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Abstract. A contract signing protocol lets two parties exchange digital signa-
tures on a pre-agreed text.Optimisticcontract signing protocols enable the sign-
ers to do so without invoking a trusted third party. However, an adjudicating third
party remains available should one or both signers seek timely resolution. We an-
alyze optimistic contract signing protocols using a game-theoretic approach and
prove a fundamental impossibility result: in any fair, optimistic, timely protocol,
an optimistic player yields an advantage to the opponent. The proof relies on a
careful characterization of optimistic play that postpones communication to the
third party. Since advantage cannot be completely eliminated from optimistic pro-
tocols, we argue that the strongest property attainable is the absence ofprovable
advantage,i.e., abuse-freeness in the sense of Garay-Jakobsson-MacKenzie.

1 Introduction

A variety of contract signing protocols have been proposed in the literature, includ-
ing gradual-release two-party protocols [5, 7, 12] and fixed-round protocols that rely
on an adjudicating “trusted third party” [2, 3, 18, 23, 26]. In this paper, we focus on
fixed-round protocols that use a trusted third party optimistically, meaning that when
all goes well, the third party is not needed. The reason for designing optimistic pro-
tocols is that if a protocol is widely or frequently used by many pairs of signers, the
third party may become a performance bottleneck. Depending on the context, seeking
resolution through the third party may delay termination, incur financial costs, or raise
privacy concerns. Obviously, the value of an optimistic protocol, as opposed to one that
requires a third party signature on every transaction, lies in the frequency with which
“optimistic” signers can complete the protocol without using the third party.

Some useful properties of contract signing protocols arefairness, which means that
either both parties get a signed contract, or neither does, andtimeliness, which generally
means that each party has some recourse to avoid unbounded waiting. The reason for
using a trusted third party in fixed-round protocols is a basic limitation [14, 24] related
to the well-known impossibility of distributed consensus in the presence of faults [17]:
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no fixed-length two-party protocol can be fair. Although there is a trivial protocol with
a trusted third party, in which both signers always send their signatures directly to it,
protocols that are fair, timely, and usefully minimize demands on the third party have
proven subtle to design and verify.

This paper refines previous models, formalizes properties from the literature on
fixed-round two-party contract signing protocols, and establishes relationships between
them. We use the set-of-traces semantics for protocols, defining each instance of the
protocol as the set of all possible execution traces arranged in a tree. Our chosen nota-
tion is multiset rewriting [10], but the results would hold for other formalisms with the
same basic execution model.

Model for optimism.One modeling innovation is anuntimednondeterministic setting
that provides a set-of-traces semantics for optimism. Intuitively, optimistic behavior in
contract signing is easily described as a temporal concept: an optimistic signer is one
who waits for some period of time before contacting the trusted third party. If Alice is
optimistic, and Bob chooses to continue the protocol by responding, then Alice waits
for Bob’s message rather than contact the third party. Since the value of an optimistic
protocol lies in what it offers to an optimistic player, we evaluate protocols subject to
the assumption that one of the players follows an optimistic strategy. As a direct way of
mathematically characterizing optimistic play, we allow an optimistic player to give his
opponent the chance to signal (out of band) whether to wait for a message. This gives
us a relatively easy way to define the set of traces associated with an optimistic signer,
while staying within the traditional nondeterministic, untimed setting.

Impossibility result.In evaluating protocol performance for optimistic players, we prove
that in every fair, timely protocol, an optimistic player suffers a disadvantage against a
strategic adversary. The importance of this result is that optimistic protocols are only
useful to the extent that signers may complete the protocol optimistically without con-
tacting the third party. In basic terms, our theorem shows that to whatever degree a
protocol allows signers to avoid the third party, the protocol proportionally gives one
signer unilateral control over the outcome of the protocol.

To illustrate by example, consider an online stock trading protocol with signed con-
tracts for each trade. Suppose the broker starts the protocol, sending her commitment to
sell stock to the buyer at a specific price, and the buyer responds with his commitment.
To ensure timely termination, the broker also enjoys the ability to abort the exchange by
contacting the trusted third party (TTP) if the buyer has not responded. Once the buyer
commits to the purchase, he cannot use the committed funds for other purposes. Even
if he has the option to contact the TTP immediately, an optimistic buyer will wait for
some period of time for the broker to respond, hoping to resolve the transaction amica-
bly and avoid the extra cost or potential delay associated with contacting the TTP. This
waiting period may give the broker a useful window of opportunity. Once she has the
buyer’s commitment, the broker can wait to see if shares are available from a selling
customer at a matching or lower price. The longer the buyer is inclined to wait, the
greater chance the broker has to pair trades at a profit. If the broker finds the contract
unprofitable, she can abort the transaction by falsely claiming to the TTP that the buyer
has not responded. This broker strategy succeeds in proportion to the time that the buyer
optimistically waits for the broker to continue the protocol; this time interval, if known



exactly or approximately, gives the broker a period where she can decideunilaterally
whether to abort or complete the exchange.

Abuse-freeness.Since advantage against an optimistic player cannot be eliminated, the
most a protocol can do is prevent the opponent fromproving that he has an advan-
tage. For example, even though the broker in our example has control over deciding
whether the sale happens, the protocol may still be able to prevent her from showing
the buyer’s commitment to other parties. Such protocols have been calledabuse-freein
the literature [18]. We use a formal representation of knowledge derived from epistemic
logic [19, 16] to formalize the “ability to prove” and analyze abuse-freeness as the lack
of provable advantage.

The paper is organized as follows. In section 2, we briefly summarize our semantic
framework and define the class of two-party contract signing protocols with trusted
third party. In section 3, we formalize protocol properties such as fairness, optimism,
and timeliness. In section 4, we formalize optimistic behavior of a participant, and show
that the optimistic participant is at a disadvantage in any fair, optimistic, timely proto-
col. In section 5, we formalize provable advantage and abuse-freeness. Related work is
discussed in section 6. We summarize our results in section 7.
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nerability of optimistic players in fair exchange. We also thank I. Cervesato, S. Even,
D. Gollmann, S. Kremer, J.F. Raskin, C. Meadows, and J. Millen for interesting and
helpful discussions.

2 Model

2.1 Multiset rewriting formalism

Our protocol formalism is multiset rewriting with existential quantification, MSR [10],
which can be seen as an extension of some standard models of computation,e.g., mul-
tiset transformation [4] and chemical abstract machine [6]. This formalism faithfully
expresses the underlying assumptions of the untimed, nondeterministic, asynchronous
model. A protocol definition in MSR defines theset of all possible execution tracesfor
any instance of the protocol. A number of other formalisms that do so, such as [1, 15]
and others, would have suited our purposes as well, and in this sense our main results
are independent of the MSR formalism. The synchronous model with a global clock
does not seem appropriate for our investigation because fixed-round contract signing
protocols in the literature [2, 3, 18, 23, 26] do not rely on a global clock.

MSR syntax involves terms, facts, and rules. To specify a protocol, first choose a
vocabulary, orfirst-order signature. We assume that our vocabulary contains some basic
sorts such aspublic key for public keys andmssg for protocol messages. As usual, the
termsover a signature are the well-formed expressions produced by applying functions
to arguments of the correct sort. Afact is a first-order atomic formula over the chosen
signature, without free variables. Therefore, a fact is the result of applying a predicate
symbol to ground terms of the correct sort. Astateis a finite multiset of facts.

A state transition is arule written using two multisets of first-order atomic formulas
and existential quantification, in the syntactic formF1; : : : ; Fk �! 9x1 : : :9xj :G1; : : :



Gn. The meaning of this rule is that if some stateS contains facts obtained by a ground
substitution� from first-order atomic formulasF1; : : : ; Fk, then one possible next state
is the stateS� that is similar toS, but with facts obtained by� fromF1; : : : ; Fk removed
and facts obtained by� fromG1; : : : ; Gn added, wherex1; : : : ; xj are replaced by new
symbols. If there are free variables in the ruleF1; : : : ; Fk �! 9x1 : : :9xj :G1; : : :

Gn, these are treated as universally quantified throughout the rule. In an application of
a rule, these variables may be replaced by any ground terms.

As an example, consider statefP (f(a)); P (b)g and ruleP (x) �! 9z:Q(f(x); z).
The next state is obtained by instantiating this rule toP (f(a)) �! 9z:Q(f(f(a)); z).
Applying the rule, we choose a new valuec for z and replaceP (f(a)) byQ(f(f(a)); c),
obtaining the new statefQ(f(f(a)); c); P (b)g.

Timer signals.In our model, timers are interpreted aslocal signals, used by participants
to decide when to quit waiting for a message from the other party in the protocol.
They do not refer to any global time or imply synchronicity. Timers are formalized by
binarytimer predicates, whose first argument is of the sortpublic key and identifies the
participant who receives its signal, while the second argument is one of the following
three constants of the sorttimer state: unset, set, andtimed out.

Cryptography.Contract signing protocols usually employ cryptographic primitives. In
general, the purpose of cryptography is to provide messages that are meaningful to
some parties, but not subject to arbitrary (non-polynomial-time) computation by others.
For example, encryption provides messages that are meaningful to any recipient with
the decryption key, but not subject to decryption by any agent who does not possess the
decryption key. The logic-based formalism of MSR cannot capture subtle distinctions
between, for example, functions computable with high probability and functions com-
putable with low or negligible probability. Instead, we must model functions as either
feasibly computable, or not feasibly computable.

For each operation used in a protocol, we assume there is some MSR characteriza-
tion of its computability properties. To give a concrete framework for presenting these
rules, let us assume some set of predicatesP = fP�j� is any sortg. Since the sort�
is determined by the sort of the arguments toP�, we will not write the sort when it is
either irrelevant, or clear from context. Intuitively, a rule of the form

P (s1); : : : ; P (sm); F1; : : : ; Fj �! P (t1); : : : ; P (tn); F1; : : : ; Fj

means that if an agent possesses datas1; : : : ; sm, then under conditions specified by
factsF1; : : : ; Fj , it is computationally feasible for him to also learnt1; : : : ; tn. For
example, here are the familiar “Dolev-Yao” [13, 25] rules given in [10]:

P (x); P (k) �! P (encrypt(k; x))
P (encrypt(k; x)); P (k�1);Keypair(k; k�1) �! P (x)

In the remainder of the paper, we assume some fixed theoryPossessof rules that
characterize the computationally feasible operations on messages. As a disclaimer, we
emphasize that the results in this paper are accurate statements about a protocol using
cryptographic primitives only to the extent thatPossessaccurately characterizes the
computationally feasible operations. In particular, protocols that distinguish between



low-order polynomial computation and high-order polynomial computation, or rely on
probabilistic operations in some essential way, may fall outside the scope of our analysis
and may conceivably violate some of our results.

2.2 Protocol model

We say that a protocolP is a contract signing protocolif it involves three parties,O
(originator),R (responder), andT (trusted third party), and the goal of the protocol is to
enableO (respectively,R) to obtainR’s signature (respectively,O’s signature) on some
pre-agreed text. For brevity, we will saysignatureas a shorthand for “signature on the
pre-agreed text,” use termscontract signingandsignature exchangeinterchangeably,
and refer toO andR assigners. We specify the protocol by a set of MSR rules, which
we call atheory. Any sequence of rules consistent with the theory corresponds to a
valid execution trace of a protocol instance. If execution traces are naturally arranged in
trees, then the MSR theory defines the set of all possible execution traces as a forest of
trees. To obtain the impossibility result, we chooseanycontract signing protocolP and
fix it. We assume that the contract text for each instance contains a unique identifier,
and consider only a single instance ofP .

A protocol theoryP for the given protocol is the disjoint union of six theories:
O;R;T0;Otimeouts;Rtimeouts, andTtimeouts. We will refer toO;R;T0 as role
theories. Each role theory specifies one of the protocol roles by giving a finite list of
role state predicatesthat define the internal states of the participant playing that role and
the rules for advancing from state to state. Role theory also contains another, disjoint
list of timer predicatesdescribing the rules for the participant’s timers. A participant
may advance his state by “looking” at the state of his timers or the network (i.e., a timer
or a network predicate appears on the left side of the rule). He may also set his timer by
changing the timer’s state fromunset to set, but he may not change it totimed out.

A timeout ruleis a rule of the formZ(k; set) ! Z(k; timed out), wherek is the
public key of the participant associated with timerZ. In the protocol theory,Otimeouts,
Rtimeouts, andTtimeouts are the sets oftimeout rulesfor all timers ofO, R, andT ,
respectively. For simplicity, we will combine the role theory and the timeouts ofT , and
call it T = T0 [Ttimeouts.

Communication.Following the standard assumption that the adversary controls the net-
work and records all messages, we model communication betweenO andR by a unary
network predicateN whose argument is of the sortmssg. Once a factN(m) for some
m is added to the state, it is never removed. As in contract signing protocols in the
literature [3, 18], we assume that channels between signers andT are inaccessible to
the adversary and separate from the network betweenO andR (by contrast, [20] con-
siders security of contract signing protocols under relaxed assumptions about channel
security). Channels between signers andT are modeled by ternaryTTPchannel pred-
icates, whose arguments are of the sortpublic key, public key andmssg, respectively.
For example,tco(ko; kt;m) models the channel betweenO andT carrying messagem.

Threat model.We are interested in guarantees provided by contract signing protocols
when one of the signers misbehaves in an arbitrary way.T is assumed to be honest.
We will call the misbehaving signer theadversary. The adversary does not necessarily



follow the protocol, and may ignore the state of the timers or stop prematurely. He may
gather messages from the network, store them, decompose them into fragments and
construct new messages from the fragments. These abilities are formalized by theories
Othreat andRthreat containingdishonest rulesfor O andR, respectively. Each rule
models a particular dishonest operation.

A protocol definitionconsists of the protocol theoryP, theoriesOthreat andRthreat,
Possesstheory which models computationally feasible operations on messages, and the
initial set of factsS0 which contains the initial states of all participants and timers.
Formal definition of protocol theory can be found in appendix A. Non-probabilistic
fixed-round contract signing protocols in the literature such as [3, 18] can all be defined
in this way.

2.3 Traces and continuation trees

A stateis a finite multiset of facts. For example, the initial stateS0 may include facts
O0(ko; k

�1
o ; kr; p) andR0(kr ; k

�1
r ; ko; p) modeling the initial states of the originator

and the responder in protocolp: each knows his own public and private keys, and the
opponent’s public key. Atrace from stateS is a chain of nodes, with the root labeled
by S, each node labeled by a state, and each edge labeled by a tripleht; �;Qi. Here
Q is one offO, R, T, Otimeouts, Rtimeouts, Othreat, Rthreatg, t 2 Q is a state
transition rule, and� is a ground substitution. Ifht; �;Qi labels the edge from a node
labeled byS1 to a node labeled byS2, it must be the case that the application oft to
S1� producesS2. Any state labeling a node in this chain is said to bereachable from S.
We will simply say that a state isreachableif it is reachable from the initial stateS0.

An edge is adishonest move ofO if it is labeled by somet 2 Othreat. O is said be
honest in the traceif there are no dishonest moves ofO in the trace. IfS is reachable
by a trace in whichO is honest, thenS is reachable by honestO. The definitions forR
are symmetric. Assuming that dishonest participants, if any, make only a finite number
of dishonest moves, letcontinuation treectr at stateS be the finite tree of all possible
traces fromS. This tree can be thought of as a game tree that represents the complete
set of possible plays. Letctr[O] be the tree obtained fromctr by removing all edges in
O [ Othreat along with their descendants. Intuitively,ctr[O] is the set of all possible
plays ifO stops participating in the protocol. Definition ofctr[R] is symmetric. We will
say that any edgee in ctr that is labeled by a rule inO orOthreat (respectively,R or
Rthreat), is underO’s control (respectively,R’s control). To model optimism of honest
signers (see section 4), we will also assume that some edges inOtimeouts[Rtimeouts

are under control of the dishonest participant.

3 Properties of Contract Signing Protocols

MSR definition of the protocol defines the set of all possible execution traces in the
form of a continuation tree. To define protocol properties such as fairness, optimism,
timeliness, and advantage, we view the continuation tree as a game tree containing all
possible plays, and adapt the notion of strategy from classical game theory.



For the remainder of the paper, we will assume that only one of the signers is honest.
We will useA to refer to the honest signer,i.e., A refers to eitherO, orR, depending
on which of them is honest. We’ll useB to refer to the other, dishonest signer.

3.1 Strategies

Following [11], we formalize strategies as truncated continuation trees. Given a set of
edgesE, let ctrnE be the tree obtained from continuation treectr by removing the
edges inE along with their descendants. Intuitively, ifE is a subset of edges ofctr
underA’s control, thenctrnE is the set of possible plays that result ifA does not use
transitions inE. Similarly, we can definectr[A]nE (recall thatctr[A] is the tree of all
plays ifA stops participating in the protocol).

Definition 1. Let S be a reachable state and letctr be the continuation tree fromS.
LetX � fA;B; Tg.
1. IfE is a subset of edges ofctr such that each edge inE is under the control of some
p 2 X , thenctrnE is said to be astrategy for the coalitionX . If there are no dishonest
moves of anyp 2 X in ctrnE, thenctrnE is said to be anhonest strategy.
2. If E is a subset of edges ofctr[A] such that each edge inE is under the control of
somep 2 X , thenctr[A]nE is said to be anA-silent strategy for the coalitionX .

This definition corresponds to the standard game-theoretic notion of strategy.E

represents the plays that the coalitionX considers unfavorable, andctrnE represents
the continuations thatX prefers. At any given stateS0 in ctrnE, an edge coming out of
the node labeled byS0 indicates the next move forX in accordance with the strategy
ctrnE. If the edge is not underX ’s control, then the next move forX is idling, i.e.,
waiting for others to move.

To define fairness and other properties, we are interested in strategies in which the
coalitionX drives the protocol to a state in which some property holds:

Definition 2. If there is a strategyctrnE fromS for coalitionX such that all leaf nodes
of ctrnE are labeled by statesS0 that satisfy some property�(S0), thenX has a strategy
fromS to reach a state in which� holds.

The definition forA-silent strategies is similar.
Since the players’ objective in the game is to obtain each other’s signatures, we are

interested in the states whereA possessesB’s signature and the ones whereB possesses
A’s signature. Formally,B possessessome termu in a reachable stateS if u is derivable,
using the rules inPossess, from the terms inB’s internal role state predicateBi in S

andB’s additional memory inS given to him by the threat model. Possession is always
monotonic. The definition forA is symmetric, except that the threat model does not
have to be considered.

Definition 3. If there is a strategy for coalitionX such that all leaf nodes in the strategy
are labeled by states in whichA possessesB’s signature, thenX has a strategy from
S to giveA B’s signature. Moreover, ifX = fAg, thenA is said to have astrategy to
obtainB’s signature.



3.2 Fairness, optimism, timeliness, and advantage

We now use the notion of strategy to define what it means for a contract signing pro-
tocol to be fair, optimistic, and timely, and what it means for a participant to enjoy an
advantage. The definitions are quite subtle. For example, we need to draw the distinc-
tion between astrategyfor achieving some outcome, and apossibilitythat the outcome
will happen under the right circumstances. This requires introduction of a four-valued
variable to characterize the degree of each player’s control over the protocol game.

Fairness.Fairness is the basic symmetry property of an exchange protocol. There is a
known impossibility result [14, 24] demonstrating that no deterministic two-party pro-
tocol can be fair. Therefore, fairness requires introduction of at least one other party,
e.g., the trusted third partyT . Our definition is equivalent to a common definition of
fairness in terms of state reachability [18, 11]. Intuitively, a protocol is fair for the hon-
est signerA, if, wheneverB has obtainedA’s signature,A has a strategy in coalition
with T to obtainB’s signature.

Definition 4. A protocol isfair for honestA if, for each stateS reachable by honest
A such thatB possessesA’s signature inS, the coalition ofA andT has an honest
strategy fromS to giveA B’s signature for all bounds on the number of moves that a
dishonestB makes.

Advantage.Intuitively, fairness says that either both players obtain what they want,
or neither does. This is not always sufficient, however. A player’s ability to decide
unilaterallywhetherthe transaction happens or not can be of great value in scenarios
where resource commitment is important, such as online trading and auction bidding.

To characterize the degree to which each participant controls the outcome of the
protocol in a given state, we now define a pair of valuesrslvA; rslvB associated with
each reachable state. We are interested in what a participantmaydo in the worse pos-
sible case. Therefore, despite our assumption thatA is honest, we will considerA’s
dishonest moves when reasoning aboutA’s ability to control the outcome.

Definition 5. DefinerslvA for any reachable stateS as follows:
rslvA(S) = 2, if A has a strategy to obtainB’s signature for all bounds on

the number of dishonest moves ofB,
= 1, if rslvA(S) 6= 2, butA has aB-silent strategy to reach state

S0 such thatrslvA(S0) = 2,
= 1

2 , if rslvA(S) 6= f1; 2g, but there is stateS0 reachable fromS
such thatrslvA(S0) = 2, and no transition on theS ! S0

path is inB [Bthreat,
= 0, otherwise.

The strategies need not be honest. Definition ofrslvB is symmetric.

Intuitively, rslvB(S) = 2 if B can obtainA’s signature no matter whatA does,1
if B can obtainA’s signature providedA stops communicating and remains silent,1

2 if
there is a possibility (but no strategy) forB to obtainA’s signature whenA is silent, and
0 means thatB cannot obtainA’s signature withoutA’s involvement. The difference
between1 and 1

2 is essential. For example,rslvB(S) = 1 if B can obtainA’s signature



by sending a message toT as long asA is silent, whilerslvB(S) = 1
2 if A is silent, but

some previously sent message is already on the channel toT , and the outcome of the
protocol depends on the race condition between this message andB’s message.

Given an initial stateS0, we assume thatrslvA(S0) = rslvB(S0) = 0. The signa-
ture exchange problem is not meaningful otherwise.

Definition 6. B has anabort strategyin S if B has a strategy to reach a stateS0 such
that rslvA(S0) = 0. B has aresolve strategyin S if B has a strategy to reach a state
S00 such thatrslvB(S00) = 2. B has anadvantagein S if B has both an abort strategy
and a resolve strategy.

If B has an advantage inS, thenA does not have an advantage inS, and vice versa.

Optimism.Intuitively, a protocol is optimistic if it enables two honest parties to ex-
change signatures without involving the trusted third party, assuming they do not time
out waiting for each other’s messages. Such protocols potentially provide a practical
means of fair exchange between mistrusting agents without relying on a third party in
most instances.

We say thatA does not send a message toT in the transition fromS to S0 if (i)
the transition is an application of a rule inA [Athreat, and (ii) no fact created by the
transition matches a term in the left hand side of a rule inT.

Definition 7. A fair protocol isoptimisticforB if, assumingA is honest andB controls
the timeouts of bothA andB, B has an honest strategy atS0 such that
1) no messages are sent by any signer toT ;
2) every leaf node is labeled by a state in whichB possessesA’s signature;
3) there is a trace fromS0 to a leaf node that involves only the transitions inA [B.

Any trace in this strategy is anoptimistic trace. Definition of optimistic forA is
symmetric. A protocol is optimistic if it is optimistic for both signers.

Our definition of optimism implies that the protocol specification does not permit
honest participants to contactT nondeterministically,i.e., every rule that results in a
message sent toT is conditional on some timer timing out.

Timeliness.We now formalize the following intuition [3]: “one player cannot force the
other to wait for any length of time — a fair and timely termination can always be forced
by contacting the third party.” Timeliness has been emphasized by the designers of fair
exchange protocols, since it is essential for practical use. In any state of the protocol,
each participant should be able to terminate the exchange unilaterally. If he has not been
able to obtain the other’s signature, he can always reach a terminal state where he can
stop and be sure that the opponent will not be able to obtain his signature, either.

Definition 8. A fair, optimistic protocol istimely for B if in every state on an opti-
mistic traceB has anA-silent strategy to reach a stateS0 such thatrslvA(S0) = 0 or
rslvB(S

0) = 2. A protocol is timely if it is timely for both signers.

To illustrate the importance of timeliness, consider a protocol that isnot timely,e.g.,
Boyd-Foo protocol [8]. In this protocol, originatorO releases some information that can
be used by responderR to obtainO’s signature fromT at some later point. IfR stops



communicating,O is at his mercy. He may have to wait, possibly forever, before he
learns whether the exchange has been successful.

For the rest of this paper, we assume that the protocol is fair, timely, and optimistic
for both signers.

4 Impossibility of Balance in Optimistic Protocols

As explained in the introduction, optimistic contract signing protocols are only valuable
insofar as they offer benefit to an optimistic participant. We say that the honest partici-
pantA is optimisticif, in any state where he is permitted by the protocol specification
to contact trusted third partyT , he waits forB’s response before contactingT .

The propensity of the optimistic participant to wait for the opponent’s response be-
fore contactingT can be exploited by the opponent. Recall that definition 7 implies that
an honest participant only contactsT after some timer times out. We use this to model
optimism ofA by givingB the ability to schedule the timeout rules ofA by an “out-
of-band” signal. In any implementation of the protocol,B does not actually schedule
A’s timers. This is simply a technical device to restrict the set of execution traces under
consideration to those that may occur when one of the participants is optimistic.

Definition 6 can thus be extended to cases whereA is optimistic by permittingB’s
strategy to include control over timeouts ofA andB. If B does not have a strategy
for reaching a state where he has an advantage over an optimisticA, we say that the
protocol isbalancedfor an optimisticA. As we will now show, balance cannot be
achieved by any fair, timely, optimistic protocol.

The first observation underlying our proof is that, in the interleaving semantics of
concurrency used by our model, the order of application of state transition rules that
affect independent parts of the system can be commuted. The second observation is that
the strategies available to the dishonest player are not negatively affected by messages
sent to him by the honest player or by the honest player’s timeouts because the dishonest
player is free to ignore both.

We start with an auxiliary proposition, which follows directly from definition 5.

Proposition 1. LetS ! S0 be a state transitionnot in B [Bthreat. If rslvB(S) = 2,
thenrslvB(S0) = 2. If rslvA(S) = 0, thenrslvA(S0) = 0.

Proposition 1 implies that ifrslvA(S) = 0 andrslvA(S0) > 0, then theS ! S0

transition must be inB[Bthreat. Similarly, if rslvB(S) = 0 andrslvB(S0) > 0, then
S ! S0 is inA [ Athreat. Intuitively, a player acquires some degree of control over
the outcome of the protocol for the first time only because of the other player’s move.

Just like we definedctr[A] to be the tree obtained fromctr by removing all edges in
A [Athreat, we definectr[A+] to be the tree obtained fromctr by removing all edges
inA[Athreat [Atimeouts. If E is a selection of edges inctr[A+] underB’s control,
thenctr[A+]nE is a strategy available toB if A remains silentandno timers time out.
We will call such a strategyweakA-silent strategy.

Proposition 2. LetS ! S0 be a state transition inAtimeouts. B has a weakA-silent
abort [resolve] strategy atS0 if and only if B has a weakA-silent abort [resolve]
strategy atS.



The proof of proposition 2 relies on the fact that the moves ofB andT that consti-
tute a weakA-silent strategy cannot depend on the state ofA’s timers.

Proposition 3. B has anA-silent abort [resolve] strategy atS if and only ifB has a
weakA-silent abort [resolve] strategy atS.

In the proof, we use proposition 2 to construct anA-silent strategy from a weak
A-silent strategy by induction on the height of the continuation tree. Proposition 3 es-
tablishes that the strategies available to the dishonest player are not negatively affected
by the honest player’s timeouts. We now show that they are not affected by the honest
player’s messages to the dishonest player.

Lemma 1. Let S ! S0 be a transition inA [ Athreat. If B has anA-silent abort
[resolve] strategy inS, andA does not send a message toT in theS ! S0 transition,
thenB has anA-silent abort [resolve] strategy inS0.

Proof. The proof, illustrating our general proof techniques, is in appendix B.

We use lemma 1 to show that for each strategy conditional onA remaining silent,
there is an equivalent strategy in whichA is not silent, butB simply ignoresA’s mes-
sages. The strategy works as long asA does not try to talk toT .

Lemma 2. If B has anA-silent abort [resolve] strategy atS, andA does not send any
messages toT , thenB has an abort [resolve] strategy.

Proof. (Omitted for space reasons).

We now show that a strategy conditional onA not talking toT works against an
optimisticA since he waits forB’s messages instead of trying to contactT .

Lemma 3. LetS be a state that does not containZ(k; timed out) for any timer pred-
icateZ. If B has anA-silent abort [resolve] strategy in stateS, thenB has an abort
[resolve] strategy against optimisticA in S.

Proof. (Sketch) Definition 7 implies that an optimisticA contactsT only when some
timer times out.B controls the timeouts of an optimisticA. HenceB can preventA
from sending any message toT . We then apply lemma 2.

Theorem 1 (Impossibility of Balance).Let P be a fair, optimistic, timely protocol
between signersA andB. If A is optimistic, then there is a non-initial stateS� such
thatB has an advantage against an optimisticA at S�.

Proof. (Sketch) By definition 7, there is an optimistic trace from the initial stateS0
which contains only the transitions inA [B and leads toS0 such thatrslvB(S0) = 2.
Consider the first transitionS ! S� on this trace such thatrslvB(S) = 0; rslvB(S

�) >
0. Proposition 1 implies that this must be a transition inA [Athreat. By definition 7,
A does not send a message toT anywhere in the trace, including this transition.

By definition 8,B has anA-silent strategy to reach a stateS00 such thatrslvA(S00) =
0 or rslvB(S00) = 2. SincerslvB(S) = 0, it must be the case thatrslvA(S00) = 0, i.e.,



B has anA-silent abort strategy. By lemma 1,B has anA-silent abort strategy inS�.
Therefore, by lemma 3,B has an abort strategy against optimisticA in S�.

By definition 7,B has a strategy atS0 to obtainA’s signature sinceB controls
the timeouts ofA andB. BecauseS� is reached a part of this strategy (recall that
theS ! S� transition is on an optimistic trace),B also has a strategy to obtainA’s
signature atS�. HenceB has a resolve strategy against optimisticA in S�. SinceB has
both abort and resolve strategies,B has an advantage against an optimisticA in S�. ut

We’d like to emphasize that the result of theorem 1 isnot a trivial “second-mover”
advantage.A andB are not protocol roles, but simply notation for the honest and dis-
honest participant, respectively. An optimistic participant is at a disadvantageregardless
of the role he plays in the protocol. Even if he chooses the responder role, he will lose
control over the outcome of the protocol at some point as long as he remains optimistic.
For example, in Garayet al.’s abuse-free contract signing protocol [18], the originator
enjoys the advantage over the responder, even though the responder is the first to receive
information that potentially enables him to obtain the originator’s signature.

5 Abuse-Free Protocols and Provable Advantage

Theorem 1 states that any fair, optimistic, timely protocol necessarily provides a dis-
honest participant with control over the outcome against an optimistic opponent. The
problem may be alleviated by ensuring that no participant canproveto an outside party
that he controls the outcome. Such protocols have been calledabuse-freein the litera-
ture [18], and concrete protocols [3, 18] have been constructed using zero-knowledge
cryptographic techniques such as verifiable signature escrows and designated-verifier
proofs. To formalize “ability to prove,” we rely on a knowledge-theoretic framework
borrowed from epistemic logic [19, 16].

Reasoning about knowledge.Given a participantP and a reachable stateS, let P ’s
viewof S be the submultiset ofS containing all the facts corresponding to role states in
the role theory ofP , timers ofP and messages onP ’s channels to other participants.
Intuitively, this set represents all thatP may observe inS. Given a tracetr from the
initial stateS0 to S, construct a new labeled chain by relabeling the nodes byP ’s view
of S. Relabel the edges not associated withP by �, which indicates that somebody
other thanP may have moved. SinceP cannot observe other players’ moves, insert
an � between any two consecutive edges labeled by rules ofP (duplicate the node
connecting these edges) as well as at the start and end of the trace. If there are two
or more consecutive� edges, butP ’s view does not change when moving across one
of them, then delete that edge. The resulting chaintr 0 is calledP ’s observationof the
protocol,ObsvP (S; tr). Intuitively,P ’s observation is justP ’s own history in the trace.

In the spirit of algorithmic knowledge [16, 22], observationsObsvP (S; tr) and
ObsvP (S

�; tr�) are equivalent if they are computationally indistinguishable byP .

Definition 9. Given a tracetr fromS0 ending inS, we say thatP knowsin (S; tr) that
logical formulaF is true if
i) F is true inS, and



ii) for each tracetr� from S0 to S� such thatObsvP (S
�; tr�) is indistinguishable by

P fromObsvP (S; tr), F is true inS�.

Intuitively, P knowsthatF is true ifF holds in all possible executions of the pro-
tocol consistent withP ’s observations.

Abuse-freeness.To reason about abuse-freeness, we augment the protocol with an out-
side partyC and consider his knowledge at different stages of the protocol.C does
not possess the signers’ or the third party’s private keys, and obtains all of his evidence
about the protocol from one of the protocol participants,e.g.,B, who forwards arbitrary
messages toC in an attempt to causeC to knowthatA is participating in the protocol.

Definition 10. B hasprovable advantageagainstA in stateS if
i) B has an advantage overA atS, and
ii) B can provide information, derived from the protocol execution up toS, that causes
C to know thatA is participating in the protocol.
A protocol isabuse-freefor A if B has no provable advantage in any reachable state.

Definition 10 is weaker than one might expect. IfB enjoys an advantage atS, then
in order forB to enjoy provable advantage,B merely has to proveA’s participation
in the protocol.B may succeed even if his protocol withA is already over. But since
we are concerned with making the protocol as safe as possible for an optimisticA, the
weaker definition is acceptable since it makes abuse-freeness (its negation) stronger.
Combining theorem 1 and definition 10, we obtain

Corollary 1. In any fair, optimistic, timely, abuse-free protocol betweenA andB, there
is a tracetr fromS0 to stateS such that
i) B has an advantage over optimisticA atS,
ii) C does not know in(S; tr) thatA is participating in the protocol,i.e., there is another
tracetr� fromS0 to someS� such thatObsvC(S

�; tr�) is indistinguishable byC from
ObsvC(S; tr), andA is not participating intr�.

6 Related work

Previous game-theoretic approaches to the study of fair exchange [11, 20, 21] focused
on formalizing fairness for the strongest possible honest player without taking optimism
into account. In [20], fairness is formalized as the existence of a defense strategy for the
honest player, which is not sufficient if the honest player faces nondeterministic choices
in the protocol, as is the case in the abuse-free protocol of Garayet al. [18]. Another
game-theoretic model was developed in [9], but it focuses mainly on economic equilib-
ria in fair exchange. Cryptographic proofs of correctness by protocol designers [2, 3, 18]
focus on basic fairness and ignore the issues of optimism and fundamental asymmetry
of communication between the signers and the trusted third party.

To the best of our knowledge, we are the first to apply an epistemic logic framework
to formalize the “ability to prove” and thus abuse-freeness. In [27], belief logic SVO
is used to reason about correctness of the non-repudiation protocol [26], but it is not
clear how belief logics might apply to fairness and abuse-freeness. [21] models advan-
tage, but not the concepts of proof and knowledge, which we believe provide a more
compelling characterization of abuse-freeness.



7 Conclusions and Further Work

We have studied contract signing protocols in a game-theoretic model, giving precise,
formal definitions of properties such as fairness and timeliness. We characterized op-
timism of honest protocol participants using a form of out-of-band signal that forces
the optimistic player to wait for the opponent. While the out-of-band signal does not
correspond to any realistic mechanism in distributed computation, it accurately reduces
the set of protocol traces to those where the optimistic player waits for the opponent
instead of contacting the trusted third party.

Our main result is that in any fair, optimistic, timely protocol, an optimistic player
yields an advantage to his opponent. This means that the opponent has both a strategy
to complete the signature exchange and a strategy to keep the players from obtaining
each other’s signatures. Since the protocol is fair, the outcome for both players is the
same, but the player with an advantage can choose what this outcome is. This holds
regardless of whether the optimistic player is the first or second mover.

Since advantage cannot be eliminated, the best a protocol can do to protect opti-
mistic participants is prevent the opponent from proving to any outside party that he
has reached a position of advantage. This property is known as abuse-freeness. We de-
fine abuse-freeness using the concept of algorithmic knowledge adapted from epistemic
logic to formalize what it means to “prove” something to an outside observer.

One direction for further investigation involves the notion of trusted third party ac-
countability. The relationship between our definitions and the cryptographic definitions
of fairness [3] may also merit further study. Finally, we believe that our techniques will
prove useful for investigating multi-party contract signing protocols.
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A Role and Protocol Theories

We assume that the vocabulary contains the following basic sorts:PK (for public keys),
M (for messages),C (for pre-agreed contract texts),PI (for protocol instances), and
UI (for globally unique instance identifiers, since we assume that each protocol in-
stance has such an identifier). We also assume a functionh ; ; ; ; i : PK � PK �
PK�C�UI ! PI , i.e., a protocol instance is determined by the signers’ public key,
the key of the trusted third party, pre-agreed contract text, the and unique identifier. For
example,p = hko; kr; kt;m; ni describes a protocol instance, identified asn, in which
signers with public keysko andkr exchange signatures on the pre-agreed textm with
the help of the trusted third party whose key iskt.



Definition 11. TheoryA is a role theory for participantA with public keyka, where
ka is a constant of the sortPK, if it satisfies the following:
i) A includes a finite list of predicatesA0; : : : ; An, called role state predicates, and a
finite list of timer predicates, calledtimersofA. The two lists are disjoint.
ii) A0 is a binary predicate whose arguments are of the sortPK andPI , respectively.
We callA0 the initial role state predicate.
iii) For each rulel! r inA,

1. There is exactly one occurrence of a role state predicate inl, sayAi, and exactly
one occurrence of a role state predicate inr, sayAj . Furthermore, it is the case
that i < j. If A0 occurs inl, thenA0(ka; p) 2 l for some termp of the sortPI .

2. If Aj is a k-ary role state predicate occurring inl, andAj is anm-ary role state
predicate occurring inr, thenm > k. Furthermore, ifAi(u1; : : : ; uk) 2 l and
Aj(v1; : : : ; vm) 2 l, thenuq andvq are the same terms for all1 � q � k.

3. LetAi(u1; : : : ; um) 2 l,Aj(v1; : : : ; vm) 2 r. LetMSG be the set of termsu such
thatN(u) or tc(k1; k2; u) 2 l for some TTPchannel predicatetc. For eachq, vq is
derivable fromu1; : : : ; um andMSG using the rules inPossess.

4. For each timerZ ofA,
i) l andr each contain at most one occurrence ofZ. Occurrences are of the form
Z(ka; ts), wherets is a constant of the sorttimer state. If Z occurs inr, then it
occurs inl.
ii) If Z(ka; unset) 2 l, then eitherZ(ka; unset) 2 r, or Z(ka; set) 2 r.
iii) If Z(ka; set) 2 l, thenZ(ka; set) 2 r.
iv) If Z(ka; timed out) 2 l, thenZ(ka; timed out) 2 r.

5. If N(u) 2 l, whereN is a network predicate andu is term of the sortM , then
N(u) 2 r. If tc(k1; k2; u) 2 l, wheretc is a TTPchannel predicate, and terms
k1; k2; u are of the sortPK;PK;M , respectively, thentc(k1; k2; u) 2 r.

6. For any predicateP other than a role state, timer, network, or TTPchannel predi-
cate, atomic formulaP(t1; :::; tn) has the same occurrences inl as inr.

Definition 12. If Z is a timer of the participant with public keyka, thenZ(ka; set)!
Z(ka; timed out) is thetimeout ruleofZ.

Definition 13. TheoryP is a protocol theoryfor signersO andR and trusted third
party T with public keysko; kr; kt, respectively, whereko; kr; kt are constants of the
sortPK, if P = O ]R ]T0 ]Otimeouts ]Rtimeouts ]Ttimeouts, where

1. O;R;T0 are role theories for, respectively,O;R; T with public keysko; kr; kt.
2. At most one TTPchannel predicate, saytco, occurs inO. Each occurrence oftco is

of the formtco(ko; kt;m), wherem is of the sortM , andtco may not occur inR.
3. At most one TTPchannel predicate, saytcr, occurs inR. Each occurrence oftcr is

of the formtcr(kr; kt;m), wherem is of the sortM , andtcr may not occur inO.
4. If some TTPchannel predicate occurs inT0, then it also occurs inO orR.
5. The role state predicates and the timers ofO (respectively, R) do not occur inR

(respectively,O) andT0. The role state predicates and the timers ofT do not occur
inO orR.

6. Otimeouts;Rtimeouts; andTtimeouts are the sets of timeout rules of all timers of
O, R, andT , respectively.



B Proof of Lemma 1

Proof. We rely on the observation that state transition rules affecting independent parts
of the system may be commuted. Intuitively, moves ofB andT are independent ofA’s
internal state. Therefore, as long asA does not send any messages toT , B may ignore
any message sent to him byA and follow the same strategy inS0 as inS. In light of
proposition 3, all we need to show is thatB has a weakA-silent abort [resolve] strategy
atS0 if B has a weakA-silent abort [resolve] strategy atS. We prove this by induction
on the height of the continuation tree atS.
Base case:The height of the continuation tree atS is 0. The lemma is vacuously true.
Induction hypothesis:Suppose the lemma is true for all statesS such that the height of
the continuation tree atS is� n.
Induction step:Consider stateS such that i) the height of the continuation tree atS is
n+ 1, and ii)B has a weakA-silent abort [resolve] strategy atS.

Consider the continuation tree atS0, and remove all edges that are inA[Athreat[
Atimeouts along with their descendants. For each remaining edgee from S0 to some
stateS00, let t be the state transition rule labelinge and consider the following cases:

Case1: t 2 T. Since no message is sent toT in theS ! S0 transition,t can be applied
atS as well, resulting in some statêS. Observe that:
i) the height of the continuation tree atŜ is� n;
ii) B has a weakA-silent strategy at̂S;
iii) S00 can be obtained from̂S by the same transition that labelsS ! S0: simply com-
muteS ! S0 andS0 ! S00 transitions.
By the induction hypothesis,B has a weakA-silent strategy atS00. Replace the contin-
uation tree atS00 by this strategy.

Case2: t 2 B [Bthreat. There are three possibilities:
2.1)t cannot be applied atS. Remove edgee along with its descendants.
2.2)t can be applied atS, but it is not a part of theA-silent strategy atS. Remove edge
e along with its descendants.
2.3)t can be applied atS, and it is a part of theA-silent strategy atS. Then, as in Case
1, replace the continuation tree atS00 by this strategy.

Case3: t 2 Btimeouts. If t is not a part of theA-silent strategy atS, remove edgee
along with its descendants. If it is a part of theA-silent strategy, replace the continuation
tree atS00 by this strategy.

By constructing the right continuation tree for any immediate descendant ofS0, we
have constructed a weakA-silent strategy atS0. It remains to show that it is indeed an
abort [resolve] strategy. There are two possibilities :

Case A: The height of the constructed strategy is0. From the construction, it follows
that the height of the weakA-silent abort [resolve] strategy atS is also0. Therefore,
rslvA(S) = 0 [rslvB(S) = 2]. By proposition 1,rslvA(S0) = 0 [rslvB(S0) = 2].

Case B: The height of the constructed strategy is> 0. By construction, all leaf nodes
are labeled by statesS� such thatrslvA(S�) = 0 [rslvB(S�) = 2].

We conclude thatB has a weakA-silent abort [resolve] strategy atS0, which completes
the induction. ut


