
Understanding IC3?

Aaron R. Bradley

ECEE Department, University of Colorado at Boulder
Email: bradleya@colorado.edu

Abstract. The recently introduced model checking algorithm IC3 has
proved to be among the best SAT-based safety model checkers. Many
implementations now exist. This paper provides the context from which
IC3 was developed and explains how the originator of the algorithm
understands it. Then it draws parallels between IC3 and the subsequently
developed algorithms FAIR and IICTL, which extend IC3’s ideas to the
analysis of ω-regular and CTL properties, respectively. Finally, it draws
attention to certain challenges that these algorithms pose for the SAT
and SMT community.

1 Motivation

In Temporal Verification of Reactive Systems: Safety, Zohar Manna and Amir
Pnueli discuss two strategies for strengthening an invariant property to be in-
ductive [13]: “(1) Use a stronger assertion, or (2) Conduct an incremental proof,
using previously established invariants.” They “strongly recommend” the use of
the second approach “whenever applicable,” its advantage being “modularity.”
Yet they note that it is not always applicable, as a conjunction of assertions can
be inductive when none of its components, on its own, is inductive. In this paper,
the first method is referred to as “monolithic”—all effort is focused on producing
one strengthening formula—while the second method is called “incremental.”

1.1 Monolithic and Incremental Proof Methods

A simple pair of transition systems clarifies the two strategies and the limitations
of the second:

1x , y := 1 , 1
2while ∗ :
3x , y := x + 1 , y + x

1x , y := 1 , 1
2while ∗ :
3x , y := x + y , y + x

The star-notation indicates nondeterminism. Suppose that one wants to prove,
for both systems, that P : y ≥ 1 is invariant.

Consider the first system. To attempt to prove the invariant property P , one
can apply induction:

? Work supported in part by the Semiconductor Research Corporation under contract
GRC 2271.



2 Aaron R. Bradley

– It holds initially because

x = 1 ∧ y = 1︸ ︷︷ ︸
initial condition

⇒ y ≥ 1︸ ︷︷ ︸
P

.

– But it does not hold at line 3 because

y ≥ 1︸ ︷︷ ︸
P

∧x′ = x+ 1 ∧ y′ = y + x︸ ︷︷ ︸
transition relation

6⇒ y′ ≥ 1︸ ︷︷ ︸
P ′

.

The first step of an inductive proof of an invariant property is sometimes called
initiation; the second, consecution [13]. In this case, consecution fails. Hence, an
inductive strengthening of P must be found.

The first step in strengthening P is to identify why induction fails. Here, it’s
obvious enough: without knowing that x is nonnegative, one cannot know that
y never decreases. The assertion ϕ1 : x ≥ 0 is inductive:

– it holds initially: x = 1 ∧ y = 1⇒ x ≥ 0, and
– it continues to hold at line 3, where x is updated:

x ≥ 0︸ ︷︷ ︸
ϕ1

∧x′ = x+ 1 ∧ y′ = y + x︸ ︷︷ ︸
transition relation

⇒ x′ ≥ 0︸ ︷︷ ︸
ϕ′

1

.

Now P : y ≥ 1 is inductive relative to ϕ1 because consecution succeeds in the
presence of ϕ1:

x ≥ 0︸ ︷︷ ︸
ϕ1

∧ y ≥ 1︸ ︷︷ ︸
P

∧x′ = x+ 1 ∧ y′ = y + x︸ ︷︷ ︸
transition relation

⇒ y′ ≥ 1︸ ︷︷ ︸
P ′

.

This use of “previously established invariants” makes for an “incremental proof”:
first establish ϕ1; then establish P using ϕ1. Here, each assertion is simple and
discusses only one variable of the system. The inductive strengthening of P :
y ≥ 1 is thus x ≥ 0 ∧ y ≥ 1. Of course, the stronger assertion x ≥ 1 ∧ y ≥ 1
would work as well.

In the second transition system, neither x ≥ 0 nor y ≥ 1 is inductive on its
own. For example, consecution fails for x ≥ 0 because of the lack of knowledge
about y:

x ≥ 0 ∧ x′ = x+ y ∧ y′ = y + x 6⇒ x′ ≥ 0 .

Establishing y ≥ 1 requires establishing the two assertions together:

– initiation: x = 1 ∧ y = 1⇒ x ≥ 0 ∧ y ≥ 1
– consecution: x ≥ 0 ∧ y ≥ 1 ∧ x′ = x+ y ∧ y′ = y + x⇒ x′ ≥ 0 ∧ y′ ≥ 1.

An incremental proof seems impossible in this case, as only the conjunction of
the two assertions is inductive, not either on its own. Thus, for this system, one
must invent the inductive strengthening of P all at once: x ≥ 0 ∧ y ≥ 1.

Notice that the assertion x ≥ 0 ∧ y ≥ 1 is inductive for the first transition
system as well and so could have been proposed from the outset. However, espe-
cially in more realistic settings, an incremental proof is simpler than inventing
a single inductive strengthening, when it is possible.



Understanding IC3 3

1.2 Initial Attempts at Incremental, Inductive Algorithms

IC3 is a result of asking the question: if the incremental method is often better for
humans, might it be better for algorithms as well? The first attempt at addressing
this question was in the context of linear inequality invariants. Previous work
had established a constraint-based method of generating individual inductive
linear inequalities [7]. Using duality in linear programming, the constraint-based
method finds instantiations of the parameters a0, a1, . . . , an in the template

a0x0 + a1x1 + · · ·+ an−1xn−1 + an ≥ 0

that result in inductive assertions. A practical implementation uses previously
established invariants when generating a new instance [17]. However, an enumer-
ative algorithm generates the strongest possible over-approximation—for that
domain—of the reachable state space, which may be far stronger than what is
required to establish a given property.

A property-directed, rather than enumerative, approach is to guide the search
for inductive instances with counterexamples to the inductiveness (CTIs) of the
given property [5]. A CTI is a state (more generally, a set of states represented by
a cube; that is, a conjunction of literals) that is a counterexample to consecution.

In the first system above, consecution fails for P : y ≥ 1:

y ≥ 1 ∧ x′ = x+ 1 ∧ y′ = y + x 6⇒ y′ ≥ 1 .

A CTI, returned by an SMT solver, is x = −1 ∧ y = 1. Until this state is
eliminated, P cannot be established. The constraint system for generating an
inductive instance of the template ax+by+c ≥ 0 is augmented by the constraint
a(−1) + b(1) + c < 0. In other words, the generated inductive assertion should
establish that the CTI x = −1 ∧ y = 1 is unreachable. If no such assertion
exists, other CTIs are examined instead. The resulting lemmas may be strong
enough that revisiting this CTI will reveal an assertion that is inductive relative
to them, finally eliminating the CTI. But in this example, the instance x ≥ 0
(a = 1, b = 0, c = 0) is inductive and eliminates the CTI.

In the context of hardware model checking, this approach was developed
into a complete model checker, called FSIS, for invariance properties [4]. Rather
than linear inequality assertions, it generates clauses over latches. While the al-
gorithm for generating strong inductive clauses is not trivial, understanding it
is not essential for understanding the overall model checking algorithm, which is
simple. The reader is thus referred to previous papers to learn about the clause-
generation algorithm [4, 3]. Consider finite-state system S : (i, x, I(x), T (x, i, x′))
with primary inputs i, state variables (latches) x, a propositional formula I(x)
describing the initial configurations of the system, and a propositional formula
T (x, i, x′) describing the transition relation, and suppose that one desires to es-
tablish the invariance of assertion P . First, the algorithm checks if P is inductive
with two SAT queries, for initiation and consecution, respectively:

I ⇒ P and P ∧ T ⇒ P ′ .



4 Aaron R. Bradley

If they hold, P is invariant. If the first query fails, P is falsified by an initial state,
and so it does not hold. If consecution fails—the likely scenario—then there is a
state s that can lead in one step to an error; s is a CTI.

The inductive clause generation algorithm then attempts to find a clause
c that is inductive and that is falsified by s. If one is found, c becomes an
incremental lemma, ϕ1, relative to which consecution is subsequently checked:

ϕ1 ∧ P ∧ T ⇒ P ′ .

If consecution still fails, another CTI t is discovered, and again the clause gen-
eration algorithm is applied. This time, however, the generated clause need only
be inductive relative to ϕ1, in line with Manna’s and Pnueli’s description of in-
cremental proofs. In this manner, a list of assertions, ϕ1, ϕ2, . . . , ϕk, is produced,
each inductive relative to its predecessors, until P ∧

∧
i ϕi is inductive.

But what is to be done if no clause exists that both eliminates s and is
inductive? In this case, the target is expanded: the error states grow from ¬P to
¬P ∨ s; said otherwise, the property to establish becomes P ∧ ¬s. Every CTI is
handled in this way: either a relatively inductive clause is generated to eliminate
it, or it is added to the target. The algorithm is complete for finite-state systems.

One important, though subtle, point in applying the incremental method is
that the invariance property, P , that is to be established can be assumed when
generating new inductive assertions. That is, a generated assertion need only
be inductive relative to P itself. For suppose that auxiliary information ψ is
inductive relative to P , and P is inductive relative to ψ:

ψ ∧ P ∧ T ⇒ ψ′ and ψ ∧ P ∧ T ⇒ P ′ .

Then clearly ψ ∧ P itself is inductive.
In the second transition system of Section 1.1, this extra information makes

a difference. Consider consecution again for P :

y ≥ 1 ∧ x′ = x+ y ∧ y′ = y + x⇒ y′ ≥ 1 .

It fails with, for example, the CTI x = −1 ∧ y = 1. While x ≥ 0 eliminates this
CTI, it is not inductive on its own. However, it is inductive relative to P :

y ≥ 1︸ ︷︷ ︸
P

∧ x ≥ 0︸ ︷︷ ︸
ϕ1

∧x′ = x+ y ∧ y′ = y + x︸ ︷︷ ︸
transition relation

⇒ x′ ≥ 0︸ ︷︷ ︸
ϕ′

1

.

By assuming P , an incremental proof is now possible. Once sufficient strength-
ening information is found, this seemingly circular reasoning straightens into an
inductive strengthening.

However, this trick does not fundamentally strengthen the incremental proof
methodology. There are still many situations in which the purely incremental
approach is impossible.1 Experiments with FSIS made it clear that this weakness
had to be addressed.
1 Consider, for example, a similar transition relation with three variables updated ac-

cording to x, y, z := x + y, y + z, z + x. Neither x ≥ 0 nor z ≥ 0 is inductive
relative to P : y ≥ 1.



Understanding IC3 5

1.3 Other SAT-Based Approaches

This section considers the strengths and weaknesses, which motivate IC3, of
other SAT-based approaches.

At one extreme are solvers based on backward search. Exact SAT-based sym-
bolic model checking computes the set of states that can reach an error, relying
on cube reduction to accelerate the analysis [14]. Conceptually, it uses the SAT
solver to find a predecessor, reduces the resulting cube, and then blocks the
states of that cube from being explored again. At convergence, the blocking
clauses describe the weakest possible inductive strengthening of the invariant.
Sequential SAT similarly reduces predecessor cubes, but it also reduces state
cubes lacking unexplored predecessors via the implication graph of the associ-
ated (unsatisfiable) SAT query [12]. This latter approach computes a convenient
inductive strengthening—not necessarily the weakest or the strongest. FSIS is
like this latter method, except that, when possible, it uses induction to reduce
a predecessor state cube, which can allow the exploration of backward paths to
end earlier than in sequential SAT, besides producing stronger clauses.

The strength of pure backward search is that it does not tax the SAT solver.
Memory is not an issue. Its weakness is that the search is blind with respect
to the initial states. In the case of FSIS, its selection of new proof obligations
is also too undirected; some predecessors trigger more informative lemmas than
others, but FSIS has no way of knowing which. Perhaps because of this lack of
direction, successful modern SAT-based model checkers, other than IC3, derive
from BMC [1]. BMC is based on unrolling the transition relation between the
initial and error states. Thus, the SAT solver considers both ends in its search.

While BMC is strong at finding counterexamples, it is practically incomplete.
Interpolation (ITP) [15] and k-induction [18] address this practical incomplete-
ness. The latter combines BMC (which becomes initiation) with a consecution
check in which the transition relation is unrolled k times and the property is
asserted at each non-final level. When that check fails, k is increased; in a finite-
state context, there is a k establishing P if P is invariant. In practice, the suf-
ficient k is sometimes small, but it can also be prohibitively large. Like exact
model checking, k-induction cannot find a convenient strengthening; rather, its
strengthening is based on a characteristic of the transition system.

ITP goes further. Rather than unrolling from the initial states (BMC) or
applying induction directly (k-induction), it unrolls from the current frontier
Fi, which contains at least all states at most i steps from an initial state. If
the associated SAT query is unsatisfiable, the algorithm extracts an interpolant
between Fi and the k-unrolling leading to a violation of P , which serves as the
(i + 1)-step over-approximation Fi+1. If the query is satisfiable, the algorithm
increases k, yielding a finer over-approximating post-condition computation. The
size of the unrolling that yields a proof can be smaller in practice than that
of k-induction. Tuning the interpolant finder can allow it to find convenient
assertions, potentially accelerating convergence to some inductive strengthening.

BMC-based approaches have the advantage of giving meaningful consider-
ation to both initial and error states. However, they have the disadvantage of



6 Aaron R. Bradley

being monolithic. They search for a single, often complex, strengthening, which
can require many unrollings in practice, overwhelming the SAT solver.

IC3 addresses the weaknesses of both types of solvers while maintaining their
strengths. Like the backward search-based methods, it relies on many simple
SAT queries (Section 2.1) and so requires relatively little memory in practice.
Like the BMC-based methods, it gives due consideration to the initial and error
states (Section 2.2). It can be run successfully for extended periods, and—for
the same reasons—it is parallelizable. Compared to FSIS, it uses the core idea
of incrementally applying relative induction but applies it in a context in which
every state cube is inductively generalizable. Hence, induction becomes an even
more powerful method for reducing cubes in IC3.

2 IC3

Manna’s and Pnueli’s discussion of incremental proofs is in the context of man-
ual proof construction, where the ingenuity of the human is the only limitation
to the discovery of intermediate lemmas. In algorithms, lemma generation is
typically restricted to some abstract domain [8] such as linear inequalities [9] or
a fixed set of predicates [10]. Thus, the case in which a CTI cannot be elimi-
nated through the construction of a relatively inductive assertion arises all too
frequently, making FSIS, in retrospect, a rather naive algorithm.

The goal in moving beyond FSIS was to preserve its incremental character
while addressing the weakness of backward search and the weakness of the in-
cremental proof method: the common occurrence of mutually inductive sets of
assertions that cannot be linearized into incremental proofs. In other words, what
was sought was an algorithm that would smoothly transition between Manna’s
and Pnueli’s incremental methodology, when possible, and monolithic inductive
strengthening, when necessary.

This section discusses IC3 from two points of view: IC3 as a prover and IC3
as a bug finder. It should be read in conjunction with the formal treatment
provided in the original paper [3]. Readers who wish to see IC3 applied to a
small transition system are referred to [19].

2.1 Perspective One: IC3 as a Prover

IC3 maintains a sequence of stepwise over-approximating sets, F0 =
I, F1, F2, . . . , Fk, Fk+1, where each set Fi over-approximates the set of states
reachable in at most i steps from an initial state. Every set except Fk+1 is a
subset of P : Fi ⇒ P . Once Fk is refined so that it excludes all states that can
reach a ¬P -state in one transition, Fk+1, too, is strengthened to be a subset
of P by conjoining P to it. Fk is considered the “frontier” of the analysis. A
final characteristic of these sets is that Fi ∧ T ⇒ F ′i+1. That is, all successors of
Fi-states are Fi+1-states.

This description so far should be relatively familiar. Forward BDD-based
reachability [16], for example, computes exact i-step reachability sets, and if any



Understanding IC3 7

such set ever includes a ¬P -state, the conclusion is that the property does not
hold. ITP also computes i-step reachability sets, and like IC3’s, they are over-
approximating. However, when ITP encounters an over-approximating set that
contains a ¬P -state, it refines its approximate post-image operator by further
unrolling the transition relation, rather than addressing the weaknesses of the
current stepwise sets directly. The crucial difference in the use of these sets
between IC3 and ITP is that IC3 refines all of the sets throughout its execution.2

Putting these properties together reveals two characteristics of the reach sets.
First, any state reachable in i steps is an Fi-state. Second, any Fi-state cannot
reach a ¬P -state for at least k − i + 1 steps. For example, an Fk+1-state can
actually be a ¬P -state, and an Fk-state may reach an error in one step. But an
Fk−1-state definitely cannot transition to a ¬P -state (since Fk−1 ∧ T ⇒ F ′k and
Fk ⇒ P ).

Now, the property to check is whether P is inductive relative to Fk. Since
Fk ⇒ P , the following query, corresponding to consecution for P relative to Fk,
is executed:

Fk ∧ T ⇒ P ′ . (1)

Suppose that the query succeeds and that Fk is itself inductive: Fk ∧ T ⇒ F ′k.
Then Fk is an inductive strengthening of P that proves P ’s invariance.

Now suppose that the query succeeds but that Fk is not inductive. Fk+1 can
be strengthened to Fk+1 ∧ P , since all successors of Fk-states are P -states. Ad-
ditionally, a new frame Fk+2 is introduced. IC3 brings in monolithic inductive
strengthening by executing a phase of what can be seen as a simple predicate
abstraction (propagateClauses [3]). Every clause that occurs in any Fi is treated
as a predicate. A clause’s occurrence in Fi means that it holds for at least i
steps. This phase allows clauses to propagate forward from their current posi-
tions. Crucially, subsets of clauses can propagate forward together, allowing the
discovery of mutually inductive clauses. For i ranging from 1 to k, IC3 computes
the largest subset C ⊆ Fi of clauses such that the following holds (consecution
for C relative to Fi):

Fi ∧ T ⇒ C ′ .

These clauses C are then conjoined to Fi+1. Upon completion, Fk+1 becomes
the new frontier. Many of the stepwise sets may be improved as lemmas are
propagated forward in time. If Fk = Fk+1, then Fk is inductive, which explains
how Fk is determined to be inductive in the case above.

Finally, suppose that query (1) fails, revealing an Fk-state s (more generally,
a cube of Fk-states) that can reach a ¬P -state in one transition; s is a CTI.
In other words, the problem is not just that Fk is not inductive; the problem
is that it is not even strong enough to rule out a ¬P -successor, and so more

2 Of course, one might implement ITP to reuse previous over-approximating sets, so
that it too could be seen to refine them throughout execution. Similarly, one might
use transition unrolling in IC3. But for completeness, ITP relies on unrolling but not
continual refinement of all stepwise sets, whereas IC3 relies on continual refinement
of all stepwise sets but not unrolling.



8 Aaron R. Bradley

reachability information must be discovered. IC3 follows the incremental proof
methodology in this situation: it uses induction to find a lemma showing that s
cannot be reached in k steps from an initial state. This lemma may take the form
of a single clause or many clauses, the latter arising from analyzing transitive
predecessors of s.

Ideally, the discovered lemma will prove that s cannot ever be reached. Less
ideally, the lemma will be good enough to get propagated to future time frames
once P becomes inductive relative to Fk. But at worst, the lemma will at least
exclude s from frame Fk, and even Fk+1

3.
Specifically, IC3 first seeks a clause c whose literals are a subset of those of ¬s

and that is inductive relative to Fk; that is, it satisfies initiation and consecution:

I ⇒ c and Fk ∧ c ∧ T ⇒ c′ .

Such a clause proves that s cannot be reached in k + 1 steps. However, there
may not be any such clause. It may be the case that a predecessor t exists that
is an Fk-state and that eliminates the possibility of a relatively inductive clause.
In fact, t could even be an Fk−1-state.4

Here is where IC3 is vastly superior to FSIS, and where it sidesteps the
fundamental weakness of the incremental proof method. A failure to eliminate s
at Fk is not a problem. Suppose that a clause c is found relative to Fk−1 rather
than Fk:

I ⇒ c and Fk−1 ∧ c ∧ T ⇒ c′ .

Because c is inductive relative to Fk−1, it is added to Fk: no successor of an
(Fk−1 ∧ c)-state is a ¬c-state. If even with this update to Fk, s still cannot be
eliminated through inductive generalization (the process of generating a rela-
tively inductive subclause of ¬s), then the failing query

Fk ∧ ¬s ∧ T ⇒ ¬s′ (2)

reveals a predecessor t that was irrelevant for Fk−1 but is a reason why inductive
generalization fails relative to Fk. This identification of a reason for failure of
inductive generalization is one of IC3’s insights. The predecessor is identified
after the generation of c relative to Fk−1 so that c focuses IC3 on predecessors
of s that matter for Fk. The predecessor t is not just any predecessor of s: it is
specifically one that prevents s’s inductive generalization at Fk. IC3 thus has a
meaningful criterion for choosing new proof obligations.

Now IC3 focuses on t until eventually a clause is produced that is inductive
relative to frame Fk−1 and that eliminates t as a predecessor of s through frame
Fk. Focus can then return to s, although t is not forgotten. Inductive general-
ization of s relative to Fk may succeed this time; and if it does not, the newly
discovered predecessor would again be a reason for its failure.

3 The clause eventually generated for s relative to Fk strengthens Fk+1 since it is
inductive relative to Fk.

4 However, it cannot be an Fk−2-state, for then s would be an Fk−1-state, and its
successor ¬P -state an Fk-state. But it is known that Fk ⇒ P .



Understanding IC3 9

It is important that, during the recursion, all transitive predecessors of s
be analyzed all the way through frame Fk. This analysis identifies mutually in-
ductive (relative to Fk) sets of clauses. Only one of the clauses may actually
eliminate s, but the clauses will have to be propagated forward together since
they support each other. It may be the case, though, that some clauses are too
specific, so that the mutual support breaks down during the clause propaga-
tion phase. This behavior is expected. As IC3 advances the frontier, it forces
itself to consider ever more general situations, until it finally discovers the real
reasons why s is unreachable. It is this balance between using stepwise-specific
information and using induction to be as general as possible that allows IC3 to
synthesize the monolithic and incremental proof strategies into one strategy.

2.2 Perspective Two: IC3 as a Bug Finder

Although IC3 is often inferior to BMC for finding bugs quickly, industry ex-
perience has shown that IC3 can find deep bugs that other formal techniques
cannot. This section presents IC3 as a guided backward search. While heuristics
for certain decision points may improve IC3’s performance, the basic structure of
the algorithm is already optimized for finding bugs. In particular, IC3 considers
both initial and error states during its search. The following discussion develops
a hypothetical, but typical, scenario for IC3, one which reveals the motivation
behind IC3’s order of handling proof obligations. Recall from the previous section
that IC3 is also intelligent about choosing new proof obligations.

Suppose that query (1) revealed state s, which was inductively generalized
relative to Fk−2; that query (2) revealed t as an Fk−1-state predecessor of s; and
that t has been inductively generalized relative to Fk−3. At this point, IC3 has
the proof obligations {(s, k− 1), (t, k− 2)}, indicating that s and t must next
be inductively generalized relative to Fk−1 and Fk−2, respectively. As indicated
in the last section, neither state will be forgotten until it is generalized relative
to Fk, even if s happens to be generalized relative to Fk first.

At this point, with the proof obligations {(s, k − 1), (t, k − 2)}, it is fairly
obvious that until t is addressed, IC3 cannot return its focus to s; t would still
cause problems for generalizing s relative to Fk−1. While focusing on t, suppose
that u is discovered as a predecessor of t during an attempt to generalize t
relative to Fk−2. Although t cannot be generalized relative to Fk−2, u may well
be; it is, after all, a different state with different literals. Indeed, it may even be
generalizable relative to Fk. In any case, suppose that it is generalizable relative
to Fk−2 but not higher, resulting in one more proof obligation: (u, k−1). Overall,
the obligations are now {(s, k − 1), (t, k − 2), (u, k − 1)}.

The question IC3 faces is which proof obligation to consider next. It turns out
that correctness requires considering the obligation (t, k − 2) first [3]. Suppose
that t and u are mutual predecessors.5 Were (u, k − 1) treated first, t could
be discovered as an Fk−1-state predecessor of u, resulting in a duplicate proof

5 The current scenario allows it. For t’s generalization relative to Fk−3 produced a
clause at Fk−2 that excludes t, which means that the generalization of u relative to



10 Aaron R. Bradley

obligation and jeopardizing termination. But one might cast correctness aside
and argue that u should be examined first anyway—perhaps it is “deeper” than
s or t given that it is a predecessor of t.

Actually, the evidence is to the contrary. The obligations (u, k − 1) and
(t, k − 2) show that u is at least k steps away from an initial state (recall that
u has been eliminated from Fk−1), whereas t is at least only k − 1 steps away.
That is, IC3’s information predicts that t is “closer” to an initial state than is u
and so is a better state to follow to find a counterexample trace.

Thus, there are two characteristics of a proof obligation (a, i) to consider:
(1) the length of the suffix of a, which leads to a property violation, and (2) the
estimated proximity, i+ 1, to an initial state. In the example above, s, t, and u
have suffixes of length 0, 1, and 2, respectively; and their estimated proximities
to initial states are k, k − 1, and k, respectively. Both correctness and intuition
suggest that pursuing a state with the lowest proximity is the best bet. In the case
that multiple states have the lowest proximity, one can heuristically choose from
those states the state with the greatest suffix length (for “depth”) or the shortest
suffix length (for “short” counterexamples)—or apply some other heuristic.

From this perspective, IC3 employs inductive generalization as a method of
dynamically updating the proximity estimates of states that lead to a violation
of the property. Inductive generalization provides for not only the update of
the proximities of explicitly observed CTI states but also of many other states.
When Fk ∧ T ⇒ P ′ holds, all proximity estimates of ¬P -predecessors are k+ 1,
and so another frame must be added to continue the guided search.

The bug-finding and proof-finding perspectives agree on a crucial point: even
if the initial CTI s has been inductively generalized relative to Fk, its transitive
predecessors should still be analyzed through Fk in order to update their and
related states’ proximity estimates. A consequence of this persistence is that IC3
can search deeply even when k is small.

3 Beyond IC3: Incremental, Inductive Verification

Since IC3, the term incremental, inductive verification (IIV) has been coined
to describe algorithms that use induction to construct lemmas in response to
property-driven hypotheses (e.g., the CTIs of FSIS and IC3). Two significant
new incremental, inductive model checking algorithms have been introduced.
One, called FAIR, addresses ω-regular (e.g., LTL) properties [6]. Another, called
IICTL, addresses CTL properties [11]. While this section does not describe each
in depth, it attempts to draw meaningful parallels among IC3, FAIR, and IICTL.
Most superficially, FAIR uses IC3 to answer reachability queries, and IICTL uses
IC3 and FAIR to address reachability and fair cycle queries, respectively.

An IIV algorithm can be characterized by (1) the form of its hypotheses, (2)
the form of its lemmas, (3) how it uses induction, and (4) the basis of general-
ization. For IC3, these characterizations are as follows:

Fk−2 ignores t. Therefore, it is certainly possible for u to be generalized at Fk−2,
leaving obligation (u, k − 1).



Understanding IC3 11

1. Hypotheses: Counterexamples to induction (CTIs). When consecution fails,
the SAT solver returns a state explaining its failure, which IC3 then in-
ductively generalizes, possibly after generating and addressing further proof
obligations.

2. Lemmas: Clauses over state variables. A clause is generated in response to a
CTI, using only the negation of the literals of the CTI.

3. Induction: Lemmas are inductive relative to stepwise information.
4. Generalization: Induction guides the production of minimal clauses—clauses

that do not have any relatively inductive subclauses. The smaller the clause,
the greater is the generalization; hence, induction is fundamental to gener-
alization in IC3.

FAIR searches for reachable fair cycles, or “lasso” counterexamples. The fun-
damental insight of FAIR is that SCC-closed sets can be described by sequences
of inductive assertions. In other words, an inductive assertion is a barrier across
the state space which the system can cross in only one direction. A transition
from one side to the other is a form of progress, since the system can never
return to the other side. FAIR is characterized as an IIV algorithm as follows:

1. Hypotheses: Skeletons. A skeleton is a set of states that together satisfy all
Büchi fairness conditions and that all appear on one side of every previously
generated barrier. The goal is to connect the states into a “lasso” through
reachability queries.

2. Lemmas: An inductive assertion. Each lemma provides one of two types
of information: (1) global reachability information, which is generated when
IC3 shows that a state of a skeleton cannot be reached; (2) SCC information,
which is generated when IC3 shows that one state of the skeleton cannot
reach another. In the latter case, all subsequent skeletons must be chosen
from one “side” of the assertion.

3. Induction: SCC-closed sets are discovered via inductive assertions.
4. Generalization: Proofs constructed by IC3 can be refined to provide stronger

global reachability information or smaller descriptions of one-way barriers.
Furthermore, new barriers are generated relative to previous ones and tran-
sect the entire state space, not just the “arena” from which the skeleton was
selected. Exact SCC computation is not required.

IICTL considers CTL properties hierarchically, as in BDD-based model
checking [16], but rather than computing exact sets for each node, it incre-
mentally refines under- and over-approximations of these sets. When a state
is undecided for a node—that is, it is in the over-approximation but not in
the under-approximation—its membership is decided via a set of SAT (for EX
nodes), reachability (for EU nodes), or fair cycle (for EG nodes) queries. IICTL
is characterized as an IIV algorithm as follows:

1. Hypotheses: A state is undecided for a node if it is included in the upper-
bound but excluded from the lower-bound. If it comes up during the analysis,
its status for the node must be decided.



12 Aaron R. Bradley

2. Lemmas: Lemmas refine the over- and under-approximations of nodes, either
introducing new states into under-approximations or removing states from
over-approximations.

3. Induction: Induction is used to answer the queries for EU and EG nodes.
4. Generalization: Generalization takes two forms. For negatively answered

queries, the returned proofs are refined to add (remove) as many states
as possible to the under-approximations (from the over-approximations) of
nodes, rather than just the motivating hypothesis state. For positively an-
swered queries, the returned traces are generalized through a “forall-exists”
generalization procedure, again to decide as many states as possible in ad-
dition to the hypothesis state.

All three algorithms are “lazy” in that they only respond to concrete hy-
potheses but are “eager” in that they generalize from specific instances to strong
lemmas. Furthermore, all hypotheses are derived from the given property, so that
the algorithms’ searches are property-directed.

4 Challenges for SAT and SMT Solvers

The queries that IIV methods pose to SAT solvers differ significantly in character
from those posed by BMC, k-induction, or ITP. There is thus an opportunity for
SAT and SMT research to directly improve the performance of IIV algorithms.

IC3 is the first widespread verification method that requires highly efficient
incremental solvers. An incremental interface for IC3 must allow single clauses
to be pushed and popped; it must also allow literal assumptions. IIV algorithms
pose many thousands to millions of queries in the course of an analysis, and
so speed is crucial. FAIR requires even greater incrementality: the solver must
allow sets of clauses to be pushed and popped.

IIV methods use variable orders to direct the generation of inductive clauses.
An ideal solver would use these variable orders to direct the identification of the
core assumptions or to direct the lifting of an assignment.

The inductive barriers produced in FAIR provide opportunities for general-
ization (in the cycle queries [6]) but are not required for completeness. Using
all such barriers overwhelms the solver, yet using too few reduces opportunities
for generalization. Therefore, currently, a heuristic external to the solver decides
whether to use a new barrier or not. Ideally, a solver would provide feedback
on whether a group of clauses has been used or not for subsequent queries.
Those clause groups that remain unused for several iterations of FAIR would be
removed. This functionality would allow direct identification of useful barriers.

IIV algorithms gradually learn information about a system in the form of
lemmas. Thus, a core set of constraints, which includes the transition relation,
grows and is used by every worker thread. On a multi-core machine, replicat-
ing this set of constraints in each thread’s solver instance uses memory—and
memory bandwidth—poorly, and this situation will grow worse as the number
of available cores grows. An ideal solver for IIV algorithms would provide access
to every thread to a growing core set of constraints. Each thread would then



Understanding IC3 13

have a thread-specific view in which to push and pop additional information for
incremental queries.

Finally, IC3 has shown itself to be highly sensitive to the various behaviors
of SAT solvers. Swapping one solver for another, or even making a seemingly
innocuous adjustment to the solver, can cause widely varying performance—even
if the average time per SAT call remains about the same. For example, a SAT
solver that is too deterministic can cause IC3 to dwell on one part of the state
space by returning a sequence of similar CTIs, so that IC3 must generate more
lemmas. Identifying the desirable characteristics of a solver intended for IC3 will
be of great help.

5 What’s Next?

Fundamentally, IC3 should not be seen as a clause-generating algorithm. Rather,
the insight of IC3 is in how it can harness seemingly weak abstract domains to
produce complex inductive strengthenings. At first glance, it seems that IC3’s
abstract domain is CNF over state variables. In fact, the abstract domain is
conjunctions of state variables (over the inverse transition relation; see next
paragraph), which is, practically speaking, the simplest possible domain.

If that perspective seems unclear, think about how IC3 works: to address CTI
s, it performs what is essentially a simple predicate abstraction over the inverse
of the transition relation, where the predicates are the literals of s. This process
produces a cube d ⊆ s—that is, a conjunction of a subset of the predicates—that
lacks ¬d-predecessors (within a stepwise context Fi); therefore, the clause ¬d is
inductive (relative to Fi). It is the incremental nature of IC3 that produces, over
time, a conjunction of clauses.

Recalling the linear inequality domain [5] seems to confuse the issue, how-
ever. Where are the disjunctions in that context? To understand it, consider the
polyhedral domain [9]. If it were to be used in the same way as the state variable
domain of IC3, then each CTI would be analyzed with a full polyhedral analysis,
each lemma would take the form of a disjunction of linear inequalities, and IC3
would produce proofs in the form of a CNF formula of linear inequalities. That
approach would usually be unnecessarily expensive. Clearly, the polyhedral do-
main is not being used. Instead, the domain is much simpler: it is a domain of
half-spaces.6

Therefore, the next step, in order to achieve word-level hardware or software
model checking, is to introduce new abstract domains appropriate for IC3—
domains so simple that they could not possibly work outside the context of IC3,
yet sufficiently expressive that IC3 can weave together their simple lemmas into
complex inductive strengthenings.

6 A Boolean clause can be seen as a half-space over a Boolean hypercube. The author
first pursued inductive clause generation (in FSIS) because of the parallel with linear
inequalities.



14 Aaron R. Bradley

Acknowledgments. Thanks to Armin Biere, Zyad Hassan, Fabio Somenzi, and
Niklas Een for insightful discussions that shaped my thinking on how better to
explain IC3, and to the first three for reading drafts of this paper.

References

[1] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In TACAS, 1999.

[2] A. R. Bradley. k-step relative inductive generalization. Technical report, CU
Boulder, Mar. 2010. http://arxiv.org/abs/1003.3649.

[3] A. R. Bradley. SAT-based model checking without unrolling. In VMCAI, pages
70–87, Jan. 2011.

[4] A. R. Bradley and Z. Manna. Checking safety by inductive generalization of
counterexamples to induction. In FMCAD, Nov. 2007.

[5] A. R. Bradley and Z. Manna. Verification Constraint Problems with Strengthen-
ing. In ICTAC, Nov. 2006.

[6] A. R. Bradley, F. Somenzi, Z. Hassan, and Y. Zhang. An incremental approach
to model checking progress properties. In FMCAD, Nov. 2011.

[7] M. A. Colon, S. Sankaranarayanan, and H. Sipma. Linear invariant generation
using non-linear constraint solving. In CAV, 2003.

[8] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
POPL, 1977.

[9] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In POPL, January 1978.

[10] S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In CAV,
1997.

[11] Z. Hassan, A. R. Bradley, and F. Somenzi. Incremental, inductive CTL model
checking. In CAV, July 2012.

[12] F. Lu, M. K. Iyer, G. Parthasarathy, L.-C. Wang, K.-T. Cheng, and K.C. Chen.
An Efficient Sequential SAT Solver With Improved Search Strategies. In DATE,
2005.

[13] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag, New York, 1995.

[14] K. L. McMillan, Applying SAT Methods in Unbounded Symbolic Model Checking.
In CAV, July 2002.

[15] K. L. McMillan, Interpolation and SAT-based model checking. In CAV, July
2003.

[16] K. L. McMillan. Symbolic Model Checking. Kluwer, Boston, MA, 1994.
[17] S. Sankaranarayanan, H. Sipma, and Z. Manna. Scalable Analysis of Linear Sys-

tems using Mathematical Programming. In VMCAI, 2005.
[18] M. Sheeran, S. Singh, and G. St̊almarck. Checking safety properties using induc-

tion and a SAT-solver. In FMCAD, Nov. 2000.
[19] F. Somenzi and A. R. Bradley. IC3: Where monolithic and incremental meet. In

FMCAD, Nov. 2011.


