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Abstract

We relate standard techniques for solving recursive

domain equations to previous models with types in-

terpreted as partial equivalence relations (per’s) over

a Dm lambda model. This motivates a particular

choice of type functions, which leads to an exten-

sion of, such models to higher-order polymorphism.

The resulting models provide natural interpretations

for function spaces, records, recursively defined types,

higher-order type functions, and bounded polymor-

phic types Y-X <: Y. A where the bound may be of a

higher kind. In particular, we may combine recursion

and polymorphism in a way that allows the bound Y

in VX <: Y. A to be recursive y defined. The model

may also be used to interpret so-called “F-bounded

polymorphism.” Together, these features allolv us to

represent several forms of type and type functions that

seem to arise naturally in typed object-oriented pro-

gramming.

1 Introduction

In type systems aimed towards object-oriented pro-

gramming, several typing ideas naturally arise. The

most basic are subtyping, the fact that values of one

type may be treated as values of another, polymor-

phism, and recursively defined types. Since many of
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the existing, implemented type systems for object-

oriented languages have notable errors (see, e.g.,

[CO089]), it is important to prove the soundness of

these type systems. The primary technique for do-

ing so is by constructing a selmantic model. A

class of semantic models for languages with subtyp-

ing, polymorphism and recursion are developed in

[Cop85, Ama91, Car89, AP90]. These models all in-

terpret types as partial equivalence relations (per’s)

over suitable Dm structures obtained by the so-called

“inverse limit’) construction. The main contributions

of this paper are to provide a general framework for

understanding type recursion in these models and to

extend per models to higher-order type functions and

additional forms of polymorphism. Since the use of

per’s over a single domain gives us natural interpre-

tations of subtyping and polymorphism, most of the

technical effort, in the previous papers and our own,

is directed toward the problem of recursively-defined

types.

The first contribution of this paper is a categorical

diagram relating the apparently ad hoc view of type

recursion in [Cop85, Ama91, Car89] to the category of

domains approximating D@. While similar in form to

the view expressed by Abadi and Plotkin in [AP90],

our “fundamental cliagram” may be applied directly

to the earlier models of [Cop85, Ama91, Car89]. We

also use this diagram to identify a larger class of

type functions with fixed points than the [AP90] con-

struction. This allows us to interpret some useful

forms of polymorphism (specifically, bounded and “F-

bouncled” polymorphism) that were excluded from the

Abadi-Plotkin model.

Our second contribution is to extend previous mod-

els to alternate and higher-order forms of polymor-

phism, including solving domain equations over higher

kinds. Bounded polymorphism, presented in [CW85],

is extremely suggestive for object-oriented programm-

ing. The bounded polymorphic type VX <: A. B(X)

is the type of all functions which, when applied to

any subtype X of A, returns an element of the type

@ 1992 ACM 089791-453-81921000110316 $1.50

316



B(X). For example, VX <: int. X-+X is the type

of functions which, when applied to a subtype X of

znt, maps X to X. Introduced in [CCH+89], F-

bounded polymorphism arises naturally in typing a

style of object-oriented programming, and appears

more useful than the original form of bounded poly-

morphism in the presence of recursive types. The type

VX <: F(X). B(X) is the type of all functions which,

for any type X satisfying the constraint X<: I’(X)

have functionality given by the type B(X). An alter-

native, discovered independently by Luca Cardelli and

the second author, is to use the type VG <: F. B(jix G),

where G and F are both functions from types to

types, in place of VX <: F(X). B(X). This seems to

work just as well as F-bounded quantification on all

of the motivating examples, but requires higher-order

polymorphism, i. e., expressions parameterized by type

functions and, possibly, higher-order functions from

types to types.

Before discussing higher-order type recursion in our

models, we give a motivating example. It might first

appear that type constructors (functions from types

to types) such as list and tree are recursively-defined

functions. Although the usual definition,

list(t) = unit+ t x list(t),

appears to be the recursive definition of a function

from types to types, we may actually de-sugar this

into a definition

list = At: T.jx~(Jl: T. unit + t x 1)

using an operator jixT that finds the least fixed point

of any function from T to T, where T is the kind (col-

lection) of types. (Here, unit is the trivial type with a

single element. ) Since we only use a fixed point opera-

tor on type functions, as opposed to type functional,

tree only requires recursive definitions of types. The

same is true of other familiar recursive type construc-

tors such as tree.

If we try to define a type of list ‘(objects,” in the

sense of object-oriented programming, then we seem

to need higher-order type recursion. This example

was brought to our attention by Luca Cardelli and

the Abel Group at HP Labs [CCH91, Car91]. In an

object-oriented program, a list object will have meth-

ods such as empty?, to say whether the list is empty,

and head and tail to return the head and tail of the list

represented by the object. The types of these meth-

ods would appear in the type of the list object, as

discussed in [CM91,

example. This gives

tion such as

list(t) = {

CHC90, CCH+89, Mit90a], for

us an ordinary recursive defini-

head: unit -+ t

tail: unit ~ kt(t)

empty?: unit -+ bool}

in which list appears recursively, but the definition

may be written so that only a fixed point operator for

ordinary type recursion is required.

If we wish to add a map function to list objects,

where map takes an function argument and applies

this to every element of the list, then we would define

lists by the more complicated recursive type

list(t) = { . . .

map: Vs. (t -+ s) - /2s1(s)}.

The significant aspect of the type of the map function

is that now list appears with an argument other than t.

For this reason, we must interpret this declaration as

the result of applying a higher-order fixed-point oper-

ator to a functional that maps type functions to type

functions. This is illustrated in Section 7. Another

example that might be of interest is the type of list

objects with a method

power: unit ~ Zist(kt(t)).

Some related kinds of polymorphism have been dis-

cussed in connection with proper extensions of ML

[Myc84, Hen89, KTU89].

In this paper, we show how to extend any suitable

per model to higher-order type functions by identify-

ing a general class of “rank-ordered” sets and func-

tions. These form a cartesian closed category such

that every “rank-increasing” function has a unique

fixed point. Several classes of per’s over D~ may

be rank-ordered, using ranks induced by the domains

DO, D1, DZ, . . . approximating Dw, allowing us to in-

terpret type functions, type functional, and so on as

rank-preserving functions. In type-theoretic terms,

this technique gives a model of Fw with subtyping

at each kind (order) and recursion operators (with

a minor technical restriction on uses of recursion) at

each kind. The construction may be carried out for

a variety of collections of per’s. In particular, we ob-

tain one model whose types are the same as those in

[Ama91, Car89] and another whose types are similar

to those in [A P90]. The advantage of the latter ver-

sion is that the set of elements of each type forms an

u-algebraic cpo, allowing proofs by fixed point induc-

tion.

By choosing an appropriate D@ model to begin

with, any of the previous models could be extended

to the basic form of records described in [Car88]. Al-

though we do not discuss records at any length in this

paper, it is our belief that the moclels given here ex-

tend to more flexible forms of record types, possibly

including the type operations described in [CM9 1]. We

hope to explore this in future work.

The models obtained by our techniques are closely

related to others appearing in the literature. The pa-

per [BL90] describes a model of subt ypes and bounded

polymorphism based on partial equivalence relations.
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The semantic models described in [Ama91, Car89]

added support for type recursion to models of sub-

types and bounded polymorphism, although the lat-

ter is not discussed explicitly in [Ama91]. However,

as presented, the previous models do not provide an

interpretation for recursively-defined type functions

or any extension of bounded polymorphism that in-

volves type functions. In [AP90], where a similar

but more structured class of models are developed,

the type functions are realizable functors. However,

these models do not have an obvious interpretation

of bounded quantification, since this type operation

is not functorial (treating VZ <: A. B as a function of

the bound A). In this instance, the strict categorical

approach does not seem adequate for treating com-

binations of type recursion and bounded quantifica-

tion. Another class of related models are those based

on partial equivalence relations over the natural num-

bers. In [FRMS90], a form of domain is developed

within the standard effective topos over natural num-

bers with partial recursive function application; re-

lated work may be found in the references of that

paper. The precise relation between domains in an

effective setting and the effective topos over a domain

does not seem clear at the time of this writing. As

a final pointer into the literature, we mention that

[BTCGS90, BTCGS91] describe a method for inter-

preting languages with subtyping and related forms of

polymorphism in models of languages without subtyp-

ing.

2 Overview of the model

In concrete terms, the main idea is that we choose

some suitably rich cpo D@, constructed as the limit

of cpo’s Do, Dl, D2, . . .. and interpret types as certain

partial equivalence relations (per’s) over DW. Recall

that a per over a set A is a symmetric and transi-

tive binary relation on A (see [Mit86, Mit90b], for

example, for further explanation). For each suitable

per R & DW x DW, there is a sequence of relations

R[q , R[l] , R[2] , . . .. determined by R and the sequence

of domains Do, Dl, DZ) . . .. such that R is the limit

of the R(il’s in a natural and entirely standard sense.

We call the relation R[il the rank z approximation

of R, or sometimes the ith approximation of R for

short. The type functions in the model are all func-

tions from suitable per’s to suitable per’s which re-

spect the ranked approximations of relations in a cer-

t ain way. Each such function, F, has an approximat-

ing sequence, F[ol, F[ll, F[21, . . .. and so the collection

of type functions turns out to have the same abstract

“rank ordered” structure as the collection of suitable

pers. This allows us to repeat the definition of suitable

function for higher kinds (such as functions from type

functions to type functions). Since all of this is done

using per’s over a single domain, we have standard

interpretations of subtyping, as in [B L90], and poly-

morphism, as in [BL90, CL90, Gir72, Mit86, Tro73].

Moreover, every function with a certain rank property

has a unique fixed point. This gives us recursion op-

erators at all kinds. Finally, all of the standard type

constructors and all variations of bounded quantifica-

tion mentioned in the introduction have the required

rank-related properties to be included in the model.

3 PEELs and the D~ construc-

tion

3.1 Categorical setting for recursive

domain equations

We begin by describing the setting for the D~ con-

struction. We work with w-complete partial orders

and two classes of maps, continuous functions and

embedding-projection pairs. The reader may re-

call from [Bar84, GS90, SP82] that an embedding-

projection pair between cpo’s D and E consists of

maps e:D - E and p:E -+ D such that poe = idD

and e o p < idB. The map e is called the embedding,

and p the projection. Each determines the other, as-

suming both exist, so it suffices to name the embed-

ding or the projection. We find it convenient to work

with projections and leave embeddings implicit. We

write CPO for the category of u-complete partial or-

ders with continuous maps, and CPOP for the category

of u-complete partial orders with projections.

If Al is a continuous functor from CPO p to CPOP,

then we may construct a cpo D@ as the inverse limit

of the w-diagram

AY(l)wir(qw

where 1 = {-L} is the one-element cpo (the terminal

object of both GPO and CPOP) and x is the unique

projection from H(L) to the terminal object. It is

common notation to write Di for Hi (J_) and say that

Dm is the limit of the Di ‘s. We write pi for the projec-

tion from Dm to ,D~, A consequence of the continuity

of h! is that Dm is isomorphic to H(Dm); this is in

fact the definition of u-continuity for functors. An

important fact is that each Di is isomorphic to some

subdomain ~i ~ Dm, with projection ii from Dm to

Di. If d c Dm, we write d[q for fli (d) and note that

each d c D~ is the limit (inside Dm ) of the u-chain

‘[0] < d[l] < 42] < . . .. It is worth mentioning that

most functors of interest are continuous on CPOp; to

be continuous on CPO p, it suffices to be locally con-

tinuous over GPO [SP82].
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3.2 The category CPER of complete pers

A general setting for studying per’s and recursion

is the category CPER. The objects of this category

are pairs (R, D), where D is a cpo and R is a par-

tial equivalence relation on D which is closed under

sups of w-chains. The morphisms of CPER are pairs

of continuous functions which respect the relations.

More specifically, (~, g) is a morphism from (R, D) to

(R’, D’) if ~, g: D-D’ are continuous and ~ R y im-

plies ~(z) R g(y). This is a subcategory of the “infec-

tive scone” of CPO x CPO [AMSW91], which is a sub-

category of the comma category (CPO J CPO x CPO),

also called the scone or Freyd cover of CPO x CPO

[LS86]. A related category may be found in [SP82,

Example 6]. The argument given in [SP82, Example

6] also shows that CPER is an O-category with all w-

limits. We write CPERP for the subcategory of CPER

with projection maps.

In the following section, we use the category CPER

to motivate the definition of rank-increasing functions.

Using this category, the general results of [SP82] im-

ply that every rank-increasing function on pers has a

fixed point, since each such function determines a con-

tinuous functor on CPERP. A caveat, however, is that

the category CPER is not the category we use to-give

meanings to expressions. The morphisrns of CPER are

continuous functions, while the meaning of a term in

any of the class of models covered by this paper is an

equivalence class of continuous functions. The impor-

tance of the equivalence relations are that these are

required to make the models extensional.

An alternative category is the one obtained from

CPER by taking equivalence classes of continuous func-

tions as morphisms. However, there does not appear

to be a natural ordering on equivalence classes un-

less we consider only antisymmetric pers (see Sec-

tion 8 and [AP90]), and only the profinite, bifinite,

or sfp domains. The arguments given in [AP90] may

be used to show that this more specialized category

is an O-category with w-limits. The development

given in the following section may be carried out for

CPER, as stated, or with CPER replaced with the cat-

egory whose objects are antisymmetric pers over bifi-

nite domains and morphisms are equivalence classes

of continuous functions. (Two continuous functions

~, g from R ~ D x D to S ~ E x E are equivalent if

$(x) S g(y) whenever x R y.)

3.3 Continuous extensions of CPO func-
tors to CPER

We say functor F: CPERP -+ CPERP extends functor

H: CPOP -+ CPOP if the following conditions are sat-

isfied:

. If F(R, D) = (R’, D’) then D’ = H(D).

● On morphisms, F is H x H, i.e., F($, g) =

(Hall).

We will only be interested in the case where both func-

tors are continuous. The importance of this definition

is given in the foliowing proposition, and the associ-

ated “fundamental diagram” in Figure 1.

Proposition 3.1 IfF on CPERP extends H on CPOP,

both continuous, then the diagram Fn(l) in CPERP

is a diagram of relations over the diagram Hn(l) in

CPOP and, furthermore, the limit of Fn(l) is a rela-

tion R@ over the limit Dm of Hn(l).

The special caae we are interested in, as suggested

by the terminology, is when H is the functor on CPO

which is used to construct the Dm model we want.

Then we have “fixed points” of each continuous F ex-

tending H, obtainable as limits of a diagram consisting

of relations over the D~ ‘s. In our models, the types wiil

be per’s and we will use the fundamental diagram to

solve recursive equations over these types. Note that

if F extends H, the action of F on morphisms is com-

pletely determined by H. For this reason, when we fix

H, we work with object maps on CPERP, which are

simply maps from pers to pers. This explains why we

are able to give a categorical explanation to a model

whose type functions are simply per maps, rather than

fUnCtOrS on CPER.

3.4 A specific D ~ and collection of pers

To construct a specific model, we choose a continuous

functor H: CPOP -+ CPOP such that the resulting limit

cpo Dm is rich enough to interpret the programming

language expressions of interest. For concreteness, the

reader may consider

H(D)= A+[L-+D]+[D~D]

as the standard example, where A is some cpo of

atomic values (say natural numbers), L is a count-

ably infinite flat cpo of “labels” used as component

names in records, and [D -+ D] is the cpo of all con-

tinuous functions from D to D. A technical detail

that will save the careful reader some confusion when

we get to recursive type definitions is that + must be

coalesced, as opposed to separated, sum. This is so

that all types over D@ share the same least element.

In working with bifinite domains and antisymmetric

pers, A must be finite. This is not as severe a restric-

tion as it might first appear, since a finite A here may

lead to a countably infinite surnmand in the limit cpo,

Dm = H(Dm). See [AP90] for more details.

The types over Da will be partial equivalence rela-

tions satisfying certain conditions.

Definition 3.2 A per R ~ Dm x Dm is nice if
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R = F(R)

. . .

Do —=-———— Dl= Dz — ... _ Dn

Figure 1: The Fundamental Diagram: Di+l = H(Di) and Ri+l = F(Ri).

. . .

0 (l, l)c R

● If {(di, ei) I i > O} is an w-chain in D~ x Dm

with limit (d, e) and (di, ei) 6 R for each i, then

(d, e) G R.

~ Foralld, e~DW, (d, e) c R ifl (d[i], e[il) E R for

all i.

The first two conditions are needed to give closure

under limits. The third, which also appears in [Cop85,

Ama91, Car89], may now be seen as the requirement

that each per be the limit of a sequence of pers of the

approximating domains Do, D1, . . as in Figure 1. If

R is a nice per then we write R[il for the restriction of

R to the subdomain Di of Dm.

Standard type constructors such as function space,

records, polymorphism and bounded quantification

may all be interpreted as operations on per’s; see

[BL90, CL90]. We give precise definitions of function

space, records, and F-bounded quantification in Sec-

tion 7. Ordinary “subtype bounded” quantification is

covered as a special case of F-bounded quantification.

Definition 3.3 A collection ‘R of nice pers over Da

is acceptable if

e 1? contains the per, {(1, 1)}, and is closed under

function space, records, and F-bounded quantifi-

cation.

* If {Ri~i < UJ ~ 7? satisfies the property that for

al!j ~ i, R{il = Ri) then there is a unique R E 72,

such that for ail i, RLq = Ri.

The first clause is clearly necessary if per’s are going

to interpret types in our models. (In the case that ad-

ditional type constructors are required, we would add

appropriate requirements to our notion of acceptable

collection of per)s. ) The second clause on the exis-

tence of unique sups of increasing chains of per’s will

enable us to find unique solutions to domain equations

over types. It plays the same role in our construction

as the “completeness” requirement in complete partial

orclers.

The two specific collections of per’s we mention in

Section 8 are acceptable for any collection of type con-

structors we have considered. The first is the collec-

tion 7?. of all nice pers, called CUA in [Car89] and GU-

PER in [Ama9 1]. The second is all antisymmetric pers

over a Dm model constructed in the category of bifi-

nite domains. For the rest of this section, we simply

require some acceptable collection of per’s over a suit-

ably rich Dm structure. For notational simplicity, we

refer to elements of this collection as nice per ‘s.

3.5 A natural class of per Imaps

An appealing idea which is useless without further re-

finement is that there is a cpo structure on nice pers.

If R is a nice per with R = R[il for some i, then we

define the rank of R by

rnk(R) = min{i I R = R[il}.

If R # R[il for all i, we say rnk(R) = ~. We say R

approximates S, and write R ~ S if rnk(R) is finite and
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R = S[~~~(R)]. The limit, or least upper bound, of an

w-chain R. QRI ~R2 Q. . . of nice pers with rnk(Ri) = i

is the relation R satisfying d R e iff d[zl Ri e[zl for all i,

so the collection of nice pers becomes a cpo with each

R the limit of the R[q ‘s.

Since the collection of nice pers has a cpo struc-

ture, it is plausible to consider the collection of con-

tinuous functions from nice pers to nice pers as the

type functions of some model, and extend to higher

kinds inductively as usual. By the standard argument

showing that any continuous function on a complete

partial order has a least fixed point, we would ob-

tain recursion operators at every kind. However, this

does not work! The most obvious problem is that the

function space constructor is not monotonic, let alone

continuous, with respect to the cpo structure on pers

we have just described. In particular, if A a A’ then

A’ ~ B a A -+ B, rather than the reverse. This is the

usual problem of the function space constructor being

contravariant in its first argument. Therefore, we will

have to refine the notions of cpo and continuous func-

tion in order to get a natural and suitable class of type

functions.

One contribution of this paper is to identify a set of

nice maps on nice pers. We say a function F from nice

pers to nice pers is runk-increasing if for all nice per’s

A, and all j ~ i – 1, (F(A))iil = (F(Ahl))[q. In other

words, all elements of F(A) of rank i are determined

by the elements of A of rank i – 1. This definition was

discovered by examining the fundamental diagram.

After we had investigated rank-ordered sets with rank-

preserving functions (defined below), we learned that

this was a subcategory of the category of bounded ul-

trametrics with non-expansive maps, which has sin~i-

lar properties.

We relate rank properties of functions to the “fun-

damental diagram” as follows. Let R ~ D@ x Dm

be a nice per. Then for each i, (R[il, Di) is an ob-

ject of CPER. If F extends H then F(R[il, D~) =

(Rfi+l] Di+l) where F(R, Dm) = (R’, Din). If, by

a slight abuse of notation, we write R’ = F(R), then

(F(R))[il = (lT’(R[i_ ,1))[,1, as in the definition of rank-

increasing maps.

Although this may be extracted from the fundament-

al diagram, we show directly in Section 5 that ev-

ery rank-increasing function has a unique fixed point,

and the collection of rank-increasing functions has the

same abstract structure as an acceptable collection of

nice pers. It is shown in Section 7 that the type con-

structors for function space, records, and F-bounded

quantification are rank-increasing. This suggests that

we could take the collection of type functions to be all

rank-increasing functions on an acceptable collection

of per’s, and repeat the construction through higher

kinds. The only drawback of this is that certain trivial

functions, like the identity map from types to types,

only satisfy a weaker rank-preserving property, and are

not rank-increasing. Since the larger class of “rank-

preserving” functions are also rank-ordered, the more

natural model contains all rank-preserving functions.

A mild embarrassment we have about this construc-

tion is that only the rank-increasing subset of the

rank-preserving functions have unique fixed points.

A mitigating factor is that since all the type con-

nective are rank increasing, and the composition of

rank-increasing functions with rank-preserving ones

produces a rank increasing function, the only limita-

tion that this yields is that in applying a recursion

operator to a type function or functional of some or-

der, the body of the function must involve at least one

type connective or operator (such as ~ or F-bounded

quantification). While we would like to lift this re-

striction on recursion, the only alternative we know of

at this point is to work with the smaller class of type

functions described in [AP90]. However, this would

involve dropping even simple bounded quantification,

which is a nontrivial trade-off. In the special case that

we restrict the language to F3, as opposed to FW, we

are able to construct a model with unrestricted use of

recursion by adding identity and projection maps to

the rank-increasing functions. Since F3 is adequate for

most practical examples, this is an appealing variant

of our construction.

4 The CCC of rank-ordered

sets

In this section we define ra.nlt-ordered sets and show

that rank-ordered sets with rank-preserving functions

form a cartesian closed category (ccc). Since any ac-

ceptable collection of nice pers may be rank-ordered,

this gives us an interpretation of higher-order lambda

calculus in which each kind (including the collection

of types, collection of type functions, etc. ) is a rank-

ordered set. An important fact is that every rank-

increasing function on a rank-ordered set has a unique

fixed point and, moreover, all of the type constructors

we have considered turn out to be rank-increasing.

Definition 4.1 A set K is rank-ordered if there is

a map, (.)[i]: K e K, jor each i ~ O, satisfying the

following three conditions.

1.

2.

3.

For all A G K, (A[q)u] = A[~in(~,~)I.

For all A, B G K, we have A[ol = B[ol. We write

BotIf fO?’ A[o] .

The jinal condition is stated using two de,jinitions.

For each i, we iet ri[~l = {A[il I A c K}. FrJr

A,B E I<, we write A di B if A = BI~l. (This

implies A 6 K[il.) The final condition is that ij

{Ai}i<ti is a sequence from K with Az di Ai+l,
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then there is a unique A E K such that for all i,

Ai = A[il

To show that the set of rank-ordered sets forms a

ccc, we must define products, rnorphisms and expo-

nential. We begin with products.

Definition 4.2 If K and L are rank-ordered sets, we

!et

KxL={(k,l)lk ~K,l~L}.

We rank-order K x L by defining (k, i)~il = (k~q, llq),

To show that K x L is a rank-ordered set, we must

verify the three conditions above. The first and sec-

ond follow trivially from the fact that K and L are

rank-ordered. The third follows easily by choosing

U(ki, t,) to be (u, ku,h), if {(ki,ii)}i<ti is an in-

creasing chain.

The morphisms between rank-ordered sets are func-

tions which are defined smoothly with respect to ap-

proximations to terms of restricted ranks.

Definition 4.3 A function F: K ~ L is rank-

preserving if for ali j ~ i, (F(A))[il = (F(A~l))Iq

and rank-increasing if for all j ~ i – 1, (F(A))[il =

(F IAUl))Iil. We write [K ~ L] for the collection of

rank-preserving functions and [K & L] for the col-

lection of rank-increasing functions. We rank-order

[K+ L] by defining l’[il = AA ~ K.(F(A))[il.

It is straightforward to verify that the collection

of rank-preserving functions from K to L is a rank-

ordered set. In addition, since the limit of a sequence

of rank-increasing functions is rank-increasing, the col-

lection of rank-increasing functions from K to L is a

rank-ordered set.

Theorem 4.4 The collection of rank-ordered sets,

with rank-preserving functions, is a Cartesian closed

category.

5 Properties of rank-increasing

functions

In this section we identify some useful closure prop-

erties of rank-increasing functions. In particular,

the fixed point of a rank-increasing function is ~anli-

increasing, and the composition of a rank-increasing

function with a rank-preserving (or increasing) one is

ranli-increasing. For the rest of this section, we assume

that K, L, and M are rank-ordered sets. To ease read-

ability, we also write F(A, 1?) rather than Z?((A, B)).

Lemma 5.1 Let F: K x L -+ M. Then F is rank-

preserving (respectively, rank-increasing) i@ it is rank-

preserving (respectively, rank-increasing) in each of its

arguments separately. In particular,

1. If F is rank-preserving, then

(F(A, B))[ij = F(A[i], B)[iI = (F(A, B[i]))[i]

2. If F is ronk-increasing, then

(F(A, B))[i] = F(A[i-ll, B)[i] = (F(A, B[i-l]))[i].

The advantage of rank-increasing functions is that

each enclo-fuuction has a unique fixed point. In addi-

tion, the fixed point of a multi-argument function that

is rank-increasing in one argument retains its rank-

related properties in other arguments.

Theorem 5.2 If F: K x L - K is rank-increasing

in its first argzment and rank-preserving in its sec-

ond, then there is a unique function, G: L -+ K =

@.F(t, S), returning the fixed point of F in its first

argument. Moreover, if F is rank-increasing in its sec-

ond argument, then G is rank-increasing.

Proof. SIietch: Construct G(S) such that G(S) =

F(G(S), S) by constructing an approximating chain

for G. Define GO(S) = Botzf, and, for i ~ 1, Gi(S) =

(F(Gi_l(S), S))[il. One can show by induction that

Gi(S) ai Gi+l (S), for all i.

Let G(S) = Ui Gi (S). Then

F(G(S)l S) = Ui(F(G(S)l S))[i]

= lJi(f’((G(s))[i- 1], S))[i]

= u, G,(S)

= G(S).

It is not difficult to show that G is unique and rank-

preserving (rank-increasing), if F is rank-preserving

(respectively, ranli-increasing) in its second argument.

❑

Lemma 5.3 Let G: K * L, and F:L -+ M. If at

least one of F and G is rank-increasing and the other

is rank-preserving, then F o G is rank-increasing.

6 Partial equivalence relations

over 11~

In this section we present the fundamental notions

involved in the construction of specialized partial

equivalence relations over Dm models of the untyped

lambda, calculus. As in Section 3, we assume that

Dm is constructed as the inverse limit of a continu-

ous functor If: CPOp -+ CPOP. For example, let A

be a fixed CPO representing “atomic” types, L a flat

domain corresponding to a set of ‘(labels”, and “+”

be the coalesced sum over cpo’s. Then a model con-

structed from the functor whose definition on objects

is H(D) = A + [L -+ D] + [D -+ D] , results in a cpo,

Dm, such that

D@& A+[L~Dm]+[Dm4Dm].

The following definition is taken from [Car89].
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Definition 6.1 A notion of approximation over a cpo 7 Models of F. with F-bounded
D is a family of continuous mappings (.)[nl: D a D

satisfying the following conditions for all d 6 D:

1. d[ol = 1.

~. (~[n])[na]= (d[m])[n] = d[min(m,n)].

9. d = ui d[i] .

4. Ifa GLUA, then forall O<i<w, a[il=a.

5. lf f ~ [D ~ D] and n s k, then f[~+ll(d[~l) =

f[n+l](q?l])

..

quant ificat ion

In this section we describe models of Fw with F-

bounded quantification whose types are elements of

an acceptable collection of per’s, We use the termi-

nology of [BMM90]. In particular, a model involves

a set X of kinds, which includes the collection T of

all types as well as the product K1 x Ii’z and function

kind lil =+ 1{2 for any 1{1, K2 E K. For the rest of this

section, let 7? be a fixed, acceptable set of per’s.

6. If f 6 [D a D] and n ~ k, then Definition 7.1 The kind structure, K, generated

(f[k+ll(%d))[nl = f[n+ll(d[nl). from R is the smallest collection of rank-ordered sets

7. ~f f c [D --+ D] then fi~+ll(d[~l) = fi~+ll(d) =
which contains 7? and is c!osed under ~ and x, where

(f (d[nl))[nl
these operations are as dejined in Section 4.

8. f = f[~+ll if and only if for all d c D, f (d) =

(f(d[n]))[m]

Since these properties were extracted from the Dm

model construction. The following proposition should

not come as a surprise.

Proposition 6.2 There exists a notion of approxima-

tion over Dm.

The following properties will be useful in several

technical proofs later on.

Proposition 6.3 Every notion of approximation

over D satisfies the following:

1. Ifn s m then d[nl c d[ml, where C is the ordering

in the cpo D.

2. If d G [D -+ D] and e e D then d(e) =

u, d[~+lj(e~~j).

Recall the definition of nice pers and acceptable col-

lections from Section 3. We define a notion of rank

on nice per’s as follows:

Definition 6.4 If R is a nice per, let R[nl =

{(dIn], e[nl)l(d, e) ~ R} = R n (Dn x Din). (Note R[n]

is nice.) Write R<. R’ iff R = R~nl.

Note that if R is nice, and R~n R’, then (d, e) & R’ im-

plies (d[~l, e[,,l) ~ R. Also, note that for all n, Ri~l an R

and R[nl an R[n+ll.

Proposition 6.5 If 1? is an acceptable collection of

nice per’s then 7? is a rank-ordered set.

Proof. Since each R E 1? is nice, elements in pairs

from R satisfy all of the properties in Definition 6.1.

Thus point 1 of the definition of rank-ordered sets

(Definition 4.1) follows from point 2 of Definition 6.1.

Point 2 of ranl<-ordering is satisfied by {(1, 1)}. The

last point in the definition of rank-ordering is the last

condition in the definition of an acceptable collection

of per’s (Definition 3.3). ■

It follows from our previous results that a kind

structure is a ccc. As in [BMM90], we will use the

kind structure over %? to provide the interpretation of

types, as well as all the higher kinds of a model of

Fw with F-bounded quantification. We will interpret

the set of all types as the set 7?. We already know by

the definition of an acceptable collection of per’s, that

7? is closed under our type operators: function space,

records, and F-bounded quantification.

We must show that the type operators themselves

are elements of the appropriate kinds. Before proving

this, we give precise definitions of each type operator.

In order to define higher-order F-bounclecl quantifica-

tion, we order the elements of each kind. For types,

the relevant order is the subtype ordering; for type

functions, we use the induced pointwise order, as in

the following definition.

Definition 7.2 Let K be the kind structure gener-

ated from 7?. If A,B ~ It, dejine A <R B iff

A ~ B. Suppose <I< and <L have been defined. For

F, G 6 [K ~ L], dejine F <[]{*L] G iflfor all A E K,

F(A) <L G(A). For (A, B), (C, D) c [K x L], define

(A, B) <[11.L] (C, D) i.fl A SI~ C and B <~ D.

The following lemma is easily provecl by induction

on the construction of kinds.

Lemma 7.3 Let K E K wilh A, B G A_. Then

We now define the type operators. Note that our

definition of F-bounded quantification follows the form

used in [BL90] for bounded quantification. It cliffers

from the definition using a simple intersection which

is more commonly used (see [Mitt36] for the more tra-

ditional definition). Our slightly more complex defini-

tion is necessary to make the function rank-increasing.
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Definition 7.4 1. If A, B c 7?, let

2.

3.

4.

A+ B = {(dje) EDW xD~lforal~(a,b) E

A,(d. a,e. b)e B}.

lf{l~, . . ..l~}QL and Al. A~~R,tfienlein1ei

{il:Al,..., i~:A~} = {(d, e) E D~ x D~lfor all

li,(d.ii,e.ii)~Ai}.

Let K6K. If AcIKti K] and Gs[K~T]

then let

b’s <: A(s) .G(s) = {(d, e) E DW x Dml for all

a, b E Dm, for all R <A> A(R) such that R E K,

(da,eb) E G(R)}.

If F E [K ~ I<] then let

lM.F(s) = the least A E K such that F(A) = A.

Note that simple bounded quantification can be ob-

tained from F-bounded by choosing the type bound to

be a constant function.

The following theorem shows that our model is

closed under the above constructions. Recall that

1<1 4 1{2 is the set of rank-increasing functions

from I{l to 1<2, which is a subset of the set of rank-

preserving functions from 1<1 to Kz.

Theorem 7.5 Let K be the kind structure generated

by K., and let K, L, and M E K, Then

1.

2.

3.

4.

H(X,Y)= X+ Ye[Tx T&T].

Let {1~, . . ..l~} ~ L. Then H(X1, . .,Xn) =

{l,:x,,..., Jn:xn}E[T~3 T].

If A = [K * K] and G 6 [K * T] then

H(A, G) = ‘ds <: A(s).G(s) E [[~< % K] X [~< +

T]4 T].

If F c [K x K’ ~ K], then H(S) = pt.F(t, S’) c

[K’ =$ K]. Moreover if F ~ [K x K’ ~

K] is rank-increasing in its first argument, then

H(S) = @. F(t, S) E [K’ a K].

Proof. We just include the proofs for the last two

cases in this conference paper.

3. Let H(A, G) = Vs <: A(s). G(s). Show

(~(A[i-1], G[;-l]))[i] = (~(A, G))[i]

Let (~, e) E (~(A[i-11, G[i-II))[iI and R <K A(R).

T1lus R[i-1] <K (A(R) )[i-1] = &I](&l]) by

Lemma 7,3 and the definition of rank-preserving func-

tion. As a result, for all a,b ~ D~, (cl a,e . b) E

G[;-l](R[i-1]) = (G(R[i-l]))[i-1] = (G(R) )[i-1] ~

G(R), since G is rank-preserving. Hence (d, e) c

(H(A, G))[~].

Let (cl, e) e (H(A, G))[il. Therefore for all a, b s

Dm and all R SK A(R), (d . a, e . b) E G(R). Let

R ~1{ A[i_ll(R) ~~~ A(R) and a, b ~ D~. Therefore

(a! a,e b) = ((a!. a)[i_ll, (e ~b)~i-lj) c (G(R) )~i-lj =

GIi_ll(R). Hence (d, e) c (17(AIi-1], G[i-l]))[i].

Thus H ~ [[K + 1<] X [K + T] 4 T]

4. Let F(T, S) E [K x K’ A K]. We already showed in

Lemma 5,2 that H(S) = pt.F(t, S) is rank-increasing,

and hence is in [1<’ ~ 1{]. Lemma 5.2 also gives the

result for F rank-increasing in its first argument and

rank-preserving in its second. a

Thus we may use the definitions given above of types

and functions from types to types in order to construct

a model of the u-order typed lambda calculus, FW,

with F-bounded quantification.

Theorem 7.6 Let K be the kind structure generated

by 7Z. If we interpret T, the set of types, as IL, and

the higher kinds as the appropriate elements of K, then

we obtain a mode! for the w-order typed lambda calcu -

lUS, Fu, with subtyping, F-bounded ~~antification, and

records. This model has the property that every rank-

increasing function on any kind has a unique fixed

point.

The proof combines arguments in [BL90] for subtyp-

ing with the fixed-point properties of rank-increasing

functions developed here, and direct verification of

conditions for F-bounded quantification. Details are

omitted from this conference paper.

Returning to the example presented in the intro-

duction, we illustrate how to define list: T a T such

that

list(t) = { head: unit -+ t

tail: unit + list(t)

empty?: unit -+ boo!

nzap: Vs.(t 4 s) + list(s)}

where unit represents a fixed type with one element

and bool is a fixed type with two (non-_L) elements.

Define F:(T~T)=+T~Tby

F(l)(t) = {

Because the record

is rank-increasing.

head: unit -+ t

tail: unit ~ l(t)

empty?: unit -+ bool

map: Vs. (t a s) -+ l(s)}

constructor is rank-increasing, F

Thus F has a least fixecl point,

list. Other highe~’-order domain equations are solved

similarly.

~ Acceptable collections of

per’s

In this section we show that two natural collections of

per’s are acceptable, thus giving us two models of FW

with F-bounded quantification. We begin by worliing

with CUA, the collection of all nice per’s, and then

work with a restriction of CUA which ensures that the

set of elements of any type forms a cpo.

324



Theorem 8.1 CUA is an acceptable collection of

per ‘s.

Proof. We only prove closure under F-bounded

quantification in this conference paper.

Let K be the kind structure generated from CUA and

let K 6 K. If A ~ [K ~ I{] and G c [K ~ CUA] then

recall Vs <: A(s) .G(s) =dej {(d, e) ~ Dm x Dm I for all

(ajb) E D@, for all R SK A(R) , (d. a,e b) E G(R)},

%Ve must show that B =&j Vs <: A(s).G(s) E CUA.

Clearly, B is a per and (J_, 1) G B. We must show

that it is closed under sup’s of increasing chains and

approximations.

Suppose (di) and (ei) are increasing chains in D

such that for all i ~ w, (di, ei) E B. Let d = Ui di

and e = Ui ei We must show (d, e) E B. That is,

we must show that for all R SK A(R), and all a, b c

D~, that (d . a, e . b) E G(R). We already know that

(di.a, e’b) E G(F) and G(R) ~ CUA. Thus (da,e.b) =

(Ui(dz” a), u~(e’ “ b)) = Ui(di ~a, et ~b) E G(R), where

the first equality holds since “.” is continuous. Thus

(d, e) E B.

The proof of closure under approximations is simi-

lar. ■

Thus we can use CUA as the basis for our first model

of Fu with F-bounded quantification. This model is

an extension of those in [Ama91] and [Car89].

Our next model is based on a construction in

[AP90].

Lemma 8.2 (A badi-Plotkin] For any appropriately

chosen continuous functor H over bifinite cpo ‘s, there

is an intrinsic preorder, <s, for each nice per, S, over

the

1.

2.

3.

corresponding limit, DW = H(DW ), such that

<s is the least compiete preorder containing ~

and S.

f s,$_T g imp!ieS that for all Z ~ \Sl, f($) <T

g(x). (Similarly for x and F-bounded quant.ijica-

tion.)

a <s b implies that for all i < W, a[i] <S1ll b[i].

An additional condition is needed to partially order

equivalence classes.

Definition 8.3 We say that a per, S, is antisymmet-

ric if for ail a, y ~ S, if z <s y <s x then (x, y) E S.

Define ACUA = {S E CUAIS is antisymmetric}.

The important fact about ACUA is that the set of

equivalence classes of each per in ACUA forms a cpo.

Let [Sl = {% E Dl(r, x) E S} and Q(S) = {[z]sIz E

ISI}. For z,y c ISI, define [X]S s [y]s iff z ss y.

Antisymmetry ensures that this is well-defined.

Theorem 8.4 (A badi-Plotkin) If S e ACUA, then

(Q(S), <) is an w-a~gebraic cpo.

Theorem 8.5 ACUA is an acceptable collection of

per’s.

We can add different conditions to CUA’S to get

other models as long as the resulting collection of per’s

is “acceptable.” For instance, [AP90], defines the col-

lection of “good” per’s to be CUA’S which also satisfy

“meet-closure” and “convexity” conditions. This set

also forms an acceptable collection of per’s. For any

such condition, we obtain a model with the properties

stated in Theorem 7.6.

9 Summary

In this paper, we have described a general tech-

nique for constructing per models of FW (higher-

order lambda calculus) that support function spaces,

records, and higher-ordered F-bounded polymor-

phism, and that also contain solutions to all non-

trivial recursive domain equations. “Acceptable” col-

lections of “nice” per’s, built over a model of Dm,

serve as the collection of types of the model. Key

properties in the definition of “acceptable” collections

of per’s are that they are closed under the type opera-

tions of the model, and they satisfy a closure condition

relating to sup’s of “approximation” chains of per’s.

The approximation ordering is derived from the ranks

of elements in the Dm construction. The closure con-

dition on “approximation” chains enables the solution

of recursive domain equations.

Since the construction is general, different models

can be built from different acceptable collections of

per’s. The first model considered extended that pre-

sented (independently) by Amadio [Ama91] and Car-

done [Car89] by adding functions of higher kinds and

allowing F-bounded quantification over elements of

higher kinds, while still providing solutions to all non-

trivial (higher-order) domain equations.

The types in the second model are similar to those

in the model of Abadi and Plotkin [AP90], but the set

of functions from kinds to kinds is larger (we do not

restrict to realizable functors) than that given in their

model. A major contribution of the Abadi-Plotkin

model is that all types are cpo’s, presenting the possi-

bility of reasoning by fixed point induction. By keep-

ing their type structure, but allowing a larger set, of

functions from kinds to kinds, we were able to solve do-

main equations involving both simple and F-bounded

quantification, something which does not seem to be

possible in Abadi and Plotkin’s original model.

A side issue that we have not explored is the connec-

tion between an F-bounded type VX <: F(X). B(X)

and the type VG <: F. B( f ix G) defined using a fixed-

point operator in place of F-bounded quantification.

Since both type expressions make sense in our model,

provided we interpret ‘(VG <: F“ as quantifying over
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rank-increasing functions, and both seem to serve the

same purpose in practical examples, it would be inter-

esting to explore their semantic connections.

A clmowledgements: Thanks to Gordon Plotkin, Peter

Freyd and Martin Abadi for comparative comments

and explanation of their related work, and to Luca

Cardelli and other participants in the 1991 Stanford

“subtypes seminar.”
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