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Abstract. A contract signing protocol lets two parties exchange digital signa-
tures on a pre-agreed tex@ptimisticcontract signing protocols enable the sign-
ers to do so without invoking a trusted third party. However, an adjudicating third
party remains available should one or both signers seek timely resolution. We an-
alyze optimistic contract signing protocols using a game-theoretic approach and
prove a fundamental impossibility result: in any fair, optimistic, timely protocol,
an optimistic player yields an advantage to the opponent. The proof relies on a
careful characterization of optimistic play that postpones communication to the
third party. Since advantage cannot be completely eliminated from optimistic pro-
tocols, we argue that the strongest property attainable is the absepcvalble
advantagei.e., abuse-freeness in the sense of Garay-Jakobsson-MacKenzie.

1 Introduction

A variety of contract signing protocols have been proposed in the literature, includ-
ing gradual-release two-party protocols [5, 7,12] and fixed-round protocols that rely
on an adjudicating “trusted third party” [2, 3, 18, 23, 26]. In this paper, we focus on
fixed-round protocols that use a trusted third party optimistically, meaning that when
all goes well, the third party is not needed. The reason for designing optimistic pro-
tocols is that if a protocol is widely or frequently used by many pairs of signers, the
third party may become a performance bottleneck. Depending on the context, seeking
resolution through the third party may delay termination, incur financial costs, or raise
privacy concerns. Obviously, the value of an optimistic protocol, as opposed to one that
requires a third party signature on every transaction, lies in the frequency with which
“optimistic” signers can complete the protocol without using the third party.

Some useful properties of contract signing protocoldaireess which means that
either both parties get a signed contract, or neither doesiraatihesswhich generally
means that each party has some recourse to avoid unbounded waiting. The reason for
using a trusted third party in fixed-round protocols is a basic limitation [14, 24] related
to the well-known impossibility of distributed consensus in the presence of faults [17]:
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no fixed-length two-party protocol can be fair. Although there is a trivial protocol with
a trusted third party, in which both signers always send their signatures directly to it,
protocols that are fair, timely, and usefully minimize demands on the third party have
proven subtle to design and verify.

This paper refines previous models, formalizes properties from the literature on
fixed-round two-party contract signing protocols, and establishes relationships between
them. We use the set-of-traces semantics for protocols, defining each instance of the
protocol as the set of all possible execution traces arranged in a tree. Our chosen nota-
tion is multiset rewriting [10], but the results would hold for other formalisms with the
same basic execution model.

Model for optimismOne modeling innovation is amntimednondeterministic setting

that provides a set-of-traces semantics for optimism. Intuitively, optimistic behavior in
contract signing is easily described as a temporal concept: an optimistic signer is one
who waits for some period of time before contacting the trusted third party. If Alice is
optimistic, and Bob chooses to continue the protocol by responding, then Alice waits
for Bob’s message rather than contact the third party. Since the value of an optimistic
protocol lies in what it offers to an optimistic player, we evaluate protocols subject to
the assumption that one of the players follows an optimistic strategy. As a direct way of
mathematically characterizing optimistic play, we allow an optimistic player to give his
opponent the chance to signal (out of band) whether to wait for a message. This gives
us a relatively easy way to define the set of traces associated with an optimistic signer,
while staying within the traditional nondeterministic, untimed setting.

Impossibility resultin evaluating protocol performance for optimistic players, we prove
that in every fair, timely protocol, an optimistic player suffers a disadvantage against a
strategic adversary. The importance of this result is that optimistic protocols are only
useful to the extent that signers may complete the protocol optimistically without con-
tacting the third party. In basic terms, our theorem shows that to whatever degree a
protocol allows signers to avoid the third party, the protocol proportionally gives one
signer unilateral control over the outcome of the protocol.

To illustrate by example, consider an online stock trading protocol with signed con-
tracts for each trade. Suppose the broker starts the protocol, sending her commitment to
sell stock to the buyer at a specific price, and the buyer responds with his commitment.
To ensure timely termination, the broker also enjoys the ability to abort the exchange by
contacting the trusted third party (TTP) if the buyer has not responded. Once the buyer
commits to the purchase, he cannot use the committed funds for other purposes. Even
if he has the option to contact the TTP immediately, an optimistic buyer will wait for
some period of time for the broker to respond, hoping to resolve the transaction amica-
bly and avoid the extra cost or potential delay associated with contacting the TTP. This
waiting period may give the broker a useful window of opportunity. Once she has the
buyer's commitment, the broker can wait to see if shares are available from a selling
customer at a matching or lower price. The longer the buyer is inclined to wait, the
greater chance the broker has to pair trades at a profit. If the broker finds the contract
unprofitable, she can abort the transaction by falsely claiming to the TTP that the buyer
has not responded. This broker strategy succeeds in proportion to the time that the buyer
optimistically waits for the broker to continue the protocol; this time interval, if known



exactly or approximately, gives the broker a period where she can degild¢erally
whether to abort or complete the exchange.

Abuse-freenes&ince advantage against an optimistic player cannot be eliminated, the
most a protocol can do is prevent the opponent fiaoving that he has an advan-
tage. For example, even though the broker in our example has control over deciding
whether the sale happens, the protocol may still be able to prevent her from showing
the buyer’s commitment to other parties. Such protocols have been abllisd-freen

the literature [18]. We use a formal representation of knowledge derived from epistemic
logic [19, 16] to formalize the “ability to prove” and analyze abuse-freeness as the lack
of provable advantage

The paper is organized as follows. In section 2, we briefly summarize our semantic
framework and define the class of two-party contract signing protocols with trusted
third party. In section 3, we formalize protocol properties such as fairness, optimism,
and timeliness. In section 4, we formalize optimistic behavior of a participant, and show
that the optimistic participant is at a disadvantage in any fair, optimistic, timely proto-
col. In section 5, we formalize provable advantage and abuse-freeness. Related work is
discussed in section 6. We summarize our results in section 7.
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nerability of optimistic players in fair exchange. We also thank I. Cervesato, S. Even,
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helpful discussions.

2 Model

2.1 Multiset rewriting formalism

Our protocol formalism is multiset rewriting with existential quantification, MSR [10],
which can be seen as an extension of some standard models of competatjonul-

tiset transformation [4] and chemical abstract machine [6]. This formalism faithfully
expresses the underlying assumptions of the untimed, nondeterministic, asynchronous
model. A protocol definition in MSR defines tket of all possible execution tracks

any instance of the protocol. A number of other formalisms that do so, such as [1, 15]
and others, would have suited our purposes as well, and in this sense our main results
are independent of the MSR formalism. The synchronous model with a global clock
does not seem appropriate for our investigation because fixed-round contract signing
protocols in the literature [2, 3, 18, 23, 26] do not rely on a global clock.

MSR syntax involves terms, facts, and rules. To specify a protocol, first choose a
vocabulary, ofirst-order signatureWe assume that our vocabulary contains some basic
sorts such agublic_key for public keys andnssg for protocol messages. As usual, the
termsover a signature are the well-formed expressions produced by applying functions
to arguments of the correct sort.fActis a first-order atomic formula over the chosen
signature, without free variables. Therefore, a fact is the result of applying a predicate
symbol to ground terms of the correct sortsiateis a finite multiset of facts.

A state transition is aule written using two multisets of first-order atomic formulas
and existential quantification, in the syntactic foFin . . ., F, — 3z ... 32;.G, ...



G . The meaning of this rule is that if some st&teontains facts obtained by a ground
substitutiorns from first-order atomic formulasy, . . . , F},, then one possible next state
is the states™* that is similar taS, but with facts obtained by from Fi, . . ., Fj, removed
and facts obtained by from Gy, . .., G, added, wherey, ..., z; are replaced by new
symbols. If there are free variables in the rdllg . . ., Fj, — 3z, ... 3z;.G1,. ..
G, these are treated as universally quantified throughout the rule. In an application of
a rule, these variables may be replaced by any ground terms.

As an example, consider stat€(f(a)), P(b)} and ruleP(z) — 3z.Q(f(z), 2).
The next state is obtained by instantiating this rul®{g (a)) — 32.Q(f(f(a)), 2).
Applying the rule, we choose a new valufor z and replacé(f(a)) by Q(f(f(a)), ¢),
obtaining the new statgQ (f(f(a)), c), P(b)}.

Timer signalsin our model, timers are interpretedlasal signals, used by participants

to decide when to quit waiting for a message from the other party in the protocol.
They do not refer to any global time or imply synchronicity. Timers are formalized by
binarytimer predicateswhose first argumentis of the sgriblic_key and identifies the
participant who receives its signal, while the second argument is one of the following
three constants of the sditner_state: unset, set, andtimed_out.

CryptographyContract signing protocols usually employ cryptographic primitives. In
general, the purpose of cryptography is to provide messages that are meaningful to
some parties, but not subject to arbitrary (non-polynomial-time) computation by others.
For example, encryption provides messages that are meaningful to any recipient with
the decryption key, but not subject to decryption by any agent who does not possess the
decryption key. The logic-based formalism of MSR cannot capture subtle distinctions
between, for example, functions computable with high probability and functions com-
putable with low or negligible probability. Instead, we must model functions as either
feasibly computable, or not feasibly computable.

For each operation used in a protocol, we assume there is some MSR characteriza-
tion of its computability properties. To give a concrete framework for presenting these
rules, let us assume some set of predicites {P*|« is any sor}. Since the sort
is determined by the sort of the argumentd®, we will not write the sort when it is
either irrelevant, or clear from context. Intuitively, a rule of the form

P(Sl),...,P(Sm),Fl,...,Fj —)P(tl),...,P(tn),Fl,...,Fj

means that if an agent possesses daja. ., s,,, then under conditions specified by
facts F, ..., F}, it is computationally feasible for him to also leatn,. .., ¢,. For
example, here are the familiar “Dolev-Yao” [13, 25] rules given in [10]:

P(z), P(k) — P(encryptk,x))
P(encryptk,z)), P(k~!), Keypai(k, k=) — P(z)

In the remainder of the paper, we assume some fixed tHeosges®f rules that
characterize the computationally feasible operations on messages. As a disclaimer, we
emphasize that the results in this paper are accurate statements about a protocol using
cryptographic primitives only to the extent thRbssessiccurately characterizes the
computationally feasible operations. In particular, protocols that distinguish between



low-order polynomial computation and high-order polynomial computation, or rely on
probabilistic operations in some essential way, may fall outside the scope of our analysis
and may conceivably violate some of our results.

2.2 Protocol model

We say that a protocaP is a contract signing protocaoif it involves three parties))
(originator),R (responder), and (trusted third party), and the goal of the protocol is to
enableD (respectivelyR) to obtainR’s signature (respectivel{)’s signature) on some
pre-agreed text. For brevity, we will s&gnatureas a shorthand for “signature on the
pre-agreed text,” use ternt®ntract signingand signature exchangimterchangeably,
and refer taO and R assigners We specify the protocol by a set of MSR rules, which
we call atheory Any sequence of rules consistent with the theory corresponds to a
valid execution trace of a protocol instance. If execution traces are naturally arranged in
trees, then the MSR theory defines the set of all possible execution traces as a forest of
trees. To obtain the impossibility result, we choasgcontract signing protocd? and
fix it. We assume that the contract text for each instance contains a unique identifier,
and consider only a single instancefof

A protocol theoryP for the given protocol is the disjoint union of six theories:
07 R, TO, Otimeouts; Rtimeoutsu and Ttimeouts- We will refer to 07 R, TO asrole
theories Each role theory specifies one of the protocol roles by giving a finite list of
role state predicatethat define the internal states of the participant playing that role and
the rules for advancing from state to state. Role theory also contains another, disjoint
list of timer predicategdescribing the rules for the participant’s timers. A participant
may advance his state by “looking” at the state of his timers or the netierka(timer
or a network predicate appears on the left side of the rule). He may also set his timer by
changing the timer’s state fronmset to set, but he may not change it tomed_out.

A timeout ruleis a rule of the formZ(k, set) — Z(k, timed_out), wherek is the
public key of the participant associated with tinferin the protocol theornyQ¢imeouts:
Riimeouts: aNdTiimeouts are the sets aimeout rulesfor all timers of O, R, andT,
respectively. For simplicity, we will combine the role theory and the timeoufs, aind
Ca” |t T - TO @] Ttimeouts-

Communicationi-ollowing the standard assumption that the adversary controls the net-
work and records all messages, we model communication bet@eed R by a unary
network predicateV whose argument is of the sortssg. Once a factV(m) for some

m is added to the state, it is never removed. As in contract signing protocols in the
literature [3, 18], we assume that channels between signer§ and inaccessible to

the adversary and separate from the network betweand R (by contrast, [20] con-
siders security of contract signing protocols under relaxed assumptions about channel
security). Channels between signers dhare modeled by ternafyT' Pchannel pred-

icates whose arguments are of the spuiblic_key, public_key andmssg, respectively.

For exampletc, (k,, k:, m) models the channel betweéhandT carrying message:.

Threat modelWe are interested in guarantees provided by contract signing protocols
when one of the signers misbehaves in an arbitrary Waig assumed to be honest.
We will call the misbehaving signer tlagversary The adversary does not necessarily



follow the protocol, and may ignore the state of the timers or stop prematurely. He may
gather messages from the network, store them, decompose them into fragments and
construct new messages from the fragments. These abilities are formalized by theories
O¢nreat aNdRyinreat CONtainingdishonest rulesor O and R, respectively. Each rule
models a particular dishonest operation.

A protocol definitionconsists of the protocol theol, theorie¢hreat aNARtnreat,
Possestheory which models computationally feasible operations on messages, and the
initial set of factsS, which contains the initial states of all participants and timers.
Formal definition of protocol theory can be found in appendix A. Non-probabilistic
fixed-round contract signing protocols in the literature such as [3, 18] can all be defined
in this way.

2.3 Traces and continuation trees

A stateis a finite multiset of facts. For example, the initial statemay include facts
Oo(ko, k1, k-, p) and Ro(k.., k1, k,, p) modeling the initial states of the originator
and the responder in protogal each knows his own public and private keys, and the
opponent’s public key. Aracefrom stateS is a chain of nodes, with the root labeled
by S, each node labeled by a state, and each edge labeled by a(trip)€). Here

Q is one Of{O, Rn T, Otimeoutsu Rtimeoutsu Othreatu Rthreat}r t e Q is a state
transition rule, and is a ground substitution. Ift, o, Q) labels the edge from a node
labeled byS; to a node labeled by, it must be the case that the applicationt ¢
S1o producesSs. Any state labeling a node in this chain is said tadechable from S
We will simply say that a state igeachabléf it is reachable from the initial stats,.

An edge is aishonest move @ if it is labeled by somé € O¢preat- O is said be
honest in the tracé there are no dishonest moves@©fin the trace. IfS is reachable
by a trace in whiclO is honest, thel§ is reachable by honeg?. The definitions forR
are symmetric. Assuming that dishonest participants, if any, make only a finite number
of dishonest moves, lebntinuation tree-tr at stateS be the finite tree of all possible
traces fromS. This tree can be thought of as a game tree that represents the complete
set of possible plays. Letr|o) be the tree obtained froatr by removing all edges in
O U Otnreat along with their descendants. Intuitivetyy|o; is the set of all possible
plays if O stops participating in the protocol. Definition @) is symmetric. We will
say that any edgein ctr that is labeled by a rule i® or O¢preat (respectivelyR or
Rinreat), is underO’s control (respectivelyR’s control). To model optimism of honest
signers (see section 4), we will also assume that some ed@asiaouts U Rtimeouts
are under control of the dishonest participant.

3 Properties of Contract Signing Protocols

MSR definition of the protocol defines the set of all possible execution traces in the
form of a continuation tree. To define protocol properties such as fairness, optimism,
timeliness, and advantage, we view the continuation tree as a game tree containing all
possible plays, and adapt the notion of strategy from classical game theory.



For the remainder of the paper, we will assume that only one of the signers is honest.
We will use A to refer to the honest signere., A refers to eitheO, or R, depending
on which of them is honest. We'll use to refer to the other, dishonest signer.

3.1 Strategies

Following [11], we formalize strategies as truncated continuation trees. Given a set of
edgesE, let ctr\E be the tree obtained from continuation tree by removing the
edges inE along with their descendants. Intuitively, if is a subset of edges afr
underA'’s control, thenctr\ E is the set of possible plays that resultdfdoes not use
transitions inE. Similarly, we can definetr 4\ E (recall thatctr4; is the tree of all

plays if A stops participating in the protocol).

Definition 1. Let S be a reachable state and letr be the continuation tree frorfi.
LetX C {A,B,T}.

1. If E is a subset of edges afr such that each edge iff is under the control of some
p € X, thenctr\E is said to be astrategy for the coalitiock . If there are no dishonest
moves of any € X in ctr\ E, thencir\ E is said to be arhonest strategy

2. If E'is a subset of edges ofr4; such that each edge iy is under the control of
somep € X, thenctr;4)\ E is said to be am-silent strategy for the coalitioX .

This definition corresponds to the standard game-theoretic notion of strdfegy.
represents the plays that the coalitifnconsiders unfavorable, and-\ E represents
the continuations thaX” prefers. At any given stat&’ in ctr\ E, an edge coming out of
the node labeled b’ indicates the next move foX in accordance with the strategy
ctr\E. If the edge is not undek’s control, then the next move foX is idling, i.e.,
waiting for others to move.

To define fairness and other properties, we are interested in strategies in which the
coalition X drives the protocol to a state in which some property holds:

Definition 2. If there is a strategytr\ E from S for coalition X such that all leaf nodes
of ctr\ E are labeled by stateS’ that satisfy some property(S’), thenX has a strategy
from S to reach a state in which holds

The definition forA-silent strategies is similar.

Since the players’ objective in the game is to obtain each other’s signatures, we are
interested in the states whedeossesseB’s signature and the ones whdBgossesses
A’s signature. Formallyi3 possessesome termu in a reachable statgif « is derivable,
using the rules iPossessfrom the terms inB’s internal role state predicat®; in S
andB’s additional memory it given to him by the threat model. Possession is always
monotonic. The definition for is symmetric, except that the threat model does not
have to be considered.

Definition 3. Ifthere is a strategy for coalitioX such that all leaf nodes in the strategy
are labeled by states in whichh possesses8’s signature, thenX has a strategy from
S to give A B’s signatureMoreover, ifX = {A}, thenA is said to have atrategy to
obtainB’s signature



3.2 Fairness, optimism, timeliness, and advantage

We now use the notion of strategy to define what it means for a contract signing pro-
tocol to be fair, optimistic, and timely, and what it means for a participant to enjoy an
advantage. The definitions are quite subtle. For example, we need to draw the distinc-
tion between atrategyfor achieving some outcome, angbassibilitythat the outcome

will happen under the right circumstances. This requires introduction of a four-valued
variable to characterize the degree of each player’s control over the protocol game.

Fairness.Fairness is the basic symmetry property of an exchange protocol. There is a
known impossibility result [14, 24] demonstrating that no deterministic two-party pro-
tocol can be fair. Therefore, fairness requires introduction of at least one other party,
e.g, the trusted third part{’. Our definition is equivalent to a common definition of
fairness in terms of state reachability [18, 11]. Intuitively, a protocol is fair for the hon-
est signer4, if, wheneverB has obtainedd’s signature,A has a strategy in coalition

with T' to obtainB’s signature.

Definition 4. A protocol isfair for honestA if, for each stateS reachable by honest
A such thatB possessed’s signature inS, the coalition ofA and T has an honest
strategy fromS to give A B’s signature for all bounds on the number of moves that a
dishonesB makes.

Advantagelntuitively, fairness says that either both players obtain what they want,
or neither does. This is not always sufficient, however. A player’s ability to decide
unilaterallywhetherthe transaction happens or not can be of great value in scenarios
where resource commitment is important, such as online trading and auction bidding.
To characterize the degree to which each participant controls the outcome of the
protocol in a given state, we now define a pair of valu€s 4, rslv g associated with
each reachable state. We are interested in what a particigaydo in the worse pos-
sible case. Therefore, despite our assumption thi honest, we will consided’s
dishonest moves when reasoning ahdistability to control the outcome.

Definition 5. Definerslv 4 for any reachable stat8 as follows:
rslv4(S) = 2, if A has a strategy to obtai®’s signature for all bounds on
the number of dishonest movesf
=1, if rslva(S) # 2, but A has aB-silent strategy to reach state
S’ such thatrsiv 4 (S') = 2,
=1,if rslva(S) # {1,2}, but there is states’ reachable fromS
such thatrslv4(S') = 2, and no transition on the — S’

path is inB U Bipreat,
= 0, otherwise.
The strategies need not be honest. Definitionstfg is symmetric.

Intuitively, rslv g (S) = 2 if B can obtaind’s signature no matter what does,1
if B can obtaind’s signature provided. stops communicating and remains sile}ntf
there is a possibility (but no strategy) fBrto obtainA’s signature whent is silent, and
0 means thaB cannot obtaind’s signature withoutd’s involvement. The difference
betweenl and is essential. For exampleslvp(S) = 1 if B can obtaind’s signature



by sending a messageTbas long asA is silent, whilerslv g (S) = % if Ais silent, but
some previously sent message is already on the chanfiglaod the outcome of the
protocol depends on the race condition between this messagé'aintessage.

Given an initial states,, we assume thatslv 4(Sp) = rslvg(Sp) = 0. The signa-
ture exchange problem is not meaningful otherwise.

Definition 6. B has anabort strategyn S if B has a strategy to reach a staf¥ such
thatrslv 4(S’) = 0. B has aresolve strategin S if B has a strategy to reach a state
S" such thatrslv g (S") = 2. B has anadvantagén S if B has both an abort strategy
and a resolve strategy.

If B has an advantage #, thenA does not have an advantagesinand vice versa.

Optimism.Intuitively, a protocol is optimistic if it enables two honest parties to ex-
change signatures without involving the trusted third party, assuming they do not time
out waiting for each other's messages. Such protocols potentially provide a practical
means of fair exchange between mistrusting agents without relying on a third party in
most instances.

We say thatd does not send a messageTtan the transition fromS to S’ if (i)
the transition is an application of a rule A U A ¢nhreat, @nd (ii) no fact created by the
transition matches a term in the left hand side of a rul®.in

Definition 7. A fair protocolisoptimisticfor B if, assuming4 is honest and controls

the timeouts of botll and B, B has an honest strategy &} such that

1) no messages are sent by any signef'to

2) every leaf node is labeled by a state in whiglpossessed’s signature;

3) there is a trace fron%, to a leaf node that involves only the transitionsAru B.
Any trace in this strategy is aaptimistic trace Definition of optimistic for A is

symmetric. A protocol is optimistic if it is optimistic for both signers.

Our definition of optimism implies that the protocol specification does not permit
honest participants to conta€t nondeterministicallyi.e., every rule that results in a
message sent B is conditional on some timer timing out.

TimelinessWe now formalize the following intuition [3]: “one player cannot force the
other to wait for any length of time — a fair and timely termination can always be forced
by contacting the third party.” Timeliness has been emphasized by the designers of fair
exchange protocols, since it is essential for practical use. In any state of the protocol,
each participant should be able to terminate the exchange unilaterally. If he has not been
able to obtain the other’s signature, he can always reach a terminal state where he can
stop and be sure that the opponent will not be able to obtain his signature, either.

Definition 8. A fair, optimistic protocol istimely for B if in every state on an opti-
mistic traceB has anA-silent strategy to reach a stat® such thatrslv 4(S’) = 0 or
rslvp(S') = 2. A protocol is timely if it is timely for both signers.

To illustrate the importance of timeliness, consider a protocol thaitismely, e.g,
Boyd-Foo protocol [8]. In this protocol, originator releases some information that can
be used by respondét to obtainO’s signature from" at some later point. IR stops



communicating is at his mercy. He may have to wait, possibly forever, before he
learns whether the exchange has been successful.

For the rest of this paper, we assume that the protocol is fair, timely, and optimistic
for both signers.

4 Impossibility of Balance in Optimistic Protocols

As explained in the introduction, optimistic contract signing protocols are only valuable
insofar as they offer benefit to an optimistic participant. We say that the honest partici-
pantA is optimisticif, in any state where he is permitted by the protocol specification
to contact trusted third part¥/, he waits forB’s response before contactifig

The propensity of the optimistic participant to wait for the opponent’s response be-
fore contacting’ can be exploited by the opponent. Recall that definition 7 implies that
an honest participant only contadsafter some timer times out. We use this to model
optimism of A by giving B the ability to schedule the timeout rules 4fby an “out-
of-band” signal. In any implementation of the protocBldoes not actually schedule
A’s timers. This is simply a technical device to restrict the set of execution traces under
consideration to those that may occur when one of the participants is optimistic.

Definition 6 can thus be extended to cases whkie optimistic by permittingB’s
strategy to include control over timeouts dfand B. If B does not have a strategy
for reaching a state where he has an advantage over an optirhjstte say that the
protocol isbalancedfor an optimisticA. As we will now show, balance cannot be
achieved by any fair, timely, optimistic protocol.

The first observation underlying our proof is that, in the interleaving semantics of
concurrency used by our model, the order of application of state transition rules that
affect independent parts of the system can be commuted. The second observation is that
the strategies available to the dishonest player are not negatively affected by messages
sent to him by the honest player or by the honest player’s timeouts because the dishonest
player is free to ignore both.

We start with an auxiliary proposition, which follows directly from definition 5.

Proposition 1. LetS — S’ be a state transitiomotin B U Bipreat- If rslvp(S) = 2,
thenrslvg(S") = 2. If rslv 4(S) = 0, thenrslv 4(S’) = 0.

Proposition 1 implies that ifslv 4(S) = 0 andrsiv 4(S’) > 0, then theS — S’
transition must be iB U Bipreat. Similarly, if rslvg (S) = 0 andrslvg(S') > 0, then
S — S’isin A U Atnreat. Intuitively, a player acquires some degree of control over
the outcome of the protocol for the first time only because of the other player’s move.
Just like we definedtr 4 to be the tree obtained froatr by removing all edges in
A U A¢hreat, We definectr 4, to be the tree obtained frontr by removing all edges
iN AU Athreat U Atimeouts- If E is a selection of edges itr( 4, underB’s control,
thenctr 44\ E is a strategy available B if A remains silenandno timers time out.
We will call such a strategweak A-silent strategy

Proposition 2. LetS — S’ be a state transition it tjmeouts- B has a weakd-silent
abort [resolve] strategy atS’ if and only if B has a weakA-silent abort [resolve]
strategy atS.



The proof of proposition 2 relies on the fact that the moveB @ndT that consti-
tute a weak4-silent strategy cannot depend on the statd'sftimers.

Proposition 3. B has anA-silent abort [resolve] strategy a$ if and only if B has a
weakA-silent abort [resolve] strategy a$.

In the proof, we use proposition 2 to construct assilent strategy from a weak
A-silent strategy by induction on the height of the continuation tree. Proposition 3 es-
tablishes that the strategies available to the dishonest player are not negatively affected
by the honest player’s timeouts. We now show that they are not affected by the honest
player's messages to the dishonest player.

Lemmal. LetS — S’ be a transition inA U Ainreat- If B has anA-silent abort
[resolve] strategy inS, and A does not send a messagelton the S — S’ transition,
thenB has anA-silent abort [resolve] strategy i$’.

Proof. The proof, illustrating our general proof techniques, is in appendix B.

We use lemma 1 to show that for each strategy conditionad o@maining silent,
there is an equivalent strategy in whighis not silent, butB simply ignores4’s mes-
sages. The strategy works as long4adoes not try to talk td".

Lemma 2. If B has anA-silent abort [resolve] strategy a$, and A does not send any
messages t@, thenB has an abort [resolve] strategy.

Proof. (Omitted for space reasons).

We now show that a strategy conditional dnnot talking to7" works against an
optimistic A since he waits foB’s messages instead of trying to contéct

Lemma 3. LetS be a state that does not contati{k, timed_-out) for any timer pred-
icate Z. If B has anA-silent abort [resolve] strategy in stat§, thenB has an abort
[resolve] strategy against optimistid in S.

Proof. (Sketch) Definition 7 implies that an optimisti contactsI” only when some
timer times out.B controls the timeouts of an optimisti¢. HenceB can preventd
from sending any messagefo We then apply lemma 2.

Theorem 1 (Impossibility of Balance).Let P be a fair, optimistic, timely protocol
between signersl and B. If A is optimistic, then there is a non-initial sta such
that B has an advantage against an optimisticat S*.

Proof. (Sketch) By definition 7, there is an optimistic trace from the initial state
which contains only the transitions i U B and leads t&’ such thatrslv g (S’) = 2.
Consider the first transitiofl — S* on this trace such thatlv g (S) = 0, rslvg(S*) >
0. Proposition 1 implies that this must be a transitiotAiU A ¢preat- By definition 7,
A does not send a messagélt@anywhere in the trace, including this transition.

By definition 8,B has am-silent strategy to reach a staf€ such thatslv 4 (S") =
0 orrslug(S") = 2. Sincerslvg(S) = 0, it must be the case thatlv4(S") =0, i.e,,



B has anA-silent abort strategy. By lemma B, has anA-silent abort strategy i*.
Therefore, by lemma 33 has an abort strategy against optimistiin S*.

By definition 7, B has a strategy af, to obtain A’s signature since3 controls
the timeouts ofdA and B. BecauseS* is reached a part of this strategy (recall that
the S — S* transition is on an optimistic tracelg also has a strategy to obtaitis
signature a5*. HenceB has a resolve strategy against optimistiay S*. SinceB has
both abort and resolve strategiéshas an advantage against an optimidtio S*. O

We’'d like to emphasize that the result of theorem masa trivial “second-mover”
advantageA and B are not protocol roles, but simply notation for the honest and dis-
honest participant, respectively. An optimistic participantis at a disadvaregaelless
of the role he plays in the protocol. Even if he chooses the responder role, he will lose
control over the outcome of the protocol at some point as long as he remains optimistic.
For example, in Garagt al's abuse-free contract signing protocol [18], the originator
enjoys the advantage over the responder, even though the responder is the first to receive
information that potentially enables him to obtain the originator’s signature.

5 Abuse-Free Protocols and Provable Advantage

Theorem 1 states that any fair, optimistic, timely protocol necessarily provides a dis-
honest participant with control over the outcome against an optimistic opponent. The
problem may be alleviated by ensuring that no participanpcaveto an outside party

that he controls the outcome. Such protocols have been adilesk-freen the litera-

ture [18], and concrete protocols [3, 18] have been constructed using zero-knowledge
cryptographic techniques such as verifiable signature escrows and designated-verifier
proofs. To formalize “ability to prove,” we rely on a knowledge-theoretic framework
borrowed from epistemic logic [19, 16].

Reasoning about knowledg@iven a participant” and a reachable statg let P’s
viewof S be the submultiset &f containing all the facts corresponding to role states in
the role theory ofP, timers of P and messages af's channels to other participants.
Intuitively, this set represents all th&t may observe ir§. Given a tracer from the
initial stateSy to S, construct a new labeled chain by relabeling the nodeB'bywiew
of S. Relabel the edges not associated wittby e, which indicates that somebody
other thanP may have moved. SincE cannot observe other players’ moves, insert
an ¢ between any two consecutive edges labeled by ruleB ¢duplicate the node
connecting these edges) as well as at the start and end of the trace. If there are two
or more consecutive edges, butP’s view does not change when moving across one
of them, then delete that edge. The resulting chalins called P’s observatiorof the
protocol,Obsv p (S, tr). Intuitively, P's observation is jusP’s own history in the trace.

In the spirit of algorithmic knowledge [16,22], observatio®svp (S, tr) and
Obsvp(S*, tr*) are equivalent if they are computationally indistinguishablé’by

Definition 9. Given a tracer from S, ending inS, we say thaf” knowsin (.S, ¢r) that
logical formulaF is true if
i) Flistrue inS, and



ii) for each tracetr* from Sy to S* such thatObsv p(S*, tr*) is indistinguishable by
P from Obsvp(S, tr), F is true in.S*.

Intuitively, P knowsthat F is true if F' holds in all possible executions of the pro-
tocol consistent witlP’s observations.

Abuse-freenes3o reason about abuse-freeness, we augment the protocol with an out-
side partyC and consider his knowledge at different stages of the protétaoes
not possess the signers’ or the third party’s private keys, and obtains all of his evidence
about the protocol from one of the protocol participaatg, B, who forwards arbitrary
messages t@’ in an attempt to caus€ to knowthat A is participating in the protocol.

Definition 10. B hasprovable advantagegainstA in statesS if

i) B has an advantage ovet at S, and

if) B can provide information, derived from the protocol execution uf,tthat causes
C'to knowthat A is participating in the protocol.

A protocol isabuse-fredor A if B has no provable advantage in any reachable state.

Definition 10 is weaker than one might expectBlifenjoys an advantage &t then
in order for B to enjoy provable advantag®, merely has to provel’s participation
in the protocol.B may succeed even if his protocol with is already over. But since
we are concerned with making the protocol as safe as possible for an optifyigtie
weaker definition is acceptable since it makes abuse-freeness (its negation) stronger.
Combining theorem 1 and definition 10, we obtain

Corollary 1. Inany fair, optimistic, timely, abuse-free protocol betwetand B, there
is a tracetr from Sy to stateS such that

i) B has an advantage over optimisticat S,

i) C does notknow S, tr) that A is participating in the protocol,e., there is another
tracetr* from S, to someS* such thatObsv(S*, tr*) is indistinguishable by from
Obsvc (S, tr), and A is not participating intr*.

6 Related work

Previous game-theoretic approaches to the study of fair exchange [11, 20, 21] focused
on formalizing fairness for the strongest possible honest player without taking optimism
into account. In [20], fairness is formalized as the existence of a defense strategy for the
honest player, which is not sufficient if the honest player faces nondeterministic choices
in the protocol, as is the case in the abuse-free protocol of Gdraly[18]. Another
game-theoretic model was developed in [9], but it focuses mainly on economic equilib-
riain fair exchange. Cryptographic proofs of correctness by protocol designers [2, 3, 18]
focus on basic fairness and ignore the issues of optimism and fundamental asymmetry
of communication between the signers and the trusted third party.

To the best of our knowledge, we are the first to apply an epistemic logic framework
to formalize the “ability to prove” and thus abuse-freeness. In [27], belief logic SVO
is used to reason about correctness of the non-repudiation protocol [26], but it is not
clear how belief logics might apply to fairness and abuse-freeness. [21] models advan-
tage, but not the concepts of proof and knowledge, which we believe provide a more
compelling characterization of abuse-freeness.



7 Conclusions and Further Work

We have studied contract signing protocols in a game-theoretic model, giving precise,
formal definitions of properties such as fairness and timeliness. We characterized op-
timism of honest protocol participants using a form of out-of-band signal that forces
the optimistic player to wait for the opponent. While the out-of-band signal does not
correspond to any realistic mechanism in distributed computation, it accurately reduces
the set of protocol traces to those where the optimistic player waits for the opponent
instead of contacting the trusted third party.

Our main result is that in any fair, optimistic, timely protocol, an optimistic player
yields an advantage to his opponent. This means that the opponent has both a strategy
to complete the signature exchange and a strategy to keep the players from obtaining
each other’s signatures. Since the protocol is fair, the outcome for both players is the
same, but the player with an advantage can choose what this outcome is. This holds
regardless of whether the optimistic player is the first or second mover.

Since advantage cannot be eliminated, the best a protocol can do to protect opti-
mistic participants is prevent the opponent from proving to any outside party that he
has reached a position of advantage. This property is known as abuse-freeness. We de-
fine abuse-freeness using the concept of algorithmic knowledge adapted from epistemic
logic to formalize what it means to “prove” something to an outside observer.

One direction for further investigation involves the notion of trusted third party ac-
countability. The relationship between our definitions and the cryptographic definitions
of fairness [3] may also merit further study. Finally, we believe that our techniques will
prove useful for investigating multi-party contract signing protocols.
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Role and Protocol Theories

We assume that the vocabulary contains the following basic déis(for public keys),

M (for messages), (for pre-agreed contract textdy,I (for protocol instances), and

U1 (for globally unique instance identifiers, since we assume that each protocol in-
stance has such an identifier). We also assume a fungtion, -, ) : PK x PK x

PK xCxUI — PI,i.e,aprotocol instance is determined by the signers’ public key,
the key of the trusted third party, pre-agreed contract text, the and unique identifier. For
examplep = (k,, k., k:,m,n) describes a protocol instance, identifiechag which
signers with public key&, andk, exchange signatures on the pre-agreedrextith

the help of the trusted third party whose keyis



Definition 11. TheoryA is arole theory for participantl with public keyk,, where
k, is a constant of the so? K, if it satisfies the following:

i) A includes a finite list of predicatedo, .. ., A,, calledrole state predicateand a
finite list of timer predicates, calletimersof A. The two lists are disjoint.

i) Ap is a binary predicate whose arguments are of the gaif and P1, respectively.
We call A theinitial role state predicate

iii) Foreach rulel — rin A,

1. There is exactly one occurrence of a role state predicale $ay A;, and exactly
one occurrence of a role state predicaterinsay A;. Furthermore, it is the case
thati < j. If Ao occursinl, thenAgy(k,,p) € [ for some ternp of the sortP1I.

2. If A; is ak-ary role state predicate occurring i and A; is anm-ary role state
predicate occurring ine, thenm > k. Furthermore, ifA;(uq,...,ux) € [ and
Aj(vi,...,vy) €1, thenu, andv, are the same terms for all < ¢ < k.

3. LetA;(u1,...,upm) €1, Aj(v1,...,vy) € r. L&t MSG be the set of terms such
that N (u) or te(kq, k2,u) € [ for some TTPchannel predicate For eachg, v, is
derivable fromuy, ..., u,, and MSG using the rules irPossess

4. For each timelZ of A,

i) I andr each contain at most one occurrenceafOccurrences are of the form
Z(kq,ts), wherets is a constant of the sotimer_state. If Z occurs inr, then it
occurs inl.

i) If Z(k,,unset) € 1, then eitherZ(k,,unset) € r, or Z(k,, set) € r.

i) If Z(kq, set) €1, thenZ(k,, set) € r.

iv) If Z(kq, timed_out) € I, thenZ(k,, timed_out) € r.

5. If N(u) € I, whereN is a network predicate and is term of the sort\/, then
N(u) € r. If tc(ki,ko,u) € I, wheretc is a TTPchannel predicate, and terms
k1, ko, u are of the sortP K, PK, M, respectively, thete(ky, ko, u) € 7.

6. For any predicatéP other than a role state, timer, network, or TTPchannel predi-
cate, atomic formulé (¢4, ..., t,,) has the same occurrenceslias inr.

Definition 12. If Z is a timer of the participant with public key,, thenZ (k,, set) —
Z (kq, timed_out) is thetimeout ruleof Z.

Definition 13. TheoryP is a protocol theoryfor signersO and R and trusted third
party T with public keysk,, k., k:, respectively, wher&,, k.., k; are constants of the
sort PK1 fP=0OWRW TO ) Otimeouts ) Rtimeouts ) TtimeoutSa where

1. O,R, Ty are role theories for, respectivel, R, T with public keys:,, k.., k;.

2. At most one TTPchannel predicate, $ay, occurs inO. Each occurrence ak, is
of the formic, (k,, k¢, m), wherem is of the sortM, and¢c, may not occur irR..

3. At most one TTPchannel predicate, gay, occurs inR. Each occurrence of,. is

of the formte,. (k,, kt, m), wherem is of the sortM/, and¢c,, may not occur irO.

If some TTPchannel predicate occurdlig, then it also occurs if©Q or R.

The role state predicates and the timergofrespectively, R) do not occur R

(respectivelyD) andTy. The role state predicates and the timerd'ato not occur

in O or R.

6. Otimeouts, Rtimeouts, aNd Ttimeouts are the sets of timeout rules of all timers of
O, R, andT, respectively.

as



B Proof of Lemma 1

Proof. We rely on the observation that state transition rules affecting independent parts
of the system may be commuted. Intuitively, move®BadndT" are independent of’s
internal state. Therefore, as long.4gloes not send any message§'taB may ignore
any message sent to him byand follow the same strategy 87 as inS. In light of
proposition 3, all we need to show is thathas a weald-silent abort [resolve] strategy
atS' if B has a weald-silent abort [resolve] strategy &t We prove this by induction
on the height of the continuation treeSt
Base caseThe height of the continuation tree &iis 0. The lemma is vacuously true.
Induction hypothesisSuppose the lemma is true for all stagesuch that the height of
the continuation tree & is < n.
Induction stepConsider stat& such that i) the height of the continuation treeSas
n + 1, and ii) B has a weakd-silent abort [resolve] strategy At

Consider the continuation tree &t and remove all edges that areAnJ A i reat U
Aiimeouts along with their descendants. For each remaining edgem S’ to some
stateS”, lett be the state transition rule labeliagnd consider the following cases:

Casel: t € T. Since no message is sentftan the S — S’ transitiont can be applied
atS as well, resulting in some state Observe that:

i) the height of the continuation tree tis < n;

ii) B has a weakd-silent strategy af’

iii) S” can be obtained frorf by the same transition that labeds— S’: simply com-
muteS — S’ andS’ — S” transitions.

By the induction hypothesi€} has a weald-silent strategy af"”. Replace the contin-
uation tree a5” by this strategy.

Case2: t € B U Binreat- There are three possibilities:

2.1)t cannot be applied &. Remove edge along with its descendants.

2.2)t can be applied af, but it is not a part of thel-silent strategy af. Remove edge
e along with its descendants.

2.3)t can be applied at, and it is a part of thel-silent strategy af. Then, as in Case
1, replace the continuation tree &t by this strategy.

Case3: t € Biimeouts- If £ is not a part of thed-silent strategy af, remove edge
along with its descendants. If it is a part of thesilent strategy, replace the continuation
tree atS” by this strategy.

By constructing the right continuation tree for any immediate descendatif ofe
have constructed a weakesilent strategy af’. It remains to show that it is indeed an
abort [resolve] strategy. There are two possibilities :

Case A The height of the constructed strategyis-rom the construction, it follows
that the height of the wealkd-silent abort [resolve] strategy &tis also0. Therefore,
rslv 4 (S) = 0 [rslvp(S) = 2]. By proposition 1,slv 4 (S") = 0 [rslvg(S’) = 2].

Case B The height of the constructed strategyis). By construction, all leaf nodes
are labeled by states* such thatrslv 4 (S*) = 0 [rslvp(S*) = 2].

We conclude thaB has a wealkd-silent abort [resolve] strategy &t, which completes
the induction. O



