The Discrete Logarithm Problem in Matrix Groups

David Freeman
Computer Science 276
dfreeman@math.berkeley.edu

May 19, 2004

Abstract

We consider the discrete logarithm problem in the group of n x n invertible matrices over a
finite field. We show that the problem can be reduced to finding at most n discrete logarithms
in extension fields of degree at most n. We propose a variant of the Diffie-Hellman key exchange
protocol that cannot be broken using our reduction algorithms.

1 Introduction

The discrete logarithm problem has been intertwined with cryptography ever since the invention
of public-key cryptography by Diffie and Hellman in 1976 [5]. Under the Diffie-Hellman key-
exchange protocol, if Alice and Bob want to arrive at a shared secret, they first (publicly) agree
on a finite abelian group G. Alice chooses a € G and 0 < z < |G/, and sends the pair (a, a”) to
Bob. Bob chooses 0 < y < |G| and sends (a¥) to Alice. The secret key is a®, and if the group
G is well-chosen then the system is secure: it is hard to compute a® from the triple (a, a”, a¥)
that an eavesdropper could obtain by listening in on the channel.

One necessary condition for G to be “well-chosen” is that the discrete logarithm in G is
hard. Namely, an eavesdropper cannot easily compute from the pair (@, a”). This condition is
sufficient in practice, but it is not known in general whether the discrete logarithm being hard
is equivalent to the system being secure.

The original Diffie-Hellman protocol specifies that G be the multiplicative group of a finite
field of prime order. In the years since its invention, the protocol has been extended to other
abelian groups, including the multiplicative group of any finite field, the group of units of Z/nZ
[14], class groups of real and imaginary quadratic number fields [22, 2], the group of points on
an elliptic curve over a finite field [11, 16], and the jacobian of a hyperelliptic curve over a finite
field [12]. The security of these systems has been studied extensively. The most general method
of attack is the “index calculus” algorithm [7], which solves the discrete logarithm problem in
subexponential time in many groups. In the case of elliptic curves, however, there is no known
index calculus attack (indeed, Silverman and Suzuki [24] provide theoretical and experimental
evidence that one does not exist), and the best known algorithms run in exponential time.

Whereas many different abelian groups have been proposed for public-key cryptosystems,
a survey of the literature reveals very little discussion of non-abelian groups. In 2000 Ko et
al. [10] introduced a key-agreement protocol based on the difficulty of solving the conjugacy
problem in braid groups, and there has been a good deal of recent research in this subject.
In 2001 Paeng et al. [20] introduced a Diffie-Hellman type protocol using inner automorphism
groups; Paeng [19] subsequently showed that breaking these systems reduced to the discrete

'"Running times are given in terms of the logarithm of the order of the group, which is approximately the number
of bits needed to represent an element.

logarithm problem in certain matrix groups. More recently, Grigoriev and Ponomarenko [9]
have constructed cryptosystems using solvable groups, a large class of non-abelian groups.?

In this paper, we consider the discrete logarithm problem in matrix groups over a finite
field. In Section 2 we show that the discrete logarithm problem in these groups is harder than
previously supposed, and in Section 3 we demonstrate an algorithm for reducing the discrete
logarithm problem in n X n matrix groups to at most n discrete logarithms in finite fields.
We analyze this algorithm in Section 4, showing that if we use the best known algorithms for
computing discrete logarithms in finite fields, our algorithm has running time no worse than
a constant times the running time for the finite field algorithm. We conclude that there is no
cryptographic advantage in implementing the basic Diffie-Hellman protocol with matrix groups.

In the final part of the paper, we propose a modified key-exchange protocol that makes
use of the additional structure of non-abelian groups, and we analyze its implementation in
matrix groups. We find that the algorithms of Section 3 cannot be easily adapted to attack
this protocol, and we conjecture that this protocol is more secure than the basic Diffie-Hellman
protocol.

[Update (July. 2005): Most of the results in this paper also appear in [15]. When I was doing
my research I was not aware this paper existed, so while I discovered all of the results on my
own, I wish to give credit to Menezes and Wu for finding them first.]

2 A First Look at Matrix Groups

The linear groups, or matrix groups, are one of the most widely studied classes of non-abelian
groups. A matrix group may be defined over any ring R; we will consider only matrix groups
defined over a finite field [F, of ¢ elements, where ¢ = p? is a prime power. (See [25] for a
cryptosystem that uses matrices defined over the integers.)

The matrix group we consider foremost is GL, (F,), the group of n x n matrices with entries
in [F; and nonzero determinant. This group contains all invertible n x n matrices, so any n x n
matrix group must be a subgroup of GL,(IF,). Thus to solve the discrete logarithm problem in
any matrix group, it suffices to solve the problem in GL, (F,).

In his analysis [19] of the security of the Paeng et al. cryptosystem [20], Paeng states:

Most familiar non-abelian groups are linear groups. The DLP [Discrete Logarithm
Problem] on these groups can be reduced to the DLP in an extension field if we apply
the Jordan decomposition theorem. So there exist subexponential time algorithms
to solve the DLP in linear groups.

In the remainder of the paper, Paeng shows how an attack on the cryptosystems in [20] and [21]
can be reduced to solving the discrete logarithm problem in certain matrix groups, and from the
above statement he concludes that there exist subexponential time algorithms to break these
systems.

However, Paeng’s statement above is quite vague. First of all, Paeng does not state what
parameters the algorithms he proposes are subexponential with respect to. We will assume
that for a matrix subgroup of GL, (F,), the parameters he has in mind are logg and n. More
problematic, however, is the fact that Paeng does not state what extension field he has in mind.
Since the Jordan normal form of a matrix A is usually defined only over a field containing
all of the eigenvalues of A, we conjecture that Paeng’s reduction involves computing discrete
logarithms in this field. We then infer that the algorithms Paeng mentions are roughly of the
following form.

Algorithm 2.1. Let F, be the finite field of q elements. Let A € GL,(Fy), let 0 < z < |A], and
let B = A*. The following algorithm computes x given B and A.

1. Determine a field extension K of IF, in which the characteristic polynomial of A splits
completely.

2Unfortunately, the paper [9] is in Russian, and | have not been able to translate it.

2. Find a matriz P € GL,(K) such that P=*AP is diagonal, with diagonal entries Ay, ..., Ay.

3. Let p1, ..., pu, be the diagonal entries of P~'BP (a diagonal matriz). Compute z; +
log,, pi for each i.

4. Use the Chinese Remainder Theorem (as in Lemma 3.1 below) to compute x such that
z = x; (mod |X;) for each i.

Note that step (4) is necessary because computing the discrete logarithm log, b only gives a
result modulo the order of a, and in general the eigenvalues of A may have different orders.

The best known algorithms for finding discrete logarithms in a finite field have running times
of the form

L(l‘, C,O[) — ec(log:c)“(loglogx)l_CY

bl

where z is the size of the field K and ¢ and « are positive constants with 0 < a < 1. If
z = q%, then these algorithms are subexponential in d and logq. Thus for Algorithm 2.1 to
be subexponential in n and log ¢, the degree [K : F,] must be a function of n that grows more
slowly than n'/®. For the field K in Algorithm 2.1, this is not true. We show this by relating
the degree of the extension K/, to the order of an element of the permutation group S,.

Proposition 2.2. Let G(n) denote the mazimum order of a permutation of n elements. Then
there exists an element A € GL,(F,) such that the splitting field of the characteristic polynomial
fa(z) has degree G(n) over F,.

Proof. Suppose fa(z) has irreducible factors gi,...,g, of degrees dy,...,d,. The splitting
field of each g; over [Fy is [Foa;, and thus the splitting field of f4 is the compositum of the
splitting fields, Fya, ---ga, . This field is isomorphic to Fga, where d = lem(dy, ..., d,). Thus
the maximum value of d is

q?s

max {lem(dy,...,d,) :di € Zso,d1 + -+ dr =n}. (1)

Since the order of a permutation 7 € S, whose cycle decomposition has lengths m,..., 7. is
lem(ry,...,7), the quantity (1) is G(n).

To construct an A that achieves this maximum, first find dq,...,d, summing to n such

that lem(ds,...,d,;) is maximized. Then choose monic irreducible polynomials g; € Fy[z] of

degree d;. (These always exist; see e.g [6, §14.3].) For each i, write g;(z) = aj0 + @12+ -+
ai(dl_l)mdl_l + 2% and let

00 - 0 —ap

10 --- 0 —a;
Az — 0 1 0 —ai9

0 0 e 1 _ai(d—l)

Then A; has characteristic polynomial g;(z). If we let A be the block diagonal matrix with the
A; in the blocks, then A has characteristic polynomial f4(z) = g1(z) - - - g-(z), and the splitting
field of fa is Fyo(m). O

Note that the element A constructed above does not, in general, have maximal order in
GL, (F,), but only a maximal splitting field. This A has order dividing (¢ —1)---(¢% — 1),
while a matrix with an irreducible characteristic polynomial whose eigenvalues are generators
of F;n has order ¢” — 1, which is larger.

The number G(n) is obtained by choosing powers of prime numbers whose sum is less than
n and whose product is maximal. W. Miller [17] shows that as n becomes large, this quantity
can be approximated by the product of the first £ prime numbers, where k is chosen so that the
sum of the first & primes is at most n, and adding the (k 4+ 1)st prime puts the sum over n. He
then uses the Prime Number Theorem to obtain an asymptotic estimate for this quantity. This
estimate was first proved by Landau in 1903.

Theorem 2.3 (Landau; Cf. [17]). Let G(n) be as above. Then

im &)

n—+00 e\/” logn

=1.

With Proposition 2.2 and this estimate, we see that the running time of Algorithm 2.1 is in
fact superexponential in n.

Corollary 2.4. Suppose computing one discrete logarithm in a finite field of size x takes time
L(z,c,a) for somec > 1 and 0 < a < 1. Then there exists an A € GL,(IFy) for which Algorithm

2.1 runs in time
ec(140(1)e®V %8 ™ (n log n) (! =*)/% (log q)* (log log ¢)' =

3 A Piecewise Approach

The downfall of Algorithm 2.1 is that it tries to work with all of the eigenvalues of A at
once, which requires an enormous extension field of IF,. However, since each eigenvalue of
A lives in an extension field of degree at most n, we may expect better success if we work
with the irreducible factors g; one at a time. The polynomial g; splits completely in the field
K = TFy[z]/(gi(x)) = Fya;. Let o be a root of g; in K; we may then compute an eigenvector
w € K™ with eigenvalue A (at least one exists, though not necessarily more). We then choose
V1,...,Un—1 such that {w,vq,...,v,_1} is a basis for K", and let

P=lw v - wvp_1],

then P='AP € GL,(K) is a matrix with X in the upper left corner and all zeroes in the
remainder of the left column, and therefore P=1A®P = (P=1AP)® has A? in the upper left
corner. Taking a discrete logarithm in K gives (mod |A|), where |A] is the order of A in K *.
Repeating this process for each factor g; is enough to determine z completely in the case that
A is diagonalizable.

Lemma 3.1. Let A € GL,(FF,). Suppose A is diagonalizable over some extension field of Ty,
and suppose the characteristic polynomial of A factors into irreducibles as g1(t) - - - g-(t) in Fg[t],
where the irreducible factor g; has degree d;. Choose a root a; € F‘qil of each g;. Let x be any
integer, and let z; be the residue of x modulo |a;|. Then there is a polynomial-time algorithm
that takes inputs {z;} and {«;}, and outputs the unique integer y with 0 < y < |A| such that
y==z (mod |A]).

Proof. Let M = lem(|ay],...,|ar|). We claim that the z; determine a unique y congruent to
z modulo M, and that |A| = M. To see the former assertion, factor M as a product of primes

M:pil...plel.

Since M is the least common multiple of the |a;|, for each j there is some i such that p;j divides
|o;|. Let y; be the residue of 2; modulo p;j; since the z; are all residues of the same integer z,
we get the same y; regardless of which x; we choose. The y; are thus the residues of £ modulo
a set of relatively prime numbers, so we may apply the Chinese Remainder Theorem to the y;
to compute (in polynomial time) a unique y that is congruent to modulo M.

To see that |A| = M, note that since A is diagonalizable |A| is the least common multiple
of the orders of its eigenvalues. The eigenvalues are all the roots of the g;; however, g; splits
completely in F,(a;) and the Galois group Gal(F,(c;)/F,) acts transitively on the roots of g;,
so every root of g; has the same order as «;. Thus |A| = lem(|ay], ..., |a]) = M. O

What if A is not diagonalizable? In this case, the Jordan normal form of A in some extension

field has a block D of the form

Al
A
,)
A
and the corresponding block of DT is
DRI S
AT
zaz—1
AT

Since char(IF;) = p, the off-diagonal elements of D” are zero if and only if z = 0 (mod p). Since
Aisin a field extension of [F,,, its order divides p? —1 for some d and is thus relatively prime to p,
so the order of D is p |A|. The order of a non-diagonalizable matrix A is thus p times the order
of the diagonal matrix with the same eigenvalues. To determine z (mod |A[), by this reasoning
and Lemma 3.1 it suffices to determine z (mod lem(|e|,...,|a,])) and (mod p).

If we can find P such that the upper left corner of P~1AP looks like

(5) @

and the first two columns are all zero below the diagonal, then we can easily compute z
(mod p) from A and A®. To find such a P, we make use of the two different canonical
forms of a matrix, the rational canonical form and the Jordan normal form. Recall that ra-
tional canonical form splits A into blocks corresponding to the “invariant factor” polynomials
ay(z)|az(z)|- - - |am(z), with a basis for each block given by {v, Av, A%v, ... A%~1y} for some
v (where d; = deg(a;)). The Jordan normal form, on the other hand, splits A into blocks cor-
responding to the relatively prime divisors of each a;(z), with a basis for each block given by
{w, (A= XN Dw, (A= XN T)?w,...,(A—=XI)?~'w} for some w (where e;; is the multiplicity of
Aj in @;). (For more information, see [6, Ch. 12].)

Algorithm 3.2. Let A € GL,(K). Suppose that A is not diagonalizable (over K) and that K
contains an eigenvalue A for which the dimension of the eigenspace s less than the multiplicity
of X. The following algorithm takes input A and outputs P such that the upper left corner of
P~1AP has the form (2) and the two leftmost columns are zero below the diagonal.

1. Convert A to rational canonical form over K, keeping track of the invariant factor decom-
position ai(z),...,am(z). Let d be the degree of am(z).

2. Find v € K™ such that {v, Av, A%v,... A% v} is a basis for the subspace of K™ corre-
sponding to the invariant factor am,(z).

3. Let p(z) = am(z)/(x — XN)?. Let vi = (A — M)p(A)v and va = p(A)v.

4. Complete {v1,vs} to a basis {vy,vs,...,v,} of K. Let

Proof. First note that our hypotheses imply that the minimal polynomial a,, (z) has the root A
with multiplicity at least 2, so the p(z) in step (3) is well-defined as a polynomial in K[z]. Since
p(z) has degree d — 2, by the hypothesis on v in step (2) vy and va are nonzero. It now suffices
to show that Av; = Av; and Avg = v; + Avs. The second statement is clear from the definition
v1 = (A — Al)va. The first statement is true since (A — AT)v; = @ (A)v, and ap(A) = 0 since
am () is the minimal polynomial of A. O

We now have an algorithm that reduces the discrete logarithm in GL,(FF;) to at most n
discrete logarithms in fields of size at most ¢”.

Algorithm 3.3. Let A € GL,(Fy), let 0 < x < |A|, and let B = A®. The following algorithm
takes inputs (A, B) and computes x. The algorithm runs in time

p(logg,n) +nD(n), (3)

where p is a polynomial in two variables and D(n) is the mazimum amount of time needed to
compute one discrete logarithm in Fga for d < n.

1. Compute the characteristic polynomial fa(z) and factor it into irreducibles g1, ...,9, €
Fylz] of degrees di,...,d,. Set i+ 1.

2. Let a; be a root of g; in K = Fya,. Find P € GL,(K) such that P~'AP has a; in its
upper left corner and zeroes in the rest of the left column.

3. Let 3 be the upper-left entry of P~ BP. Compute x; log,, 3 in K.

4. Factor fa(z) in K[z], and compute bases for the eigenspaces of A corresponding to all
eigenvalues in K (i.e. all linear factors of fa). If the dimensions of the eigenspaces are
equal to the multiplicities of the eigenvalues, go to step (6). Otherwise:

5. Let A be an eigenvalue in K whose multiplicity is greater than the dimension of its
eigenspace. Use Algorithm 3.2 to compute Q) such that Q~'AQ has upper-left corner
in the form (2), and zeroes below the diagonal in the two left columns. Let the upper-left

corner of Q™1 BQ be
[T
0 u/-

Let g < Avp~'. Note that we may view zq as an element of F, C K.
6. Ifi=d, go to step (7). Otherwise, let i + i+ 1 and go to step (2).

7. Use the Chinese Remainder Theorem as in Lemma 3.1 to compute y such that y = z;
(mod |a4]) for each i.

8. If o is uminitialized, let x < y. Otherwise, use the Chinese Remainder Theorem to
compute x such that x = zg (mod p) and z =y (mod lem(|ay|,...,|al)).

Proof. If A is diagonalizable, by Lemma 3.1 step (5) never executes, and the algorithm com-
putes z modulo lem(|a1|, ..., |a.|) = |A]. If A is not diagonalizable, the order of A increases by
a factor of p. Since there is some eigenspace with no basis of eigenvectors, step (5) must execute
at some point. It computes z (mod p), and thus step (8) computes z modulo |A|.

There exist polynomial-time algorithms (in n and log |K|) for multiplying or inverting ele-
ments of GL, (K), computing eigenvectors, and computing characteristic polynomials (see [3,
§2.2]). Furthermore, there exists a probabilistic polynomial-time algorithm to factor polynomi-
als in K[z] (see [3, §3.4]). Solving a system of congruences via the Chinese Remainder Theorem
also takes polynomial time. Thus all steps except (3) can be executed in polynomial time. The
algorithm executes step (3) at most n times, and all of the discrete logarithms are taken in fields
of degree at most n. Thus the discrete logarithm steps take at most n times the maximum time
for discrete logs in Fya as d ranges from 1 to n. O

In practice, the slowest discrete logarithm will almost certainly be in Fg». If we have an
estimate for the speed of the discrete logarithm in [F « as a function of d, then the term nD(n)
in (3) can certainly be improved. We address this issue in greater depth in Section 4 below.

Note that Algorithm 3.3 does not allow us to choose an IF,-basis for the field [Fy« in which
a given eigenvalue A lies. Instead, the basis is determined by the polynomial g() of which A is
a root. One may worry then that a discrete logarithm algorithm whose speed depends on the
properties of a particular basis will not be applicable in Step (3). (For example, we may wish
to use an “optimal normal basis” as in [18].) However, Neal Zierler [26] has demonstrated a

polynomial-time algorithm to express roots of a degree-n irreducible polynomial g(z) over F,
in terms of a basis associated with another given polynomial A(z). Thus changing basis before
computing the discrete logarithm adds at most a polynomial number of steps to the algorithm.

4 Security Analysis

We wish to determine if the Diffie-Hellman key exchange in GL, (IF,) offers any advantage over
the same protocol implemented over a finite field that allows approximately the same private key
size (i.e. exponent). Let A € GL,(IF;), and suppose as usual that the characteristic polynomial
of A has irreducible factors g1,..., g, of degrees dy,...,d,. Then the order of A divides

(qd1—1)~~~(qd*—1)§q"—1.

The order of A equals ¢” — 1 if and only if the characteristic polynomial is irreducible and
primitive (i.e. its roots are generators of F;n) Since elements in [Fy= have order dividing ¢ — 1,
Fg= is an appropriate finite field for comparison.

We express Fgn as Fq[z]/(f(z)) for some degree-n irreducible polynomial f(z). The simplest
algorithm for multiplying two elements of IF;» is to express both elements as polynomials modulo
f(z), multiply them in F,[2], and reduce modulo f(z). This approach requires n* multiplications
and n? additions in [F, for the multiplication step, and an additional n* multiplications and n?
additions to reduce the result modulo f(z) (assuming we have precomputed a table of values of
" 2" 2?=2 modulo f(z)).

The simplest algorithm for matrix multiplication (from basic linear algebra) requires n field
multiplications and n field additions for each element, giving n® multiplications and n® additions
in total. There exist fast multiplication techniques that reduce the exponent 3 to 244 for various
d > 0; these techniques can be adapted to reduce the exponent of 2 in the Fy» multiplication.
Thus we can expect exponentiation in GL, (F,) to take roughly n times as long as exponentiation
in Fyn. (We assume throughout that we are using the same exponentiation algorithm in both
groups.)

Another factor we must take into account is the size of the public key, 1.e. the group element.
An element of Fy» can be represented in nloggq bits, while an element of GL,(IF,) requires
n?log q bits, a factor of n larger.

What about computing the discrete logarithm? The best known algorithms for computing
discrete logarithms in a finite field K have running times of the form

L(I‘, c,a) — ec(logz‘)“(loglogz‘)l_a’
where x is the size of the field K and ¢ and a are constants. If 0 < a < 1, this function is
said to be subexponential in logz, since it grows faster than any polynomial but slower than an
exponential function. (If @ = 1 the function is exponential; if & = 0 it is polynomial.) The best
general algorithm with rigorously proven running time is the “index calculus” method, which
runs in time L(z,v/2 + o(1),1/2) [7]. With the use of some special factoring techniques such
as the number field sieve [13] and the function field sieve [1], for prime or characteristic 2 fields
this running time has been reduced to L(z, ¢+ o(1),1/3), with ¢ = 2 [4, 8, 23]. However, these
faster running times are calculated heuristically and have not been rigorously proven.

Given these running time estimates, we see that step (3) in Algorithm 3.3 takes time at most
nL(q", ¢, a) for some constants ¢ > 1 and a > 1/3. The factor of n can in fact be reduced to a
constant; to show this we will need the following algebraic lemma.

Lemma 4.1. Suppose a,c € R such that 1/3 < a <1 ande¢> 1. Let {z1,...,2,,y} be a set of
positive real numbers such that x; > log2 and Y z; = y. Then

EL(ex’,c,a) <12L (e, ¢,a).
i=1

Proof. If r = 1 the statement is trivial, so we assume that » > 2. Begin by reordering the z;
such that z; is the largest. We split the proof into two cases, depending on whether z; is larger
or smaller than y/2. First suppose that z1 > y/2; then for ¢ > 2, ; < y/2. Since L(z,¢, a) is
increasing in z for fixed ¢ and «, we have

ZL (e, e,a) < L(e¥,¢c,a)+ (r— l)L(ey/2,c, a). (4)

To bound this expression in terms of L(e¥, ¢, a), we wish to find an upper bound for the ratio

(r—1L (ey/2, c, a)
L(e¥,c,a) ’ (5)

Since each z; > log2 and z1 > y/2, (r — 1) < y/2log?2, so it suffices to maximize

2
(Y)L<€y/ 16 0) _o(y/2)* (og(u/2))' " ey (log)"~ +og y—log(210g 2)

2log2) L(e¥,c,a)

This quantity is maximized when
c(y/2)* (log(y/2))'~* — cy® (logy)' = + log y

1s maximized, and

c(y/2)* (log(y/2))'~* — cy*(log y)'~* + logy

IN

= ((2)"-

(o)) s

The derivative of the right hand side with respect to a is

y \“ 1 Y log 2
1 — —1]1 —
ooy () (1) (i) - 57).

which is clearly negative for logy > 1. Thus for the range of o we are considering, (6) is
maximized when a = 1/3. In addition, (6) is decreasing in ¢, so we may assume ¢ = 1.
Taking the derivative of (6) with respect to y and setting the result equal to zero gives the

equation
1 1 ¢
c<1—2—a>(alogy+1—a):<oiy> .

When logy > 1, the left hand side is increasing in y and the right hand side is decreasing.
Setting ¢ = 1, @ = 1/3 and graphing the two functions with respect to y shows the intersection
point is between y = 56 and y = 57. The expression (6) is thus bounded by

1 56 \'/°
1 log 57 < 3log 2.
(+ <21/3_1) <log56)) 0821 < 2108

Y L <6y/2’) O[) < 6310g 2—log(2log 2)
2log2/) L (e¥,c,a)

Therefore,

< 6.

We conclude that
(r— l)L(ey/Z, c,a) < 6L(eY, ¢,),

so by (4), the Lemma holds in the case z, > y/2.
Now suppose 21 < y/2. Then z; < y/2 for all i, and thus

EL(@I’,C,CM) < rlL (69/2,c,a).
i=1

Since z; > log2, r < y/log 2. Thus the maximum value of the ratio

rL (ey/z, c, a)
L(ev,z,a)

is twice the maximum value of ratio (5), which we calculated above to be less than 6. Thus the
Lemma holds in the case 21 < y/2. O

Proposition 4.2. Suppose computing a discrete logarithm in a finite field of size x takes time at
most L(z,c,a) for some ¢ > 1 and o > 1/3. Then Algorithm 3.3 computes a discrete logarithm
in GL, (Fy) in time at most 12L(¢", ¢, a).

Proof. Let fa(z) be the characteristic polynomial of A, and suppose it factors into irreducibles
g1, --.,9r of degrees dy,...,d, respectively. Algorithm 3.3 computes one discrete logarithm in
[Fya; for each i. By the time estimate (3), the total time is at most a polynomial in n plus

Z L (qd’,c, a) , (7)

and since a > 0 the polynomial is negligible. Let z; = d;logq and y = nlogq. Then by Lemma
4.1, the quantity (7) is less than 12L(¢", ¢, @). O

We conclude that if we use the best algorithms to compute discrete logs in F,a, we may
replace the term nD(n) in (3) with 12L(¢", ¢, a). Thus it takes at most twelve times as long to
compute discrete logs in GL,(F,) as it does in Fyr. In particular, this result verifies Paeng’s
conclusions in [19].

Conclusion

When comparing a Diffie-Hellman key exchange in GL, (F,) with a key exchange in Fy» , we find
that while the private keys are the same size, the public key is a factor of n larger in GL, (), and
the public keys take roughly n times as long to compute. These tradeoffs might be acceptable
if the GL, () system were harder to break, but our analysis shows that computing a discrete
logarithm in GL,(F,) takes less than 12 times as long as a discrete logarithm in Fgn. We
conclude that there is no advantage to using matrices as public keys in the basic Diffie-Hellman
protocol.

5 Modified Diffie-Hellman Protocol

The group originally proposed for the Diffie-Hellman protocol was the multiplicative group of
IF,, which is cyclic. Though the matrix groups G' we considered above are non-abelian, once a
group element A is chosen we are really only working in a cyclic subgroup of GG, and we saw
that the discrete logarithm problem can be reduced to a number of discrete logarithms in finite
fields. We therefore would like to take advantage of the additional structure of a non-abelian
group and find a way to make the discrete logarithm “harder” in some sense.

One way in which non-abelian groups have richer structure than cyclic groups is their auto-
morphism group. The automorphism group Aut(G) is the set of group isomorphisms from G to
itself. The set of inner automorphisms Inn(G) is the elements of Aut(G) given by conjugation:

#4(9) = a~'ga. The subgroup Inn(G) is normal in Aut(G), and we denote Aut(G)/Inn(G) by
Out(G), the group of outer automorphisms of G.

An abelian group has trivial inner automorphism group, and any outer automorphism of
a cyclic group is given by (a ~ a?) for some d relatively prime to |G|. Thus acting an au-
tomorphism on a cyclic group used in the Diffie-Hellman protocol is equivalent to multiplying
the public and private keys by some factor d, which does nothing to increase security. A gen-
eral automorphism of a non-abelian group (or even of a non-cyclic abelian group) does not
simply exponentiate all group elements, so perhaps we can act use these automorphisms to
increase security. Our approach in this section will be to incorporate automorphisms of GG into
the Diffie-Hellman Protocol to try to disguise the relationship between the element A and its
exponentiation A”.

Protocol 5.1 (Modified Diffie-Hellman Key Exchange).

1. Alice and Bob publicly agree on a group G and a subset T' C Aut(G) satisfying o = 10
forall o,7 €T.

2. Alice chooses a € G, 0 € T, and 0 < z < |al|, and sends the pair (a,o(a”)) to Bob.
3. Bob chooses T € T' and 0 < y < |a| and sends 7(a¥) to Alice.

Suppose only Alice knows (o, z) and only Bob knows (1,y). Then Alice and Bob can share the
secret key or(a™).

Proof. Let b = o(a”) and ¢ = 7(a¥). Bob computes 7(b¥), and since 7 is an automorphism
commuting with o,

7(#) = r(e(a®)?) = rloa™)) = or(a™).
Similarly, Alice computes o(c”) = or(a™). O

If o = 7 =1 € Aut(G), this protocol reduces to the ordinary Diffie-Hellman scheme. Thus
this protocol is at least as secure as the ordinary Diffie-Hellman protocol; i.e. any algorithm
that breaks Protocol 5.1 for I' containing the trivial automorphism can be used as an oracle to
break Diffie-Hellman.

Application to Matrix Groups

We consider implementing Protocol 5.1 using inner automorphisms of matrix groups GL, (F,).
We must first choose a commuting subset T' of Aut(GL, (F,)); if we are considering only inner
automorphisms this means choosing a set of commuting elements of GL,(FF;). One obvious
choice is the subgroup A of diagonal matrices. Given any matrix P € GLy, (F,), the set P~'AP
is also an abelian subgroup of GL, (F,), so we may obtain in this manner a large class of possible
choices for T.

Given two matrices which are known to be conjugate, the problem of finding a matrix that
conjugates one to the other is simply a matter of solving a system of linear equations (see [20]),
so to attack this implementation of Protocol 5.1, it suffices to recover one of the private keys z
or y.

If choose T' to be the group of diagonal matrices, then Algorithm 3.3 cannot be used to
find the secret exponent z. Algorithm 3.3 relies on the fact that A and A” are simultaneously
diagonalizable, so when we (partially) diagonalize A and read the eigenvalues {a1, a3, ...} off
the diagonal of P=1AP, the diagonal of P~1A® P contains {a¥,a%, ...}, in the same order. In
the new protocol, if we construct P to diagonalize A and @ to diagonalize o(A”), then we obtain
the sets of eigenvalues {a1,...,a,} and {3, ..., 3.} respectively, but there is no obvious way
of determining which 3; is equal to of .

In the case where the characteristic polynomial of A is irreducible, we can use discrete
logarithms in [y to narrow down the possibilities for z to n different values.

10

Algorithm 5.2. Suppose A € GL,(F,) has an irreducible characteristic polynomial. Let D €
GL, (Fy), let 0 < z < |A], and let B = D='A®D. The following algorithm takes inputs (A, B)
and outputs a set of n integers, exactly one of which is equal to x.

1. Compute an eigenvalue o € Fyn of A.
2. Compute an eigenvalue 3 € Fgn of B.
3. Compute y + log,, .
4

n—1

. Output {y,qy,¢%y, ..., q" "'y} as a set of integers modulo |Al.

n—1

Proof. The eigenvalues of A are {a, ¥, ..., aqn_l}, while those of B are {a®, %, ... ;a9 *}.
Thus # = a? for some 0 < i < n, and y = log, 3 = ¢'z. The logarithm y is determined
modulo ||, and |a| = |A| must divide ¢" — 1. Since ¢" = 1 modulo any divisor of ¢ — 1, the
set {y,qy,...,q" 1y} (mod |A|) is equal to the set {z,qz,...,¢" 12z} (mod |AJ). O

If the characteristic polynomial f4 1s reducible, the situation is much more dire, even if we
assume that we can determine a correspondence between the irreducible factors of f4 and those
of the characteristic polynomial fg. Suppose g1,...,g, are the irreducible factors of f4, of
degrees dy, ..., d, respectively. For each 7 we perform Algorithm 5.2, choosing «a; to be a root
of g; and (; a root of the corresponding factor of fg. We then obtain a set of d; values for z
modulo |a;|. Choosing one value from each set and applying Lemma 3.1 allows us to compute
a guess for z, but only one of the []d; values will be correct. By Proposition 2.2 and Theorem
2.3, for large n we can choose A such that the number of guesses computed in this manner is

approximately evn 1087 50 even if we have a discrete logarithm oracle the expected running time
1s still subexponential.

It gets worse from here. If f4 has two factors of the same degree, there is not necessarily any
way to tell which factors of fp these correspond to. And even if we narrow down the possibilities
for the exponent z to a set of some reasonable size, there is no easy way to tell which member
of the set is z if all the data we have are A and some conjugate of A”.

This analysis leads us to hope that Protocol 5.1, implemented with G = GL,(F,) and T
a commuting set of inner automorphisms of G, is more difficult to break than the ordinary
Diffie-Hellman scheme over GL, IF,. We formulate this hope as a challenge for the reader:

Challenge 1. Let A, D, z, and B be as in Algorithm 5.2. Let S be the output of Algorithm 5.2
performed on the pair (A, B). Find an algorithm that determines which element of S is equal
toz (mod |A]).

Finally, we note that since any irreducible polynomial in F,[z] is separable, the hypotheses
on A of Algorithm 5.2 imply that A is diagonalizable. What happens if A is not diagonalizable?
Since we can tell which factors of f4 have multiple roots, it will be easier to determine the
correspondences between factors of f4 and fp as well as the correspondences between roots of
these factors. However, we saw above that the order of a non-diagonalizable matrix A is a factor
of p = char(F,) larger than the order of a diagonalizable matrix with the same eigenvalues. The
discrete logarithm algorithms in this case determine the exponent z modulo |A| /p, and we must
compute z modulo p.

In Algorithm 3.3 we took advantage of the fact that A and A® are simultaneously diagonal-
izable to compute z modulo p; this method fails in attacking Protocol 5.1. Even solving the
problem for a 2 x 2 matrix would be useful, but we have not yet found a way to do this. We
thus present another challenge:

Challenge 2. Let A € GL3(F,), and suppose A is conjugate to (6‘ }\) for some A € F,. Let
0 < z < |A|, and suppose B is conjugate to A®. Find an algorithm that takes inputs (A, B) and
computes z (mod p).

Finding algorithms to answer either of these challenges will help reduce the task of breaking
the matrix implementation of Protocol 5.1 to that of finding discrete logarithms in extension

11

fields of F,. However, there may be other ways to compute o7(A") from (A, o(A"), 7(AY))
that take advantage of the structure of the conjugation automorphism, or of the chosen set I' of
commuting automorphisms.

References

(1

Adleman, L., “The function field sieve,” in Algorithmic number theory, ANTS-I, Ed.
L. Adleman and M.-D. Huang, Springer, Berlin 1994, 108-121.

Buchmann, J., and H. Williams, “A key-exchange system based on imaginary quadratic

fields,” Journal of Cryptology 1 (1988) 107-118.

Cohen, H., A Course in Computational Algebraic Number Theory, Springer, Berlin
1996.

Coppersmith, D., “Fast evaluation of logarithms in fields of characteristic two,” IEEFE
Transactions on Information Theory 30 (1984) 587-594.

Diffie, W., and M. Hellman, “New directions in cryptography,” IEEE Transactions on
Information Theory 22 (1976) 644-654.

Dummit, D., and R. Foote, Abstract Algebra, 2nd ed., Prentice-Hall, Upper Saddle
River, NJ 1999.

Enge, A., and P. Gaudry, “A general framework for subexponential discrete logarithm
algorithms.” Acta Arithmetica 102 (2002) 83-103.

Gordon, D., “Discrete logarithmsin GF(p) using the number field sieve,” STAM Journal
of Discrete Mathematics 6 (1993) 124-138.

Grigorev, D., and I. Ponomarenko, “On nonabelian homomorphic public-key cryp-
tosystems” (Russian), Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. 293
(2002), 39-58.

Ko, K., S. Lee, J. Cheon, J. Han, J-S. Kang, C. Park, “New public-key cryptosystem
using braid groups,” Advances in Cryptology - CRYPTO 2000, Ed. M. Bellare, Springer,
Berlin 2000, 166-184.

Koblitz, N., “Elliptic curve cryptosystems,” Mathematics of Computation 48 (1987)
203-209.

Koblitz, N., “Hyperelliptic cryptosystems,” Journal of Cryptology 1 (1989) 139-150.

Lenstra, A., and H. Lenstra, The development of the number field sieve, Springer, Berlin
1993.

McCurley, K., “A key distribution system equivalent to factoring,” Journal of Cryptol-
ogy 1 (1988) 95-105.

Menezes, A., Y-H. Wu, “The discrete logarithm problem in GL(n, ¢),” Ars Combina-
toria 47 (1998), 23-32.

Miller, V., “Uses of elliptic curves in cryptography,” Advances in Cryptology - CRYPTO
’85, Ed. H. Williams, Springer, Berlin 1986, 417-426.

Miller, W., “The maximum order of an element of a finite symmetric group,” American

Mathematical Monthly 94 (1987), 497-506.

Mullin, R., I. Onyszchuk, S. Vanstone, R. Wilson, “Optimal normal bases in GF(p"),”
Discrete Applied Mathematics 22 (1989) 149-161.

Paeng, S-H., “On the security of cryptosystem using automorphism groups,” Informa-
tion Processing Letters 88 (2003) 293-298.

Paeng, S-H., K-C. Ha, J. Kim, S. Chee, C. Park, “New public key cryptosystem using
finite nonabelian groups.” in Advances in Cryptology - CRYPTO 2001, Ed. J. Killian,
Springer, Berlin 2001, 470-485.

12

[21]

[22]

[23]

Paeng, S-H., D. Kwon, K-C. Ha, J. Kim, “Improved public-key cryptosystem using
finite non abelian groups,” available online at http://eprint.iacr.org/2001/066
(2001).

Scheidler, R., A. Stein, and H. Williams, “A key-exchange protocol using real quadratic
fields,” Journal of Cryptology T (1994), 171-199.

Schirokauer, O., D. Weber, and Th. Denny, “Discrete logarithms: The effectiveness of
the index calculus method,” in Algorithmic Number Theory, ANTS-II, Ed. H. Cohen,
Springer, Berlin 1996, 337-362.

Silverman, J., and J. Suzuki, “Elliptic curve discrete logarithms and the index calculus,”
in Advances in Cryptology - ASTACRYPT ’98, Ed. K. Ohta and D. Pei, Springer, Berlin
1998, 110-125.

Yamamura, A., “Public-key cryptosystems using the modular group,” in Public Key
Cryptography, PKC 98, Ed. H. Imai and Y. Zheng, Springer, Berlin 1998, 203-216.

Zierler, N., “A conversion algorithm for logarithms on GF(2"),”

Applied Algebra 4 (1974) 353-356.

Journal of Pure and

13

