
Managing Digital Rights using Linear Logic

Adam Barth
Stanford University

abarth@cs.stanford.edu

John C. Mitchell
Stanford University

mitchell@cs.stanford.edu

Abstract

Digital music players protect songs by enforcing licenses
that convey specific rights for individual songs or groups
of songs. For licenses specified in industry, we show that
deciding whether a license authorizes a sequence of ac-
tions is NP-complete, with a restricted version of the prob-
lem solvable efficiently using a reduction to maximum net-
work flow. The authorization algorithm used in industry
is online, deciding which rights to exercise as actions oc-
cur, but we show that all online algorithms are necessar-
ily non-monotonic: each allows actions under one license
that it does not allow under a more flexible license. In one
approach to achieving monotonicity, we exhibit the unique
maximal set of licenses on which there exists a monotonic
online algorithm. This set of well-behaved licenses induces
an approximation algorithm by replacing each license with
a well-behaved license. In a second approach, we consider
allowing the player to revise its past decisions about which
rights to exercise while still ensuring compliance with the
license. We propose an efficient algorithm based on Linear
Logic, with linear negation used to revise past decisions.
We prove our algorithm monotonic, live, and sound with re-
spect to the semantics of licenses.

1 Introduction

Media players, such as iTunes and Windows Media
Player, can impose restrictions on the use of media though
Digital Rights Management (DRM). DRM systems typi-
cally separate content from licenses, employing a trusted
DRM agent in media players to ensure that consumers do
not exceed the digital rights granted by licenses. In this
model, consumers can download encrypted songs from un-
secured servers but are unable to play the songs without a
license. A music provider can distribute promotional “play
once” licenses to allow potential customers to hear songs
and decide whether to purchase licenses for additional plays
or for additional devices. Music providers can also sell
time-limited licenses that allow unlimited plays during a

fixed time period or sell subscription licenses that allow
a fixed total number of plays the consumer can allocate
among music from a large library.

In this paper, we explore some logical and algorithmic
problems related to the use and management of licenses
both concretely, in an language from industry, and ab-
stractly, in a language based on Propositional Linear Logic.
A license is a collection of individual rights, each of which
is defined by one or more constraints. To authorize an ac-
tion, a DRM agent exercises a right, perhaps consuming
it completely or leaving behind a residual right. A DRM
agent might hold several rights that authorize the same ac-
tion. The choice of which of these rights to exercise when
the consumer performs the action impacts what future ac-
tions are allowed under the license because rights maintain
state. For example, if an agent holds a right to play either
song a or b once, and the agent exercises that right to play
song a, then the agent has foreclosed the ability to exercise
that right to play song b. The agent can either prompt the
consumer to make this choice, or it make the choice auto-
matically.

Previous work on rights expression languages [4, 7, 1]
treats the choice of which right to exercise exogenously, re-
quiring the assignment of actions to rights as input to the
authorization algorithm. We believe this provides a poor
user experience, however, and that the choice should be
made by the agent automatically. This choice is compli-
cated because many languages, including XrML [2] (based
on [9]) and ODRL [5] (a descendant of DigiBox [8]), sup-
port rights allowing the consumer to allocate a fixed total
number of plays among several songs, for example allow-
ing a consumer a fixed number of plays from a particular
album. Although many of our results are general, we focus
our discussion on version 2.0 of the Rights Expression Lan-
guage [6] specified by the Open Mobile Alliance (OMA), a
large industry consortium whose members include Cingu-
lar, Intel, Microsoft, and Nokia. In addition to providing for
manual allocation, the OMA explicitly specify an algorithm
for allocating actions to rights, but this algorithm is unsatis-
factory because it leads to certain anomalies, as illustrated
in the following example.

Example. Consider an online music scenario in which Al-
ice receives some promotional rights to play several digital
songs on a mobile music player. Alice visits the music web
site and enters her promotional code. The site encrypts sev-
eral songs (a, b, and c) and transfers them to her mobile
music player, along with the right to play the songs a total
of ten times. Alice plays song a twice, b four times, and c
three times, for a total of nine plays. The DRM agent in her
music player decrypts the songs, allows Alice to play the
songs, and notes that she has one play remaining.

The following day, Alice receives another promotion.
Pleased with her previous experience, she returns to the mu-
sic web site and is offered the choice of two rights. The first
is the right to play song d once before the end of the month.
The second is the right to play either song a or song d once
before the end of the month. She opts for the second right
because she reasons that it is more flexible. The rights Alice
now possesses are summarized below:

1. Play either song a, b, or c (acquired the first day).

2. Play either song a or d before the end of the month.

Alice decides to first play song a and then play song d. She
reason this should be permitted by her rights because the
first play should be authorized by her first right and the sec-
ond play should be authorized by her second right. The
DRM agent in her mobile music player, however, forbids
her from playing song d because it exercised the second
right to play song a, leaving Alice without the right to play
song d. In fact, had Alice opted for the less flexible first
option, the DRM agent would have allowed Alice to play
those songs (as it would have been forced to assign the play
of a to the first right). Alice is infuriated.

Monotonicity. The particular algorithm the OMA speci-
fies for assigning actions to rights is non-monotonic in the
sense that a sequence of actions allowed under one license
might not be allowed under a more flexible license. In fact,
we show that all algorithms that assign actions to rights as
the actions occur are non-monotonic with respect to license
flexibility. Each such online algorithm allows a sequence of
actions under one right that it does not allow under a more
flexible right because it must commit to exercising certain
rights without knowledge of future actions.

We suggest that a trusted DRM agent need not assign ac-
tions to rights as the actions occur. The agent need only en-
sure that the complete sequence of actions performed does
not exceed the license. After being requested to perform
further actions, the agent is free to reassign actions to dif-
ferent rights because no one observes which rights are ex-
ercised for which actions. If the consumer wishes to per-
form an otherwise foreclosed action, the agent can revise its
past commitments and authorize the action. With this added
flexibility, the agent is able to perform monotonically.

Results. In this paper, we consider the static case, where
consumers first acquire rights and then perform actions.
We show that offline authorization for the OMA Rights
Expression Language is NP-complete, but we exhibit a
polynomial-time algorithm for a substantial fragment of the
language by reducing the restricted problem to maximum
network flow. We then show (under some technical con-
ditions) that all online algorithms, including the algorithm
specified by the OMA, fail to be monotonic.

To investigate monotonic algorithms, we interpret a con-
junctive fragment of Propositional Linear Logic [3] as a
rights expression language (extending the tractable OMA
licenses). The logical formalism of syntax, semantics, and
deduction facilitate a precise exposition of two approaches
to achieving monotonicity. The first approach syntactically
characterizes the unique maximal set of licenses on which
there exists a monotonic online algorithm. These well-
behaved licenses induce a monotonic “over-approximation”
by approximating arbitrary licenses with “nearby” well-
behaved licenses. The second approach relaxes the require-
ment that a DRM agent commit to exercising rights as ac-
tions occur. An agent using a rights expression language
enriched with linear negation can use the negated terms to
revise its past assignment of actions to rights. These more
expressive rights admit an efficient authorization algorithm
that is both sound and monotonic.

Without the contraction rule, Linear Logic easily ex-
presses that a right can be exercised only a fixed number of
times. The lack of the weakening rule seems less essential,
but does ensure that agents do not drop rights indiscrim-
inately. Although a more thorough study might conclude
that another substructural logic is more appropriate, Linear
Logic provides a convenient logical basis for investigating
digital rights. In this treatment, licenses transform via linear
implication to authorize actions. The operator & captures
flexibility within a right and ⊗ captures the combination of
rights into licenses.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the OMA Rights Expression Language and
contains our complexity results. Section 3 demonstrates
the non-monotonicity of online schemes for OMA licenses.
Section 4 introduces Linear Logic semantics for digital
rights. Section 5 concludes.

2 Offline Authorization for DRM Licenses

In this section, we consider the offline evaluation of Dig-
ital Rights Management licenses, specifically determining
whether a sequence of actions complies with a license. We
show that answering this question for the OMA Rights Ex-
pression Language is NP-complete and then exhibit a frag-
ment of the OMA language in which authorization can be
decided in polynomial time.

The computational complexity arises because a given ac-
tion might be authorized by several rights within a license.
As these rights have state, further authorizations depend on
which right is exercised for the given action. Once actions
are assigned to rights, evaluating a license is simple, but de-
termining the assignment is computationally complex. We
begin by describing the OMA Rights Expression Language.

2.1 OMA Rights Expression Language

In the OMA Rights Expression Language, a license is a
forest of trees whose nodes are rights. Each right is defined
by a list of constraints. A right authorizes an action if all of
its constraints (and all the constraints of its ancestor rights)
are satisfied. After allowing an action, an agent updates its
state by transforming the constraints of the exercised right.

Actions. An action is defined by a number of parameters,
including the principal performing the action, the kind of
action (e.g., “play”), and the digital content on which the
action is performed. Formally, an action is defined as a tuple
(p, s, k, d, t,m) where

• p is the principal performing the action,

• s is the system performing the action,

• k is the kind of action,

• d is the date on which the action occurs,

• t is the duration of the action, and

• m is the digital content the action is performed on.

Rights. A right is defined by a list of constraints. These
constraints can be stateful (e.g., “use this right at most five
times”) or temporal (e.g., “use this right only after January
1, 2006”). We consider nine kinds of constraints, listed be-
low, that are satisfied by action (p, s, k, d, t,m) as follows:

• Individual(p̂) is satisfied if p = p̂.

• System(ŝ) is satisfied if s = ŝ.

• Kind(K) is satisfied if k ∈ K.

• Date(d1, d2) is satisfied if d1 ≤ d ≤ d+ t ≤ d2.

• Content(m̂) is satisfied if m = m̂.

• Count(n) is satisfied if n > 0.

• Interval(t̂) is always satisfied.

• Accumulated(t̂) is satisfied if t ≤ t̂.

• TimedCount(n, t̂) is satisfied if n > 0.

Constraints are “subtractive:” including additional con-
straints reduces the circumstances in which a right can
be exercised. For example, a right with the constraints
Count(5) and Count(3) can be exercised only three times.1

Exercising a right can modify its state, for example re-
ducing the number of plays remaining from five to four.
This is modeled by transforming the Count(5) constraint
into a Count(4) constraint. The stateful constraints of a
right exercised to authorize action (p, s, k, d, t,m) are trans-
formed as follows:

Count(n) Count(n− 1)

Interval(t̂) Date(d, d+ t̂)

Accumulated(t̂) Accumulated(t̂− t)

TimedCount(n, t̂) TimedCount(n− 1, t̂)

The timed count transformation occurs only if t > t̂. These
transformations ensure, for example, that a right with con-
straint Count(n) is exercised at most n times and that a
right with constraint Interval(t̂) is only exercised within t
time units of when it is first exercised. The computational
complexity of deciding whether a license authorizes a se-
quence of actions arises from selecting which rights to ex-
ercise for which actions.

Licenses. A license organizes rights as nodes in a forest of
trees. The edges impose an “inheritance” relation on rights.
A right can be exercised only if (1) it has no descendants,
(2) all of its constraints are satisfied, and (3) the constraints
of all of its ancestors are satisfied. When a right is exercised,
its constraints, as well as the constraints of all of its ancestor
rights in the tree, are transformed. Thus, state maintained by
a right is effectively shared by its descendants. For example,
consider the license with rights r1 and r2, descendants of
right r, constrained as follows:

r : Count(5)
r1 : Kind(Play),Content(a)
r2 : Kind(Play),Content(b)

This license authorizes a consumer to play both songs a and
b, but only five times in total. The consumer can play song
a three times and song b twice, or a twice and b three times,
but not a three times and b three times. The OMA Rights
Expression Language restricts inheritance to one level, re-
quiring that child rights not in turn be parent rights.

1The OMA specification is ambiguous regarding whether an action that
exhausts an accumulated constraint can be continued using another right.
We assume an action (p, s, k, d, t, m) that exhausts a right with constraint
Accumulated(t̂) can be decomposed into two actions (p, s, k, d, t̂, m)
and (p, s, k, d + t̂, t− t̂, m), provided t̂ ≤ t.

2.2 Complexity of Authorization

In the OMA Rights Expression Language, deciding
whether a license authorizes a sequence of actions is NP-
complete. The difficulty stems from interval constraints
(with inheritance) because it is hard to determine when to
first exercise a right with an interval constraint. Exercis-
ing a right with an interval constraint transforms that con-
straint into a date constraint, authorizing some additional
actions, but also preventing the right from authorizing other
actions. This can be related to satisfiability of Boolean for-
mulas, where assigning “true” or “false” to a variable sat-
isfies some clauses but also precludes using that variable to
satisfy some other clauses.

Theorem 1. Deciding whether a license authorizes a se-
quence of actions is NP-complete. This is the case even for
licenses containing only interval and content constraints.

Proof idea. Given a SAT instance, we construct a license
and a sequence of actions such that the license authorizes
the actions if, and only if, the SAT instance is satisfiable.
Each clause is represented by two actions, one occurring
at time t1 and another occurring at time t2, say at times
10 and 20. Each variable is represented by a parent right
with an Interval(1) constraint. Each occurrence of a vari-
able in a clause is represented by a child right inheriting
from the variable’s interval right. If the variable occurs pos-
itively (negatively), the right is constrained, using a con-
tent constraint, to authorizing the clause’s action at time 10
(time 20). Additionally, each clause is also represented by
an Interval(1)-constrained parent right with two children:
one authorizing the clause’s action at time 10 and the other
authorizing the clause’s action at time 20.

First, we show that if the constructed license authorizes
the sequence of actions, the SAT instance is satisfiable. If
a variable’s interval right is first exercised before time 10,
the variable is assigned “true.” Otherwise, the variable is
assigned “false.” Of the actions representing a given clause,
one must be authorized by a variable’s interval right, and
that variable satisfies the clause under this truth assignment.

Second, we show that if the SAT instance is satisfiable,
the license authorizes the actions. If a variable is assigned
“true” (“false”), exercise its interval right at time 10 (time
20). Of the actions representing a given clause, at least one
must be authorized. Authorize the other one with the in-
terval right representing the clause. Thus, the license au-
thorizes the sequence of actions if, and only if, the SAT
instance is satisfiable.

While deciding whether an OMA license authorizes a
sequence of actions is NP-complete in general, there exists
a fragment of the OMA language for which authorization
is decidable efficiently. A license is called manageable if

it does not contain interval constraints and does not con-
tain more than one kind of constraint among count, timed
count, and accumulated (but can freely contain individual,
system, kind, date, and content constraints). Authorization
for manageable licenses can be decided in polynomial time.
The class of manageable licenses contains many useful li-
censes, for example licenses allowing a limited number of
promotional plays from various music collections and al-
lowing unlimited plays of purchased music. For this class,
authorization can be computed via a reduction to maximum
network flow through the license graph, where each unit of
flow represents an action.

Theorem 2. It can be decided in polynomial time whether
a manageable license authorizes a sequence of actions.

Proof sketch. We sketch the proof for licenses containing
count constraints. The argument is similar for licenses con-
taining timed count or accumulated constraints. The reduc-
tion to MAX-FLOW proceeds by building a network flow
graph. The actions in the sequence are represented by nodes
in the graph, as are the rights in the license. The source is
connected with a unit capacity edge to each of the action
nodes. Each action node is connected with a unit capacity
edge to a rights node if the action can be authorized by the
right (ignoring count constraints). The nodes for each rights
constrained with Count(n) are connected to their parents
with a capacity n edge (those without parents are connected
to the sink). If a rights node does not have a count con-
straint, it is connected with an infinite capacity edge.

If the maximum flow saturates the edges leaving the
source, then the license authorizes the sequence of actions.
Tracing the flow from an action node to the sink reveals
which right authorizes that action. The edge capacities en-
sure the count constraints are satisfied. Conversely, if there
is some satisfactory assignment of actions to rights, there is
a flow that saturates the edges leaving the source.

There is a gap between these two theorems. The com-
plexity of deciding authorization for arbitrary licenses with-
out interval constraints is left open.

3 Online Authorization of Actions

In the preceding section, we considered the offline prob-
lem of determining whether a license authorizes a sequence
of actions. In practice, however, DRM agents are usu-
ally asked to compute such authorizations online, as con-
sumers attempt to perform actions. The Open Mobile Al-
liance specifies a particular online algorithm for determin-
ing which rights to exercise, but that algorithm is problem-
atic, as in fact are all online algorithms.

Consider a consumer Alice who possesses a certain li-
cense. She might reasonably believe that if she instead pos-
sessed a more flexible license, she would still be authorized

to perform every sequence of actions she can perform with
the less flexible license. We call schemes that enjoy this
property monotonic (defined precisely in Sect. 3.2). How-
ever, no online authorization scheme for OMA licenses is
monotonic. Thus, Alice might “upgrade” to a more flexible
license and lose the ability to perform a sequence of actions.

3.1 Automata Semantics for Licenses

In order to authorize an action, a DRM agent must ex-
ercise a right. Exercising a right might consume it, for ex-
ample when it contains the constraint Count(1), or more
generally simply modify its state. Exercising a stateful right
can foreclose the authorization to perform some future ac-
tion. In order to study how licenses evolve as actions are
performed, we represent licenses as states in an (infinite)
automata. When a consumer performs an action, the agent
follows a transition labeled by the action in the automata, ar-
riving at a new state. This new state represents the rights re-
maining after performing the action. In general there might
be multiple transitions labeled with the same action, corre-
sponding to exercising different rights.

The authorization transition relation for an action a
(written a−→) is a binary relation on L, the set of licenses.
If ϕ a−→ ϕ′, then license ϕ can transform into license ϕ′

by authorizing a. For example, if ϕ is a license to play a
certain song three times and a is the act of playing that song
on a particular date, then ϕ′ is a license to play that song
twice. We call L together with the transition relations a−→
the license automata A. The non-deterministic automata A
provides semantics for licenses:

Def. License ϕ authorizes a sequence of actions a1 · · · an
(written a1 · · · an ∈ AJϕK) if there is a path starting at ϕ
labeled by a1 · · · an in the license automata A.

These semantics induce a natural “flexibility” partial order-
ing on licenses:

ϕ1 ≤ ϕ2 if AJϕ1K ⊆ AJϕ2K

For example, a license that allows four plays of a song is less
flexible than a license that allows five plays of that song.

OMA Licenses. For licenses ϕ and ϕ′ in the OMA Rights
Expression Language, ϕ a−→ ϕ′ if (1) action a is authorized
by ϕ and (2) ϕ′ is a license resulting from exercising some
right of ϕ to authorize action a, as defined in Sect. 2.1. For
the OMA licenses, only a finite portion of the automata is
reachable from a given license. This finite subautomata can
be used to model-check properties of that license.

The automata semantics of OMA licenses are commuta-
tive: if a sequence of actions is authorized, then every per-
mutation of that sequence is also authorized. In the license

automata, whenever ϕ a−→ ϕ′ it is the case that ϕ′ ≤ ϕ.
We could have represented the semantics of licenses using
multisets, but we chose sequences in anticipation of online
authorization schemes that are not commutative.

3.2 Authorization Schemes

DRM agents employ authorization schemes to interpret
licenses. Each scheme induces its own semantics on li-
censes, based on the sequences of actions allowed by an
agent employing the scheme. In principle, authorization
schemes could transform licenses arbitrarily, bearing no re-
lation to the usual license automata.

Def. An authorization scheme A is an automata whose
states are licenses and whose edges are labeled by actions.

As with the license automata, an authorization scheme al-
lows a sequence of actions under a license if there is a path
starting at the license labeled by the actions. We focus on
four properties of authorization schemes:

Def. An authorization scheme A is

• sound if A is a subautomata of A,

• online if A is deterministic,

• live if a ∈ AJϕK implies a ∈ AJϕK,

• monotonic if ϕ1 ≤ ϕ2 implies AJϕ1K ⊆ AJϕ2K,

for all licenses ϕ, ϕ1, and ϕ2 and all actions a.

A sound authorization scheme never allows a sequence of
actions that is not authorized by the license automata.

A DRM agent employing an online authorization scheme
decides which rights to exercise as actions occur, without
knowledge of what future actions the consumer wishes to
perform. A sound, online authorization scheme includes at
most one transition from the full license automata for each
license and each action. The included transitions indicate
which right to exercise.

Some sound, online authorization schemes are degener-
ate, such as the empty automata, which does not allow any
actions. Requiring schemes to be live removes this degen-
eracy. A live authorization scheme always allows an indi-
vidual action if that action is authorized by the license au-
tomata. The sound, live, online authorization schemes can
be characterized as subautomata:

Lemma 3. An authorization scheme A is sound, live, and
online if, and only if, A is a maximal deterministic subau-
tomata of A

In a monotonic authorization scheme, if a sequence of
actions is allowed under a license, it is allowed under every
more flexible license as well. The notion of flexibility here
is semantic, but a weaker notion of monotonicity could be
defined syntactically (for example, monotonic with respect
to adding rights to a license). The authorization scheme
defined in the OMA specification is sound, live, and online,
but not monotonic. In fact, all sound, live, online schemes
for OMA licenses fail to be monotonic even in a weak sense.

Theorem 4. No sound, live, online authorization scheme
for OMA licenses is monotonic.

Proof. Given a sound, live, online authorization scheme A,
consider three actions, a, b, and c, and the license ϕ:

r : Count(1)
r1 : A descendant of r that authorizes a.
r2 : A descendant of r that authorizes b.
s : Count(1)
s1 : A descendant of s that authorizes a.
s2 : A descendant of s that authorizes c.

Because A is live and deterministic, there must be a unique
license ϕ′ such that ϕ a−→A ϕ′. The scheme must have
exercised either r1 or s1 (say r1). Then, the count constraint
of r in ϕ′ is zero and b 6∈ AJϕ′K. Thus, the sequence a · b 6∈
AJϕK (by soundness). Now consider the license θ consisting
of r, r2, s, and s1. We have θ ≤ ϕ, but a · b ∈ AJθK (by
liveness of A). Therefore, A is not monotonic.

Notice every sound, live, online authorization scheme on
OMA licenses fails to be monotonic even with respect to
adding rights to a license. A DRM agent employing scheme
A allows a sequence of actions under the license consisting
of rights r, r2, s, and s1 that it would not allow if the rights
r1 and s2 were added to the license.

4 Linear Semantics for Digital Rights

The semantics of digital rights can be understood using
Linear Logic. Linear Logic eschews the usual weakening
and contraction rules in favor of maintaining control over
the multiplicity of syntactic terms, mirroring the control
over the multiplicity of actions in DRM licenses. We inter-
pret a conjunctive fragment of Propositional Linear Logic as
a DRM Rights Expression Language, taking the regulated
actions as propositions and building more complex licenses
using the familiar Linear Logic operators. Authorization is
captured through linear implication. If ϕ is the formula rep-
resenting a license and ϕ −◦ a ⊗ ϕ′, then ϕ authorizes ac-
tion a with remaining rights ϕ′. The right to perform action
a has been “separated” from the remaining rights ϕ′.

In this section, we use Linear Logic to investigate mono-
tonic approximations and to describe a monotonic autho-
rization scheme on licenses enriched with linear negation.
Negated terms are used to specify the rights remaining af-
ter performing an action both exactly and compactly. These
negated terms enable agents to revise their decisions about
which rights to exercise for which actions, giving rise to
a efficient authorization algorithm that is both sound and
monotonic for these licenses.

4.1 Syntax, Semantics, and Deduction

Syntax. Licenses are built from a countable set of possi-
ble actions, denoted A, which serve as the linear proposi-
tions. From these actions, licenses are built using the usual
Linear Logic operators. We use formulas from the follow-
ing grammar:

ψ ::= a | ψ & ψ ϕ ::= 1 | !a | ψ | ϕ⊗ ϕ,

where a ∈ A. The symbol & represents an internal choice
between authorizing one of two actions, ! represents un-
bounded replication, and ⊗ represents parallel combination
of rights. Formulas from this grammar are the parallel com-
bination of atomic rights, each of which is a choice between
authorizing several individual actions.

In this grammar, the ! modality can be applied only to in-
dividual actions (and not their &-combination). This might
appear overly restrictive as the license !(a & b) seems rea-
sonable, but formulas !ψ are equivalent to formulas in the
grammar as !(ψ1 & ψ2) ◦−◦ !ψ1 ⊗ !ψ2. We also assume,
without loss of expressiveness, that actions occurring in the
scope of a ! do not occur elsewhere in the formula. Such
formulas are in normal form. Formulas without & or ! are
called basic licenses.

OMA licenses containing individual, system, kind, data,
content, and count constraints are expressible as Linear
Logic formulas from the above grammar. Accumulated and
timed count constraints are excluded for simplicity, but in-
terval constraints are excluded in order to maintain tractabil-
ity. Individual, system, kind, date, and content constraints
are simple to capture because they are stateless. Count con-
straints are expressible because atomic rights occurring out-
side the scope of a ! can be exercised only a limited number
of times. Inheritance between rights is handled by the &
operator, and the combination of rights into licenses is han-
dled by the ⊗ operator. For example, the license used in the
proof of Theorem 4 can be expressed as (a& b)⊗ (a& c).

Semantics. With each formula ϕ, we associate a set of
multisets of actions SJϕK, defined in Fig. 1. Performing
all the actions in one of these multisets exhausts the license.
Formally, a multiset is a function fromA to N. The multiset
operator] is the usual disjoint union that adds the contents

s ∈ SJ1K if s = ∅
s ∈ SJaK if s = {a}
s ∈ SJϕ1 & ϕ2K if s ∈ SJϕ1K or s ∈ SJϕ2K

s1] s2 ∈ SJϕ1 ⊗ ϕ2K if s1 ∈ SJϕ1K and s2 ∈ SJϕ2K
s ∈ SJ!ϕK if s = s1] · · ·] sn, where

si ∈ SJϕK for all i from 1 to n

Figure 1. Multiset semantics for licenses

of its two operands. For each formula ϕ, the set SJϕK con-
tains exactly those multisets “promised” by the formula. If
we take sets of multisets as models, we can provide a con-
nection between semantic entailment and linear implication
by defining every superset of SJϕK to be a model of ϕ:

S |= ϕ if, and only if, S ⊇ SJϕK

Each model of a formula contains every choice of multiset
“promised” by the formula. Semantic entailment is as usual:
ϕ1 |= ϕ2 if every model of ϕ1 is a model of ϕ2.

Deduction. Before defining the transition relation for the
license automata, we define a leftist deductive system over
formulas with the inference rules in Fig. 2 and a single ax-
iom, ϕ ` ϕ. These rules are the usual left deduction rules
of two-sided Classical Linear Logic for these connectives,
with the exception of the 1-elimination rule. This rule is
usually captured through right deduction rules. Note that
none of these inference rules modify ∆. The deductive sys-
tem is sound with respect to semantic implication.

Lemma 5 (Soundness). For all formulas ϕ and ϕ′,

ϕ ` ϕ′ implies ϕ |= ϕ′.

This deductive system is not complete for our semantics,
for example semantically (a&b)⊗(a&c) |= a⊗(a&b&c)
but not syntactically. If a complete deductive system were
used, licenses could reach exponential length. The relation
` is the “exercise” relation on licenses. As a formula moves
across `, non-determinism is resolved, corresponding to the
DRM agent deciding which rights to exercise. Specifically,
a right is exercised whenever a &-rule is applied to it. The
sequent ϕ ` a⊗ϕ′ indicates that action a can be authorized
under license ϕ with remaining rights ϕ′. The authorization
for a has been “separated” from the remaining rights ϕ′.
This motivates our definition of the transition relation for
the license automata A:

ϕ
a−→ ϕ′ if, and only if, ϕ ` a⊗ ϕ′

Γ, ψ1 ` ∆
Γ, ψ1 & ψ2 ` ∆

Γ, ψ2 ` ∆
Γ, ψ1 & ψ2 ` ∆

Γ, !ψ, !ψ ` ∆
Γ, !ψ ` ∆

Γ, ψ ` ∆
Γ, !ψ ` ∆

Γ ` ∆
Γ,1 ` ∆

Γ,1 ` ∆
Γ ` ∆

Γ, ϕ1, ϕ2 ` ∆
Γ, ϕ1 ⊗ ϕ2 ` ∆

Γ, ϕ1 ⊗ ϕ2 ` ∆
Γ, ϕ1, ϕ2 ` ∆

Γ, ϕ2, ϕ1 ` ∆
Γ, ϕ1, ϕ2 ` ∆

Figure 2. Rules for negation-free licenses

This transition relation yields a close connection between
the automata semantics of a license formula, AJϕK, and the
multiset semantics of the formula, SJϕK.

Lemma 6. A sequence σ ∈ AJϕK if, and only if, the multiset
of actions occurring in σ is a subset of a multiset in SJϕK.

4.2 Monotonic Approximations

Although sound, live, online authorization schemes for
these linear licenses are not monotonic, there is a unique
maximal set of licenses on which there exists a monotonic,
sound, live, online scheme. In each of these well-behaved
licenses, the rights authorizing a given action are linearly
ordered by flexibility. The monotonic scheme on these li-
censes can be “lifted” to arbitrary licenses by approximat-
ing a given license with the closest well-behaved license.
The resulting scheme is monotonic on all licenses but it is
not sound: the approximation allows some sequences of ac-
tions that are not actually authorized by the license. The to-
tal number of actions allowed is the same, but the consumer
is given more flexibility as to which actions to perform.

Before describing the set of well-behaved licenses, we
define the support of a license: the support of a license ϕ,
written support(ϕ), is the set of actions that occur as propo-
sitions in ϕ.

Def. Let Cmax be the set of licenses ϕ such that, for all
atomic rights ψ1 and ψ2 occurring in ϕ, if support(ψ1) ∩
support(ψ2) is non-empty, then

support(ψ1) ⊆ support(ψ2) or
support(ψ2) ⊆ support(ψ1).

In aCmax license, if an action is authorized by several rights,
then those rights are linearly ordered by flexibility. Exer-
cising the least flexible right forecloses the fewest future
authorizations. This leads to a natural online authorization
scheme on Cmax, which we call the greedy scheme. Given a

license inCmax and an action a, the greedy scheme exercises
the atomic right containing a whose support is inclusion-
minimal (this is unique by the definition of Cmax). This
scheme is monotonic, sound, live, and online on Cmax.

Theorem 7. The set of licenses Cmax is the unique
inclusion-maximal set of licenses (containing the basic li-
censes) on which there exists a monotonic, sound, live, on-
line authorization scheme.

Proof. The greedy scheme is monotonic, sound, live, and
online on Cmax. Suppose, by way of contradiction, there
exists a set of licenses C such that (1) C contains the basic
licenses, (2) C contains ϕ 6∈ Cmax, and (3) there exists a
monotonic, sound, live, online authorization scheme A on
C. Then, ϕ must contain two atomic rights ψ1 and ψ2 such
that support(ψ1) ∩ support(ψ2) is non-empty and neither
is a subset of the other. In particular, fix

a ∈ support(ψ1) ∩ support(ψ2),
b ∈ support(ψ1)− support(ψ2), and
c ∈ support(ψ2)− support(ψ1).

Starting with ϕ, repeatedly authorize a until A exercises ei-
ther ψ1 or ψ2 (say ψ1). Next, repeatedly authorize b until
the remaining rights no longer authorize b. Let σ be the se-
quence of actions authorized thus far. Sequence σ·b 6∈ AJϕK
because the rights remaining after σ do not authorize b.
Now, let θ be the ⊗-combination (with repetition) of the
actions in σ · b. License θ ∈ C (because θ is a basic license)
and θ ≤ ϕ (because ψ1 need not be exercised to authorize
σ). However, σ ·b ∈ AJθK, and therefore A is not monotonic
on C, a contradiction.

The greedy scheme on Cmax induces an approximation
scheme on all licenses by way of an approximation struc-
ture. An approximation structure projects arbitrary licenses
onto an identified set of licenses.

Def. An approximation structure is a pair (C, π), where

• C is a set of licenses (the set of approximates),

• π is a ≤-monotonic function from licenses to C, and

• π(ϕ) is minimal such that ϕ ≤ π(ϕ), for all ϕ ∈ L.

In an approximation structure (C, π), every license ϕ is ap-
proximated by the license π(ϕ). The function π chooses
one of the closest licenses in C to approximate each li-
cense. The approximation structure lifts an authorization
scheme A on C to an authorization scheme AC on all li-
censes: ϕ a−→AC

ϕ′ if, and only if, π(ϕ) a−→A ϕ
′. Thus,

ACJϕK = AJπ(ϕ)K.

The lifted scheme uses the approximate license to deter-
mine the sequences of actions allowed by a license. Two
key properties lift with the authorization scheme.

Lemma 8. For all approximation structures (C, π) and all
authorizations schemes A,

• If A is monotonic on C, then AC is monotonic.

• If A is live on C, then AC is live.

The more approximates, the tighter the approximation,
the fewer “extra” sequences of actions allowed by the ap-
proximation. In the extreme, if C = L, no extra action
sequences are allowed. This all-inclusive C does not ad-
mit a monotonic, sound, live, online authorization scheme,
but Cmax does. In fact, approximation scheme induced by
the greedy scheme is the tightest of its class because of the
unique maximality of Cmax.

Corollary 9. The greedy scheme is the tightest monotonic
approximation scheme arising from sound, live, online au-
thorization schemes on approximation structures.

Even though this scheme is the tightest approximation
of its class, it still allows many extra actions. Particularly
problematic are licenses containing many atomic rights that
overlap each other slightly. The approximation scheme does
not allow a greater total number of actions, but it does allow
each individual action to be performed a greater number of
times. This suggests a “price for monotonicity” with these
licenses. Expanding the expressiveness of licenses, how-
ever, enables monotonic online authorization schemes that
do not allow any extra actions.

4.3 Linear Characterization of Remaining
Rights

Online authorization schemes on OMA licenses fail to
be monotonic because they are forced to commit to exercis-
ing rights as actions occur. Without the flexibility to later
revise their past commitments, agents are unable to behave
monotonically. A monotonic, sound, live, online scheme
does exists, however, if the license automata A is expanded
to enable agents to revise commitments. The states in this
enlarged automata B record previously exercised rights and
the transitions enable agents to “unexercise” these rights
(while maintaining soundness). Both automata, A and B,
authorize exactly the same sequences of actions for the li-
censes they share in common.

The states of B record exactly the future action se-
quences that can be performed. The description of these
sequences must be compact in order to maintain efficiency.
Simply listing the available continuations would require ex-
ponential space. To achieve an efficient representation, we
expand the grammar of license formulas to include linearly
negated actions, such as a⊥. These negated terms represent
“undoing” an action, or an authorization debt to be paid.
New transitions are included in the automata that make use
of these extra terms.

Linear Negation. Consider the license (a& b)⊗ (a& c).
In the A automata, (a& b)⊗ (a& c) a−→ a& c, foreclosing
the possibility of authorizing b, but, in the B automata,

(a& b)⊗ (a& c) a−→ (1 & (a⊥ ⊗ b))⊗ (a& c),

and the action b is still authorized:

(1 & (a⊥ ⊗ b))⊗ (a& c) −◦ b

Authorizing action b causes the a⊥ term to eliminate the
a& c term. This is because a& c is exercised to a, which is
used in combination with 1& (a⊥⊗ b) to reconstruct a& b.
In turn, a & b used to authorize b. In order to authorize b,
the authorization debt a⊥ must be paid. The generality of
this approach is elucidated by the following valid formula:

a1 & · · ·& an ◦−◦ a1 ⊗ (1 & (a⊥1 ⊗ (a2 & · · ·& an)))

Syntax. To express these states, we enrich our grammar
for rights with linear negation:

ϕ ::= · · · | 1 & (a⊥ ⊗ ψ) | · · ·

Notice the negated terms can appear only in specific syntac-
tic surroundings. When exercised, an atomic right produces
two terms: the authorized action and a term containing that
action negated. The negated term can later be used to reas-
sign that action to a different atomic right. This reassign-
ment reconstructs the initial right, at the cost of the newly
assigned right.

Semantics. To interpret these new pieces of syntax, we
expand our notion of a multiset to include multisets with
negatively occurring objects. That is, a multiset is a function
from actions A to the integers Z.

s ∈ SJa⊥K if s = {a : −1}

The set SJa⊥K contains a single multiset that contains one
negative occurrence of a. Every license denotes at least one
multiset free of negatively occurring objects.

Deduction. We expand our deductive system to be the full
two-sided Classical Linear Logic deductive system. This
gives us the following deductive theorems:

(a& ψ)⊗ ϕ ` a⊗ (1 & (a⊥ ⊗ ψ))⊗ ϕ (1)

a⊗ (1 & (a⊥ ⊗ ψ))⊗ ϕ ` (a& ψ)⊗ ϕ (2)

Notice Deduction 1 commits a right to authorizing an action
a and Deduction 2 reverses that commitment. The transi-
tions of license automata B are defined analogously to those
for A: ϕ a−→ ϕ′ if, and only if, ϕ ` a⊗ ϕ′.

Automata B contains only formulas described by the en-
riched grammar. Even though the deductive system derives
1 ` a ⊗ a⊥, the transition 1 a−→ a⊥ is not available be-
cause a⊥ is not a valid state of the automata, preventing
actions from being inappropriately authorized.

Lemma 10 (Soundness). ϕ ` ϕ′ implies ϕ |= ϕ′

The sequences of actions authorized by automata B are
exactly the same as those authorized by automata A, for
licenses present in both automata.

Lemma 11. AJϕK = BJϕK, for all licenses ϕ of A.

An Online Scheme. Authorization scheme Aopt is de-
fined by an algorithm for constructing a proof. Given a
license ϕ and an action a, Aopt finds a license ϕ′ such that
ϕ ` a⊗ϕ′ by running MAX-FLOW on the following graph:

• A distinguished source s and a distinguished sink t.

• A nodes for each ai ∈ support(ϕ)

• A node for each !ψ, with an infinite capacity edge to t.

• A node for each ψ with a unit capacity edge to t.

• A node for each 1 & (b⊥ ⊗ ψ).

• A unit capacity edge from s to a.

• An edge from ai to !ψ if ai ∈ support(!ψ).

• An edge from ai to ψ if ai ∈ support(ψ).

• An edge from ai to 1 & (b⊥ ⊗ ψ) if ai ∈ support(ψ).

• An edge from each 1 & (b⊥ ⊗ ψ) to b.

If there is a non-zero flow, then a is authorized and Aopt

constructs ϕ′ as follows. Tracing the flow backwards from
the sink, Aopt determines the inference rules to apply. The
final edge of the flow travels to the sink from a node x.

1. The flow travels to x from some action b and x is either
an atomic right b & ψ or a right !b. In the first case,
apply Deduction 1. In the second case, apply !b⊗ ϕ `
b⊗ !b⊗ ϕ. In either case, a b ⊗-conjunct is produced.

2. If b = a, then Aopt halts and has produced the required
ϕ′. Otherwise, tracing the flow backwards leads to a
1 & (b⊥⊗ψ) node, for some ψ. Apply Deduction 2 to
eliminate the b ⊗-conjunct and relabel the node b&ψ.
Return to Step 1 with this node as x.

Eventually the termination condition must obtain and the
desired license formula ϕ′ is produced. The residual flow
graph is essentially the flow graph for ϕ′ (possibly differing
on edges leading to the source and from the sink). A prac-
tical implementation would not reconstruct the flow graph

for each action, but reuse the residual flow graph. The algo-
rithm can be understood as computing MAX-FLOW over
the initial rights (as in Theorem 2) by using an augmenting
path for each action. Reversed edges in the residual flow
graph are represented in the formula by linear negation.

Theorem 12. Online authorization scheme Aopt is sound,
live, and monotonic.

Proof sketch. Scheme Aopt is sound because the ϕ′ is con-
structed using the inference rules. Because Aopt is es-
sentially computing MAX-FLOW over the initial rights,
AoptJϕK = BJϕK for all licenses. Thus, Aopt is live and
monotonic.

Moreover, because BJϕK = AJϕK for licenses ϕ in A,
Aopt is a monotonic, live, online scheme that is semantically
equivalent to A in the sense that Aopt allows a sequence of
actions if, and only if, A authorizes that sequence. DRM
agents employing Aopt for OMA licenses achieve mono-
tonicity without allowing extra actions by revising their in-
ternal commitment as needed to authorize more actions.

4.4 Dynamically Acquired Rights

Thus far, we have considered the static case, where con-
sumers who first acquire rights and then perform actions.
In practice, however, consumers often interleave acquiring
rights and performing actions. Acquiring the right ψ can be
represented by additional transitions in the automata:

ϕ
ψ
99K ψ ⊗ ϕ

These acquisition transitions can be interleaved with action
transitions. Something curious occurs if a term negated in
ϕ appears in ψ. Suppose Alice initially possessed the right
a& b, performed action a, and then acquired right a:

a& b
a−→ 1 & (a⊥ ⊗ b)

a
99K a⊗ 1 & (a⊥ ⊗ b) b−→ 1

We hope to investigate the dynamic case in future work.

5 Conclusions

In specifying a DRM Rights Expression Language, the
Open Mobile Alliance failed to consider the consequences
of their authorization algorithm. On the surface, their algo-
rithm seems plausible, but it leads to anomalous semantics,
which we characterize by introducing the notion of mono-
tonicity. We investigate the question of how to assign ac-
tions to rights in Digital Rights Management licenses. We
discover that finding the optimum assignment of actions
to rights in OMA licenses is NP-complete. The difficulty
stems from determining when to first exercise rights with

“interval” constraints. We argue this complexity is not en-
demic to DRM licenses as optimum assignments for a sub-
stantial fragment of the OMA language are computable ef-
ficiently.

Every online authorization scheme for OMA licenses is
non-monotonic. We investigate monotonicity on two fronts.
First, we characterized the maximal set of licenses on which
there exists a monotonic online authorization scheme, giv-
ing rise to a monotonic approximation for arbitrary licenses.
Second, monotonicity can be achieved on licenses enriched
with linear negation because agents can revise their past al-
location of actions to rights after learning which other ac-
tions consumers wish to perform. The authorization algo-
rithm, which essentially computes maximum network flow,
is efficiently computable, sound, live, and monotonic.

Acknowledgments. We thank Darryn McDade, Jefferson
Owen, and Paul Bromley from ST Microelectronics Inc. for
suggesting an investigation of the OMA DRM design. This
work was partially supported by the National Science Foun-
dation though CyberTrust grants including the PORTIA
project and the TRUST Science and Technology Center

References

[1] C. N. Chong, R. Corin, S. Etalle, P. Hartel, W. Jonker, and
Y. W. Law. LicenseScript: A novel digital rights language
and its semantics. In WEDELMUSIC: Proceedings of the 3rd
International Conference on Web Delivering of Music, pages
122–129, Washington, DC, 2003. IEEE Computer Society.

[2] ContentGuard. eXtensible rights Markup Language, 2006.
http://www.xrml.org/.

[3] J.-Y. Girard. Linear logic. Theoretical Computer Science,
50:1–102, 1987.

[4] C. Gunter, S. Weeks, and A. Wright. Models and languages
for digital rights. In HICSS ’01: Proceedings of the 34th
Annual Hawaii International Conference on System Sciences,
volume 9, page 9076, Washington, DC, 2001. IEEE Computer
Society.

[5] ODRL Initiative. The Open Digital Rights Language Initia-
tive, 2006. http://www.odrl.net/.

[6] Open Mobile Alliance. DRM Rights Expression Lan-
guage: Candidate Version 2.0 — 25 Aug 2005, 2005.
http://www.openmobilealliance.org/.

[7] R. Pucella and V. Weissman. A logic for reasoning about
digital rights. In CSFW ’02: Proceedings of the 15th IEEE
Computer Security Foundations Workshop (CSFW’02), page
282, Washington, DC, 2002. IEEE Computer Society.

[8] O. Sibert, D. Bernstein, and D. V. Wie. The DigiBox: A self-
protecting container for information commerce. In Proceed-
ings of the 1st USENIX Workshop on Electronic Commerce.

[9] M. J. Stefik. Letting loose the light: Igniting commerce in
electronic publication. Forum on Technology-Based Intellec-
tual Property, pages 78–81, March 1997.

