
june 2009 | vol. 52 | no. 6 | communications of the acm 83

doi:10.1145/1516046.1516066

Abstract
Many Web sites embed third-party content in frames,
relying on the browser’s security policy to protect against
malicious content. However, frames provide insufficient
isolation in browsers that let framed content navigate
other frames. We evaluate existing frame navigation poli-
cies and advocate a stricter policy, which we deploy in the
open-source browsers. In addition to preventing undesir-
able interactions, the browser’s strict isolation policy also
affects communication between cooperating frames. We
therefore analyze two techniques for interframe communi-
cation between isolated frames. The first method, fragment
identifier messaging, initially provides confidentiality with-
out authentication, which we repair using concepts from a
well-known network protocol. The second method, post-
Message, initially provides authentication, but we dis-
cover an attack that breaches confidentiality. We propose
improvements in the postMessage API to provide confi-
dentiality; our proposal has been standardized and adopted
in browser implementations.

1. INTRODUCTION
Web sites contain content from sources of varying trust-
worthiness. For example, many Web sites contain third-
party advertising supplied by advertisement networks
or their sub-syndicates.3 Other common aggregations
of third-party content include Flickr albums, Facebook
badges, and personalized home pages offered by the three
major Web portals (iGoogle, My Yahoo! and Windows Live).
More advanced uses of third-party components include
Yelp’s use of Google Maps to display restaurant locations,
and the Windows Live Contacts gadget. A Web site combin-
ing content from multiple sources is called a mashup, with
the party combining the content called the integrator, and
integrated content called a gadget. In simple mashups,
the integrator does not intend to communicate with the
gadgets and requires only that the browser provide isola-
tion. In more sophisticated mashups, the integrator does
wish to communicate and requires secure interframe com-
munication. When a site wishes to provide isolation and
communication between content on its pages, the site
inevitably relies on the browser rendering process and iso-
lation policy, because Web content is rendered and viewed
under browser control.

In this paper, we study a contemporary Web version
of a recurring problem in computer systems: isolating
untrusted, or partially trusted, components while providing
secure intercomponent communication. Whenever a site
integrates third-party content, such as an advertisement, a

map, or a photo album, the site runs the risk of incorporat-
ing malicious content. Without isolation, malicious content
can compromise the confidentiality and integrity of the
user’s session with the integrator. Although the browser’s
well-known “same-origin policy”19 restricts script running
in one frame from manipulating content in another frame,
browsers use a different policy to determine whether one
frame is allowed to navigate (change the location of) another.
Although browsers must restrict navigation to provide isola-
tion, navigation is the basis of one form of interframe com-
munication used by leading companies and navigation
can be used to attack a second interframe communication
mechanism.

Many recent browsers have overly permissive frame
navigation policies that lead to a variety of attacks. To pre-
vent attacks, we demonstrate against the Google AdSense
login page and the iGoogle gadget aggregator, we propose
tightening the browser’s frame navigation policy. Based on
a comparison of four policies, we advocate a specific policy
that restricts navigation while maintaining compatibility
with existing Web content. We have collaborated with the
HTML 5 working group to standardize this policy and with
browser vendors to deploy this policy in Firefox 3, Safari
3.1, and Google Chrome. Because the policy is already
implemented in Internet Explorer 7, our preferred policy
is now standardized and deployed in the four most-used
browsers.

With strong isolation, frames are limited in their interac-
tions, raising the issue of how isolated frames can cooperate
as part of a mashup. We analyze two techniques for inter-
frame communication: fragment identifier messaging and
postMessage. Table 1 summarizes our results.

•	 Fragment identifier messaging uses frame navigation
to send messages between frames. This channel lacks
an important security property: messages are confiden-
tial but senders are not authenticated. These proper-
ties are analogous to a network channel in which
senders encrypt their messages with the recipi-
ent’s public key. The Microsoft.Live.Channels
library uses fragment identifier messaging to let the
Windows Live Contacts gadget communicate with its
integrator, following an authentication protocol analo-
gous to the Needham–Schroeder public-key protocol.17

Securing Frame Communication
in Browsers
By Adam Barth, Collin Jackson, and John C. Mitchell

The original version of this paper was published in the
Proceedings of the 17th USENIX Security Symposium, July
2008.

84 communications of the acm | june 2009 | vol. 52 | no. 6

research highlights

We discover an attack on this protocol, related to Lowe’s
anomaly in the Needham–Schroeder protocol,15 in
which a malicious gadget can impersonate the integra-
tor to the Contacts gadget. We suggested a solution
based on Lowe’s improvement to the Needham–
Schroeder protocol15 that Microsoft implemented and
deployed.

•	postMessage is a browser API designed for interframe
communication10 that is implemented in Internet
Explorer 8, Firefox 3, Safari 4, Google Chrome, and
Opera. Although postMessage has been deployed in
Opera since 2005, we demonstrate an attack on the
channel’s confidentiality using frame navigation. In
light of this attack, the postMessage channel pro-
vides authentication but lacks confidentiality, analo-
gous to a channel in which senders cryptographically
sign their messages. To secure the channel, we propose
modifying the API. Our proposal has been adopted
by the HTML 5 working group and all the major
browsers.

The remainder of the paper is organized as follows.
Section 2 details our threat models. Section 3 surveys exist-
ing frame navigation policies and standardizes a secure
policy. Section 4 analyzes two frame communication mech-
anisms, demonstrates attacks, and proposes defenses.
Section 5 describes related work. Section 6 concludes.

2. THREAT MODEL
In this section, we define precise threat models so that we
can determine how effectively browser mechanisms defend
against specific classes of attacks. We consider two kinds
of attackers, a “Web attacker” and a slightly more powerful
“gadget attacker.” Although phishing 4, 6 can be described
informally as a Web attack, we do not assume that either the
Web attacker or the gadget attacker can fool the user by using
a confusing domain name (such as bankofthevvest.
com) or by other social engineering. Instead, we assume the
user uses every browser security feature, including the loca-
tion bar and lock icon, accurately and correctly.

2.1. Web attacker
A Web attacker is a malicious principal who owns one or
more machines on the network. To study the browser secu-
rity policy, we assume that the user’s browser renders con-
tent from the attacker’s Web site.

•	Network Abilities: The Web attacker has no special net-
work abilities. In particular, the Web attacker can send
and receive network messages only from machines

under his or her control, possibly acting as a client or
server in network protocols of the attacker’s choice.
Typically, the Web attacker uses at least one machine
as an HTTP server, which we refer to as attacker.
com. The Web attacker has HTTPS certificates for
domains he or she owns; certificate authorities provide
such certificates for free. The Web attacker’s network
abilities are decidedly weaker than the usual network
attacker considered in network security because the
Web attacker can neither eavesdrop on messages to nor
forge messages from other network locations. For
example, a Web attacker cannot be a network “man-in-
the-middle.”

•	 Client Abilities: We assume that the user views
attacker.com in a popular browser, rendering the
attacker’s content. We make this assumption because
an honest user’s interaction with an honest site should
be secure even if the user visits a malicious site in
another browser window. The Web attacker’s content is
subject to the browser’s security policy, making the
Web attacker decidedly weaker than an attacker who
can execute an arbitrary code with the user’s privileges.
For example, a Web attacker cannot install a system-
wide key logger or botnet client.

We do not assume that the user treats attacker.com as
a site other than attacker.com. For example, the user
never gives a bank.com password to attacker.com. We
also assume that honest sites are free of cross-site scripting
vulnerabilities.20 In fact, none of the attacks described in
this paper rely on running malicious JavaScript as an honest
principal. Instead, we focus on privileges the browser itself
affords the attacker to interact with honest sites.

In addition to our interest in protecting users that
visit malicious sites, our assumption that the user visits
attacker.com is further supported by several techniques
for attracting users. For example, an attacker can place Web
advertisements, host popular content with organic appeal,
or send bulk e-mail encouraging visitors. Typically, simply
viewing an attacker’s advertisement (such as on a search
page) lets the attacker mount a Web attack. In a previous
study,12 we purchased over 50,000 impressions for $30.
During each of these impressions, a user’s browser rendered
our content, giving us the access required to mount a Web
attack.

Attacks accessible to a Web attacker have significant prac-
tical impact because these attacks do not require unusual
control of the network. Web attacks can also be carried out
by a standard man-in-the-middle network attacker, once the
user visits a single HTTP site, because a man-in-the-middle

	 Confidentiality	A uthentication	N etwork Analogue

Fragment identifier messaging	 ✓		 Public Key Encryption
Original postMessage		 ✓	 Public Key Signatures
Improved postMessage	 ✓	 ✓	 SSL/TLS

Table 1: Security properties of frame communication channels.

june 2009 | vol. 52 | no. 6 | communications of the acm 85

can inject malicious content into the HTTP response, simu-
lating a reply from attacker.com.

2.2. Gadget attacker
A gadget attacker is a Web attacker with one additional abil-
ity: the integrator embeds a gadget of the attacker’s choice.
This assumption lets us accurately evaluate mashup isola-
tion and communication protocols because the purpose of
these protocols is to let an integrator embed untrusted gad-
gets safely. In practice, a gadget attacker can either wait for
the user to visit the integrator or can redirect the user to the
integrator’s Web site from attacker.com.

3. FRAME ISOLATION
Web sites can use frames to delegate portions of their screen
real estate to other Web sites. For example, a site can sell
parts of their pages to adverting networks. The browser
displays the location of the main, or top-level, frame in its
location bar. Subframes are often visually indistinguishable
from other parts of a page, and the browser does not display
their location in its user interface.

3.1. Background
The browser’s scripting policy answers the question “when
can one frame manipulate the contents of another frame?”
The scripting policy is the most important part of the
browser security policy because a frame can act on behalf of
every other frame it can script. For example,

otherWindow.document.forms[0].password.value

attempts to read the user’s password from another win-
dow. Modern Web browsers let one frame read and write
all the properties of another frame only when their con-
tent was retrieved from the same origin, i.e. when the
scheme (e.g., http or https), host, and port of their loca-
tions match. If the content of otherWindow was retrieved
from a different origin, the browser’s security policy will
prevent the script above from accessing otherWindow.
document.

In addition to enforcing the scripting policy, every browser
must answer the question “when is one frame permitted to
navigate another frame?” Prior to 1999, all Web browsers
implemented a permissive policy:

Permissive Policy
A frame can navigate any other frame.

For example, if otherWindow includes a frame,

otherWindow.frames[0].location =
    “https://attacker.com/”;

navigates the frame to https://attacker.com/. Under
the permissive policy, the browser navigates otherWindow

even if it contains content from another origin. There are a
number of idioms for navigating frames, including

window.open(“https://attacker.com/”, “frameName”);

which navigates a frame named frameName. Frame names
exist in a global name space that is shared across origins.

3.2. Cross-window attacks
In 1999, Georgi Guninski discovered that the permissive
frame navigation policy admits serious attacks.7 At the time,
the password field on the CitiBank login page was contained
within a frame, and the Web attacker could navigate that
frame to https://attacker.com/, letting the attacker
fill the frame with identical-looking content that steals the
password. This cross-window attack proceeds as follows:

The user views a blog that displays the attacker’s ad.1.	
Separately, the user visits 2.	 bank.com, which displays
its password field in a frame.
The advertisement navigates the password frame to 3.	
https://attacker.com/. The location bar remains
https://bank.com and the lock icon remains
present.
The user enters his or her 4.	 bank.com password into the
https://attacker.com/ frame on the bank.com
page, submitting the password to attacker.com.

Of the browsers in heavy use today, Internet Explorer 6 and
Safari 3 both implement the permissive policy and allow this
attack. Internet Explorer 7 and Firefox 2 implement stricter
policies (described in subsequent sections). Many Web sites,
including Google AdSense, display their password field in a
frame and are vulnerable to this attack; see Figure 1.

3.3. Same-window attacks
In 2001, Mozilla prevented the cross-window attack by
implementing a stricter policy:

Window Policy
A frame can navigate only frames in its window.

Figure 1: Cross-window attack. The attacker hijacks the password
field, which is in a frame.

86 communications of the acm | june 2009 | vol. 52 | no. 6

research highlights

This policy prevents the cross-window attack because the
Web attacker does not control a frame in a trusted win-
dow and, without a foothold in the window, the attacker
cannot navigate the login frame. However, the window
policy is insufficiently strict to protect users because the
gadget attacker does have a foothold in a trusted win-
dow in a mashup. (Recall that, in a mashup, the integra-
tor combines gadgets from different sources into a single
experience.)

•	 Aggregators: Gadget aggregators, such as iGoogle, My
Yahoo! and Windows Live, provide one form of mashup.
These sites let users customize their experience by
including gadgets (such as stock tickers, weather pre-
dictions, and news feeds) on their home page. These
sites put third-party gadgets in frames and rely on the
browser to protect users from malicious gadgets.

•	 Advertisements: Web advertising produces mashups
that combine first-party content, such as news articles
or sports statistics, with third-party advertisements.
Most advertisements, including Google AdWords, are
contained in frames, both to prevent the advertisers
(who provide the gadgets) from interfering with the
publisher’s site and to prevent the publisher from using
JavaScript to click on the advertisements.

We refer to pages with advertisements as simple mashups
because the integrator and the gadgets do not communi-
cate. Simple mashups rely on the browser to provide isola-
tion but do not require interframe communication.

The windows policy offers no protection for mashups
because the integrator’s window contains untrusted gad-
gets. A gadget attacker who supplies a malicious gadget does
control a frame in the honest integrator’s window, giving
the attacker the foothold required to mount a gadget hijack-
ing attack.14 A malicious gadget can navigate a target gad-
get to attacker.com and impersonates the gadget to the
user. For example, iGoogle is vulnerable to gadget hijacking
in browsers, such as Firefox 2, that implement the permis-
sive or window policies; see Figure 2. Consider an iGoogle
gadget that lets users access their Hotmail account. If the
user is not logged into Hotmail, the gadget requests the
user’s Hotmail password. A malicious gadget can replace
the Hotmail gadget with and steal the user’s Hotmail pass-
word. As in the cross-window attack, the user is unable to
distinguish the malicious password field from the honest
password field.

3.4. Stricter policies
Although browser vendors do not document their naviga-
tion policies, we reverse engineered the policies of existing
browsers (see Table 2). In addition to the permissive and
window policies, we found two other policies:

Descendant Policy
A frame can navigate only its descendants.

Child Policy
A frame can navigate only its direct children.

The Internet Explorer 6 team wanted to enable the child pol-
icy by default but shipped the permissive policy because the
child policy was incompatible with a large number of Web
sites. The Internet Explorer 7 team designed the descen-
dant policy to balance the security requirement to defeat the
cross-window attack with the compatibility requirement to
support existing sites.18

To select a frame navigation policy that provides the best
trade-off between security and compatibility, we appeal to
the principle of pixel delegation. When one frame embeds
a child frame, the parent frame delegates a region of the
screen to the child frame. The browser prevents the child
frame from drawing outside of its bounding box but does
allow the parent frame to draw over the child using the
position: absolute style. Frame navigation attacks
hinge on the attacker escalating his or her privileges and
drawing on otherwise inaccessible regions of the screen.
The descendant policy is the most permissive (and therefore

Figure 2: Gadget hijacking. Under the window policy, the attacker
gadget can navigate other gadgets.

(a) Before

(b) After

june 2009 | vol. 52 | no. 6 | communications of the acm 87

most compatible) policy that prevents the attacker from
overwriting screen real estate “belonging” to another origin.
Although the child policy is stricter than the descendant
policy, the added strictness does not provide a significant
security benefit because the attacker can simulate the visual
effects of navigating a grandchild frame by drawing over
the region of the screen occupied by the grandchild frame.
The child policy’s added strictness does, however, reduce
the policy’s compatibility with existing sites, discouraging
browser vendors from deploying the child policy.

Maximizing the compatibility of the descendant policy
requires taking the browser’s scripting policy into account.
Consider one site that embeds two child frames from a sec-
ond origin. Should one of those child frames be permitted
to navigate its sibling? Strictly construed, the descendant
policy forbids this navigation because the target frame is a
sibling, not a descendant. However, this navigation should
be allowed because an attacker can perform the navigation
by injecting a script into the sibling frame that causes the
frame to navigate itself. The browser lets the attacker inject
this script because the two frames are from the same origin.
More generally, the browser can maximize the compatibility
of the descendant policy by recognizing origin propagation
and letting an active frame navigate a target frame if the tar-
get frame is the descendant of a frame in the same origin as
the active frame. Defined in this way, the frame navigation
policy avoids creating a suborigin privilege.11 This added per-
missiveness does not sacrifice security because an attacker
can perform the same navigations indirectly, but the refined
policy is more convenient for honest Web developers.

We collaborated with the HTML 5 working group9 and
standardized the descendant policy in the HTML 5 speci-
fication. The descendant policy has now been adopted by
Internet Explorer 7, Firefox 3, Safari 3.1, and Google Chrome.
We also reported a vulnerability in Flash Player that could be
used to bypass Internet Explorer 7’s frame navigation policy.
Adobe fixed this vulnerability in a security update.

4. FRAME COMMUNICATION
Unlike simple aggregators and advertisements, sophisti-
cated mashups comprise gadgets that communicate with
each other and with their integrator. For example, Yelp
integrates the Google Maps gadget, illustrating the need
for secure interframe communication in real deployments.
Google provides two versions of its Maps gadget:

•	 Frame: In the frame version, the integrator embeds a
frame to maps.google.com, in which Google displays
a map of the specified location. The user can interact
with the map, but the integrator cannot.

•	 Script: In the script version, the integrator embeds
a <script> tag that runs JavaScript from maps.

google.com. This script creates a rich JavaScript API
that the integrator can use to interact with the map, but
the script runs with all of the integrator’s privileges.

Yelp, a popular review Web site, uses the Google Maps gad-
get to display the locations of restaurants and other busi-
nesses. Yelp requires a high degree of interactivity with the
Maps gadget because it places markers on the map for each
restaurant and displays the restaurant’s review when the
user clicks on the marker. To deliver these advanced fea-
tures, Yelp must use the script version of the Maps gadget,
but this design requires Yelp to trust Google Maps com-
pletely because Google’s script runs with Yelp’s privileges,
granting Google the ability to manipulate Yelp’s reviews and
steal Yelp’s customer’s information. Although Google might
be trustworthy, the script approach does not scale beyond
highly respected gadget providers. Secure interframe com-
munication promises the best of both alternatives: sites
with functionality like Yelp can realize the interactivity of
the script version of Google Maps gadget while maintaining
the security of the frame version of the gadget.

4.1. Fragment identifier messaging
Although the browser’s scripting policy isolates frames from
different origins, clever mashup designers have discovered
an unintended channel between frames, fragment identi-
fier messaging,1, 21 which is regulated by the browser’s less-
restrictive frame navigation policy. This “found” technology
lets mashup developers place each gadget in a separate
frame and rely on the browser’s security policy to prevent
malicious gadgets from attacking the integrator and honest
gadgets. We analyze fragment identifier messaging in use
prior to our analysis and propose improvements that have
since been adopted.
Mechanism: Normally, when a frame is navigated to a new
URL, the browser requests the URL from the network and
replaces the frame’ document with the retrieved content.
However, if the new URL matches the old URL everywhere
except in the fragment (the part after the #), then the browser
does not reload the frame. If frames[0] is currently located
at http://example.com/doc,

frames[0].location = “http://example.com/doc#msg”;

changes the frame’s location without reloading the frame
or destroying its JavaScript context. The frame can read its
fragment by polling window.location.hash to see if the
fragment has changed. This technique can be used to send
messages between frames while avoiding network latency.
Security Properties: The fragment identifier channel has
less-than-ideal security properties. The browser’s scripting

IE 6 (Default)	IE 6 (Optional)	IE 7 (Default)	IE 7 (Optional)	F irefox 2	S afari 3	 Opera 9

Permissive	 Child	 Descendant	 Permissive	 Window	 Permissive	 Child

Table 2: Frame navigation policies deployed in existing browsers prior to our work.

88 communications of the acm | june 2009 | vol. 52 | no. 6

research highlights

policy prevents other origins from eavesdropping on mes-
sages because they are unable to read the frame’s loca-
tion (even though the navigation policy lets them write the
frame’s location). Browsers also prevent arbitrary origins
from tampering with portions of messages. Other security
origins can, however, overwrite the fragment identifier in
its entirety, leaving the recipient to guess the sender of each
message.

To understand these security properties, we draw an
analogy with the well-known properties of network chan-
nels. We view the browser as guaranteeing that the frag-
ment identifier channel has confidentiality: a message can
be read only by its intended recipient. The fragment identi-
fier channel fails to be a secure channel, however, because
it lacks authentication: a recipient cannot determine the
sender of a message unambiguously. The attacker might
be able to replay previous messages using the browser’s
history API.

The fragment identifier channel is analogous to a chan-
nel on an untrusted network in which each message is
encrypted with the public key of its intended recipient.
In both cases, when Alice sends a message to Bob, no one
except Bob learns the contents of the message (unless Bob
forwards the message). In both settings, the channel does
not provide a reliable procedure for determining who sent
a given message. There are two key differences between the
fragment identifier channel and the public-key channel:

1. � Public-key channel is susceptible to traffic analysis,
but an attacker cannot determine the length of a mes-
sage sent over the fragment identifier channel. An
attacker can extract timing information by polling the
browser’s clock, but obtaining high-resolution timing
information degrades performance.

2. � Fragment identifier channel is constrained by the
browser’s frame navigation policy. In principle, this
could be used to construct protocols secure for the
fragment identifier channel that are insecure for
the public-key channel (by preventing the attacker
from navigating the recipient), but in practice this
restriction has not prevented us from constructing
attacks on existing implementations.

Despite these differences, we find the network analogy use-
ful in analyzing interframe communication.
Windows Live Channels: Microsoft uses fragment iden-
tifier messaging in its Windows Live platform library to
implement a higher-level channel API, Microsoft.Live.
Channels.21 The Windows Live Contacts gadget uses this
API to communicate with its integrator. The integrator can
instruct the gadget to add or remove contacts from the user’s
contacts list, and the gadget can send the integrator details
about the user’s contacts. Whenever the integrator asks the
gadget to perform a sensitive action, the gadget asks the
user to confirm the operation and displays the integrator’s
host name to aid the user in making trust decisions. Prior to
our analysis, Microsoft.Live.Channels used a proto-
col to add authentication to the fragment identifier channel.
By reverse engineering the implementation, we determined

that the library used the following protocol to establish a
secure channel:

A ® B : NA, URIA

B ® A : NA, NB

A ® B : NB, Message1

In this notation, A and B are frames, NA and NB are fresh
nonces (numbers chosen at random during each run of the
protocol), and URIA is the location of A’s frame. Under the
network analogy described above, this protocol is analogous
to the classic Needham–Schroeder public-key protocol.17 The
Needham–Schroeder protocol was designed to establish a
shared secret between two parties over an insecure channel.
Instead of using encryption as in the Needham–Schroeder
protocol, Windows Live relies on the fragment identifier
channel to provide confidentiality.

The Needham–Schroeder public-key protocol has a well-
known anomaly, due to Lowe,15 that leads to an attack in
the browser setting. In the Lowe scenario, an honest princi-
pal, Alice, initiates the protocol with a dishonest party, Eve.
Eve then convinces honest Bob that she is Alice. In order to
exploit the Lowe anomaly, an honest principal must be will-
ing to initiate the protocol with a dishonest principal. This
requirement is met in mashups because the integrator initi-
ates the protocol with the gadget attacker’s gadget when the
mashup is initialized. The Lowe anomaly can be exploited to
impersonate the integrator to the gadget:

Integrator ® Attacker : NI, URII

   Attacker ® Gadget : NI, URII

  Gadget ® Integrator : NI, NG

Integrator ® Attacker : NG, Message1

After these four messages, the attacker possesses NI and
NG and can impersonate the integrator to the gadget. We
have implemented this attack against the Windows Live
Contacts gadget. The anomaly is especially problematic
for the Contacts gadget because it displays the integra-
tor’s host name to the user in its security user interface (see
Figure 3).
Securing Fragment Identifier Messaging: The channel can
be secured using a variant of the Needham–Schroeder–Lowe
protocol.15 As in Lowe’s improvement to the original proto-
col, we recommend including the responder’s identity in the
second message of the protocol, letting the honest initiator
detect the attack and abort the protocol:

A ® B : NA, URIA

B ® A : NA, NB, URIB

A ® B : NB

We contacted Microsoft, the OpenAJAX Alliance, and IBM
about the vulnerabilities in their fragment identifier mes-
saging protocols. Microsoft and the OpenAJAX Alliance have
adopted our suggestions and deployed the above protocol in

june 2009 | vol. 52 | no. 6 | communications of the acm 89

updated versions of their libraries. IBM adopted our sugges-
tions and revised their SMash14 paper.

4.2. postMessage
HTML 510 specifies a new browser API for asynchronous
communication between frames. Unlike fragment identi-
fier messaging, postMessage was designed for cross-ori-
gin communication. The postMessage API was originally
implemented in Opera 8 and is now supported by Internet
Explorer 8, Firefox 3, Safari 3.1, and Google Chrome. We dis-
covered a vulnerability in an early version of the API, which
has since been eliminated by modifications we suggested.
To send a message to another frame, the sender calls the
postMessage method:

frames[0].postMessage(“Hello world.”);

In the recipient’s frame, the browser generates a message
event with the message, the origin (scheme, host, and port)
of the sender, and a reference to the sender’s frame.
Security Properties: The postMessage channel guarantees
authentication, messages accurately identify their senders,
but the channel lacks confidentiality. Thus, postMessage
has almost the “opposite” security properties as fragment
identifier messaging. The postMessage channel is analo-
gous to a channel on an untrusted network in which each
message is cryptographically signed by its sender. In both
settings, if Alice sends a message to Bob, Bob can determine
unambiguously that Alice sent the message. With post­
Message, the origin property identifies the sender; with
cryptographic signatures, the signature identifies signer.
One difference between the channels is that cryptographic
signatures can be easily replayed, but postMessage resists
replay attacks.

Attacks: We discover an attack that breaches the confidenti-
ality of the postMessage channel. Because a message sent
with postMessage is directed at a frame, an attacker can
intercept the message by navigating the frame to attacker.
com before the browser generates the message event:

•	 Recursive Mashup Attack: If an integrator calls postMes­
sage on a gadget contained in a frame, the attacker can
load the integrator inside a frame and intercept the mes-
sage by navigating the gadget frame (a descendant of the
attacker’s frame) to attacker.com. When the integrator
calls postMessage on the “gadget’s” frame, the browser
delivers the message to the attacker (see Figure 4).

•	 Reply Attack: Suppose the integrator uses the origin
to decide whether to reply to a message event:

if (evt.origin == “https://gadget.com”)
   evt.source.postMessage(secret);

•	 The attacker can intercept the secret by navigating the
source frame before the browser generates the message
event. This attack can succeed even under the child
frame navigation policy if the honest gadget sends its
messages via top.postMesage( . . . ). The attacker’s
gadget can embed a frame to the honest gadget and nav-
igate the honest gadget before the integrator replies to
the “gadget’s” frame (see Figure 5).

Securing postMessage: Although sites might be able to build
a secure channel using the original postMessage API, we
recommend that postMessage provide confidentiality
natively. In MashupOS,22 we previously proposed that inter-
frame communication APIs should let the sender specify
the origin of the intended recipient. Similarly, we propose

Figure 3: Lowe Anomaly. The gadget believes the request came from
integrator.com, but in reality the request was made by attacker.
com.

Figure 4: Recursive mashup attack. The attacker navigates the
gadget’s frame to attacker.com.

Figure 5: Reply attack. The attacker intercepts the integrator’s
response to the gadget’s message.

90 communications of the acm | june 2009 | vol. 52 | no. 6

research highlights

extending the postMessage API with a second parameter:
targetOrigin. The browser will deliver the message only
if the frame’s current origin matches the specified target­
Origin. If the sender uses “*” as the targetOrigin, the
browser will deliver the message to any origin. Using this
improved API, a frame can reply to a message using the fol-
lowing idiom:

if (evt.origin == “https://gadget.com”)
   evt.source.postMessage(secret, evt.origin);

We implemented this API change as patches for Firefox
and Safari. Our proposal was accepted by the HTML 5 work-
ing group.8 The improved API is now available in Internet
Explorer 8, Firefox 3, Safari 4, and Google Chrome.

5. RELATED WORK

5.1. Mitigations for gadget hijacking
SMash14 mitigates gadget hijacking (also known as “frame
phishing”) by carefully monitoring the frame hierarchy and
browser events for unexpected navigations. Although neither
the integrator nor the gadgets can prevent these navigations,
the mashup can alert the user and refuse to function if it detects
an illicit navigation. SMash waits 20s for a gadget to load before
assuming that the gadget has been hijacked. An attacker might
be able to fool the user into entering sensitive information dur-
ing this interval, but using a shorter interval might cause users
with slow network connections to receive spurious warnings.
The descendant policy makes such mitigation unnecessary.

5.2. Safe subsets of HTML and JavaScript
One way to sidestep the security issues of frame-based
mashups is to avoid using frames by combining the gadgets
and the integrator into a single document. This approach
forgoes the protections afforded by the browser’s security
policy and requires gadgets to be written in a “safe subset”
of HTML and JavaScript that prevents a malicious gadget
from attacking the integrator or other gadgets. Several open-
source implementations (FBML, ADsafe, and Caja) are avail-
able. FBML is currently the most successful subsets and is
used by the Facebook Platform.

5.3. Subspace
In Subspace,13 we used a multilevel hierarchy of frames
that coordinated their document.domain property to
communicate directly in JavaScript. Similar to most frame-
based mashups, the descendant frame navigation policy is
required to prevent gadget hijacking.

5.4. Module tag
The proposed <module> tag 2 is similar to the <iframe>
tag, but the module runs in an unprivileged security context,
without a principal, and the browser prevents the integra-
tor from overlaying content on top of the module. Unlike
postMessage, the communication primitive used with
the <module> tag is explicitly unauthenticated because the
module lacks a principal.

5.5. Security = restricted and jail
Internet Explorer supports a security attribute16 for
frames. When set to restricted, the frame’s content
cannot run JavaScript. Similarly, the proposed <jail>
tag5 encloses untrusted content and prevents the jailed
content from running JavaScript. Unfortunately, eliminat-
ing JavaScript prevents gadgets from offering interactive
experiences.

5.6. MashupOS
In MashupOS,22 we proposed new primitives both for isola-
tion and communication. Our improvements to frame navi-
gation policies and postMessage let developers realize
some of the benefits of MashupOS using existing browsers.

6. CONCLUSION
Web sites that combine content from multiple sources
can leverage browser frame isolation and interframe com-
munication. Although the browser’s same-origin security
policy restricts direct access between frames, recent brows-
ers have used differing policies to regulate when one frame
may navigate another. The original permissive frame naviga-
tion policy admits a number of attacks, and the subsequent
window navigation policy leaves mashups vulnerable to
similar attacks. The better descendant policy, which we col-
laborated with the HTML 5 working group to standardize,
balances security and compatibility and has been adopted
by Internet Explorer 7 (independently), Firefox 3, Safari 3.1,
and Google Chrome.

In existing browsers, frame navigation can be used for inter-
frame communication via a technique known as fragment
identifier messaging. If used directly, fragment identifier
messaging lacks authentication. We showed that the authen-
tication protocols used by Windows.Live.Channels,
SMash, and OpenAjax 1.1 were vulnerable to attacks but can
be repaired in a manner analogous to Lowe’s variation of the
Needham–Schroeder protocol.15 This improvement has been
adopted by Microsoft Windows Live, IBM Smash,14 and the
OpenAjax Alliance.

Originally, postMessage, another interframe commu-
nication channel, suffered the converse vulnerability: using
frame navigation, an attacker could breach confidentiality.
We propose extending the postMessage API to provide
confidentiality by letting the sender specify an intended
recipient. Our proposal has been adopted by the HTML
5 working group, Internet Explorer 8, Firefox 3, Safari 4,
Google Chrome, and Opera.

With these improvements, frames provide stronger iso-
lation and better communication, becoming a more attrac-
tive feature for integrating third-party Web content. One
important area of future work is improving the usability of
the browser’s security user interface. For example, a gad-
get is permitted to navigate the top-level frame, redirecting
the user from the mashup to a site of the attacker’s choice.
Although the browser’s location bar makes this navigation
evident, many users ignore the location bar. Another area
for future work is improving isolation in the face of browser
implementation errors, which could let a gadget subvert the
browser’s security mechanisms.

june 2009 | vol. 52 | no. 6 | communications of the acm 91

Acknowledgments
We thank Mike Beltzner, Sumeer Bhola, Dan Boneh, Gabriel
E. Corvera, Ian Hickson, Koji Kato, Eric Lawrence, Erick Lee,
David Lenoe, David Ross, Maciej Stachowiak, Hallvord Steen,
Peleus Uhley, Jeff Walden, Sam Weinig, and Boris Zbarsky
for their helpful suggestions and feedback. This work is sup-
ported by grants from the National Science Foundation and
the US Department of Homeland Security.	

References

	 1.	B urke, J. Cross domain frame
communication with fragment
identifiers. http://tagneto.blogspot.
com/2006/06/cross-domain-frame-
communication-with.html.

	 2.	C rockford, D. The <module> tag.
http://www.json.org/module.html.

	 3.	 Daswani, N., Stoppelman, M. et al.
The anatomy of Clickbot.A. In
Proceedings of the HotBots (2007).

	 4.	 Dhamija, R., Tygar, J.D., Hearst,
M. Why phishing works. In CHI
‘06: Proceedings of the SIGCHI
Conference on Human Factors in
Computing Systems (2006).

	 5.	E ich, B. JavaScript: Mobility and
ubiquity. http://kathrin.dagstuhl.de/
files/Materials/07/07091/07091.
EichBrendan.Slides.pdf.

	 6.	F elten, E.W., Balfanz, D., Dean, D.,
Wallach, D.S. Web spoofing: An
Internet con game. In Proceedings
of the 20th National Information
Systems Security Conference (1996).

	 7.	G uninski, G. Frame spoofing using
loading two frames. Mozilla Bug
13871.

	 8.	H ickson, I. Re: A potential
slight security enhancement to
postMessage, Februrary 2008. http://
lists.whatwg.org/pipermail/whatwg-
whatwg.org/2008-February/013949.
html.

	 9.	H ickson, I. Re: HTML5 frame
navigation policy, April 2008. http://
lists.whatwg.org/pipermail/whatwg-
whatwg.org/2008-April/014597.html.

	10.	H ickson, I. et al. HTML 5 Working
Draft. http://www.whatwg.org/specs/
web-apps/
current-work/.

	11.	 Jackson, C., Barth, A. Beware of finer-
grained origins. In Proceedings of the
Web 2.0 Security and Privacy (W2SP)
(2008).

	12.	 Jackson, C., Barth, A., Bortz, A., Shao,
W., Boneh, D. Protecting browsers
from DNS rebinding attacks. In

Proceedings of of the 14th ACM
Conference on Computer and
Communications Security (CCS)
(2007).

	13.	 Jackson, C., Wang, H.J. Subspace:
Secure cross-domain communication
for web mashups. In Proceedings
of the 16th International World
Wide Web Conference (WWW) (2007).

	14.	 De Keukelaere, F., Bhola, S., Steiner,
M., Chari, S., Yoshihama, S. SMash:
Secure cross-domain mashups on
unmodified browsers. In Proceedings
of the 17th International World Wide
Web Conference (WWW) (2008). To
appear.

	15.	 Lowe, G. Breaking and fixing the
Needham–Schroeder public-key
protocol using FDR. In Proceedings of
TACAS (volume 1055, 1996), Springer
Verlag.

	16.	M icrosoft. SECURITY attribute
(FRAME, IFRAME). http://msdn2.
microsoft.com/en-us/library/
ms534622(VS.85).aspx.

	17.	N eedham, R.M., Schroeder, M.D.
Using encryption for authentication
in large networks of computers.
Commun. ACM, 21, 12 (1978),
993–999.

	18.	R oss, D., January 2008. Personal
communication.

	19.	R uderman, J. JavaScript Security:
Same Origin. http://www.mozilla.org/
projects/security/components/
same-origin.html.

	20.	S tuttard, D., Pinto, M. The Web
Application Hacker’s Handbook.
Wiley, 2007.

	21.	T horpe, D. Secure cross-domain
communication in the browser.
Archit. J. 12 (2007), 14–18.

	22.	 Wang, H.J., Fan, X., Howell,
J., Jackson, C. Protection and
communication abstractions
for web browsers in MashupOS.
In Proceedings of the 21st
ACM Symposium on Operating
Systems Principles (SOSP)
(2007).

Adam Barth
(abarth@eecs.berkeley.edu),
UC Berkeley.

Collin Jackson
(collinj@cs.stanford.edu),
Stanford University.

John C. Mitchell
(mitchell@cs.stanford.edu),
Stanford University.

© 2009 ACM 0001-0782/09/0600 $10.00

ACM Transactions on
Internet TechnologyInternet TechnologyInternet Technology

◆ ◆ ◆ ◆ ◆

This quarterly publication encompasses many disciplines
in computing—including computer software engineering,
middleware, database management, security, knowledge dis-
covery and data mining, networking and distributed systems,
communications, and performance and scalability—all under
one roof. TOIT brings a sharper focus on the results and roles
of the individual disciplines and the relationship among
them. Extensive multi-disciplinary coverage is placed on the
new application technologies, social issues, and public policies
shaping Internet development.

◆ ◆ ◆ ◆ ◆

http://toit.acm.org/

