . . . , yn−1) to be strongly nonoverlapping, which makes this task considerably easier

than the more general problem of accumulating 2n arbitrary inputs.

Our strategy for multiplication with FPANs is based on the distributive property. Recall

that the real value represented by the floating-point expansion (x0, . . . , xn−1) is the exact

sum x := x0 + · · · + xn−1 of its terms. Hence, the exact product of (x0, . . . , xn−1) and

(y0, . . . , yn−1) can be written as a sum of n2 pairwise products:

xy = x0y0 + x0y1 + x1y0 + · · ·+ xn−1yn−1 (3.9)

Each of these pairwise products can be exactly computed by the TwoProd algorithm. Thus,

by computing all pairwise error-free products (pi,j , ei,j) := TwoProd(xi, yj), we can write

the product xy as the exact sum of the 2n2 machine-precision floating-point numbers

p0,0, p0,1, p1,0, . . . , pn−1,n−1 and e0,0, e0,1, e1,0, . . . , en−1,n−1. This strategy splits multiplica-

tion of floating-point expansions into two phases:

• an initial expansion phase that executes n2 TwoProd operations; followed by

• an accumulation phase that executes an FPAN with 2n2 inputs.

We can significantly reduce the number of operations in both phases by observing that

certain product terms can always be safely discarded when the inputs are strongly nonover-

lapping. Let ex and ey denote the exponents of x0 and y0, respectively. To compute an

n-term floating-point expansion of the exact product z := xy, which is at least 2ex+ey , we

can safely ignore any term whose exponent falls below ex + ey − n(p+ 1). Strong nonover-

lapping implies that the exponent of xi is at most ex− i(p+1), and similarly, the exponent

of yj is at most ey − j(p+ 1). Hence, the exponents of (pi,j , ei,j) := TwoProd(xi, yj) are at

most ex+ ey+1− (i+ j)(p+1) and ex+ ey+1− (i+ j+1)(p+1), respectively. This means

we can safely ignore pi,j whenever i + j ≥ n and ei,j whenever i + j + 1 ≥ n, simplifying

the expansion phase from n2 TwoProd operations to n(n− 1)/2 TwoProd operations and n

machine-precision floating-point products. This also reduces the number of FPAN inputs

CHAPTER 3. ALGORITHMS 48

in the accumulation phase from 2n2 to n2.

With branch-free addition and multiplication algorithms in hand, division and square

root can be implemented in a branch-free fashion using classical algorithms based on

division-free Newton–Raphson iteration. This approach is well-known in the computer

arithmetic literature, so we only state the core ideas in this dissertation for completeness,

referring to [59] for further details.

The basic principle of these algorithms is to apply the Newton–Raphson iterative root-

finding method, defined by the recurrence formula

xn+1 := xn −
f(xn)

f ′(xn)
(3.10)

to the function

f(x) =
1

x
− a (3.11)

which has a unique root at x = 1/a for nonzero a, or the function

f(x) =
1

x2
− a (3.12)

which has two roots at x = ±1/
√
a. These functions are designed to compute inverses

and inverse square roots, respectively. Substituting these functions into Equation (3.10)

produces the iterative formula

xn+1 = xn + xn(1− axn) (3.13)

for computing inverses, and

xn+1 = xn +
1

2
xn(1− ax2n) (3.14)

for computing inverse square roots. Note that multiplication by 1/2 is an exact operation

that can be applied termwise in binary floating-point arithmetic. By taking the initial

guess x0 to be the machine-precision approximation 1 ⊘ a or 1 ⊘ ◦
√
a, respectively, these

CHAPTER 3. ALGORITHMS 49

iterative formulas allow rapid approximation of 1/a or 1/
√
a since the number of correct bits

roughly doubles on every iteration. Finally, once 1/a or 1/
√
a is computed to the desired

accuracy, we can obtain the quotient b/a by multiplying 1/a by b, or the square root
√
a

by multiplying 1/
√
a by a.

This technique can be optimized for use with floating-point expansions by reducing the

number of terms used to represent the first few iterates. The initial approximation x0 is only

accurate to machine precision, so there is no need to store more than one term at this stage.

The number of accurate bits doubles with each subsequent iteration, so the next iterate x1

can be represented using a two-term expansion, then x2 with a four-term expansion, and

so on until the desired final precision is reached. The Karp–Markstein optimization [59]

can also be applied to fuse the final Newton iteration with the multiplication of 1/a by b or

1/
√
a by a, eliminating several costly full-precision multiplication calls.

Chapter 4

Verification

In this chapter, we develop a computer-aided verification technique for the FPAN correct-

ness conditions stated in Section 3.3. These conditions are remarkably difficult to prove

because they require reasoning over the space of all possible inputs to a given FPAN, which

usually consist of terms from multiple floating-point expansions. Even if these input expan-

sions are assumed to be strongly nonoverlapping (as is the case in all of our algorithms),

there are an exponential number of ways that two strongly nonoverlapping length-n ex-

pansions can interlace with each other, as shown in Figure 4.1. Each interlacing creates a

different pattern of rounding error propagation through the gates of an FPAN, creating an

exponential number of cases that each require separate analysis. To make matters worse,

the preconditions of FastTwoSum (Proposition 4) and strong nonoverlapping (Proposition 8)

also introduce their own case splits, producing a combinatorial explosion in the number of

cases that must be considered to prove the FPAN correctness conditions.

Unfortunately, this explosion of cases makes the construction and analysis of FPANs

tedious and error-prone. On several occasions, subtly flawed algorithms and incorrect error

bounds have been published in the floating-point research literature, going unnoticed for

many years. For example, after it was realized that Dekker’s add2 algorithm (Algorithm 4)

has a catastrophically weak error bound for inputs with different signs, Li et al. proposed

an improved algorithm for double-double addition, called ddadd, for implementation in the

50

CHAPTER 4. VERIFICATION 51

x0 x1 x2 x3

y0 y1 y2 y3

x0 x1 x2 x3

y0 y1 y2 y3

x0 x1 x2 x3

y0 y1 y2 y3

x0 x1 x2 x3

y0 y1 y2 y3

Figure 4.1: Schematic representation of several representative interlacing patterns that two
floating-point expansions of length four can exhibit.

XBLAS extended-precision linear algebra library [64]. An FPAN diagram for the ddadd

algorithm, which was also adopted by other math libraries [22, 91], is shown in Figure 4.2.

In their 2002 paper [64], Li et al. claimed without proof that the relative error of a sum

computed by ddadd can be no larger than 2u2, assuming that the input expansions (x0, x1)

and (y0, y1) are both strongly nonoverlapping. Fifteen years later, in 2017, Joldes, Muller,

and Popescu [54] refuted this claim by explicitly constructing strongly nonoverlapping inputs

for which ddadd computes a sum with relative error 2.25u2. They conjectured that 2.25u2

was the optimal relative error bound for ddadd, but five years later, in 2022, Muller and

Rideau [73] found a stronger counterexample with relative error 3u2. This is now known

to be the truly optimal error bound for ddadd, as shown by both a lengthy pen-and-paper

mathematical proof [54] and a computer-checked formal proof in Rocq [73].

To be clear, the gap between the mistaken error bound 2u2 and the true error bound 3u2

is in no way catastrophic, nor does it invalidate the usefulness of the XBLAS library. The

discovery of ddadd remains an impressive achievement that we in no way wish to impugn.

Our purpose in presenting this case study is to illustrate that the analysis of FPANs is

so difficult and error-prone that even world experts in numerical analysis, including ACM

CHAPTER 4. VERIFICATION 52

x0 z0

y0 z1

x1

y1

Figure 4.2: FPAN representation of the ddadd algorithm due to Li et al. [64].

Fellows, SIAM Fellows, and winners of the Gordon Bell Prize and Turing Award [64], can

make mistakes—even in the simplest case of adding length-2 expansions!

This immense difficulty motivates us to consider computer-assisted methods for con-

structing and analyzing FPANs. In principle, these tasks should be well-suited to computer

automation. Formal reasoning about FPANs requires identifying and managing a large

number of cases, each of which involves straightforward algebraic manipulation of linear

inequalities. This pattern of branching exploration interspersed with routine mechanical

verification is precisely the type of workload that automated reasoning tools, such as au-

tomatic theorem provers and SMT solvers, should be best equipped to handle. However,

current tools have limited capacity for reasoning about floating-point operations and error-

free transformations, severely limiting their applicability to FPANs.

Existing techniques for automated floating-point verification fall into two broad classes.

The first class is characterized by an approach that we call projection from real arithmetic,

implemented in tools such as dReal [35] and Colibri2 [57]. Techniques of this type prove a

property P of a floating-point program in two steps. First, they reformulate P by treating

each floating-point variable as if it were an exact real number to obtain a modified prop-

erty P [R], which is proven using standard computer algebra techniques, such as cylindrical

algebraic decomposition. Then, they check whether the statement P [R] is sufficiently ro-

bust to small perturbations to remain true when a small rounding error is introduced into

each arithmetic operation. Interval/ball arithmetic and polyhedral/relational domains are

examples of methods used to perform these robustness tests [18, 71, 17, 84].

CHAPTER 4. VERIFICATION 53

Techniques based on projection from real arithmetic are fundamentally incapable of

reasoning about error-free transformations, including TwoSum, FastTwoSum, and TwoProd.

In exact arithmetic, TwoSum is reduced to the trivial operation TwoSum(x, y) = (x+ y, 0),

and no statement about the trivialized TwoSum operation in this form remains true when

rounding errors are reintroduced. The computation of rounding errors performed by error-

free transformations is a phenomenon exclusive to finite-precision arithmetic that has no

semantically equivalent analogue in the exact real domain.

The second class of techniques is called bit-blasting, implemented in tools including

Z3 [24], CVC5 [8], MathSAT 5 [20], and Bitwuzla [77]. Rather than considering floating-

point variables as approximate real numbers, bit-blasting treats each floating-point variable

as an IEEE-encoded bit vector (Definition 7) and models each arithmetic operation as

a Boolean circuit. Any property P of a floating-point program can then be written as a

Boolean formula, which can be checked using a standard Boolean satisfiability (SAT) solver.

While bit-blasting is capable of expressing error-free transformations, it is far too ex-

pensive to apply to FPANs of nontrivial size. The Boolean circuits that implement floating-

point addition involve a large number of internal variables that are necessary to implement

mantissa alignment, rounding, and normalization. To make matters worse, these operations

become deeply nested as TwoSum gates are chained together. As shown by our benchmarks

in Section 4.5, solving a satisfiability problem of this complexity is far our of reach of even

the fastest SAT solvers available today. Bit-blasting also exhibits exponentially increas-

ing costs as the underlying machine precision p increases, which is especially problematic

because FPANs are typically used with large floating-point formats, such as binary64.

4.1 The SELTZO Abstraction

An automatic verification technique for the FPAN correctness conditions should be able

to deduce the general shape of a floating-point sum and its rounding error without getting

bogged down by exactly computing every last bit. To achieve this goal, we introduce a novel

technique for coarse modeling of floating-point numbers called the SELTZO abstraction.

CHAPTER 4. VERIFICATION 54

Definition 23 (SELTZO abstraction). Let x be a nonzero floating-point number. The

sign-exponent leading-trailing zeros-ones (SELTZO) abstraction of x is the ordered 6-tuple

(sx, ex, nlzx, nlox, ntzx, ntox) consisting of:

1. the sign bit sx ∈ {0, 1} and exponent ex ∈ Z of x;

2. the counts nlzx, nlox ∈ N of leading zeros and ones, respectively, in the mantissa of x,

ignoring the implicit leading bit; and

3. the counts ntzx, ntox ∈ N of trailing zeros and ones, respectively, in the mantissa of

x, ignoring the implicit leading bit.

Example 6. The SELTZO abstraction of −27 × 1.00100111112 is (1, 7, 2, 0, 0, 5), and the

SELTZO abstraction of +2−2×1.11111111112 is (0,−2, 0, 10, 0, 10). Recall that the implicit

leading bit is ignored when computing nlzx, nlox, and ntox.

The SELTZO abstraction is designed to allow the FPAN correctness conditions stated

in Section 3.3 to be expressed as linear equations and inequalities in the SELTZO vari-

ables (sx, ex, nlzx, nlox, ntzx, ntox) and the machine precision p. This is important because

the theory of quantifier-free linear integer arithmetic (QF-LIA), also known as Presburger

arithmetic, is a decidable theory. This means that an algorithm can determine whether any

logical combination of linear equations and inequalities can be satisfied over the integers.

This algorithm has been implemented in many SMT solvers, including Z3 [24], CVC5 [8],

MathSAT 5 [20], and Yices 2 [26], and is surprisingly efficient in practice despite having

doubly exponential worst-case time complexity.

Our strategy for automatically verifying the FPAN correctness conditions is to formulate

the existence of a counterexample as a satisfiability problem in QF-LIA. Here, a counterex-

ample is a sequence of floating-point inputs that produces a failure of the FastTwoSum

preconditions, outputs that fail to be strongly nonoverlapping, or a discarded error term

whose magnitude exceeds some specified threshold. The variables of this satisfiability prob-

lem are not concrete floating-point numbers, but rather SELTZO tuples (sx, ex, nlzx, nlox,

ntzx, ntox) for each input, output, and intermediate floating-point number x flowing through

CHAPTER 4. VERIFICATION 55

the wires of a given FPAN. This means that our QF-LIA problem overapproximates the

true semantics of the underlying FPAN on concrete floating-point numbers.

This strategy of overapproximation in the SELTZO domain yields a one-sided decision

procedure for the FPAN correctness conditions. If the QF-LIA statement S that expresses

the existence of a SELTZO counterexample is unsatisfiable, then we can conclude that no

concrete floating-point counterexample exists, since a concrete counterexample would give

rise to a SELTZO counterexample. However, if S turns out to be satisfiable, then we cannot

conclude whether a concrete floating-point counterexample exists. In other words, every

correctness condition verified by the SELTZO abstraction is rigorously and provably true,

but there are true statements that the SELTZO abstraction is unable to verify. Working

in the SELTZO domain requires us to accept some reduction in the logical strength of the

statements we are able to prove. Fortunately, we will see that this loss of logical strength is

minor and compensated by many orders of magnitude of increased verification performance.

To demonstrate the viability of this strategy, the following proposition shows that the

preconditions of FastTwoSum (Proposition 4) and strong nonoverlapping (Proposition 8),

in addition to the alternative nonoverlapping conditions used in prior work (Definitions 18

and 19), can all be equivalently reformulated as linear inequalities in the SELTZO variables.

Proposition 9 (SELTZO correctness conditions). Let x and y be nonzero floating-point

numbers, and let (sx, ex, nlzx, nlox, ntzx, ntox) and (sy, ey, nlzy, nloy, ntzy, ntoy) denote their

SELTZO abstractions.

1. x and y are valid inputs to FastTwoSum if:

ex + ntzx ≥ ey (4.1)

2. x ≻ y if and only if:

[
ex > ey + (p+ 1)

]
∨
[
ex = ey + (p+ 1)∧ (sx = sy ∨ ntzx < p− 1∨ ntzy = p− 1)

]
∨[

ex = ey + p ∧ ntzy = p− 1 ∧ ntzx > 0 ∧ (sx = sy ∨ ntzx < p− 1)
]

(4.2)

CHAPTER 4. VERIFICATION 56

3. x ≻S y if and only if:

ex ≥ ey + (p− ntzx) (4.3)

4. x ≻P y if and only if:

ex ≥ ey + p (4.4)

5. x ≻ulp y if and only if:

[
ex > ey + (p− 1)

]
∨
[
ex = ey + (p− 1) ∧ ntzy = p− 1

]
(4.5)

6. x ≻QD y if and only if:

[
ex > ey + p

]
∨
[
ex = ey + p ∧ ntzy = p− 1

]
(4.6)

Proof. These claims follow immediately from Proposition 4, Proposition 8, Definition 18,

and the observation that y is a signed power of two if and only if ntzy = p− 1.

These statements ignore the possibility of x or y being zero because the exponent of

zero is undefined when working in the unbounded floating-point domain. Our verifier im-

plementation uses special representations of +0.0 and -0.0 described in Section 4.4.

The next ingredient of our automatic verification strategy is a way to express relative

bounds of the form |y| ≤ Cuk|x| for C ∈ R and k ∈ Z. Because the SELTZO abstraction is

formulated in terms of bit counts, these relative bounds are most naturally expressed when

C = 2j is a power of two. We will restrict our attention to relative bounds of this form

throughout the remainder of this dissertation. This means that our SELTZO verification

technique is unable to prove the optimal ddadd error bound |y| ≤ 3u2|x|; our analysis of

ddadd will only prove the weaker bound |y| ≤ 4u2|x|. This suboptimal constant factor C is

an intentional sacrifice that we make in order to automate rigorous FPAN verification.

Proposition 10 (SELTZO relative bounds). Let x and y be nonzero floating-point num-

bers, let (sx, ex, nlzx, nlox, ntzx, ntox) and (sy, ey, nlzy, nloy, ntzy, ntoy) denote their SELTZO

CHAPTER 4. VERIFICATION 57

abstractions, and let j, k ∈ Z. If

[
ex > ey +(kp− j)

]
∨
[
ex = ey +(kp− j)∧ (nlox > nloy ∨ nlzx < nlzy ∨ ntzy = p− 1)

]
(4.7)

then |y| ≤ 2juk|x|.

Proof. The unit roundoff (Definition 14) in base b = 2 is u := 1
2b

−(p−1) = 2−p. Hence, our

goal is to prove |y| ≤ 2−(kp−j)|x|. If ex > ey + (kp− j), then we can write

|x| ≥ 2ex ≥ 2ey+(kp−j)+1 = 2ey+12kp−j ≥ 2kp−j |y| (4.8)

which is the desired result. Otherwise, if ex = ey +(kp− j), then we need to prove that the

mantissa of x is at least as large as the mantissa of y. This is true whenever x has strictly

more leading ones, strictly fewer leading zeros, or if y has an all-zero mantissa.1

Note that distinct SELTZO tuples correspond to disjoint sets of floating-point numbers.

In particular, the bit counts (nlzx, nlox, ntzx, ntox) are not cumulative; ntzx = 3 specifies

floating-point numbers whose mantissa contains exactly three trailing zeros, no more. For-

mulating the definition in this way confers the useful property that the set of floating-point

numbers having a particular SELTZO tuple (sx, ex, nlzx, nlox, ntzx, ntox) decreases expo-

nentially in size as the bit counts (nlzx, nlox, ntzx, ntox) increase. This is desirable because

floating-point numbers with lots of leading zeros or ones are precisely the numbers closest

to signed powers of two. FPANs tend to exhibit pathological behaviors near signed powers

of two because these numbers lie on the boundaries between different exponent regimes,

where rounding and tie-breaking analysis exhibits particularly tricky edge cases [54, 73].

1The statement of Proposition 10 can be strengthened by adding additional sufficient conditions for the
mantissa of x to be greater than or equal to the mantissa of y. For example, this also occurs when x has an
all-ones mantissa (ntox = p− 1). However, we have not found additional sufficient conditions of this type to
be useful in proving FPAN relative error bounds.

CHAPTER 4. VERIFICATION 58

4.2 The SE and SETZ Abstractions

It is natural to ask whether all six of the SELTZO variables (sx, ex, nlzx, nlox, ntzx, ntox)

are truly necessary to reason about the FPAN correctness conditions. The statement of

Proposition 9 only makes reference to sx, ex, and ntzx, so it is not obvious whether it

is helpful to explicitly model the leading bit counts nlzx, nlox or the trailing one count

ntox. To investigate this question, we define two simpler models, called the SE and SETZ

abstractions, that involve subsets of the SELTZO variables.

Definition 24 (SE abstraction, SETZ abstraction). Let x be a nonzero floating-point num-

ber. The sign-exponent (SE) abstraction of x is the ordered pair (sx, ex) consisting of its

sign bit sx ∈ {0, 1} and exponent ex ∈ Z. The sign-exponent-trailing-zeros (SETZ) abstrac-

tion of x is the ordered triple (sx, ex, ntzx) that additionally includes the number ntzx ∈ N

of trailing zeros in the mantissa of x.

The SETZ abstraction is a particularly natural choice of model because it captures all

of the variables referenced in the statement of Proposition 9. The SE abstraction, on the

other hand, can only express the notion of P-nonoverlapping and is too weak to capture

the other nonoverlapping conditions. Despite this restriction, we will later see that both

the SE and SETZ abstractions are capable of proving nontrivial FPAN correctness results,

though their logical strength is meaningfully weaker than the full SELTZO abstraction.

Note that the statement of the relative bound |y| ≤ 2juk|x| given in Proposition 10

involves the leading bit counts nlzx and nlox omitted from the SE and SETZ abstractions.

It is therefore necessary to weaken the sufficient condition (4.7) into

[
ex > ey + (kp− j)

]
∨
[
ex = ey + (kp− j) ∧ ntzy = p− 1

]
(4.9)

when working in the SETZ abstraction, and to further weaken this condition into

ex > ey + (kp− j) (4.10)

CHAPTER 4. VERIFICATION 59

when working in the SE abstraction. The necessity of this weakening offers some suggestion

of the reduced logical strength of these simpler models.

4.3 TwoSum Lemmas

The final ingredient necessary to implement our automatic verification strategy is a formal

model of TwoSum in the SE, SETZ, and SELTZO abstractions. To be suitable for use in a

QF-LIA satisfiability problem, this formal model should be a logical formula, consisting of

linear equations and inequalities over the integers, that describes the possible input-output

pairs of the TwoSum operation. For example, given the SETZ tuples (sx, ex, ntzx) and

(sy, ey, ntzy) of two floating-point numbers, x and y, our formal model should predict the

SETZ tuples (ss, es, ntzs) and (se, ee, ntze) of the outputs (s, e) := TwoSum(x, y).

In general, it is possible for many floating-point numbers x to share the same SETZ

abstraction tuple (sx, ex, ntzx). We therefore cannot expect the SETZ tuples of the outputs

(s, e) to be uniquely determined by the SETZ tuples of the inputs (x, y). We think of

TwoSum as a relation, rather than a function, over the SETZ abstract domain. Our formal

model should determine a set of possible SETZ outputs (s, e) for a given pair of SETZ inputs

(x, y). Of course, these remarks also apply to the SE and SELTZO abstract domains.

Although FPANs can include three distinct gate types, corresponding to the floating-

point sum, TwoSum, and FastTwoSum operations, it is only necessary to construct a formal

model for TwoSum. Floating-point addition s := x⊕y is equivalent to (s, e) := TwoSum(x, y)

with the rounding error e discarded, and FastTwoSum(x, y) is equivalent to TwoSum(x, y)

whenever the preconditions of Proposition 4 are satisfied. Since these preconditions are

explicitly checked in our verification procedure, we can treat all FastTwoSum gates as though

they were TwoSum gates for the purpose of formal modeling.

We begin by presenting a formal model of TwoSum in the SE abstraction. Despite

being our simplest abstraction, modeling only signs and exponents, the edge cases of the

rounding function RNE split our SE model of TwoSum into twelve distinct cases. Rather

than presenting all of these cases amalgamated into a single enormous formula, we present

CHAPTER 4. VERIFICATION 60

each case as a separate TwoSum lemma, each consisting of a precondition on the SE input

tuples (sx, ex) and (sy, ey), followed by a specification of the set of all possible SE output

tuples {(ss, es), (se, ee)} that can occur when these preconditions are satisfied.

In all of the following lemmas, let x and y be nonzero floating-point numbers, and let

(s, e) := TwoSum(x, y). Let (sx, ex), (sy, ey), (ss, es), and (se, ee) denote the SE abstractions

of x, y, s, and e, respectively.

Lemma 1 (SE Identity x). If ex > ey + (p+ 1), or if ex = ey + (p+ 1) and sx = sy, then

s = x and e = y.

Lemma 2 (SE Identity y). If ex + (p+ 1) < ey, or if ex + (p+ 1) = ey and sx = sy, then

s = y and e = x.

Note that Lemmas 1 and 2 differ only by exchanging the roles of x and y. Because

TwoSum is a commutative operation (i.e., TwoSum(x, y) = TwoSum(y, x)), each TwoSum

lemma remains valid when x and y are interchanged. To avoid needless repetition, we state

only one member of each symmetric lemma pair, adopting the convention that we prefer

the lemma statement with ex ≥ ey whenever possible.

Lemma 3 (SE-S1). If sx = sy and ex = ey+p, then exactly one of the following statements

is true:

• s = x and e = y.

• ss = sx, ex ≤ es ≤ ex + 1, se ̸= sy, and ey − (p− 1) ≤ ee ≤ ex − p.

Lemma 4 (SE-S2). If sx = sy and ex = ey + (p − 1), then exactly one of the following

statements is true:

• ss = sx, ex ≤ es ≤ ex + 1, and e = 0.

• ss = sx, ex ≤ es ≤ ex + 1, and ey − (p − 1) ≤ ee ≤ ex − p. (When not explicitly

specified, the sign bit se can be 0 or 1).

Lemma 5 (SE-S3). If sx = sy and ex = ey + (p − 2), then exactly one of the following

statements is true:

CHAPTER 4. VERIFICATION 61

• ss = sx, ex ≤ es ≤ ex + 1, and e = 0.

• ss = sx, ex ≤ es ≤ ex + 1, se ̸= sy, and ey − (p− 1) ≤ ee ≤ ex − p.

• ss = sx, es = ex, se = sy, and ey − (p− 1) ≤ ee ≤ ex − p.

• ss = sx, es = ex + 1, se = sy, and ey − (p− 1) ≤ ee ≤ ex − (p− 1).

Lemma 6 (SE-S4). If sx = sy, ex > ey, and ex < ey + (p − 2), then exactly one of the

following statements is true:

• ss = sx, ex ≤ es ≤ ex + 1, and e = 0.

• ss = sx, es = ex, and ey − (p− 1) ≤ ee ≤ ex − p.

• ss = sx, es = ex + 1, and ey − (p− 1) ≤ ee ≤ ex − (p− 1).

Lemma 7 (SE-S5). If sx = sy and ex = ey, then exactly one of the following statements is

true:

• ss = sx, es = ex + 1, and e = 0.

• ss = sx, es = ex + 1, and ee = ex − (p− 1).

Lemma 8 (SE-D1). If sx ̸= sy and ex = ey + (p + 1), then exactly one of the following

statements is true:

• s = x and e = y.

• ss = sx, es = ex − 1, se ̸= sy, and ey − (p− 1) ≤ ee ≤ ex − (p+ 2).

Lemma 9 (SE-D2). If sx ̸= sy and ex = ey+p, then exactly one of the following statements

is true:

• s = x and e = y.

• ss = sx, es = ex − 1, and e = 0.

• ss = sx, es = ex − 1, se = sy, and ey − (p− 1) ≤ ee ≤ ex − (p+ 2).

CHAPTER 4. VERIFICATION 62

• ss = sx, es = ex − 1, se ̸= sy, and ey − (p− 1) ≤ ee ≤ ex − (p+ 1).

• ss = sx, es = ex, se ̸= sy, and ey − (p− 1) ≤ ee ≤ ex − p.

Lemma 10 (SE-D3). If sx ̸= sy, ex > ey + 1, and ex < ey + p, then exactly one of the

following statements is true:

• ss = sx, ex − 1 ≤ es ≤ ex, and e = 0.

• ss = sx, es = ex − 1, and ey − (p− 1) ≤ ee ≤ ex − (p+ 1).

• ss = sx, es = ex, and ey − (p− 1) ≤ ee ≤ ex − p.

Lemma 11 (SE-D4). If sx ̸= sy and ex = ey+1, then exactly one of the following statements

is true:

• ss = sx, ex − p ≤ es ≤ ex, and e = 0.

• ss = sx, es = ex, and ee = ex − p.

Lemma 12 (SE-D5). If sx ̸= sy and ex = ey, then exactly one of the following statements

is true:

• s = 0 and e = 0.

• ex − (p− 1) ≤ es ≤ ex − 1 and e = 0.

Lemmas 1–12 constitute a complete formal model of TwoSum in the SE domain, in the

sense that every possible pair of SE input tuples, (sx, ex) and (sy, ey), satisfies the hypotheses

of exactly one lemma. Each lemma has been formally verified using a bit-blasting SMT

solver in the bfloat16, binary16, binary32, binary64, and binary128 floating-point formats,

which have precision p = 8, 11, 24, 53, and 113, respectively. We expect these lemmas to

hold for all values of p ≥ 2, but bit-blasting can only verify each lemma for one particular

value of p ∈ N at a time. We do not yet have an automatic verification technique2 that can

simultaneously prove these lemmas for all values of p using a single finite computation.

2Symbolic interval analysis using a computer algebra system may furnish such a technique for the SE
abstraction, but this technique is not applicable to the SETZ and SELTZO abstractions because intervals
are broken by constraints on trailing bits.

CHAPTER 4. VERIFICATION 63

We have also verified, by exhaustive enumeration of all concrete input pairs (x, y) in

the binary16 and bfloat16 floating-point formats, that all of these lemmas are stated in the

strongest possible form. In other words, every element of the set of allowed SE output

tuples listed in each lemma is actually witnessed by some pair of concrete floating-point

inputs (x, y) satisfying the hypotheses of the lemma.

Formal statements of Lemmas 1–12 in the Z3 Python API are provided in the GitHub

repository https://github.com/dzhang314/FPANVerifier. This repository also contains

the aforementioned exhaustive enumeration program, used to verify that each lemma is

stated in the strongest possible form, along with scripts that run a portfolio of bit-blasting

SMT solvers, including Z3 [24], CVC5 [8], MathSAT 5 [20], and Bitwuzla [77], to verify all

lemmas in parallel. We also provide six additional lemmas that formally characterize the

TwoProd operation in the SE domain in an analogous fashion.

Given that the SE model of TwoSum is sufficiently complicated to require a dozen cases,

it is reasonable to expect construction of a formal model of TwoSum in the SETZ or SELTZO

domain to be a formidable task. We have constructed a complete formal model of TwoSum

in the SETZ domain consisting of over sixty lemmas, presented in Appendix A. Like our

SE lemmas, our SETZ lemmas are also complete in the sense of covering all possible SETZ

input tuples. They have also been formally verified using bit-blasting SMT solvers and are

confirmed by exhaustive enumeration to be stated in the strongest possible form.

Characterizing TwoSum in the SELTZO domain is far more challenging still. Despite

containing several hundred lemmas, our formal model of TwoSum in the SELTZO domain

remains incomplete, covering only a small fraction of all possible SELTZO input pairs. These

SELTZO lemmas are so numerous and so complicated that we do not provide a human-

readable listing in this dissertation. We refer to our implementation for the authoritative

list (https://github.com/dzhang314/FPANVerifier/blob/main/seltzo_lemmas.py) of

SELTZO lemmas. As with our SE and SETZ lemmas, all of our SELTZO lemmas have

been formally verified using bit-blasting SMT solvers, and most (but not all) are confirmed

by exhaustive enumeration to be stated in the strongest possible form.

Despite its incompleteness, our collection of SELTZO lemmas still covers enough of the

https://github.com/dzhang314/FPANVerifier
https://github.com/dzhang314/FPANVerifier/blob/main/seltzo_lemmas.py

CHAPTER 4. VERIFICATION 64

SELTZO domain to prove results that are meaningfully stronger than the SE and SETZ

abstractions. This lack of completeness does not threaten the validity of our results because

our verification technique is based on overapproximation. Incompleteness merely implies

that our solver will be overly conservative in deducing possible TwoSum outputs in certain

regions of the input space. In some cases, it may be possible to further strengthen our

results by adding additional SELTZO lemmas, but we leave this task to future work.

4.4 Verifier Implementation

With all necessary ingredients in hand, we are now prepared to formally state our automatic

procedure for verifying the FPAN correctness conditions stated in Section 3.3. To facilitate

independent verification of our results by other researchers, a permissively-licensed open-

source implementation of this procedure is provided in the following GitHub repository:

https://github.com/dzhang314/FPANVerifier

We first address the issue of representing zero. Definitions 23 and 24 do not specify the

SE, SETZ, or SELTZO abstraction of zero because zero has no well-defined exponent in the

unbounded floating-point domain FP(b, p). In our implementation, we choose an arbitrary

minimum exponent emin ∈ Z and define zero to have exponent emin − 1, while all nonzero

floating-point numbers are assumed to be normalized with exponent e ≥ emin. This choice

is particularly convenient because it coincides with IEEE encoding (Definition 7).

The correctness of any FPAN is independent of the choice of emin because the floating-

point sum, TwoSum, and FastTwoSum operations are all equivariant to global exponent

translations. In other words, if all inputs are multiplied by some power of two, then all

outputs scale by the same power of two. The FastTwoSum preconditions (Proposition 4),

nonoverlapping conditions (Proposition 9), and relative error bounds (Proposition 10) only

depend on relative differences between exponents, not absolute exponents, so the truth of

any of these statements is invariant with respect to global exponent translation.

This observation also implies that any FPAN correctness condition that holds in the

unbounded floating-point domain FP(2, p) also holds in the standard floating-point domain

https://github.com/dzhang314/FPANVerifier

CHAPTER 4. VERIFICATION 65

FP(2, p, emin, emax), assuming overflow does not occur. Any counterexample involving sub-

normal numbers can be scaled by some power of two to yield an equivalent normalized

counterexample. Thus, the presence of subnormal numbers cannot create any counterex-

amples that would not already exist in the unbounded floating-point domain.

Now, suppose we are given an FPAN F and a property P that is expressible as a logical

combination of linear equations and inequalities in the SELTZO variables (sx, ex, nlzx, nlox,

ntzx, ntox). We will construct a QF-LIA statement S that expresses the existence of an

abstract counterexample to P . We then query an SMT solver to determine whether S is

satisfiable. If S is unsatisfiable, then P has no abstract counterexamples, and hence, no

concrete counterexamples. This constitutes a formal proof that F has property P .

We first assign a unique label vi to every wire segment in F . We think of every gate as

delineating a new segment of the two wires it connects, and we consider each addition gate

to have a hidden second output wire carrying its discarded rounding error. Thus, an FPAN

with n wires and g gates has n + 2g distinct wire segments. We then introduce SELTZO

variables (svi , evi , nlzvi , nlovi , ntzvi , ntovi) indexed by the labels vi, creating a total of 6n+12g

such variables. We form the QF-LIA statement S by taking the logical conjunction of five

types of conditions:

1. consistency conditions that require each of the SELTZO tuples (svi , evi , nlzvi , nlovi ,

ntzvi , ntovi) to be populated with internally consistent integer values;

2. input conditions that enforce preconditions, such as strong nonoverlapping, on the

inputs of F ;

3. execution conditions that use the TwoSum lemmas to constrain the possible outputs

of each gate;

4. FastTwoSum conditions that ensure each FastTwoSum gate receives valid inputs sat-

isfying Proposition 4; and

5. counterexample conditions that encode the negation of the desired property P .

CHAPTER 4. VERIFICATION 66

We first state the consistency conditions as Equations (4.11)–(4.18), which form a nec-

essary and sufficient characterization of all valid SELTZO tuples. One copy of these consis-

tency conditions is appended to the QF-LIA statement S for each label v.

1. The sign bit must be zero or one, and the exponent must be bounded below.

(sv = 0) ∨ (sv = 1) ev ≥ emin − 1 (4.11)

2. If a floating-point variable is zero (i.e., ev = emin − 1), then its mantissa must consist

entirely of zeros.

(ev = emin − 1) =⇒ [(nlzv = ntzv = p− 1) ∧ (nlov = ntov = 0)] (4.12)

3. The leading and trailing bits of the mantissa are either 0 or 1.

[(nlzv > 0) ∧ (nlov = 0)] ∨ [(nlzv = 0) ∧ (nlov > 0)] (4.13)

[(ntzv > 0) ∧ (ntov = 0)] ∨ [(ntzv = 0) ∧ (ntov > 0)] (4.14)

4. The number of leading and trailing bits must be bounded by p− 1, the width of the

mantissa.

(nlzv = ntzv = p− 1) ∨ (nlzv + ntzv < p− 1) (4.15)

(nlov = ntov = p− 1) ∨ (nlov + ntov < p− 1) (4.16)

(nlzv + ntov = p− 1) ∨ (nlzv + ntov < p− 2) (4.17)

(ntzv + nlov = p− 1) ∨ (ntzv + nlov < p− 2) (4.18)

The upper bound of p − 2 in consistency conditions (4.17) and (4.18) arises from the ob-

servation that the middle bit b in a bit vector of the form (0, . . . , 0, b, 1, . . . , 1) must either

belong to the group of leading zeros or the group of trailing ones. Thus, it is impossible

for nlzv + ntov to equal p − 2. An analogous condition holds for bit vectors of the form

CHAPTER 4. VERIFICATION 67

(1, . . . , 1, b, 0, . . . , 0), yielding the constraint nlov + ntzv ̸= p− 2.

After constructing the consistency conditions, we append the user-provided input con-

ditions to S, followed by the execution conditions. The execution conditions consist of one

copy of every TwoSum lemma applied to the input and output variables of each gate in F .

Our verifier implementation can operate in one of three user-selectable modes, offering a

choice between the SE, SETZ, and SELTZO abstractions. In SE mode, only Lemmas 1–12

are instantiated in this step. In SETZ mode, Lemmas 1–12 are ignored, and the SETZ

lemmas in Appendix A are used instead. In SELTZO mode, we combine the SETZ lemmas

from Appendix A with the full list of SELTZO lemmas. This combination allows the SETZ

lemmas to provide coverage in regions where the SELTZO lemmas are incomplete.

We then append one copy of the FastTwoSum preconditions to S for each FastTwoSum

gate in F , followed by the user-provided counterexample conditions. Unlike the consistency,

input, and execution conditions, which are appended to S by conjunction, the FastTwoSum

and counterexample conditions are appended to S by disjunction. We formulate these con-

ditions as a logical disjunction of failure modes, such as a violation of a nonoverlapping

condition zi−1 ̸≻ zi or a desired error bound |zi| > 2juk|z0|, stated in QF-LIA using Propo-

sitions 9 and 10. The occurrence of any failure mode invalidates the property P being

verified. This completes the construction of the QF-LIA statement S.

To finish our verification procedure, we query an SMT solver to determine whether the

statement S is satisfiable. If S is unsatisfiable, then we have successfully proven that the

FPAN F has the desired property P . However, if S turns out to be satisfiable, then we

cannot conclude anything about the truth of P in general. In some cases, we may be able

to construct an explicit counterexample to P by examining a satisfying assignment of S

produced by the SMT solver, but this requires ad hoc analysis and is not always possible.

To guard against bugs in any particular SMT reasoning engine, our verifier is compatible

with all SMT solvers that implement the SMT-LIB 2 standard [9]. We have independently

confirmed our results using a variety of SMT solvers, including Z3 [24], CVC5 [8], MathSAT

5 [20], Yices 2 [26], OpenSMT [15], and Bitwuzla [77].

In contrast to bit-blasting, which can only verify a claim for one precision p ∈ N at a time,

CHAPTER 4. VERIFICATION 68

our QF-LIA verification procedure treats the precision p as a variable which is implicitly

universally quantified. Thus, a single run of our verification procedure simultaneously proves

the property P over all values of p ∈ N. In some cases, we must impose a lower bound

on p to rule out degenerate edge-case behaviors that only occur in pathologically small

floating-point formats. Our implementation assumes p ≥ 8 by default.

The QF-LIA statements generated by our verification procedure tend to be very large,

involving hundreds of variables and thousands of constraints, even for FPANs as small

as ddadd (Figure 4.2). Any proof of unsatisfiability for such a statement is an enormous

computational artifact that is essentially unreadable to humans. This unfortunate property

makes our verification technique somewhat opaque, offering limited intuitive insight as to

why some FPANs work when other similar-looking FPANs fail. Nonetheless, our verification

procedure is fully rigorous, with the correctness of every step established by traditional

(pen-and-paper) and/or formal (computer-verified) mathematical proofs.

4.5 Verifier Evaluation

We now apply the verification procedure described in the previous section to prove relative

error bounds for both the previous best known double-double addition algorithm, ddadd

(Figure 4.2), which is used in several production software libraries [64, 22, 91], and a novel

algorithm that is simultaneously faster and more accurate than ddadd. Our new algorithm,

named madd (for “More Accurate Double-Double addition”), reduces the relative error of

double-double addition from 3u2 to 2u2 while lowering its circuit depth from 5 to 4, as

shown in Figure 4.3. The process by which we discovered the madd algorithm is described

in Chapter 5. In this section, we take the existence of madd for granted and use it alongside

ddadd to evaluate our automatic verification procedure.

To obtain stronger bounds on the magnitude of the rounding errors discarded by ddadd

and madd, we add an extra TwoSum gate to each FPAN that computes the total rounding

error rather than analyzing the rounding error terms separately. This produces the aug-

mented FPANs shown in Figure 4.4. These extra gates serve only to facilitate our analysis

CHAPTER 4. VERIFICATION 69

x0 z0

y0 z1

x1

y1

Figure 4.3: FPAN representation of madd, our new improved algorithm for double-double
addition.

x0 z0

y0 z1

x1 w0

y1 w1

x0 z0

y0 z1

x1 w0

y1 w1

Figure 4.4: Augmented FPAN representations of ddadd (left) and madd (right) with error
terms (w0, w1) explicitly computed and named. The extra TwoSum gate used to compute
(w0, w1) serves only to facilitate our analysis and should not be included in an actual
implementation of either algorithm.

and should not be included in an actual software implementation of ddadd or madd.

Theorem 1. Let (x0, x1) and (y0, y1) be strongly nonoverlapping floating-point expansions.

The ddadd algorithm (Figure 4.2) computes a strongly nonoverlapping floating-point expan-

sion (z0, z1) that approximates the exact sum x0 + x1 + y0 + y1 with relative error

|(z0 + z1)− (x0 + x1 + y0 + y1)|
|x0 + x1 + y0 + y1|

≤ (1 + 2u)4u2 = 4u2 +O(u3). (4.19)

Theorem 2. Let (x0, x1) and (y0, y1) be strongly nonoverlapping floating-point expansions.

The madd algorithm (Figure 4.3) computes a strongly nonoverlapping floating-point expan-

sion (z0, z1) that approximates the exact sum x0 + x1 + y0 + y1 with relative error

|(z0 + z1)− (x0 + x1 + y0 + y1)|
|x0 + x1 + y0 + y1|

≤ (1 + 2u)2u2 = 2u2 +O(u3). (4.20)

We prove Theorems 1 and 2 by using our SELTZO verification procedure to prove

a suitably chosen property P stated in the following proof. Some subsequent algebraic

CHAPTER 4. VERIFICATION 70

manipulation is necessary to transform P into the desired relative error bound.

Proof. Consider the augmented FPANs shown in Figure 4.4, which include an extra TwoSum

gate to compute the error terms (w0, w1). Assuming the input conditions x0 ≻ x1 and y0 ≻

y1, we use our automatic verification procedure to prove the property P := |w0| ≤ 2ju2|z0|

(formulated in the SELTZO abstraction using Propositions 9 and 10), where j = 2 for ddadd

and j = 1 for madd. Since (z0, z1) and (w0, w1) are both outputs of TwoSum, Proposition 7

implies that z0 = z0 ⊕ z1 and w0 = w0 ⊕ w1. Hence, by Proposition 2, we can write

z0 + z1 = (1 + δz)z0 and w0 + w1 = (1 + δw)w0 for some |δz|, |δw| ≤ u. It follows that

|(z0 + z1)− (x0 + x1 + y0 + y1)|
|x0 + x1 + y0 + y1|

=
|(1 + δw)w0|

|(1 + δz)z0 + (1 + δw)w0|

≤ (1 + u)|w0|
(1− u)(|z0| − |w0|)

≤ (1 + u)2ju2

1− (1− u)2ju2
≤ (1 + 2u)2ju2 (4.21)

which is the desired result.

This proof demonstrates the technique of augmenting an FPAN with additional TwoSum

gates to accumulate all discarded rounding errors into a single principal error term. This

accumulation step can reveal cancellation patterns that would not be visible if each round-

ing error term were analyzed separately, strengthening the relative error bounds that the

SELTZO abstraction is able to prove. We will implicitly apply this technique in all FPAN

analyses presented in the remainder of this dissertation without further elaboration.

As previously noted, our relative error bound of 4u2 for ddadd is slightly weaker than

the 3u2 bound proven by Joldes, Muller, and Popescu [54], since our use of the SELTZO

abstraction forces the leading constant factor to be a power of two. We say that a bound

of this form is tight to the nearest bit if its leading constant factor is at most twice the

optimal constant factor. The following worst-case input for ddadd, discovered by Muller

and Rideau [73], shows that our 4u2 bound is indeed tight to the nearest bit.

x0 := 1 x1 := u− u2 y0 := −
1

2
+

u

2
y1 := −

u2

2
+ u3 (4.22)

CHAPTER 4. VERIFICATION 71

It is straightforward to verify that ddadd computes the sum of these inputs with relative

error ≈ 3u2. We can therefore conclude that our bound of 4u2 is tight to the nearest bit,

since its leading constant factor is at most twice the optimal leading constant. Similarly,

the following worst-case input for madd, discovered using a stochastic search procedure

presented in Section 5.1, shows that our 2u2 bound for madd is also tight to the nearest bit.

x0 := 1 + 2u x1 := −
u

2
− 2u2 y0 := −u y1 := −

u2

2
− u3 (4.23)

The sum computed by madd on these inputs has relative error ≈ 1.5u2.

We now turn our attention to the question of verification performance. It is not obvious a

priori that our procedure, which checks the satisfiability of linear equations and inequalities

over the integers, should be any faster than bit-blasting. After all, Boolean satisfiability

and QF-LIA satisfiability are both NP-complete problems.

In Table 4.1, we compare the speed of verifying a property P expressed in QF-LIA using

the SELTZO abstraction to verifying the same property P expressed directly in the theory

of floating-point numbers (QF-FP). The property P in question is the same property used to

prove Theorems 1 and 2, as stated above, and is separately timed for both ddadd and madd.

Our benchmarks evaluate a portfolio of state-of-the-art SMT solvers using the latest software

versions available at the time of writing, including Z3 4.13.4, CVC5 1.2.0, MathSAT 5.6.11,

Bitwuzla 0.7.0, and Colibri2 0.4. The first four of these SMT solvers implement floating-

point reasoning by bit-blasting, while Colibri2 uses projection from real arithmetic. All of

these SMT solvers were evaluated for their floating-point reasoning capabilities, while only

Z3 was used to solve QF-LIA satisfiability problems via its Python API.

In all cases, our FPAN verification problems are many orders of magnitude faster to

solve in the SELTZO abstraction. We observe measured speedups of roughly five orders

of magnitude and implied speedups exceeding six orders of magnitude (more one million

times faster) in trials that were terminated early due to failure to finish after three days of

continuous runtime (labeled by “DNF” entries in Table 4.1). Moreover, our SELTZO solve

times remain constant when the floating-point precision p is increased, enabling scalability to

CHAPTER 4. VERIFICATION 72

FPAN Format Z3 CVC5 MathSAT Bitwuzla Colibri2 SELTZO (Z3)

ddadd binary16 DNF 153 min DNF 72 min N/A 0.927 sec

madd binary16 DNF 120 min 3898 min 72 min N/A 0.713 sec

ddadd bfloat16 DNF 704 min DNF 71 min N/A 0.838 sec

madd bfloat16 DNF 946 min DNF 99 min N/A 0.689 sec

ddadd binary32 DNF 1088 min DNF 640 min N/A 0.774 sec

madd binary32 DNF 1019 min DNF 518 min N/A 0.722 sec

ddadd binary64 DNF DNF DNF DNF N/A 0.623 sec

madd binary64 DNF DNF DNF DNF N/A 0.923 sec

ddadd binary128 DNF DNF DNF DNF N/A 0.880 sec

madd binary128 DNF DNF DNF DNF N/A 0.991 sec

Table 4.1: Execution time for various SMT solvers to verify property P expressed in the
theory of floating-point numbers (QF FP) compared to the theory of linear integer arithmetic
(QF LIA) via the SELTZO abstraction. A “DNF” entry indicates that a solver did not
terminate within three days, while an “N/A” entry indicates that a solver rejected the
problem as unsolvable. These benchmarks were performed on an AMD Ryzen 9 9950X
processor using Z3 4.13.4, CVC5 1.2.0, MathSAT 5.6.11, Bitwuzla 0.7.0, and Colibri2 0.4.
SELTZO satisfiability problems were solved using Z3 4.13.4.

wide floating-point formats that are intractable for bit-blasting. We also note that Colibri2,

an SMT solver whose floating-point reasoning engine uses projection from real arithmetic,

immediately rejects all of these problems as unsolvable. This failure demonstrates our claim

that methods of this type are fundamentally inapplicable to FPAN verification.

Finally, in Table 4.2, we compare the logical strength of the SE, SETZ, and SELTZO

abstractions by computing the parameters j, k ∈ Z of the strongest relative error bound

|w0| ≤ 2juk|z0| that is provable for ddadd and madd in each abstract domain. We determine

these optimal parameters by using our automatic verification procedure to conduct an

iterated binary search. We first hold j fixed at a large value (j = 64 in our implementation)

and perform a binary search to determine the maximum value of k for which the statement

|w0| ≤ 2juk|z0| holds. Then, we decrease the value of j until this statement becomes false,

at which point we have identified the strongest bound provable in each abstract domain.

We observe that the SE, SETZ, and SELTZO abstractions exhibit stepwise increasing

logical strength, with each model proving stronger relative error bounds for both ddadd

CHAPTER 4. VERIFICATION 73

FPAN SE SETZ SELTZO

ddadd 2−(2p−7) = 128u2 2−(2p−4) = 16u2 2−(2p−2) = 4u2

madd 2−(2p−6) = 64u2 2−(2p−3) = 8u2 2−(2p−1) = 2u2

Table 4.2: Strongest relative error bounds for ddadd and madd that are provable in the SE,
SETZ, and SELTZO abstractions.

and madd than its predecessor. Notably, all of these bounds exhibit the same order of

dependence on the unit roundoff uk, differing only in the leading constant 2j . This suggests

that the SE and SETZ abstractions may be useful to provide a coarse correctness check

before initiating a more expensive SELTZO verification run.

Chapter 5

Synthesis

In the two previous chapters, we set up the basic theory of FPANs (Chapter 3) and formu-

lated a procedure to automatically verify the FPAN correctness conditions (Chapter 4). In

this chapter, we tackle the remaining question: how do we find candidate FPANs to verify?

As we have seen, reasoning about FPANs is a difficult combinatorial problem mired

in exponential complexity, untamed by intuitive crutches or convenient shortcuts. There

is often no clear high-level explanation as to why one FPAN works when another similar-

looking FPAN fails. At our current state of knowledge, we are not aware of any intuitive

guiding principles to steer us toward efficient or even correct FPANs. We therefore turn to

a technique that is as simple as it is brutal: random evolutionary search.

5.1 Evolutionary Search

Consider the problem of finding an FPAN F that computes the sum of two floating-point ex-

pansions. For simplicity of notation, we assume that both addends, x := (x0, . . . , xn−1) and

y := (y0, . . . , yn−1), and the sum z := (z0, . . . , zn−1) are strongly nonoverlapping floating-

point expansions having the same length n. However, the search strategy that we develop

in this section also works for mixed-length operations and alternative nonoverlapping con-

ditions. Following the algorithmic template for addition presented in Section 3.4, we seek

74

CHAPTER 5. SYNTHESIS 75

an FPAN F with 2n inputs and n outputs arranged in the following signature:

(z0, . . . , zn−1)← F (x0, y0, . . . , xn−1, yn−1) (5.1)

Note that the input expansions x and y are interlaced on the input wires of the FPAN F .

This serves an important mathematical purpose that will be explained in Section 5.2.

It is sometimes necessary to consider the discarded rounding errors produced by the

addition gates in F . We denote these discarded values by w := (w0, . . . , wn−1) and write

(z0, . . . , zn−1, w0, . . . , wn−1)← F (x0, y0, . . . , xn−1, yn−1) (5.2)

to denote a computation producing n output values z := (z0, . . . , zn−1), which are required

to be strongly nonoverlapping, and n discarded values w := (w0, . . . , wn−1), which may

overlap each other arbitrarily.

The only other requirement we place on the FPAN F is a relative error bound specified

by some constant η > 0. We require the outputs z and discarded values w to satisfy

|w0 + · · ·+ wn−1| ≤ η|z0 + · · ·+ zn−1| (5.3)

for all strongly nonoverlapping inputs x and y. Since z is required to be nonoverlapping, z0

is a close approximation of z0+· · ·+zn−1, so in practice, we will often replace the right-hand

side of Equation (5.3) simply by η|z0|.

In principle, with all of our requirements specified, we could search for an FPAN that

satisfies these requirements by generating random FPANs and checking their correctness

with the SELTZO verification procedure developed in Chapter 4. However, this strategy is

wildly ineffective. It is exceedingly rare to randomly stumble upon an FPAN that satisfies

these requirements by blind luck. An effective search strategy requires some heuristic to bias

the search toward promising candidates. Even though our SELTZO verification technique

is millions of times faster than bit-blasting, it is still not fast enough to screen thousands

or millions of candidate FPANs per second in the inner loop of a search algorithm.

CHAPTER 5. SYNTHESIS 76

Fortunately, one heuristic indicator of FPAN correctness is readily available: testing!

Every pair of strongly nonoverlapping inputs (x,y) defines a test case that an FPAN F

must pass. If the output z := F (x,y) fails to be strongly nonoverlapping or violates the

relative error bound (5.3), then F can be eliminated from consideration. Of course, an

FPAN must pass an infinite number of test cases to be formally correct, and there is no

guarantee that any finite set of test cases is sufficient to completely determine correctness.

Nonetheless, a large finite set of well-chosen test cases can serve as a useful heuristic filter

to identify promising FPAN candidates.

This interplay between FPANs and test cases creates a sort of adversarial relationship

that can be exploited to derive an effective search strategy. On one hand, we want to find

efficient FPANs that compute accurate nonoverlapping results using as few gates as possible.

However, using fewer gates tends to make an FPAN less robust, potentially introducing

correctness issues. To detect these issues, we want difficult test cases that sniff out subtle

failure modes to distinguish truly correct FPANs from subtly flawed ones. The presence of

harder test cases strengthens the population of FPANs, while the presence of more FPANs

creates more potential failure modes for test cases to find.

Algorithm 5: TwoSumRiffle(x0, . . . , xn−1)

Input: Floating-point numbers x0, . . . , xn−1

Output: Floating-point numbers x0, . . . , xn−1

1 for i = 0 to ⌊(n− 2)/2⌋ do
2 (x2i, x2i+1)← TwoSum(x2i, x2i+1);
3 end
4 for i = 0 to ⌊(n− 3)/2⌋ do
5 (x2i+1, x2i+2)← TwoSum(x2i+1, x2i+2);
6 end
7 return (x0, . . . , xn−1)

We therefore frame the problem of searching for an FPAN that satisfies our requirements

as an adversarial evolutionary process in which a set of FPANs F := {Fi} coevolves with a

set of test cases T := {(xi,yi)}. We begin with an empty set of FPANs F ← ∅ and a small

seed population of, say, 20 randomly generated test cases obtained by calling Renormalize

CHAPTER 5. SYNTHESIS 77

Algorithm 6: Renormalize(x0, . . . , xn−1)

Input: Floating-point numbers x0, . . . , xn−1

Output: A strongly nonoverlapping floating-point expansion (x0, . . . , xn−1) whose
real value is the exact sum of the inputs

1 repeat
2 (x0, . . . , xn−1)← TwoSumRiffle(x0, . . . , xn−1);
3 until (x0, . . . , xn−1) = TwoSumRiffle(x0, . . . , xn−1);
4 return (x0, . . . , xn−1);

(Algorithm 6) on random floating-point numbers. We then perform cyclically repeating

phases of FPAN generation, test case generation, and test case minimization.

Algorithm 7: RelativeError(F, (x,y))

Input: FPAN F with 2n wires, strongly nonoverlapping floating-point expansions
(x,y)

Output: Relative error of the strongly nonoverlapping sum computed by F , or
+∞ if the computed sum fails to be strongly nonoverlapping

1 (z,w)← F (x,y);
2 if z ̸= TwoSumRiffle(z) then
3 return +∞;
4 end
5 w← Renormalize(w);
6 if z0 = 0 and w0 = 0 then
7 return 0;
8 else
9 return |w0 ⊘ z0|;

10 end

In the FPAN generation phase, we use the current test case set T and relative error

bound η to produce new candidate FPANs F := GenerateFPAN(T , η) (Algorithm 9). The

greedy pruning step (lines 9–15 in Algorithm 9) ensures that the FPAN F produced by

GenerateFPAN is minimal. We then call ImproveFPAN(F, T , η, t) (Algorithm 10) to explore

the local neighborhood of F using a search strategy inspired by simulated annealing [10].

ImproveFPAN randomly proposes mutations of F that add, remove, or swap its TwoSum

gates, accepting only mutations that produce an FPAN passing all test cases in T . Initially,

CHAPTER 5. SYNTHESIS 78

Algorithm 8: PassesTestCases(F, T , η)
Input: FPAN F with 2n wires, set of test cases T = {(xi,yi)} , relative error

bound η > 0
Output: Strongly nonoverlapping floating-point expansions (x,y) such that

F (x,y) fails to be strongly nonoverlapping or has large relative error

1 for (x,y) in T do
2 if RelativeError(F, (x,y)) > η then
3 return False;
4 end

5 end
6 return True;

Algorithm 9: GenerateFPAN(T , η)
Input: Set of test cases T = {(xi,yi)}, relative error bound η > 0
Output: FPAN with 2n wires that passes all test cases in T

1 F ← empty FPAN;
2 repeat
3 i← random integer between 0 and 2n− 1;
4 j ← random integer between 0 and 2n− 1;
5 if i ̸= j then
6 append TwoSum gate to F joining wire i to wire j;
7 end

8 until PassesTestCases(F, T , η);
9 repeat

10 F ′ ← F ;
11 remove a random gate from F ′;
12 if PassesTestCases(F ′, T , η) then
13 F ← F ′;
14 end

15 until removal of every gate has been tried ;
16 return F ;

CHAPTER 5. SYNTHESIS 79

Algorithm 10: ImproveFPAN(F, T , η, t)
Input: FPAN F with 2n wires, set of test cases T = {(xi,yi)}, relative error

bound η > 0, time bound t
Output: FPAN with 2n wires that passes all test cases in T

1 Fbest ← F ;
2 s← 1;
3 repeat
4 pinsert ← 1/(1 +

√
s+ log s);

5 pdelete ←
√
s/(1 +

√
s+ log s);

6 pswap ← log s/(1 +
√
s+ log s);

7 F ′ ← F ;
8 with probability pinsert append a random TwoSum gate to F ′;
9 with probability pdelete delete a random TwoSum gate from F ′;

10 with probability pswap swap two random TwoSum gates in F ′;
11 if PassesTestCases(F ′, T , η) then
12 F ← F ′;
13 if F has fewer gates than Fbest then
14 Fbest ← F ;
15 end

16 end

17 until time t has elapsed ;
18 return Fbest;

CHAPTER 5. SYNTHESIS 80

additions, removals, and swaps are proposed with roughly equal probability, encouraging ex-

ploration of the local neighborhood. Over time, the probability of adding gates is decreased

and the probability of removing gates is increased, introducing a bias that drives the search

toward more efficient FPANs with fewer gates. We call GenerateFPAN and ImproveFPAN

several thousand times during each generation phase, using a time bound t of roughly 0.05

seconds. These calls to GenerateFPAN and ImproveFPAN can be performed in parallel across

an arbitrarily number of processors, and all FPANs generated by this process are added to

the set F in preparation for the next phase.

During the course of our evolutionary search algorithm, all FPANs consist only of

TwoSum gates with no addition or FastTwoSum gates. We adopt the convention that the

top n wires carry the output values z while the bottom n wires carry the discarded values

w. We only consider exchanging TwoSum gates for FastTwoSum or addition gates during

offline analysis outside the evolutionary search algorithm.

Algorithm 11: GenerateTestCase(F, t)

Input: FPAN F with 2n wires, time bound t
Output: Strongly nonoverlapping floating-point expansions (x,y) such that

F (x,y) fails to be strongly nonoverlapping or has large relative error

1 bestErr← 0;
2 result← ((0, . . . , 0), (0, . . . , 0));
3 repeat
4 x← Renormalize(n random floating-point numbers);
5 y← Renormalize(n random floating-point numbers);
6 relErr← RelativeError(F, (x,y));
7 if relErr = +∞ then
8 return (x,y);
9 else if relErr > bestErr then

10 bestErr← relErr;
11 result← (x,y);

12 end

13 until time t has elapsed ;
14 return result;

In the test case generation phase, we randomly pick an FPAN F from the size-depth

Pareto frontier of the set F , i.e., the subset of FPANs having minimal size for their depth

CHAPTER 5. SYNTHESIS 81

Algorithm 12: ImproveTestCase(F, (x,y))

Input: FPAN F with 2n wires, strongly nonoverlapping floating-point expansions
(x,y)

Output: Strongly nonoverlapping floating-point expansions (x,y) such that
F (x,y) fails to be strongly nonoverlapping or has large relative error

1 bestErr← RelativeError(F, (x,y));
2 repeat
3 (x′,y′)← (x,y);
4 flip a random bit in the binary encoding of (x′,y′);
5 if RelativeError(F, (x′,y′)) > bestErr then
6 (x,y)← (x′,y′);
7 end

8 until every bit flip has been tried with no improvement to bestErr;
9 return (x,y);

and minimal depth for their size. We then repeatedly call (x,y) := GenerateTestCase(F, t)

(Algorithm 11) and ImproveTestCase(F, (x,y)) (Algorithm 12) to generate several dozen

new test cases tailored to F . If one of these test cases causes F to fail, i.e., compute a

result that is not strongly nonoverlapping or violates the relative error bound η, then F is

removed from the set F . We execute this process in parallel for several hundred FPANs

chosen randomly from the Pareto frontier of F , generating several thousand test cases in

total, all of which are added to T in preparation for the next phase.

Finally, in the test case minimization phase, we test all FPANs in F against all new

test cases added to T . Any FPANs found to fail any new test case are removed from F .

We then shrink T by keeping only those test cases that maximize relative error for some

FPAN. If multiple test cases achieve the same maximum relative error for a given FPAN,

we run a greedy set cover algorithm to obtain a minimal subset of T that contains an error-

maximizing test case for every FPAN in F . This produces a minimal set of all the hardest

test cases in T that will be used to generate the next generation of FPANs. We now repeat

the cycle by returning to the FPAN generation phase.

Note that this search algorithm is evolutionary but not genetic. In particular, there is

no notion of heredity between FPANs or test cases. Each new FPAN is created solely from

CHAPTER 5. SYNTHESIS 82

T with no knowledge or influence from other FPANs, and conversely, each new test case is

created from an FPAN F on the Pareto frontier of F with no knowledge or influence from

other test cases. The sets F and T coevolve only by interaction with each other without

mutation or crossover dynamics internal to either set.

A permissively-licensed open-source implementation of this search algorithm is provided

in the https://github.com/dzhang314/ComparatorNetworks.jl GitHub repository. Our

implementation of Algorithms 5–11 uses SIMD acceleration to simultaneously evaluate 8

binary64 test cases on a single AVX-512-capable CPU core. In principle, TwoSumRiffle

(Algorithm 5) could be implemented as a simple left-to-right sweep, but we found the riffle

pattern to be significantly faster because it enables simultaneous superscalar dispatch of

multiple vectorized TwoSum operations. To enable this optimization, it is important that

the expansion length n be a compile-time constant so that these loops can be fully unrolled.

Our implementation also uses JIT compilation to generate optimized native code for each

FPAN in F , significantly accelerating the test case generation and minimization phases.

Many aspects of our evolutionary search algorithm are the result of ad hoc design choices

and preliminary exploration. We have not performed any systematic analysis of different

search strategies and make no claim that the choices made in our search algorithms are

in any way optimal. For example, the rate functions 1,
√
s, and log s that appear in

Algorithm 10 are arbitrary choices that happened to work well in preliminary testing and

have no deeper principled meaning. It is likely that further examination of these choices

could produce significant performance improvements. Nonetheless, the evolutionary search

algorithm described in this section is sufficient to discover all of the FPANs presented in this

dissertation, which outperform state-of-the-art algorithms for extended-precision floating-

point arithmetic by more than an order of magnitude.

5.2 Addition FPANs

By applying the evolutionary search algorithm developed in the previous section, we have

discovered three novel branch-free algorithms for addition and subtraction of strongly

https://github.com/dzhang314/ComparatorNetworks.jl

CHAPTER 5. SYNTHESIS 83

x0 z0

y0 z1

x1

y1

Figure 5.1: Provably optimal FPAN with size 6 and depth 4 for double-word addition. Here,
(x0, x1) and (y0, y1) denote the input expansions to be added, and (z0, z1) denotes the output
expansion. The relative error of sums computed by this FPAN is at most 2u2 +O(u3).

nonoverlapping floating-point expansions of lengths 2, 3, and 4. The first of these algo-

rithms, shown in Figure 5.1, is the madd algorithm referenced in Section 4.5, with size and

depth (6, 4). As previously noted, this strictly improves upon the size and depth (6, 5) of

ddadd, the previous best known algorithm for double-word addition, while simultaneously

reducing relative error from 3u2 to 2u2.

The corresponding FPANs for triple-word and quad-word arithmetic are shown in Fig-

ures 5.2 and 5.3, respectively, with size and depth (16, 10), and (31, 13). To our knowl-

edge, these are first known algorithms for branch-free addition and subtraction of strongly

nonoverlapping floating-point expansions of lengths 3 and 4. Prior algorithms for triple-

word and quad-word arithmetic either used branching renormalization schemes [42, 30, 56]

or failed to guarantee strongly nonoverlapping outputs for all possible inputs [63, 21, 99].

We have proven by exhaustive enumeration that madd is the optimal double-word ad-

dition algorithm. Every other FPAN with size up to 6 and depth up to 4 either fails to

produce a nonoverlapping result or computes a sum whose relative error strictly exceeds

2u2. Unfortunately, the exponential growth in the number of FPANs as a function of size

makes exhaustive enumeration intractable for the triple-word and quad-word FPANs shown

in Figures 5.2 and 5.3.

The three addition FPANs presented in this section (Figures 5.1–5.3) share the notable

feature that they all begin with an initial layer of TwoSum gates that pair matching terms

(x0, y0), . . . , (xn−1, yn−1) between the two input expansions. Because TwoSum is a commu-

tative operation, this structure guarantees that the sums computed by these FPANs are

CHAPTER 5. SYNTHESIS 84

x0 z0

y0 z1

x1 z2

y1

x2

y2

Figure 5.2: FPAN with size 16 and depth 10 for triple-word addition. Here, (x0, x1, x2)
and (y0, y1, y2) denote the input expansions to be added, and (z0, z1, z2) denotes the output
expansion. The relative error of sums computed by this FPAN is at most 8u3 +O(u4).

x0 z0

y0 z1

x1 z2

y1 z3

x2

y2

x3

y3

Figure 5.3: FPAN with size 31 and depth 13 for quad-word addition. Here, (x0, x1, x2, x3)
and (y0, y1, y2, y3) denote the input expansions to be added, and (z0, z1, z2, z3) denotes the
output expansion. The relative error of sums computed by this FPAN is at most 8u4+O(u5).

invariant under exchanging the inputs (x0, . . . , xn−1) and (y0, . . . , yn−1). This is a desirable

commutativity property that will be revisited in our subsequent discussion of multiplication.

5.3 Multiplication FPANs

We have also applied our evolutionary search algorithm to discover novel branch-free algo-

rithms for multiplication of strongly nonoverlapping floating-point expansions. Recall from

Section 3.4 that our strategy for FPAN-based multiplication first computes the pairwise

error-free products (pi,j , ei,j) := TwoProd(xi, yj), then uses an FPAN to accumulate the

CHAPTER 5. SYNTHESIS 85

terms pi,j and ei,j . The FPANs shown in Figures 5.4, 5.5, and 5.6 show only the accumu-

lation phase of the multiplication algorithm starting from the pairwise products (pi,j , ei,j).

The double-word multiplication FPAN with size and depth (3, 3) shown in Figure 5.4

was already known in prior work [54, Algorithm 10]. In fact, this is the original double-

double multiplication algorithm proposed by Dekker in 1971 [25]. We merely include this

algorithm for completeness and point out that it is also optimal by exhaustive enumeration.

In Figures 5.5 and 5.6, we present novel FPANs with size and depth (13, 8) and (33, 14)

for commutative triple-word and quad-word multiplication. We emphasize commutativity

here because some multiplication algorithms proposed in prior work violate the commutative

property of multiplication [54, Algorithms 11–12]. In other words, they compute a different

result when the inputs (x0, . . . , xn−1) and (y0, . . . , yn−1) are swapped. Of course, it is

well-known that floating-point arithmetic violates many of the algebraic properties enjoyed

by exact real arithmetic, such as the associative and distributive properties. However,

the lack of commutativity is particularly problematic in applications involving complex

numbers because it causes the complex conjugate product (a + bi)(a − bi) to have a small

but nonzero imaginary part. This creates significant rounding artifacts that severely degrade

the performance of certain numerical algorithms, such as eigensolvers.

In a similar fashion to the addition FPANs described in the previous section, we can

enforce the commutative property in our multiplication FPANs by adding an initial layer

of TwoSum gates that pair the symmetric values (pi,j , pj,i) and (ei,j , ej,i). For addition

FPANs, this initial commutativity layer happens to naturally occur in the optimal FPANs

discovered by our evolutionary search procedure. However, this does not naturally occur in

multiplication FPANs, and we must deliberately impose the presence of the commutativity

layer in our search procedure.

We observe that the search space for quad-word multiplication FPANs is unusually com-

plicated, exhibiting a Pareto frontier that contains several thousand non-isomorphic FPANs

all sharing the same size and depth. The FPAN we present in Figure 5.6 is derived from

one member of this frontier. It is presently unclear whether this is an inherent mathemat-

ical property of quad-word multiplication or merely indicates that our evolutionary search

CHAPTER 5. SYNTHESIS 86

p0,0 z0

e0,0 z1

p0,1

p1,0

Figure 5.4: Provably optimal FPAN with size 3 and depth 3 for commutative double-word
multiplication. Here, (x0, x1) and (y0, y1) denote the input expansions to be multiplied,
(pi,j , ei,j) := TwoProd(xi, yj) denote the FPAN inputs, and (z0, z1) denotes the output
expansion. The relative error of products computed by this FPAN is at most 8u2 +O(u3).

algorithm has not yet converged.

CHAPTER 5. SYNTHESIS 87

p0,0 z0

e0,0 z1

p0,1 z2

p1,0

e0,1

e1,0

p0,2

p1,1

p2,0

Figure 5.5: FPAN with size 13 and depth 8 for commutative triple-word multiplication.
Here, (x0, x1, x2) and (y0, y1, y2) denote the input expansions to be multiplied, (pi,j , ei,j) :=
TwoProd(xi, yj) denote the FPAN inputs, and (z0, z1, z2) denotes the output expansion.
The relative error of products computed by this FPAN is at most 64u3 +O(u4).

CHAPTER 5. SYNTHESIS 88

p0,0 z0

e0,0 z1

p0,1 z2

p1,0 z3

e0,1

e1,0

p0,2

p1,1

p2,0

e0,2

e1,1

e2,0

p0,3

p1,2

p2,1

p3,0

Figure 5.6: FPAN with size 31 and depth 14 for commutative quad-word multiplica-
tion. Here, (x0, x1, x2, x3) and (y0, y1, y2, y3) denote the input expansions to be multiplied,
(pi,j , ei,j) := TwoProd(xi, yj) denote the FPAN inputs, and (z0, z1, z2, z3) denotes the output
expansion. The relative error of products computed by this FPAN is at most 256u4+O(u5).

Chapter 6

Evaluation

To assess the performance of our new algorithms in a practical scientific computing context,

we used them to implement four extended-precision BLAS kernels that exercise typical

computational patterns found in scientific software.

• AXPY: vector-vector operations

• DOT: vector-vector reduction operations

• GEMV: matrix-vector operations

• GEMM: matrix-matrix operations

We developedMultiFloats, a prototype C++ library that implements these BLAS kernels

on two-term (quadruple precision), three-term (sextuple precision), and four-term (octuple

precision) expansions using the addition and multiplication FPANs shown in Figures 5.1–

5.6. Our library provides a class template MultiFloat<T,N> parameterized by an underlying

floating-point type T and a floating-point expansion length N = 1, 2, 3, 4. (MultiFloat<T,1>

is simply an alias for T.)

Allowing the user to select the underlying floating-point type T significantly enhances

the portability of our library. For example, datatypes like MultiFloat<float,4> can be

used to provide extended-precision arithmetic on machines that lack double-precision hard-

ware. On the other hand, processors with native support for IEEE quadruple precision

89

CHAPTER 6. EVALUATION 90

can use MultiFloat<quad,2> to provide fast octuple-precision arithmetic. Nonetheless,

we expect MultiFloat<T,N> to be used with T = double on the vast majority of current

high-performance computer hardware.

We compared the performance of our library, MultiFloats, to the following suite of

extended-precision arithmetic libraries:

• GMP 6.3.0 [38]

• MPFR 4.2.1 [32]

• FLINT (formerly known as Arb) 3.2.1 [40, 53]

• Boost.Multiprecision 1.86 [68]

• QD1 2.3.23 [4]

• CAMPARY2 01.06.17 [55]

• libquadmath3 14.2 [37]

The latest version of each library available at the time of writing was selected for test-

ing. This is an exhaustive list of all extended-precision floating-point libraries that we are

aware of, excluding (1) libraries for base-10 floating-point arithmetic, such as mpdecimal;

(2) libraries that merely wrap the interface of another library, such as MPFR++ and mppp;

(3) libraries that are not thread-safe, such as CLN; (4) libraries targeting dynamic languages,

such as mpmath and bignumber.js; and (5) unmaintained libraries that no longer compile

on modern hardware, including CUMP and MPRES-BLAS. We also exclude XBLAS [64]

from consideration because its interface does not allow extended-precision numbers to be

passed into or out of the library.

1QD only supports two-term and four-term floating-point expansions.
2CAMPARY provides two sets of arithmetic algorithms: a “certified” set that is provably correct but

uses branching, and a “fast” set that is branch-free but known to be incorrect on some classes of inputs. In
some cases, the “fast” algorithms exhibit catastrophic loss of precision, degrading the accuracy of the result
to machine precision. We benchmark only the “certified” algorithms to provide a fair comparison to our
algorithms, which are provably correct on all inputs.

3libquadmath is the library used to provide the built-in float128 type in the GCC and Clang compilers.
It only supports IEEE quadruple-precision arithmetic and does not provide any other precision levels.

CHAPTER 6. EVALUATION 91

Library 53-bit 103-bit 156-bit 208-bit

MultiFloats (ours) 135.22 35.35 11.32 5.60

GMP 0.67 0.64 0.63 0.63

MPFR 1.45 1.13 0.75 0.50

FLINT 1.39 1.01 0.86 0.79

Boost.Multiprecision 1.33 0.61 0.36 0.33

QD N/A 24.13 N/A 0.50

CAMPARY 133.80 32.44 0.35 0.24

libquadmath N/A 1.05 N/A N/A

Table 6.1: Measured AXPY performance, in billions of extended-precision operations per
second, of multiprecision libraries at 53-bit, 103-bit, 156-bit, and 208-bit precision on a
16-core AMD Zen 5 CPU (Ryzen 9 9950X). “N/A” entries indicate lack of library support
for a specific precision level.

Library 53-bit 103-bit 156-bit 208-bit

MultiFloats (ours) 117.35 30.87 11.75 5.77

GMP 0.65 0.64 0.64 0.63

MPFR 1.44 1.16 0.78 0.55

FLINT 1.62 1.21 1.00 0.92

Boost.Multiprecision 1.40 0.63 0.34 0.32

QD N/A 4.66 N/A 0.51

CAMPARY 52.84 5.40 0.36 0.25

libquadmath N/A 1.13 N/A N/A

Table 6.2: Measured DOT performance, in billions of extended-precision operations per
second, of multiprecision libraries at 53-bit, 103-bit, 156-bit, and 208-bit precision on a
16-core AMD Zen 5 CPU (Ryzen 9 9950X). “N/A” entries indicate lack of library support
for a specific precision level.

To ensure optimal conditions for fair comparison, each combination of library and BLAS

kernel was compiled using the latest available GCC (version 14.2) and Clang (version 20.1)

C++ compilers, using both medium (-O2) and full (-O3) optimization levels, with all avail-

able ISA extensions (-march=native) enabled on the most recent high-performance proces-

sor microarchitectures (AMD Zen 5 and Apple M3) available to us at the time of writing.

All BLAS kernels were implemented with identical parallelization strategies, using ij loop

ordering for GEMV and ikj loop ordering for GEMM. In addition, each kernel was run in

both thread-per-physical-core and thread-per-logical-core configurations using the OpenMP

thread affinity API (OMP_PROC_BIND).

CHAPTER 6. EVALUATION 92

Library 53-bit 103-bit 156-bit 208-bit

MultiFloats (ours) 225.18 38.87 12.14 5.86

GMP 0.66 0.66 0.66 0.64

MPFR 1.51 1.21 0.79 0.59

FLINT 1.63 1.22 0.98 0.90

Boost.Multiprecision 1.34 0.63 0.38 0.33

QD N/A 4.68 N/A 0.51

CAMPARY 58.65 5.32 0.36 0.25

libquadmath N/A 1.12 N/A N/A

Table 6.3: Measured GEMV performance, in billions of extended-precision operations per
second, of multiprecision libraries at 53-bit, 103-bit, 156-bit, and 208-bit precision on a
16-core AMD Zen 5 CPU (Ryzen 9 9950X). “N/A” entries indicate lack of library support
for a specific precision level.

Library 53-bit 103-bit 156-bit 208-bit

MultiFloats (ours) 328.98 42.18 12.34 5.93

GMP 0.62 0.61 0.61 0.60

MPFR 1.50 1.18 0.79 0.55

FLINT 1.61 1.22 1.01 0.94

Boost.Multiprecision 1.30 0.63 0.37 0.31

QD N/A 26.47 N/A 0.51

CAMPARY 310.29 37.42 0.36 0.25

libquadmath N/A 1.13 N/A N/A

Table 6.4: Measured GEMM performance, in billions of extended-precision operations per
second, of multiprecision libraries at 53-bit, 103-bit, 156-bit, and 208-bit precision on a
16-core AMD Zen 5 CPU (Ryzen 9 9950X). “N/A” entries indicate lack of library support
for a specific precision level.

Library 53-bit 103-bit 156-bit 208-bit

MultiFloats (ours) 328.98 42.18 12.34 5.93

GMP 0.62 0.61 0.61 0.60

MPFR 1.50 1.18 0.79 0.55

FLINT 1.61 1.22 1.01 0.94

Boost.Multiprecision 1.30 0.63 0.37 0.31

QD N/A 26.47 N/A 0.51

CAMPARY 310.29 37.42 0.36 0.25

libquadmath N/A 1.13 N/A N/A

Table 6.5: Measured AXPY performance, in billions of extended-precision operations per
second, of multiprecision libraries at 53-bit, 103-bit, 156-bit, and 208-bit precision on a
12-core ARMv8.6-A CPU (Apple M3 Pro). “N/A” entries indicate lack of library support
for a specific precision level.

CHAPTER 6. EVALUATION 93

Library 53-bit 103-bit 156-bit 208-bit

MultiFloats (ours) 12.50 1.19 0.52 0.31

GMP 0.16 0.16 0.16 0.16

MPFR 0.73 0.66 0.43 0.25

FLINT 0.44 0.30 0.27 0.23

Boost.Multiprecision 0.62 0.34 0.18 0.15

QD N/A 1.16 N/A 0.17

CAMPARY 6.81 0.94 0.24 0.16

libquadmath N/A N/A N/A N/A

Table 6.6: Measured DOT performance, in billions of extended-precision operations per
second, of multiprecision libraries at 53-bit, 103-bit, 156-bit, and 208-bit precision on a
12-core ARMv8.6-A CPU (Apple M3 Pro). “N/A” entries indicate lack of library support
for a specific precision level.

Library 53-bit 103-bit 156-bit 208-bit

MultiFloats (ours) 15.59 1.26 0.51 0.34

GMP 0.16 0.16 0.16 0.16

MPFR 0.78 0.68 0.42 0.25

FLINT 0.45 0.32 0.27 0.23

Boost.Multiprecision 0.59 0.33 0.18 0.15

QD N/A 1.16 N/A 0.17

CAMPARY 8.95 0.95 0.25 0.14

libquadmath N/A N/A N/A N/A

Table 6.7: Measured GEMV performance, in billions of extended-precision operations per
second, of multiprecision libraries at 53-bit, 103-bit, 156-bit, and 208-bit precision on a
12-core ARMv8.6-A CPU (Apple M3 Pro). “N/A” entries indicate lack of library support
for a specific precision level.

Library 53-bit 103-bit 156-bit 208-bit

MultiFloats (ours) 46.53 6.78 2.02 0.98

GMP 0.16 0.16 0.16 0.16

MPFR 0.84 0.69 0.45 0.25

FLINT 0.48 0.32 0.27 0.25

Boost.Multiprecision 0.61 0.32 0.18 0.14

QD N/A 2.76 N/A 0.17

CAMPARY 41.10 4.77 0.27 0.19

libquadmath N/A N/A N/A N/A

Table 6.8: Measured GEMM performance, in billions of extended-precision operations per
second, of multiprecision libraries at 53-bit, 103-bit, 156-bit, and 208-bit precision on a
12-core ARMv8.6-A CPU (Apple M3 Pro). “N/A” entries indicate lack of library support
for a specific precision level.

CHAPTER 6. EVALUATION 94

In Tables 6.1–6.8, we report the maximum AXPY, DOT, GEMV, and GEMM per-

formance achieved by each library on one-term (double precision), two-term (quadruple

precision), three-term (sextuple precision), and four-term (octuple precision) floating-point

expansions. For libraries not based on floating-point expansions, we statically specified an

equivalent number of bits of precision (53, 103, 156, and 208 bits, respectively) based on

experimentally measured relative error bounds for our FPAN-based algorithms. The num-

bers reported in these tables represent the maximum computational throughput, in billions

of extended-precision operations per second, achieved over all possible choices of compiler,

optimization level, and thread count. To eliminate the effect of memory bandwidth, we

measured performance on the largest matrix and vector sizes that each library can fit into

L3 cache.

We adopt the usual convention in numerical linear algebra that one arithmetic operation

consists of one multiplication followed by one addition [70]. Thus, given vectors of size n and

matrices of size n×n, AXPY and DOT execute n operations, GEMV executes n2 operations,

and GEMM executes n3 operations. Note that each extended-precision operation conists of

several dozen to several hundred native machine-precision FLOPs.

On AMD Zen 5, our new FPAN-based algorithms significantly outperformed all com-

peting libraries in all benchmarks, often by more than an order of magnitude. Only two

libraries, QD and CAMPARY, achieved comparable AXPY and GEMM performance in the

two-term case by using previously known, albeit suboptimal, branch-free algorithms. They

are unable to match our two-term DOT and GEMV performance because they do not pro-

vide SIMD reduction operators and their code is too complex for either GCC 14.2 or Clang

20.1 to automatically vectorize. Moreover, at three-term (156-bit) and four-term (208-bit)

precision levels, no competing libraries come within a factor of 10× or 5× of our algorithms

in any of the four tested kernels. We also observe that our algorithms exhibit a modest

but consistent trend of increasing computational throughput across vector-vector opera-

tions (AXPY and DOT), matrix-vector operations (GEMV), and matrix-matrix operations

(GEMM), representing different points on a roofline curve.

On Apple M3, our FPAN-based algorithms also outperformed all competing libraries

CHAPTER 6. EVALUATION 95

Kernel 1-Term 2-Term 3-Term 4-Term

AXPY 44.25 21.63 15.77 9.71

DOT 84.83 56.72 38.14 28.44

GEMV 170.77 92.37 28.42 31.92

GEMM 466.43 277.37 170.50 81.11

Table 6.9: Measured GPU performance, in billions of extended-precision operations per
second, of our FPAN-based algorithms on an AMD RDNA 3 GPU (RX 7900 XTX).

in all benchmarks, though the ratio of improvement is less dramatic. Compared to AMD

Zen 5, this architecture deprioritizes SIMD performance (128-bit NEON vs. 512-bit AVX),

so efficiently-vectorizable branch-free algorithms experience a smaller performance uplift

compared to branching scalar code. Nonetheless, our algorithms are still consistently the

fastest, and some order-of-magnitude improvements over existing libraries are still observed.

Finally, in Table 6.9, we report the performance of our algorithms on an AMD RDNA3

GPU using the ROCm 6.4.1 toolchain. Unlike our CPU benchmarks, our GPU implemen-

tation uses T = float as the underlying base type instead of T = double because this

architecture lacks double precision units. We observe significant performance uplift over

CPUs, particularly for high-precision GEMM operations, which are more than an order

of magnitude faster. These experiments demonstrate that the branch-free nature of our

algorithms makes them highly suitable for GPUs, in addition to their utility for extending

the precision of single-precision hardware.

Chapter 7

Conclusion

In this dissertation, we have introduced a new approach to extended-precision floating-

point arithmetic that significantly outperforms all existing software libraries while provid-

ing stronger correctness guarantees. These advances have been made possible through a

combination of three novel technical contributions:

• the introduction of floating-point accumulation networks (FPANs), which our work

identifies as key algorithmic primitives that enable branch-free algorithms for extended-

precision floating-point arithmetic (Chapter 3);

• the SELTZO abstraction, which automates formal verification of the FPAN correct-

ness conditions, eliminating the possibility of missing cases and other subtle mistakes

in traditional pen-and-paper rounding error analyses (Chapter 4); and

• an evolutionary search metaheuristic that systematically explores the space of all

FPANs to find the fastest correct algorithm for a given task (Chapter 5).

By combining these techniques, we have discovered five novel branch-free algorithms for

addition (Section 5.2) and multiplication (Section 5.3) of strongly nonoverlapping floating-

point expansions with two, three, or four terms, which in turn, yield new branch-free al-

gorithms for subtraction, division, and square root (Section 3.4). Our new FPAN-based

algorithms significantly outperform all state-of-the-art software libraries for high-precision

96

CHAPTER 7. CONCLUSION 97

floating-point arithmetic by factors of 11.7×–69.3× (Chapter 6), opening new frontiers in

high-performance large-scale computational modeling and simulation.

To encourage adoption of our algorithms and independent verification of our proofs by

other researchers in numerical analysis and scientific computing, we have released all of our

verification, search, benchmarking, and optimization tools under permissive open-source

licenses in the following GitHub repositories:

• https://github.com/dzhang314/FPANVerifier

• https://github.com/dzhang314/ComparatorNetworks.jl

• https://github.com/dzhang314/MultiprecisionBenchmarks

We have taken substantial care to design clean, well-documented interfaces that make our

software as flexible, extensible, and reusable as possible without sacrificing performance.

7.1 Related Work

Floating-point arithmetic is a fundamental and far-reaching topic that has been studied in

its modern form by applied mathematics and computer scientists for over sixty years [97].

In fact, the basic underlying concept of an inexact positional number system, consisting

of sequences of digits scaled by powers of a base, was known to Sumerian and Babylonian

mathematicians in the third century BCE [19]. It is hardly surprising that a topic so classical

and so widely studied, of broad interest to all scientists and engineers, has been approached

from many angles in a large body of related work. In this section, we situate the findings

of this dissertation in the broader landscape of research on floating-point arithmetic.

Double-double, triple-double, and quad-double arithmetic. The prior works most

directly comparable to the approach presented in this dissertation are the existing algo-

rithms for double-double [25, 64], triple-double [30, 63], and quad-double [42, 65] arith-

metic. These algorithms also implement addition, subtraction, multiplication, division, and

square root on fixed-length floating-point expansions. However, to our knowledge, all such

https://github.com/dzhang314/FPANVerifier
https://github.com/dzhang314/ComparatorNetworks.jl
https://github.com/dzhang314/MultiprecisionBenchmarks

CHAPTER 7. CONCLUSION 98

algorithms either include an expensive branching renormalization step or fail to guarantee

strongly nonoverlapping outputs for all strongly nonoverlapping inputs. In many cases,

these prior algorithms have weak or conjectural correctness claims that are stated without

proof. This lack of formal guarantees makes these algorithms risky to apply in large-scale

computational workloads where rare rounding edge cases are more likely to occur.

Our FPAN-based arithmetic algorithms are the first known branch-free algorithms to

provably preserve strong nonoverlapping with rigorous relative error bounds. This novel

combination of speed and correctness makes our algorithms uniquely suited to the demands

of high-performance scientific computation.

Adaptive floating-point expansions. Another family of techniques, developed in work

by Priest [82] and Shewchuk [89], uses floating-point expansions of dynamic length to itera-

tively refine a computation until a specified error tolerance is met. For example, suppose we

want to determine whether a point lies inside a circle. In most cases, a machine-precision

computation is provably sufficient, but additional precision is necessary when the point

lies on or near the boundary of the circle. Adaptive methods retry the computation using

floating-point expansions of increasing length until the rounding errors are small enough to

conclusively determine the answer.

Adaptive-length floating-point expansions are most useful for simple calculations whose

rounding errors can be analyzed to derive provably sufficient error bounds. Their inherently

branching nature prevents effective SIMD parallelization. These properties make adaptive

methods suitable for computational geometry tasks, such as circle containment and ray-

triangle intersection, but not for heavy scientific computing workloads.

Compensated algorithms. Beyond FPANs, error-free transformations are also em-

ployed in a class of floating-point algorithms called compensated algorithms, such as Kahan–

Babuška–Neumaier summation [58, 2, 76]. Unlike floating-point expansions, which involve

a fixed number of terms, these algorithms operate on a variable number of inputs and only

perform partial tracking and correction of rounding errors, making no attempt to satisfy

CHAPTER 7. CONCLUSION 99

rigorous worst-case error bounds.

Other approaches to high-precision arithmetic. Libraries for arbitrary-precision

arithmetic, including GMP, MPFR, and FLINT, make no internal use of floating-point

operations [38, 32, 40, 53]. Instead, they implement arithmetic purely in terms of digit-by-

digit integer operations. This approach allows for truly arbitrary precision, unconstrained

by floating-point overflow and underflow limits, and avoids the complexity of propagating

rounding errors that accompanies the use of error-free transformations. However, at practi-

cal extended precision levels (2–8 machine words), these algorithms are many times slower

than FPANs, requiring complex branching logic that precludes efficient data-parallel exe-

cution. While FPANs are hard to discover and prove correct, they enable high-performance

branch-free arithmetic that massively accelerates high-precision scientific applications.

Interactive floating-point verification. As discussed in Chapter 4, error-free transfor-

mations are particularly difficult for existing floating-point verification methods to handle.

To our knowledge, the only formal reasoning techniques that were successfully applied to

error-free transformations before our work used interactive, rather than automatic, theorem

provers. Interactive verification tools, such as Flocq [13] and Gappa [23], have been used to

prove the correctness of algorithms involving error-free transformations [22, 91], but these

tools demand a high degree of user expertise to construct sophisticated proof scripts. This

requires the user to manually split the verification task into tractable cases and correctly

identify the lemmas needed to resolve each case. The SELTZO abstraction enables an SMT

solver to automate the tedious processes of case management and lemma application.

Scalable abstraction in other domains. Recent work on the Bitwuzla SMT solver [78]

has used lemmas for integer multiplication and division to accelerate bit vector verification,

enabling scalability to previously intractable bit widths. The SELTZO abstraction can

be thought of as a floating-point analogue of this approach, characterizing the TwoSum

operation in a precision-independent fashion to avoid full-width bit-blasting. Unlike bit

CHAPTER 7. CONCLUSION 100

vector methods, our approach does not require abstraction refinement tailored to a specific

FPAN or correctness condition.

Sorting networks. FPANs are closely related to sorting networks, and the graphical

FPAN notation presented in this dissertation is heavily inspired by the diagrammatic rep-

resentation of sorting networks [61]. Although they compute different operations, both are

branch-free algorithms that sort or accumulate a fixed number of inputs by performing

pairwise operations in a data-parallel fashion. This close relationship inspires many nat-

ural research questions connecting the well-established theory of sorting networks to the

relatively unexplored theory of FPANs, which are discussed in the following section.

Program synthesis. Our method for discovering and verifying FPANs is an example

of search-based program synthesis, a family of methods for using a search procedure to

discover a program that satisfies both correctness and performance requirements. Search-

based synthesis methods have been used to superoptimize assembly code [69, 88], deep

learning computations [52, 52], cryptographic primitives [62], and quantum algorithms [98,

81]. These techniques combine a fast heuristic search that uses testing to identify plausible

candidate programs with a full formal verification procedure that confirms whether the

candidate is correct. Our method uses a different search procedure than previous work

(simulated annealing) combined with a novel and highly elaborate verifier [100].

7.2 Future Work

The techniques introduced in this dissertation solve previously intractable classes of prob-

lems in numerical analysis and formal verification, opening many natural lines of inquiry in

the development of floating-point algorithms. In this section, we propose directions for fu-

ture work, ranging from straightforward applications that exploit the strengths of our tools

to deep theoretical questions that explore the fundamental capabilities and limitations of

FPANs and the SELTZO abstraction.

CHAPTER 7. CONCLUSION 101

FPANs for longer expansion lengths. The most obvious limitation of the algorithms

presented in this dissertation is that they only apply to floating-point expansions of length

up to four. Discovering addition and multiplication FPANs for expansions of length five and

beyond is an immediate next step that would likely yield similarly dramatic performance

improvements over all existing algorithms. We expect this task to be computationally

expensive but not fundamentally out of reach of our tools. Our addition and multiplication

FPANs for expansions of length four took several thousand iterations of our evolutionary

search procedure, executed in parallel across hundreds of CPU cores, to discover.

Exploring weaker nonoverlapping conditions. All of the algorithms presented in this

dissertation assume strongly nonoverlapping inputs and produce strongly nonoverlapping

outputs. It is natural to ask whether strong nonoverlapping can be replaced with a weaker

alternative condition, such as ulp-nonoverlapping, P-nonoverlapping, or S-nonoverlapping,

to produce simpler or faster algorithms. The SELTZO abstraction is capable of expressing

these alternative nonoverlapping conditions (Proposition 9), but a modification of Algo-

rithm 11 is necessary to generate test inputs that exercise these weaker preconditions.

Characterizing and applying the SELTZO abstraction. As discussed in Chapter 4,

the SELTZO abstraction trades off some logical power in favor of efficient automatic ver-

ification. To understand the limitations of the SELTZO abstraction, it would be useful

to precisely characterize the gap in logical strength between the SELTZO domain and the

true domain of concrete floating-point numbers. This could take the form of a statement

which is true in the concrete floating-point domain but false in the SELTZO domain or vice

versa. It may also be fruitful to explore whether the SELTZO verification procedure can be

applied to other floating-point verification problems beyond FPANs.

Simpler FPAN correctness conditions. The verification of sorting networks, which

are diagrammatic algorithms closely analogous to FPANs, is considerably simplified by the

0-1 Principle [61], which says that a sorting network is correct on all inputs if and only

if it is correct on inputs containing only zeros and ones. A similar sufficient condition for

CHAPTER 7. CONCLUSION 102

the correctness of FPANs could dramatically speed up FPAN verification, especially if it is

stated in the language of the SELTZO abstraction. Alternative formulations of the FPAN

correctness conditions may also be useful for proving lower bounds on the necessary size

or depth for an FPAN to preserve a certain nonoverlapping invariant or achieve a certain

relative error bound. These lower bounds would be useful to determine how far our current

FPAN-based algorithms are from being truly optimal.

Optimal FPAN instruction selection. In a recent blog post [80], Pavel Pachenka pro-

poses an alternative implementation strategy for TwoSum(x, y) that simultaneously com-

putes both FastTwoSum(x, y) and FastTwoSum(y, x), compares |x| to |y|, and uses a con-

ditional move instruction to choose the correct output based on the result of the com-

parison. This alternative TwoSum algorithm executes more instructions than the conven-

tional algorithm but exposes more instruction-level parallelism, yielding lower latency on

superscalar processors. Hence, every TwoSum gate presents an opportunity to optimize for

either throughput (using the conventional algorithm) or latency (using Pachenka’s alterna-

tive algorithm). In some FPANs, it may even be preferable to mix latency-optimized and

throughput-optimized TwoSum gates depending on the presence of a critical path.

FPAN compilation and library tuning. In addition to the instruction selection prob-

lem described above, FPANs also present other low-level optimization challenges, including

instruction scheduling and register allocation. These issues are particularly pronounced in

large FPANs with many parallel wires and gates, which involve an unusually large number

of temporary variables compared to typical numerical programs. Compiler heuristics tuned

for other classes of programs may therefore be suboptimal for FPANs. A dedicated FPAN

compiler could be a useful tool to explore this design space and optimize over architecture-

dependent factors, and tuned libraries of FPAN-based algorithms, such as high-precision

BLAS libraries [64], would be very useful tools for practitioners solving high-precision,

large-scale, and/or ill-conditioned scientific computing problems.

CHAPTER 7. CONCLUSION 103

FPAN specialization and transcendental functions. The FPANs presented in this

dissertation were constructed and verified to be correct for all strongly nonoverlapping

inputs. It may be possible to derive simpler or faster algorithms in situations where the

class of possible inputs is further restricted. For example, squaring or cubing a single number

is a more restricted problem than multiplying two distinct numbers.

An important application where these restrictions arise is the evaluation of transcenden-

tal functions, such as trigonometric functions, exponentials, and logarithms. These are often

implemented as piecewise polynomial or rational approximations where the coefficients of

the polynomial or rational approximant are known in advance. In these situations, adding

and multiplying specific known coefficients is a simpler operation that may admit further

optimization beyond addition and multiplication of two arbitrary numbers.

Appendix A

SETZ Lemmas

Let x and y be floating-point numbers, and let (s, e) := TwoSum(x, y). Let (sx, ex, ntzx),

(sy, ey, ntzy), (ss, es, ntzs), and (se, ee, ntze) denote the SETZ abstractions of x, y, s, and e,

respectively. The following lemmas completely characterize the TwoSum operation in the

SETZ abstract domain by specifying all possible SETZ values of s and e given the SETZ

values of x and y.

These lemmas have been verified by exhaustive enumeration of the binary16 and bfloat16

floating-point formats to be stated in the strongest possible form. In other words, every

element of the set of allowed SETZ output tuples listed in each lemma is actually witnessed

by some pair of concrete floating-point inputs (x, y) satisfying the hypotheses of the lemma.

Since TwoSum is a commutative operation (i.e., TwoSum(x, y) = TwoSum(y, x)), each

lemma remains true when x and y are interchanged. As in Section 4.3, we state only one

member of each symmetric lemma pair to avoid needless repetition, adopting the convention

that we prefer the lemma statement with ex ≥ ey whenever possible.

Many SETZ lemmas admit simpler statements if we make a change of variables from

(sx, ex, ntzx) to (sx, ex, fx) where fx := ex − (p − ntzx − 1). We call this value the trailing

exponent of x. The trailing exponent is the place value of the last nonzero bit in the mantissa

of x. It acts as the dual of ex, bounding the mantissa from below.

104

APPENDIX A. SETZ LEMMAS 105

Lemma Family SETZ-Z

Lemmas in Family SETZ-Z apply when one or both of the inputs (x, y) are zero.

Lemma SETZ-Z1:

TwoSum(+0.0,+0.0) = (+0.0,+0.0)

TwoSum(+0.0,−0.0) = (+0.0,+0.0)

TwoSum(−0.0,−0.0) = (−0.0,+0.0)

Lemma SETZ-Z2: If x is nonzero, then TwoSum(x,±0.0) = (x,+0.0).

We henceforth assume that x and y are both nonzero in all remaining SETZ lemmas.

Lemma Family SETZ-I

Lemma SETZ-I (for “identical”) gives necessary and sufficient conditions for the inputs

(x, y) to be returned unchanged by TwoSum.

Lemma SETZ-I: (s, e) = (x, y) if and only if any of the following conditions hold:

1. ex > ey + (p+ 1).

2. ex = ey + (p + 1) and any of the following conditions hold: ey = fy, sx = sy, or

ex > fx.

3. ex = ey + p, ey = fy, ex < fx + (p− 1), and sx = sy or ex > fx.

Lemma Family SETZ-F

Lemmas in Family SETZ-F apply to addends with the same trailing exponent (i.e., fx = fy).

APPENDIX A. SETZ LEMMAS 106

Lemma SETZ-FS0: If sx = sy, fx = fy, and ex > ey+1, then exactly one of the following

statements is true:

1. ss = sx, es = ex, fx + 1 ≤ fs ≤ ex − 1, and e = +0.0.

2. ss = sx, es = ex + 1, fx + 1 ≤ fs ≤ ey, and e = +0.0.

3. ss = sx, es = ex + 1, fs = ex + 1, and e = +0.0.

Lemma SETZ-FS1: If sx = sy, fx = fy, and ex = ey+1, then exactly one of the following

statements is true:

1. ss = sx, es = ex, fx + 1 ≤ fs ≤ ex − 2, and e = +0.0.

2. ss = sx, es = ex + 1, fx + 1 ≤ fs ≤ ey, and e = +0.0.

3. ss = sx, es = ex + 1, fs = ex + 1, and e = +0.0.

Lemma SETZ-FS2: If sx = sy, fx = fy, ex = ey, and ex > fx, then ss = sx, es = ex + 1,

fx + 1 ≤ fs ≤ ex, and e = +0.0.

Lemma SETZ-FS3: If sx = sy, fx = fy, ex = ey, and ex = fx, then ss = sx, es = ex + 1,

fs = ex + 1, and e = +0.0.

Lemma SETZ-FD0: If sx ̸= sy, fx = fy, and ex > ey+1, then exactly one of the following

statements is true:

1. ss = sx, es = ex − 1, fx + 1 ≤ fs ≤ ey, and e = +0.0.

2. ss = sx, es = ex, fx + 1 ≤ fs ≤ ex, and e = +0.0.

Lemma SETZ-FD1: If sx ̸= sy, fx = fy, and ex = ey+1, then exactly one of the following

statements is true:

1. ss = sx, fx + 1 ≤ es ≤ ex − 1, fx + 1 ≤ fs ≤ es, and e = +0.0.

2. ss = sx, es = ex, fx + 1 ≤ fs ≤ ex − 2, and e = +0.0.

3. ss = sx, es = ex, fs = ex, and e = +0.0.

APPENDIX A. SETZ LEMMAS 107

Lemma SETZ-FD2: If sx ̸= sy, fx = fy, and ex = ey, then exactly one of the following

statements is true:

1. s = +0.0 and e = +0.0.

2. fx + 1 ≤ fs ≤ es ≤ ex − 1 and e = +0.0.

Lemma Family SETZ-E

Lemmas in Family SETZ-E (for “exact”) apply to addends with different trailing exponents

whose floating-point sum is exact (i.e., the rounding error is zero).

Lemma SETZ-EN0: If sx = sy or ex > fx, fx > ey, and ex < fy + p, then ss = sx,

es = ex, fs = fy, and e = +0.0.

Lemma SETZ-EN1: If sx ̸= sy, and one of the following statements holds:

1. ex = fx, fx > ey + 1, ex < fy + (p+ 1)

2. ex = fx + 1, fx = ey, ey > fy

then ss = sx, es = ex − 1, fs = fy, and e = +0.0.

Lemma SETZ-ESP0: If sx = sy, either (ex > ey > fx > fy) or (ex > ey + 1 > fx > fy),

and ex < fy + (p− 1), then ss = sx, ex ≤ es ≤ ex + 1, fs = fy, and e = +0.0.

Lemma SETZ-ESP1: If sx = sy, ex = ey + 1, ey = fx > fy, and ex < fy + (p− 1), then

ss = sx, es = ex + 1, fs = fy, and e = +0.0.

Lemma SETZ-ESC: If sx = sy, ex > ey, fx < fy, and ex < fx + (p − 1), then ss = sx,

ex ≤ es ≤ ex + 1, fs = fx, and e = +0.0.

Lemma SETZ-ESS: If sx = sy, ex = ey, fx < fy, ex < fx+(p− 1), and ey < fy +(p− 1),

then ss = sx, es = ex + 1, fs = fx, and e = +0.0.

Lemma SETZ-EDP0: If sx ̸= sy, ex > ey + 1 > fx > fy, and ex < fy + p, then ss = sx,

ex − 1 ≤ es ≤ ex, fs = fy, and e = +0.0.

Lemma SETZ-EDP1: If sx ̸= sy, ex = ey + 1, ey > fx > fy, and ex < fy + p, then

ss = sx, fx ≤ es ≤ ex, fs = fy, and e = +0.0.

APPENDIX A. SETZ LEMMAS 108

Lemma SETZ-EDP2: If sx ̸= sy, ex = ey + 1 = fx, and fx > fy + 1, then ss = sx,

fy ≤ es ≤ ex − 2, fs = fy, and e = +0.0.

Lemma SETZ-EDP3: If sx ̸= sy, ex = ey+1 = fx = fy+1, then ss = sx, fy ≤ es ≤ ex−1,

fs = fy, and e = +0.0.

Lemma SETZ-EDC0: If sx ̸= sy, ex > ey+1, and fx < fy, then ss = sx, ex−1 ≤ es ≤ ex,

fs = fx, and e = +0.0.

Lemma SETZ-EDC1: If sx ̸= sy, ex = ey + 1, and fx < fy, then ss = sx, fy ≤ es ≤ ex,

fs = fx, and e = +0.0.

Lemma SETZ-EDC2: If sx ̸= sy, ex = ey = fy, and fx < fy, then ss = sx, fx ≤ es ≤

ex − 1, fs = fx, and e = +0.0.

Lemma SETZ-EDS0: If sx ̸= sy, ex = ey, fx < fy, ex > fx + 1, and ey > fy + 1, then

fx ≤ es ≤ ex − 1, fs = fx, and e = +0.0.

Lemma SETZ-EDS1: If sx ̸= sy, ex = ey, ex > fx + 1, and ey = fy + 1, then fx ≤ es ≤

ex − 2, fs = fx, and e = +0.0.

Lemma Family SETZ-O

Lemmas in Family SETZ-O (for “overlap”) apply to addends with completely overlapping

mantissas whose floating-point sum has nonzero error.

Lemma SETZ-O0: If sx = sy, ex = fx+(p− 1), and ex > ey > fy > fx, then exactly one

of the following statements is true:

1. ss = sx, es = ex, fs = fx, and e = +0.0.

2. ss = sx, es = ex + 1, ex − (p− 3) ≤ fs ≤ ey, fx ≤ ee ≤ ex − (p− 1), and fe = fx.

3. ss = sx, es = ex + 1, fs = ex + 1, se = sy, fx ≤ ee ≤ ex − (p− 1), and fe = fx.

Lemma SETZ-O1: If sx = sy, ex = fx + (p− 1), and ex > ey = fy > fx +1, then exactly

one of the following statements is true:

1. ss = sx, es = ex, fs = fx, and e = +0.0.

APPENDIX A. SETZ LEMMAS 109

2. ss = sx, es = ex + 1, ex − (p− 3) ≤ fs ≤ ey − 1, fx ≤ ee ≤ ex − (p− 1), and fe = fx.

3. ss = sx, es = ex + 1, fs = ey, se ̸= sy, fx ≤ ee ≤ ex − (p− 1), and fe = fx.

4. ss = sx, es = ex + 1, fs = ex + 1, se = sy, fx ≤ ee ≤ ex − (p− 1), and fe = fx.

Lemma SETZ-O2: If sx = sy, ex = fx + (p− 1), and ey = fy = fx + 1, then exactly one

of the following statements is true:

1. ss = sx, es = ex, fs = fx, and e = +0.0.

2. ss = sx, es = ex + 1, fs = ex + 1, se = sy, fx ≤ ee ≤ ex − (p− 1), and fe = fx.

Lemma Family SETZ-1

Lemma SETZ-1: If ex < ey + p, ex > fy + p, fx > ey + 1, and ex > fx or sx = sy, then

exactly one of the following statements is true:

1. ss = sx, es = ex, ex − (p− 1) ≤ fs ≤ ey − 1, fy ≤ ee ≤ ex − (p+ 1), and fe = fy.

2. ss = sx, es = ex, fs = ey, se = sy, fy ≤ ee ≤ ex − (p+ 1), and fe = fy.

3. ss = sx, es = ex, fs = ey + 1, se ̸= sy, fy ≤ ee ≤ ex − (p+ 1), and fe = fy.

Lemma SETZ-1A: If ex = ey + p, ex > fy + p, fx > ey + 1, and ex > fx or sx = sy, then

ss = sx, es = ex, fs = ey + 1, se ̸= sy, fy ≤ ee ≤ ex − (p+ 1), and fe = fy.

Lemma SETZ-1B0: If ex < ey +(p−1), ex = fy +p, fx > ey +1, and ex > fx or sx = sy,

then exactly one of the following statements is true:

1. ss = sx, es = ex, ex − (p− 2) ≤ fs ≤ ey − 1, fy ≤ ee ≤ ex − p, and fe = fy.

2. ss = sx, es = ex, fs = ey, se = sy, fy ≤ ee ≤ ex − p, and fe = fy.

3. ss = sx, es = ex, fs = ey + 1, se ̸= sy, fy ≤ ee ≤ ex − p, and fe = fy.

Lemma SETZ-1B1: If ex = ey +(p−1), ex = fy +p, fx > ey +1, and ex > fx or sx = sy,

then ss = sx, es = ex, fs = ey + 1, se ̸= sy, fy ≤ ee ≤ ex − p, and fe = fy.

APPENDIX A. SETZ LEMMAS 110

Lemma Family SETZ-2

Lemma SETZ-2: If sx = sy, ex > fy + p, and fx < ey, then exactly one of the following

statements is true:

1. ss = sx, es = ex, ex − (p− 1) ≤ fs ≤ ex − 1, fy ≤ ee ≤ ex − (p+ 1), and fe = fy.

2. ss = sx, es = ex + 1, ex − (p− 2) ≤ fs ≤ ey, fy ≤ ee ≤ ex − p, and fe = fy.

3. ss = sx, es = ex + 1, fs = ex + 1, se ̸= sy, fy ≤ ee ≤ ex − (p+ 1), and fe = fy.

4. ss = sx, es = ex + 1, fs = ex + 1, se = sy, fy ≤ ee ≤ ex − p, and fe = fy.

Lemma SETZ-2A0: If sx = sy, ex = fy + p, fx < ey, and ey < fy + (p− 1), then exactly

one of the following statements is true:

1. ss = sx, es = ex, ex − (p− 2) ≤ fs ≤ ex − 1, fy ≤ ee ≤ ex − p, and fe = fy.

2. ss = sx, es = ex + 1, ex − (p− 2) ≤ fs ≤ ey, fy ≤ ee ≤ ex − p, and fe = fy.

3. ss = sx, es = ex + 1, fs = ex + 1, fy ≤ ee ≤ ex − p, and fe = fy.

Lemma SETZ-2A1: If sx = sy, ex = fy + p, fx + 1 < ey, and ey = fy + (p − 1), then

exactly one of the following statements is true:

1. ss = sx, es = ex, ex − (p− 2) ≤ fs ≤ ex − 2, fy ≤ ee ≤ ex − p, and fe = fy.

2. ss = sx, es = ex + 1, ex − (p− 2) ≤ fs ≤ ey, fy ≤ ee ≤ ex − p, and fe = fy.

3. ss = sx, es = ex + 1, fs = ex + 1, fy ≤ ee ≤ ex − p, and fe = fy.

Lemma SETZ-2A2: If sx = sy, ex = fy + p, fx + 1 = ey, and ey = fy + (p − 1), then

exactly one of the following statements is true:

1. ss = sx, es = ex, ex − (p− 2) ≤ fs ≤ ey − 2, fy ≤ ee ≤ ex − p, and fe = fy.

2. ss = sx, es = ex, fs = ey − 1, se = sy, fy ≤ ee ≤ ex − p, and fe = fy.

3. ss = sx, es = ex + 1, ex − (p− 2) ≤ fs ≤ ey, fy ≤ ee ≤ ex − p, and fe = fy.

APPENDIX A. SETZ LEMMAS 111

4. ss = sx, es = ex + 1, fs = ex + 1, fy ≤ ee ≤ ex − p, and fe = fy.

Lemma SETZ-2B0: If sx = sy, ex > fy + p, fx = ey, and ex < fx + (p− 1), then exactly

one of the following statements is true:

1. ss = sx, es = ex, ex − (p− 1) ≤ fs ≤ ey − 1, fy ≤ ee ≤ ex − (p+ 1), and fe = fy.

2. ss = sx, es = ex, fs = ey, se ̸= sy, fy ≤ ee ≤ ex − (p+ 1), and fe = fy.

3. ss = sx, es = ex, ey + 1 ≤ fs ≤ ex − 1, se = sy, fy ≤ ee ≤ ex − (p+ 1), and fe = fy.

4. ss = sx, es = ex + 1, ex − (p− 2) ≤ fs ≤ ey − 1, fy ≤ ee ≤ ex − p, and fe = fy.

5. ss = sx, es = ex + 1, fs = ey, se ̸= sy, fy ≤ ee ≤ ex − p, and fe = fy.

6. ss = sx, es = ex + 1, fs = ex + 1, se = sy, fy ≤ ee ≤ ex − p, and fe = fy.

Lemma SETZ-2B1: If sx = sy, ex > fy + p, fx = ey, and ex = fx + (p− 1), then exactly

one of the following statements is true:

1. ss = sx, es = ex, fs = ey, se ̸= sy, fy ≤ ee ≤ ex − (p+ 1), and fe = fy.

2. ss = sx, es = ex, ey + 1 ≤ fs ≤ ex − 1, se = sy, fy ≤ ee ≤ ex − (p+ 1), and fe = fy.

3. ss = sx, es = ex + 1, fs = ex + 1, se = sy, fy ≤ ee ≤ ex − p, and fe = fy.

Lemma SETZ-2C0: If sx = sy, ex = fy + (p − 1), fx < ey, ex < fx + (p − 1), and

ey < fy + (p− 1), then exactly one of the following statements is true:

1. ss = sx, es = ex, fs = fy, and e = +0.0.

2. ss = sx, es = ex + 1, ex − (p− 3) ≤ fs ≤ ey, fy ≤ ee ≤ ex − (p− 1), and fe = fy.

3. ss = sx, es = ex + 1, fs = ex + 1, se = sy, fy ≤ ee ≤ ex − (p− 1), and fe = fy.

Lemma SETZ-2C1: If sx = sy, ex = fy + (p − 1), fx < ey, ex < fx + (p − 1), and

ey = fy + (p− 1), then ss = sx, es = ex + 1, ex − (p− 3) ≤ fs ≤ ey, fy ≤ ee ≤ ex − (p− 1),

and fe = fy.

Lemma SETZ-2D0: If sx = sy, ex > fy + p, fx = ey + 1, and ex < fx + (p − 1), then

exactly one of the following statements is true:

APPENDIX A. SETZ LEMMAS 112

1. ss = sx, es = ex, ex − (p− 1) ≤ fs ≤ ey − 1, fy ≤ ee ≤ ex − (p+ 1), and fe = fy.

2. ss = sx, es = ex, fs = ey, se = sy, fy ≤ ee ≤ ex − (p+ 1), and fe = fy.

3. ss = sx, es = ex, ey + 2 ≤ fs ≤ ex − 1, se ̸= sy, fy ≤ ee ≤ ex − (p+ 1), and fe = fy.

4. ss = sx, es = ex + 1, fs = ex + 1, se ̸= sy, fy ≤ ee ≤ ex − (p+ 1), and fe = fy.

Lemma SETZ-2D1: If sx = sy, ex > fy + p, fx = ey + 1, and ex = fx + (p − 1), then

exactly one of the following statements is true:

1. ss = sx, es = ex, ey + 2 ≤ fs ≤ ex − 1, se ̸= sy, fy ≤ ee ≤ ex − (p+ 1), and fe = fy.

2. ss = sx, es = ex + 1, fs = ex + 1, se ̸= sy, fy ≤ ee ≤ ex − (p+ 1), and fe = fy.

Lemma SETZ-2AB0: If sx = sy, ex = fy + p, fx = ey, ex < fx + (p − 1), and ey <

fy + (p− 1), then exactly one of the following statements is true:

1. ss = sx, es = ex, ex − (p− 2) ≤ fs ≤ ey − 1, fy ≤ ee ≤ ex − p, and fe = fy.

2. ss = sx, es = ex, fs = ey, se ̸= sy, fy ≤ ee ≤ ex − p, and fe = fy.

3. ss = sx, es = ex, ey + 1 ≤ fs ≤ ex − 1, se = sy, fy ≤ ee ≤ ex − p, and fe = fy.

4. ss = sx, es = ex + 1, ex − (p− 2) ≤ fs ≤ ey − 1, fy ≤ ee ≤ ex − p, and fe = fy.

5. ss = sx, es = ex + 1, fs = ey, se ̸= sy, fy ≤ ee ≤ ex − p, and fe = fy.

6. ss = sx, es = ex + 1, fs = ex + 1, se = sy, fy ≤ ee ≤ ex − p, and fe = fy.

Lemma SETZ-2AB1: If sx = sy, ex = fy+p, fx = ey, and ex = fx+(p−1), then exactly

one of the following statements is true:

1. ss = sx, es = ex, ey + 1 ≤ fs ≤ ex − 1, se = sy, fy ≤ ee ≤ ex − p, and fe = fy.

2. ss = sx, es = ex + 1, fs = ex + 1, se = sy, fy ≤ ee ≤ ex − p, and fe = fy.

Lemma SETZ-2AB2: If sx = sy, ex = fy+p, fx = ey, and ey = fy+(p−1), then exactly

one of the following statements is true:

APPENDIX A. SETZ LEMMAS 113

1. ss = sx, es = ex + 1, ex − (p− 2) ≤ fs ≤ ey − 1, fy ≤ ee ≤ ex − p, and fe = fy.

2. ss = sx, es = ex + 1, fs = ey, se ̸= sy, fy ≤ ee ≤ ex − p, and fe = fy.

3. ss = sx, es = ex + 1, fs = ex + 1, se = sy, fy ≤ ee ≤ ex − p, and fe = fy.

Lemma SETZ-2BC0: If sx = sy, ex = fy + (p − 1), fx = ey, ey > fy + 1, and ey <

fy + (p− 2), then exactly one of the following statements is true:

1. ss = sx, es = ex, fs = fy, and e = +0.0.

2. ss = sx, es = ex + 1, ex − (p− 3) ≤ fs ≤ ey − 1, fy ≤ ee ≤ ex − (p− 1), and fe = fy.

3. ss = sx, es = ex + 1, fs = ey, se ̸= sy, fy ≤ ee ≤ ex − (p− 1), and fe = fy.

4. ss = sx, es = ex + 1, fs = ex + 1, se = sy, fy ≤ ee ≤ ex − (p− 1), and fe = fy.

Lemma SETZ-2BC1: If sx = sy, ex = fy + (p− 1), fx = ey, and ey > fy + (p− 3), then

exactly one of the following statements is true:

1. ss = sx, es = ex + 1, ex − (p− 3) ≤ fs ≤ ey − 1, fy ≤ ee ≤ ex − (p− 1), and fe = fy.

2. ss = sx, es = ex + 1, fs = ey, se ̸= sy, fy ≤ ee ≤ ex − (p− 1), and fe = fy.

3. ss = sx, es = ex + 1, fs = ex + 1, se = sy, fy ≤ ee ≤ ex − (p− 1), and fe = fy.

Lemma SETZ-2BC2: If sx = sy, ex = fy+(p−1), fx = ey, and ey = fy+1, then exactly

one of the following statements is true:

1. ss = sx, es = ex, fs = fy, and e = +0.0.

2. ss = sx, es = ex + 1, fs = ex + 1, se = sy, fy ≤ ee ≤ ex − (p− 1), and fe = fy.

Lemma SETZ-2AD0: If sx = sy, ex = fy + p, fx = ey + 1, and ex < fx + (p − 2), then

exactly one of the following statements is true:

1. ss = sx, es = ex, ex − (p− 2) ≤ fs ≤ ey − 1, fy ≤ ee ≤ ex − p, and fe = fy.

2. ss = sx, es = ex, fs = ey, se = sy, fy ≤ ee ≤ ex − p, and fe = fy.

APPENDIX A. SETZ LEMMAS 114

3. ss = sx, es = ex, ey + 2 ≤ fs ≤ ex − 1, se ̸= sy, fy ≤ ee ≤ ex − p, and fe = fy.

4. ss = sx, es = ex + 1, fs = ex + 1, se ̸= sy, fy ≤ ee ≤ ex − p, and fe = fy.

Lemma SETZ-2AD1: If sx = sy, ex = fy + p, fx = ey + 1, and ex > fx + (p − 3), then

exactly one of the following statements is true:

1. ss = sx, es = ex, ey + 2 ≤ fs ≤ ex − 1, se ̸= sy, fy ≤ ee ≤ ex − p, and fe = fy.

2. ss = sx, es = ex + 1, fs = ex + 1, se ̸= sy, fy ≤ ee ≤ ex − p, and fe = fy.

Lemma Family SETZ-3

Lemma SETZ-3: If sx ̸= sy, ex > fy + (p + 1), and fx < ey, then exactly one of the

following statements is true:

1. ss = sx, es = ex − 1, ex − p ≤ fs ≤ ey, fy ≤ ee ≤ ex − (p+ 2), and fe = fy.

2. ss = sx, es = ex, ex − (p− 1) ≤ fs ≤ ex − 1, fy ≤ ee ≤ ex − (p+ 1), and fe = fy.

3. ss = sx, es = ex, fs = ex, se = sy, fy ≤ ee ≤ ex − (p+ 2), and fe = fy.

4. ss = sx, es = ex, fs = ex, se ̸= sy, fy ≤ ee ≤ ex − (p+ 1), and fe = fy.

Lemma SETZ-3A: If sx ̸= sy, ex = fy + (p + 1), and fx < ey, then exactly one of the

following statements is true:

1. ss = sx, es = ex − 1, ex − (p− 1) ≤ fs ≤ ey, fy ≤ ee ≤ ex − (p+ 1), and fe = fy.

2. ss = sx, es = ex, ex − (p− 1) ≤ fs ≤ ex, fy ≤ ee ≤ ex − (p+ 1), and fe = fy.

Lemma SETZ-3B: If sx ̸= sy, ex > fy + (p + 1), and fx = ey, then exactly one of the

following statements is true:

1. ss = sx, es = ex − 1, ex − p ≤ fs ≤ ey − 1, fy ≤ ee ≤ ex − (p+ 2), and fe = fy.

2. ss = sx, es = ex − 1, fs = ey, se ̸= sy, fy ≤ ee ≤ ex − (p+ 2), and fe = fy.

3. ss = sx, es = ex, ex − (p− 1) ≤ fs ≤ ey − 1, fy ≤ ee ≤ ex − (p+ 1), and fe = fy.

APPENDIX A. SETZ LEMMAS 115

4. ss = sx, es = ex, fs = ey, se ̸= sy, fy ≤ ee ≤ ex − (p+ 1), and fe = fy.

5. ss = sx, es = ex, ey + 1 ≤ fs ≤ ex − 1, se = sy, fy ≤ ee ≤ ex − (p+ 1), and fe = fy.

6. ss = sx, es = ex, fs = ex, se = sy, fy ≤ ee ≤ ex − (p+ 2), and fe = fy.

Lemma SETZ-3C0: If sx ̸= sy, ex = fy + p, fx < ey, and ey < fy + (p− 1), then exactly

one of the following statements is true:

1. ss = sx, es = ex − 1, fs = fy, and e = +0.0.

2. ss = sx, es = ex, ex − (p− 2) ≤ fs ≤ ex − 1, fy ≤ ee ≤ ex − p, and fe = fy.

3. ss = sx, es = ex, fs = ex, se ̸= sy, fy ≤ ee ≤ ex − p, and fe = fy.

Lemma SETZ-3C1: If sx ̸= sy, ex = fy + p, fx + 1 < ey, and ey = fy + (p − 1), then

exactly one of the following statements is true:

1. ss = sx, fx ≤ es ≤ ex − 1, fs = fy, and e = +0.0.

2. ss = sx, es = ex, ex − (p− 2) ≤ fs ≤ ex − 2, fy ≤ ee ≤ ex − p, and fe = fy.

3. ss = sx, es = ex, fs = ex, se ̸= sy, fy ≤ ee ≤ ex − p, and fe = fy.

Lemma SETZ-3C2: If sx ̸= sy, ex = fy + p, fx + 1 = ey, and ey = fy + (p − 1), then

exactly one of the following statements is true:

1. ss = sx, ex − 2 ≤ es ≤ ex − 1, fs = fy, and e = +0.0.

2. ss = sx, es = ex, ex − (p− 2) ≤ fs ≤ ey − 2, fy ≤ ee ≤ ex − p, and fe = fy.

3. ss = sx, es = ex, fs = ey − 1, se = sy, fy ≤ ee ≤ ex − p, and fe = fy.

4. ss = sx, es = ex, fs = ex, se ̸= sy, fy ≤ ee ≤ ex − p, and fe = fy.

Lemma SETZ-3D0: If sx ̸= sy, ex > fy + p, fx = ey + 1, and ex < fx + (p − 1), then

exactly one of the following statements is true:

1. ss = sx, es = ex, ex − (p− 1) ≤ fs ≤ ey − 1, fy ≤ ee ≤ ex − (p+ 1), and fe = fy.

APPENDIX A. SETZ LEMMAS 116

2. ss = sx, es = ex, fs = ey, se = sy, fy ≤ ee ≤ ex − (p+ 1), and fe = fy.

3. ss = sx, es = ex, ey + 2 ≤ fs ≤ ex, se ̸= sy, fy ≤ ee ≤ ex − (p+ 1), and fe = fy.

Lemma SETZ-3D1: If sx ̸= sy, ex > fy + p, fx = ey + 1, and ex = fx + (p − 1), then

ss = sx, es = ex, ey + 2 ≤ fs ≤ ex, se ̸= sy, fy ≤ ee ≤ ex − (p+ 1), and fe = fy.

Lemma SETZ-3AB: If sx ̸= sy, ex = fy + (p + 1), and fx = ey, then exactly one of the

following statements is true:

1. ss = sx, es = ex − 1, ex − (p− 1) ≤ fs ≤ ey − 1, fy ≤ ee ≤ ex − (p+ 1), and fe = fy.

2. ss = sx, es = ex − 1, fs = ey, se ̸= sy, fy ≤ ee ≤ ex − (p+ 1), and fe = fy.

3. ss = sx, es = ex, ex − (p− 1) ≤ fs ≤ ey − 1, fy ≤ ee ≤ ex − (p+ 1), and fe = fy.

4. ss = sx, es = ex, fs = ey, se ̸= sy, fy ≤ ee ≤ ex − (p+ 1), and fe = fy.

5. ss = sx, es = ex, ey + 1 ≤ fs ≤ ex, se = sy, fy ≤ ee ≤ ex − (p+ 1), and fe = fy.

Lemma SETZ-3BC0: If sx ̸= sy, ex = fy + p, fx = ey, ex > fx+1, and ey > fy +1, then

exactly one of the following statements is true:

1. ss = sx, es = ex − 1, fs = fy, and e = +0.0.

2. ss = sx, es = ex, ex − (p− 2) ≤ fs ≤ ey − 1, fy ≤ ee ≤ ex − p, and fe = fy.

3. ss = sx, es = ex, fs = ey, se ̸= sy, fy ≤ ee ≤ ex − p, and fe = fy.

4. ss = sx, es = ex, ey + 1 ≤ fs ≤ ex − 1, se = sy, fy ≤ ee ≤ ex − p, and fe = fy.

Lemma SETZ-3BC1: If sx ̸= sy, ex = fy + p, fx = ey, and ey = fy + 1, then exactly one

of the following statements is true:

1. ss = sx, es = ex − 1, fs = fy, and e = +0.0.

2. ss = sx, es = ex, ey + 1 ≤ fs ≤ ex − 1, se = sy, fy ≤ ee ≤ ex − p, and fe = fy.

Lemma SETZ-3CD0: If sx ̸= sy, ex = fy + p, fx = ey +1, ex > fx, and ey > fy +1, then

exactly one of the following statements is true:

APPENDIX A. SETZ LEMMAS 117

1. ss = sx, es = ex, ex − (p− 2) ≤ fs ≤ ey − 1, fy ≤ ee ≤ ex − p, and fe = fy.

2. ss = sx, es = ex, fs = ey, se = sy, fy ≤ ee ≤ ex − p, and fe = fy.

3. ss = sx, es = ex, ey + 2 ≤ fs ≤ ex, se ̸= sy, fy ≤ ee ≤ ex − p, and fe = fy.

Lemma SETZ-3CD1: If sx ̸= sy, ex = fy + p, fx = ey +1, and ey < fy +2, then ss = sx,

es = ex, ey + 2 ≤ fs ≤ ex, se ̸= sy, fy ≤ ee ≤ ex − p, and fe = fy.

Lemma Family SETZ-4

Lemma SETZ-4: If sx ̸= sy, ex > fy+(p+1), fx < ey+(p+1), and ex = fx, then exactly

one of the following statements is true:

1. ss = sx, es = ex − 1, ex − p ≤ fs ≤ ey − 1, fy ≤ ee ≤ ex − (p+ 2), and fe = fy.

2. ss = sx, es = ex − 1, fs = ey, se = sy, fy ≤ ee ≤ ex − (p+ 2), and fe = fy.

3. ss = sx, es = ex − 1, fy + 1, se ̸= sy, fy ≤ ee ≤ ex − (p+ 2), and fe = fy.

Lemma SETZ-4A0: If sx ̸= sy, ex = fy + (p+ 1), fx < ey + p, and ex = fx, then exactly

one of the following statements is true:

1. ss = sx, es = ex − 1, ex − (p− 1) ≤ fs ≤ ey − 1, fy ≤ ee ≤ ex − (p+ 1), and fe = fy.

2. ss = sx, es = ex − 1, fs = ey, se = sy, fy ≤ ee ≤ ex − (p+ 1), and fe = fy.

3. ss = sx, es = ex − 1, fs = ey + 1, se ̸= sy, fy ≤ ee ≤ ex − (p+ 1), and fe = fy.

Lemma SETZ-4A1: If sx ̸= sy, ex = fy +(p+1), fx = ey + p, and ex = fx, then ss = sx,

es = ex − 1, ex − (p− 1) ≤ fs ≤ ey + 1, se ̸= sy, fy ≤ ee ≤ ex − (p+ 1), and fe = fy.

Lemma SETZ-4B: If sx ̸= sy, ex > fy + (p + 1), fx = ey + (p + 1), and ex = fx, then

ss = sx, es = ex − 1, ex − p ≤ fs ≤ ey + 1, se ̸= sy, fy ≤ ee ≤ ex − (p+ 2), and fe = fy.

Bibliography

[1] Ryan Abbott, William Detmold, Fernando Romero-López, Zohreh Davoudi, Marc Illa,

Assumpta Parreño, Robert J. Perry, Phiala E. Shanahan, and Michael L. Wagman.

Lattice quantum chromodynamics at large isospin density. Phys. Rev. D, 108:114506,

Dec 2023.

[2] Ivo Babuška. Numerical stability in problems of linear algebra. SIAM Journal on

Numerical Analysis, 9(1):53–77, 1972.

[3] David H. Bailey. High-precision floating-point arithmetic in scientific computation.

Computing in Science & Engineering, 7(3):54–61, 2005.

[4] David H. Bailey. Reproducibility and variable precision computing. The International

Journal of High Performance Computing Applications, 34(5):483–490, 2020.

[5] David H. Bailey. High-precision software directory. https://www.davidhbailey.

com/dhbsoftware/, 2024.

[6] David H. Bailey and Jonathan M. Borwein. Hand-to-hand combat with thousand-digit

integrals. Journal of Computational Science, 3(3):77–86, 2012. Scientific Computation

Methods and Applications.

[7] David H. Bailey, R. Krasny, and R. Pelz. Multiple precision, multiple processor vortex

sheet roll-up computation. Society for Industrial and Applied Mathematics (SIAM),

Philadelphia, PA (United States), December 1993.

118

https://www.davidhbailey.com/dhbsoftware/
https://www.davidhbailey.com/dhbsoftware/

BIBLIOGRAPHY 119

[8] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt,

Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres

Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare Tinelli,

and Yoni Zohar. cvc5: A versatile and industrial-strength SMT solver. In Dana

Fisman and Grigore Rosu, editors, Tools and Algorithms for the Construction and

Analysis of Systems - 28th International Conference, TACAS 2022, Held as Part of

the European Joint Conferences on Theory and Practice of Software, ETAPS 2022,

Munich, Germany, April 2-7, 2022, Proceedings, Part I, volume 13243 of Lecture

Notes in Computer Science, pages 415–442. Springer, 2022.

[9] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB standard – version

2.0. In Proceedings of the 8th International Workshop on Satisfiability Modulo Theo-

ries (SMT ’10), July 2010. Edinburgh, Scotland.

[10] Dimitris Bertsimas and John Tsitsiklis. Simulated annealing. Statistical science,

8(1):10–15, 1993.

[11] Sylvie Boldo, Stef Graillat, and Jean-Michel Muller. On the robustness of the 2Sum

and Fast2Sum algorithms. ACM Trans. Math. Softw., 44(1), July 2017.

[12] Sylvie Boldo, Mioara Joldes, Jean-Michel Muller, and Valentina Popescu. Formal ver-

ification of a floating-point expansion renormalization algorithm. In Mauricio Ayala-

Rincón and César A. Muñoz, editors, Interactive Theorem Proving, pages 98–113,

Cham, 2017. Springer International Publishing.

[13] Sylvie Boldo and Guillaume Melquiond. Flocq: A unified library for proving floating-

point algorithms in coq. In 2011 IEEE 20th Symposium on Computer Arithmetic,

pages 243–252, 2011.

[14] Sylvie Boldo and Jean-Michel Muller. Exact and approximated error of the FMA.

IEEE Transactions on Computers, 60(2):157–164, 2011.

BIBLIOGRAPHY 120

[15] Roberto Bruttomesso, Edgar Pek, Natasha Sharygina, and Aliaksei Tsitovich. The

OpenSMT solver. In Proceedings of the 16th International Conference on Tools and

Algorithms for the Construction and Analysis of Systems, TACAS’10, page 150–153,

Berlin, Heidelberg, 2010. Springer-Verlag.

[16] Mythile C, Jaisiva S, Arunadevi A, and Sudhapriya K. Examining floating point

precision in contemporary FPGAs. In 2024 Third International Conference on Elec-

trical, Electronics, Information and Communication Technologies (ICEEICT), pages

1–7, 2024.

[17] Alexandre Chapoutot. Interval Slopes as a Numerical Abstract Domain for Floating-

Point Variables. In Radhia Cousot and Matthieu Martel, editors, Static Analysis,

pages 184–200, Berlin, Heidelberg, 2010. Springer.

[18] Liqian Chen, Antoine Miné, and Patrick Cousot. A Sound Floating-Point Polyhedra

Abstract Domain. In G. Ramalingam, editor, Programming Languages and Systems,

pages 3–18, Berlin, Heidelberg, 2008. Springer.

[19] Stephen Chrisomalis. Numerical Notation: A Comparative History. Cambridge Uni-

versity Press, 2010.

[20] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and Roberto Sebas-

tiani. The MathSAT5 SMT Solver. In Nir Piterman and Scott A. Smolka, editors,

Tools and Algorithms for the Construction and Analysis of Systems, pages 93–107,

Berlin, Heidelberg, 2013. Springer.

[21] Caroline Collange, Mioara Joldes, Jean-Michel Muller, and Valentina Popescu. Par-

allel floating-point expansions for extended-precision GPU computations. In 2016

IEEE 27th International Conference on Application-specific Systems, Architectures

and Processors (ASAP), pages 139–146, 2016.

[22] Catherine Daramy-Loirat, David Defour, Florent de Dinechin, Matthieu Gallet, Nico-

las Gast, Christoph Lauter, and Jean-Michel Muller. CR-LIBM: A library of correctly

BIBLIOGRAPHY 121

rounded elementary functions in double-precision. Research report, LIP, December

2006.

[23] Florent de Dinechin, Christoph Lauter, and Guillaume Melquiond. Certifying floating-

point implementations using Gappa. working paper or preprint, December 2007.

[24] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In Proceed-

ings of the Theory and Practice of Software, 14th International Conference on Tools

and Algorithms for the Construction and Analysis of Systems, TACAS’08/ETAPS’08,

page 337–340, Berlin, Heidelberg, 2008. Springer-Verlag.

[25] T. J. Dekker. A floating-point technique for extending the available precision. Nu-

merische Mathematik, 18(3):224–242, June 1971.

[26] Bruno Dutertre. Yices 2.2. In Armin Biere and Roderick Bloem, editors, Computer

Aided Verification, pages 737–744, Cham, 2014. Springer International Publishing.

[27] Ecma International. Standard ECMA-262 - ECMAScript Language Specification. 15

edition, 2024.

[28] Chris Elrod and François Févotte. Accurate and Efficiently Vectorized Sums and Dot

Products in Julia. Version submitted to the Correctness2019 workshop, August 2019.

[29] N. M. Evstigneev, O. I. Ryabkov, A. N. Bocharov, V. P. Petrovskiy, and I. O.

Teplyakov. Compensated summation and dot product algorithms for floating-point

vectors on parallel architectures: Error bounds, implementation and application in

the Krylov subspace methods. Journal of Computational and Applied Mathematics,

414:114434, 2022.

[30] Nicolas Fabiano, Jean-Michel Muller, and Joris Picot. Algorithms for triple-word

arithmetic. IEEE Transactions on Computers, 68(11):1573–1583, 2019.

[31] Giovanni Fantuzzi, David Goluskin, and Jean-Bernard Lasserre. Polynomial opti-

mization for nonlinear dynamics: Theory, algorithms and applications. Oberwolfach

Reports, 21(3):1975–2032, February 2025.

BIBLIOGRAPHY 122

[32] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul Zim-

mermann. MPFR: A multiple-precision binary floating-point library with correct

rounding. ACM Trans. Math. Softw., 33(2):13–es, June 2007.

[33] Alexei M. Frolov. High-precision, variational, bound-state calculations in Coulomb

three-body systems. Phys. Rev. E, 62:8740–8745, December 2000.

[34] Alexei M. Frolov and David H. Bailey. Highly accurate evaluation of the few-body

auxiliary functions and four-body integrals. Journal of Physics B: Atomic, Molecular

and Optical Physics, 36(9):1857, April 2003.

[35] Sicun Gao, Soonho Kong, and Edmund M. Clarke. dReal: An SMT solver for non-

linear theories over the reals. In Maria Paola Bonacina, editor, CADE, volume 7898

of Lecture Notes in Computer Science, pages 208–214. Springer, 2013.

[36] Anthony Garreffa. NVIDIA spent $10 billion on developing its next-

generation Blackwell GPU. https://www.tweaktown.com/news/96987/

nvidia-spent-10-billion-on-developing-its-next-generation-blackwell-gpu/

index.html, March 2024.

[37] GCC Team. libquadmath: The GCC Quad-Precision Math Library. GNU Compiler

Collection, 2023. Accessed: 2025-04-14.

[38] Torbjrn Granlund and GMP Development Team. GNU MP 6.0 Multiple Precision

Arithmetic Library. Samurai Media Limited, London, GBR, 2015.

[39] Hilbert Hagedoorn. Nvidia Blackwell GPU: R&D costs and pricing

$30,000 to $40,000 for just the GPU. https://www.guru3d.com/story/

nvidia-blackwell-gpu-costs-and-pricing-to-for-just-the-gpu/, March

2024.

[40] William Hart, Fredrik Johansson, and Sebastian Pancratz. FLINT: Fast Library for

Number Theory. FLINT Project, 2023. Accessed: 2025-04-14.

https://www.tweaktown.com/news/96987/nvidia-spent-10-billion-on-developing-its-next-generation-blackwell-gpu/index.html
https://www.tweaktown.com/news/96987/nvidia-spent-10-billion-on-developing-its-next-generation-blackwell-gpu/index.html
https://www.tweaktown.com/news/96987/nvidia-spent-10-billion-on-developing-its-next-generation-blackwell-gpu/index.html
https://www.guru3d.com/story/nvidia-blackwell-gpu-costs-and-pricing-to-for-just-the-gpu/
https://www.guru3d.com/story/nvidia-blackwell-gpu-costs-and-pricing-to-for-just-the-gpu/

BIBLIOGRAPHY 123

[41] Yun He and Chris H. Q. Ding. Using accurate arithmetics to improve numerical

reproducibility and stability in parallel applications. The Journal of Supercomputing,

18(3):259–277, Mar 2001.

[42] Yozo Hida, Xiaoye S. Li, and David H. Bailey. Algorithms for quad-double preci-

sion floating point arithmetic. In Proceedings 15th IEEE Symposium on Computer

Arithmetic. ARITH-15 2001, pages 155–162, June 2001. ISSN: 1063-6889.

[43] Nicholas J. Higham and Theo Mary. Mixed precision algorithms in numerical linear

algebra. Acta Numerica, 31:347–414, 2022.

[44] Institute of Electrical and Electronics Engineers. IEEE Standard for Binary Floating-

Point Arithmetic. ANSI/IEEE Std 754-1985, pages 1–20, 1985.

[45] Institute of Electrical and Electronics Engineers. IEEE Standard for Floating-Point

Arithmetic. IEEE Std 754-2008, pages 1–70, 2008.

[46] Institute of Electrical and Electronics Engineers. IEEE Standard for Floating-Point

Arithmetic. IEEE Std 754-2019 (Revision of IEEE 754-2008), pages 1–84, 2019.

[47] Konstantin Isupov, Vladimir Knyazkov, and Alexander Kuvaev. Design and imple-

mentation of multiple-precision BLAS level 1 functions for graphics processing units.

Journal of Parallel and Distributed Computing, 140:25–36, 2020.

[48] Manish Kumar Jaiswal and Ray C.C. Cheung. Area-efficient FPGA implementation

of quadruple precision floating point multiplier. In 2012 IEEE 26th International

Parallel and Distributed Processing Symposium Workshops & PhD Forum, pages 376–

382, 2012.

[49] Manish Kumar Jaiswal and Hayden K.-H So. Architecture for quadruple precision

floating point division with multi-precision support. In 2016 IEEE 27th International

Conference on Application-specific Systems, Architectures and Processors (ASAP),

pages 239–240, 2016.

BIBLIOGRAPHY 124

[50] Manish Kumar Jaiswal and Hayden K.-H. So. An Unified Architecture for Single,

Double, Double-Extended, and Quadruple Precision Division. Circuits, Systems, and

Signal Processing, 37(1):383–407, January 2018.

[51] Claude-Pierre Jeannerod and Paul Zimmermann. FastTwoSum revisited. In 2025

IEEE 32nd Symposium on Computer Arithmetic (ARITH), pages 141–148, Los Alami-

tos, CA, USA, May 2025. IEEE Computer Society.

[52] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond data and model parallelism for

deep neural networks. Proceedings of Machine Learning and Systems, 1:1–13, 2019.

[53] Fredrik Johansson. Arb: efficient arbitrary-precision midpoint-radius interval arith-

metic. IEEE Transactions on Computers, 66:1281–1292, 2017.

[54] Mioara Joldes, Jean-Michel Muller, and Valentina Popescu. Tight and rigorous error

bounds for basic building blocks of double-word arithmetic. ACM Trans. Math. Softw.,

44(2), October 2017.

[55] Mioara Joldes, Jean-Michel Muller, Valentina Popescu, and Warwick Tucker. CAM-

PARY: Cuda Multiple Precision Arithmetic Library and Applications. In 5th Inter-

national Congress on Mathematical Software (ICMS), Berlin, Germany, July 2016.

[56] Mioara Joldeş, Olivier Marty, Jean-Michel Muller, and Valentina Popescu. Arithmetic

algorithms for extended precision using floating-point expansions. IEEE Transactions

on Computers, 65(4):1197–1210, 2016.

[57] Christophe Junke and François Bobot. Visualization of execution traces in the Colibri

2 SMT solver. In Martin Bromberger and Antti Hyvärinen, editors, Proceedings of the

23rd International Workshop on Satisfiability Modulo Theories (SMT 2025), volume

4008 of CEUR Workshop Proceedings, pages 126–135, August 2025.

[58] W. Kahan. Pracniques: further remarks on reducing truncation errors. Commun.

ACM, 8(1):40, January 1965.

BIBLIOGRAPHY 125

[59] Alan H. Karp and Peter Markstein. High-precision division and square root. ACM

Trans. Math. Softw., 23(4):561–589, December 1997.

[60] Donald E. Knuth. The Art of Computer Programming, Volume II: Seminumerical

Algorithms. Addison-Wesley, 1969.

[61] Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting and

Searching. Addison-Wesley, 1973.

[62] Joel Kuepper, Andres Erbsen, Jason Gross, Owen Conoly, Chuyue Sun, Samuel Tian,

David Wu, Adam Chlipala, Chitchanok Chuengsatiansup, Daniel Genkin, Markus

Wagner, and Yuval Yarom. Cryptopt: Verified compilation with randomized program

search for cryptographic primitives. Proc. ACM Program. Lang., 7(PLDI), June 2023.

[63] Christoph Quirin Lauter. Basic building blocks for a triple-double intermediate for-

mat. Research Report RR-5702, LIP RR-2005-38, INRIA, LIP, September 2005.

[64] Xiaoye S. Li, James W. Demmel, David H. Bailey, Greg Henry, Yozo Hida, Jimmy

Iskandar, William Kahan, Suh Y. Kang, Anil Kapur, Michael C. Martin, Brandon J.

Thompson, Teresa Tung, and Daniel J. Yoo. Design, implementation and testing of

extended and mixed precision BLAS. ACM Trans. Math. Softw., 28(2):152–205, June

2002.

[65] Mian Lu, Bingsheng He, and Qiong Luo. Supporting extended precision on graphics

processors. In Proceedings of the Sixth International Workshop on Data Management

on New Hardware, DaMoN ’10, pages 19–26, New York, NY, USA, 2010. ACM.

[66] Ding Ma and Michael A. Saunders. Solving Multiscale Linear Programs Using the

Simplex Method in Quadruple Precision, page 223–235. Springer International Pub-

lishing, 2015.

[67] Ding Ma, Laurence Yang, Ronan M. T. Fleming, Ines Thiele, Bernhard O. Palsson,

and Michael A. Saunders. Reliable and efficient solution of genome-scale models of

metabolism and macromolecular expression. Scientific Reports, 7(1), January 2017.

BIBLIOGRAPHY 126

[68] John Maddock and Christopher Kormanyos. Boost.Multiprecision: A Multiprecision

Arithmetic Library for C++. Boost C++ Libraries, 2023. Accessed: 2025-04-14.

[69] Henry Massalin. Superoptimizer: a look at the smallest program. ACM SIGARCH

Computer Architecture News, 15(5):122–126, 1987.

[70] Cleve Moler and Charles Van Loan. Nineteen dubious ways to compute the exponen-

tial of a matrix. SIAM Review, 20(4):801–836, 1978.

[71] David Monniaux. The pitfalls of verifying floating-point computations. ACM Trans.

Program. Lang. Syst., 30(3), May 2008.

[72] Jean-Michel Muller, Nicolas Brunie, Florent De Dinechin, Claude-Pierre Jeannerod,

Mioara Joldes, Vincent Lefèvre, Guillaume Melquiond, Nathalie Revol, and Serge

Torres. Handbook of Floating-Point Arithmetic. Springer International Publishing,

Cham, 2018.

[73] Jean-Michel Muller and Laurence Rideau. Formalization of double-word arithmetic,

and comments on “Tight and rigorous error bounds for basic building blocks of double-

word arithmetic”. ACM Trans. Math. Softw., 48(1), February 2022.

[74] Ole Møller. Quasi double-precision in floating point addition. BIT Numerical Math-

ematics, 5(1):37–50, March 1965.

[75] Alessio Netti, Yang Peng, Patrik Omland, Michael Paulitsch, Jorge Parra, Gustavo

Espinosa, Udit Agarwal, Abraham Chan, and Karthik Pattabiraman. Mixed preci-

sion support in HPC applications: What about reliability? Journal of Parallel and

Distributed Computing, 181:104746, 2023.

[76] A. Neumaier. Rundungsfehleranalyse einiger verfahren zur summation endlicher sum-

men. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Ange-

wandte Mathematik und Mechanik, 54(1):39–51, 1974.

BIBLIOGRAPHY 127

[77] Aina Niemetz and Mathias Preiner. Bitwuzla. In Constantin Enea and Akash Lal,

editors, Computer Aided Verification - 35th International Conference, CAV 2023,

Paris, France, July 17-22, 2023, Proceedings, Part II, volume 13965 of Lecture Notes

in Computer Science, pages 3–17. Springer, 2023.

[78] Aina Niemetz, Mathias Preiner, and Yoni Zohar. Scalable bit-blasting with abstrac-

tions. In Arie Gurfinkel and Vijay Ganesh, editors, Computer Aided Verification,

pages 178–200, Cham, 2024. Springer Nature Switzerland.

[79] Takeshi Ogita, Siegfried M. Rump, and Shin’ichi Oishi. Accurate sum and dot prod-

uct. SIAM Journal on Scientific Computing, 26(6):1955–1988, 2005.

[80] Pavel Panchekha. FastTwoSum is Faster Than TwoSum. Blog post, May 2025.

[81] Jessica Pointing, Oded Padon, Zhihao Jia, Henry Ma, Auguste Hirth, Jens Palsberg,

and Alex Aiken. Quanto: Optimizing quantum circuits with automatic generation of

circuit identities. Quantum Science and Technology, 9(4):045009, 2024.

[82] D.M. Priest. Algorithms for arbitrary precision floating point arithmetic. In [1991]

Proceedings 10th IEEE Symposium on Computer Arithmetic, pages 132–143, 1991.

[83] Python Software Foundation. The Python standard library: Built-in functions.

https://docs.python.org/3/library/functions.html, 2001–2025.

[84] Joao Rivera, Franz Franchetti, and Markus Püschel. Floating-point TVPI abstract

domain. Proc. ACM Program. Lang., 8(PLDI), June 2024.

[85] Andreas Rossberg. WebAssembly Core Specification.

[86] Siegfried M. Rump and Marko Lange. On the definition of unit roundoff. BIT Nu-

merical Mathematics, 56(1):309–317, March 2016.

[87] Jeffrey Sarnoff. DoubleFloats.jl. https://github.com/JuliaMath/DoubleFloats.

jl, 2024. Version 1.4.2.

https://docs.python.org/3/library/functions.html
https://github.com/JuliaMath/DoubleFloats.jl
https://github.com/JuliaMath/DoubleFloats.jl

BIBLIOGRAPHY 128

[88] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. ACM

SIGARCH Computer Architecture News, 41(1):305–316, 2013.

[89] Jonathan Richard Shewchuk. Adaptive Precision Floating-Point Arithmetic and Fast

Robust Geometric Predicates. Discrete & Computational Geometry, 18(3):305–363,

October 1997.

[90] Anton Shilov. Apple spent $1 billion to tape out new M3 pro-

cessors: Analyst. https://www.tomshardware.com/software/macos/

apple-spent-dollar1-billion-to-tape-out-new-m3-processors-analyst,

November 2023.

[91] Alexei Sibidanov, Paul Zimmermann, and Stéphane Glondu. The CORE-MATH

Project. In 2022 IEEE 29th Symposium on Computer Arithmetic (ARITH), pages

26–34, virtual, France, September 2022. IEEE.

[92] Erich Strohmaier, Jack Dongarra, Horst D. Simon, and Martin Meuer. TOP500 List

- June 2025. https://top500.org/lists/top500/2025/06/, June 2025.

[93] The Julia Project. Julia standard library: Arrays. https://docs.julialang.org/

en/v0.6/stdlib/arrays, 2017.

[94] Lloyd N. Trefethen. The definition of numerical analysis. Technical report, USA,

1992.

[95] Gerhard W. Veltkamp. ALGOL procedures voor het berekenen van een inwendig

product in dubbele precisie. Technical Report 22, Technische Hogeschool Eindhoven,

1968.

[96] Gerhard W. Veltkamp. ALGOL procedures voor het rekenen in dubbele lengte. Tech-

nical Report 21, Technische Hogeschool Eindhoven, 1969.

[97] J. H. Wilkinson. Rounding Errors in Algebraic Processes. Prentice-Hall, Englewood

Cliffs, N.J., 1963.

https://www.tomshardware.com/software/macos/apple-spent-dollar1-billion-to-tape-out-new-m3-processors-analyst
https://www.tomshardware.com/software/macos/apple-spent-dollar1-billion-to-tape-out-new-m3-processors-analyst
https://top500.org/lists/top500/2025/06/
https://docs.julialang.org/en/v0.6/stdlib/arrays
https://docs.julialang.org/en/v0.6/stdlib/arrays

BIBLIOGRAPHY 129

[98] Mingkuan Xu, Zikun Li, Oded Padon, Sina Lin, Jessica Pointing, Auguste Hirth,

Henry Ma, Jens Palsberg, Alex Aiken, Umut A Acar, et al. Quartz: superoptimiza-

tion of quantum circuits. In Proceedings of the 43rd ACM SIGPLAN International

Conference on Programming Language Design and Implementation, pages 625–640,

2022.

[99] David K. Zhang. MultiFloats.jl. https://github.com/dzhang314/MultiFloats.jl,

2024. Version 2.3.0.

[100] David K. Zhang and Alex Aiken. Automatic verification of floating-point accumula-

tion networks. In Ruzica Piskac and Zvonimir Rakamarić, editors, Computer Aided

Verification, pages 215–237, Cham, 2025. Springer Nature Switzerland.

[101] David K. Zhang and Alex Aiken. High-performance branch-free algorithms for

extended-precision floating-point arithmetic. In SC25: International Conference for

High Performance Computing, Networking, Storage and Analysis, 2025.

[102] David Kai Zhang. An explicit 16-stage Runge–Kutta method of order 10 discovered

by numerical search. Numerical Algorithms, 96(3):1243–1267, Jul 2024.

[103] Kasia Świrydowicz, Eric Darve, Wesley Jones, Jonathan Maack, Shaked Regev,

Michael A. Saunders, Stephen J. Thomas, and Slaven Peleš. Linear solvers for power

grid optimization problems: A review of gpu-accelerated linear solvers. Parallel Com-

puting, 111:102870, 2022.

https://github.com/dzhang314/MultiFloats.jl

	Abstract
	Acknowledgments
	Introduction
	Background
	Floating-Point Numbers
	Floating-Point Formats
	Floating-Point Arithmetic
	Quantifying Rounding Errors
	Error-Free Transformations
	Beyond Machine Precision

	Algorithms
	Assumptions
	Floating-Point Expansions
	Alternative Nonoverlapping Conditions
	Uniqueness and Renormalization

	Floating-Point Accumulation Networks
	Arithmetic with Expansions

	Verification
	The SELTZO Abstraction
	The SE and SETZ Abstractions
	TwoSum Lemmas
	Verifier Implementation
	Verifier Evaluation

	Synthesis
	Evolutionary Search
	Addition FPANs
	Multiplication FPANs

	Evaluation
	Conclusion
	Related Work
	Future Work

	SETZ Lemmas
	Bibliography

