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Abstract
Many Web sites embed third-party content in frames, 
relying on the browser’s security policy to protect against 
malicious content. However, frames provide insufficient 
isolation in browsers that let framed content navigate 
other frames. We evaluate existing frame navigation poli-
cies and advocate a stricter policy, which we deploy in the 
open-source browsers. In addition to preventing undesir-
able interactions, the browser’s strict isolation policy also 
affects communication between cooperating frames. We 
therefore analyze two techniques for interframe communi-
cation between isolated frames. The first method, fragment 
identifier messaging, initially provides confidentiality with-
out authentication, which we repair using concepts from a 
well-known network protocol. The second method, post-
Message, initially provides authentication, but we dis-
cover an attack that breaches confidentiality. We propose 
improvements in the postMessage API to provide confi-
dentiality; our proposal has been standardized and adopted 
in browser implementations.

1. INTRODUCTION
Web sites contain content from sources of varying trust-
worthiness. For example, many Web sites contain third-
party advertising supplied by advertisement networks 
or their sub-syndicates.3 Other common aggregations 
of third-party content include Flickr albums, Facebook 
badges, and personalized home pages offered by the three 
major Web portals (iGoogle, My Yahoo! and Windows Live). 
More advanced uses of third-party components include 
Yelp’s use of Google Maps to display restaurant locations, 
and the Windows Live Contacts gadget. A Web site combin-
ing content from multiple sources is called a mashup, with 
the party combining the content called the integrator, and 
integrated content called a gadget. In simple mashups, 
the integrator does not intend to communicate with the 
gadgets and requires only that the browser provide isola-
tion. In more sophisticated mashups, the integrator does 
wish to communicate and requires secure interframe com-
munication. When a site wishes to provide isolation and 
communication between content on its pages, the site 
inevitably relies on the browser rendering process and iso-
lation policy, because Web content is rendered and viewed 
under browser control.

In this paper, we study a contemporary Web version 
of a recurring problem in computer systems: isolating 
untrusted, or partially trusted, components while providing 
secure intercomponent communication. Whenever a site 
integrates third-party content, such as an advertisement, a 

map, or a photo album, the site runs the risk of incorporat-
ing malicious content. Without isolation, malicious content 
can compromise the confidentiality and integrity of the 
user’s session with the integrator. Although the browser’s 
well-known “same-origin policy”19 restricts script running 
in one frame from manipulating content in another frame, 
browsers use a different policy to determine whether one 
frame is allowed to navigate (change the location of) another. 
Although browsers must restrict navigation to provide isola-
tion, navigation is the basis of one form of interframe com-
munication used by leading companies and navigation 
can be used to attack a second interframe communication 
mechanism.

Many recent browsers have overly permissive frame 
navigation policies that lead to a variety of attacks. To pre-
vent attacks, we demonstrate against the Google AdSense 
login page and the iGoogle gadget aggregator, we propose 
tightening the browser’s frame navigation policy. Based on 
a comparison of four policies, we advocate a specific policy 
that restricts navigation while maintaining compatibility 
with existing Web content. We have collaborated with the 
HTML 5 working group to standardize this policy and with 
browser vendors to deploy this policy in Firefox 3, Safari 
3.1, and Google Chrome. Because the policy is already 
implemented in Internet Explorer 7, our preferred policy 
is now standardized and deployed in the four most-used 
browsers.

With strong isolation, frames are limited in their interac-
tions, raising the issue of how isolated frames can cooperate 
as part of a mashup. We analyze two techniques for inter-
frame communication: fragment identifier messaging and 
postMessage. Table 1 summarizes our results.

•	 Fragment identifier messaging uses frame navigation 
to send messages between frames. This channel lacks 
an important security property: messages are confiden-
tial but senders are not authenticated. These proper-
ties are analogous to a network channel in which 
senders encrypt their messages with the recipi-
ent’s public key. The Microsoft.Live.Channels 
library uses fragment identifier messaging to let the 
Windows Live Contacts gadget communicate with its 
integrator, following an authentication protocol analo-
gous to the Needham–Schroeder public-key protocol.17 
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We discover an attack on this protocol, related to Lowe’s 
anomaly in the Needham–Schroeder protocol,15 in 
which a malicious gadget can impersonate the integra-
tor to the Contacts gadget. We suggested a solution 
based on Lowe’s improvement to the Needham–
Schroeder protocol15 that Microsoft implemented and 
deployed.

•	postMessage is a browser API designed for interframe 
communication10 that is implemented in Internet 
Explorer 8, Firefox 3, Safari 4, Google Chrome, and 
Opera. Although postMessage has been deployed in 
Opera since 2005, we demonstrate an attack on the 
channel’s confidentiality using frame navigation. In 
light of this attack, the postMessage channel pro-
vides authentication but lacks confidentiality, analo-
gous to a channel in which senders cryptographically 
sign their messages. To secure the channel, we propose 
modifying the API. Our proposal has been adopted 
by  the HTML 5 working group and all the major 
browsers.

The remainder of the paper is organized as follows. 
Section 2 details our threat models. Section 3 surveys exist-
ing frame navigation policies and standardizes a secure 
policy. Section 4 analyzes two frame communication mech-
anisms, demonstrates attacks, and proposes defenses. 
Section 5 describes related work. Section 6 concludes.

2. THREAT MODEL
In this section, we define precise threat models so that we 
can determine how effectively browser mechanisms defend 
against specific classes of attacks. We consider two kinds 
of attackers, a “Web attacker” and a slightly more powerful 
“gadget attacker.” Although phishing 4, 6 can be described 
informally as a Web attack, we do not assume that either the 
Web attacker or the gadget attacker can fool the user by using 
a confusing domain name (such as bankofthevvest.
com) or by other social engineering. Instead, we assume the 
user uses every browser security feature, including the loca-
tion bar and lock icon, accurately and correctly.

2.1. Web attacker
A Web attacker is a malicious principal who owns one or 
more machines on the network. To study the browser secu-
rity policy, we assume that the user’s browser renders con-
tent from the attacker’s Web site.

•	Network Abilities: The Web attacker has no special net-
work abilities. In particular, the Web attacker can send 
and receive network messages only from machines 

under his or her control, possibly acting as a client or 
server in network protocols of the attacker’s choice. 
Typically, the Web attacker uses at least one machine 
as an HTTP server, which we refer to as attacker.
com. The Web attacker has HTTPS certificates for 
domains he or she owns; certificate authorities provide 
such certificates for free. The Web attacker’s network 
abilities are decidedly weaker than the usual network 
attacker considered in network security because the 
Web attacker can neither eavesdrop on messages to nor 
forge messages from other network locations. For 
example, a Web attacker cannot be a network “man-in-
the-middle.”

•	 Client Abilities: We assume that the user views 
attacker.com in a popular browser, rendering the 
attacker’s content. We make this assumption because 
an honest user’s interaction with an honest site should 
be secure even if the user visits a malicious site in 
another browser window. The Web attacker’s content is 
subject to the browser’s security policy, making the 
Web attacker decidedly weaker than an attacker who 
can execute an arbitrary code with the user’s privileges. 
For example, a Web attacker cannot install a system-
wide key logger or botnet client.

We do not assume that the user treats attacker.com as 
a site other than attacker.com. For example, the user 
never gives a bank.com password to attacker.com. We 
also assume that honest sites are free of cross-site scripting 
vulnerabilities.20 In fact, none of the attacks described in 
this paper rely on running malicious JavaScript as an honest 
principal. Instead, we focus on privileges the browser itself 
affords the attacker to interact with honest sites.

In addition to our interest in protecting users that 
visit malicious sites, our assumption that the user visits 
attacker.com is further supported by several techniques 
for attracting users. For example, an attacker can place Web 
advertisements, host popular content with organic appeal, 
or send bulk e-mail encouraging visitors. Typically, simply 
viewing an attacker’s advertisement (such as on a search 
page) lets the attacker mount a Web attack. In a previous 
study,12 we purchased over 50,000 impressions for $30. 
During each of these impressions, a user’s browser rendered 
our content, giving us the access required to mount a Web 
attack.

Attacks accessible to a Web attacker have significant prac-
tical impact because these attacks do not require unusual 
control of the network. Web attacks can also be carried out 
by a standard man-in-the-middle network attacker, once the 
user visits a single HTTP site, because a man-in-the-middle 

	 Confidentiality	A uthentication	N etwork Analogue

Fragment identifier messaging	 ✓		  Public Key Encryption
Original postMessage		  ✓	 Public Key Signatures
Improved postMessage	 ✓	 ✓	 SSL/TLS

Table 1: Security properties of frame communication channels.
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can inject malicious content into the HTTP response, simu-
lating a reply from attacker.com.

2.2. Gadget attacker
A gadget attacker is a Web attacker with one additional abil-
ity: the integrator embeds a gadget of the attacker’s choice. 
This assumption lets us accurately evaluate mashup isola-
tion and communication protocols because the purpose of 
these protocols is to let an integrator embed untrusted gad-
gets safely. In practice, a gadget attacker can either wait for 
the user to visit the integrator or can redirect the user to the 
integrator’s Web site from attacker.com.

3. FRAME ISOLATION
Web sites can use frames to delegate portions of their screen 
real estate to other Web sites. For example, a site can sell 
parts of their pages to adverting networks. The browser 
displays the location of the main, or top-level, frame in its 
location bar. Subframes are often visually indistinguishable 
from other parts of a page, and the browser does not display 
their location in its user interface.

3.1. Background
The browser’s scripting policy answers the question “when 
can one frame manipulate the contents of another frame?” 
The scripting policy is the most important part of the 
browser security policy because a frame can act on behalf of 
every other frame it can script. For example,

otherWindow.document.forms[0].password.value

attempts to read the user’s password from another win-
dow. Modern Web browsers let one frame read and write 
all the properties of another frame only when their con-
tent was retrieved from the same origin, i.e. when the 
scheme (e.g., http or https), host, and port of their loca-
tions match. If the content of otherWindow was retrieved 
from a different origin, the browser’s security policy will 
prevent the script above from accessing otherWindow.
document.

In addition to enforcing the scripting policy, every browser 
must answer the question “when is one frame permitted to 
navigate another frame?” Prior to 1999, all Web browsers 
implemented a permissive policy:

Permissive Policy
A frame can navigate any other frame.  

For example, if otherWindow includes a frame,

otherWindow.frames[0].location =  
      “https://attacker.com/”;

navigates the frame to https://attacker.com/. Under 
the permissive policy, the browser navigates otherWindow 

even if it contains content from another origin. There are a 
number of idioms for navigating frames, including

window.open(“https://attacker.com/”, “frameName”);

which navigates a frame named frameName. Frame names 
exist in a global name space that is shared across origins.

3.2. Cross-window attacks
In 1999, Georgi Guninski discovered that the permissive 
frame navigation policy admits serious attacks.7 At the time, 
the password field on the CitiBank login page was contained 
within a frame, and the Web attacker could navigate that 
frame to https://attacker.com/, letting the attacker 
fill the frame with identical-looking content that steals the 
password. This cross-window attack proceeds as follows:

The user views a blog that displays the attacker’s ad.1.	
Separately, the user visits 2.	 bank.com, which displays 
its password field in a frame.
The advertisement navigates the password frame to 3.	
https://attacker.com/. The location bar remains 
https://bank.com and the lock icon remains 
present.
The user enters his or her 4.	 bank.com password into the 
https://attacker.com/ frame on the bank.com 
page, submitting the password to attacker.com.

Of the browsers in heavy use today, Internet Explorer 6 and 
Safari 3 both implement the permissive policy and allow this 
attack. Internet Explorer 7 and Firefox 2 implement stricter 
policies (described in subsequent sections). Many Web sites, 
including Google AdSense, display their password field in a 
frame and are vulnerable to this attack; see Figure 1.

3.3. Same-window attacks
In 2001, Mozilla prevented the cross-window attack by 
implementing a stricter policy:

Window Policy
A frame can navigate only frames in its window.  

Figure 1: Cross-window attack. The attacker hijacks the password 
field, which is in a frame.
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This policy prevents the cross-window attack because the 
Web attacker does not control a frame in a trusted win-
dow and, without a foothold in the window, the attacker 
cannot navigate the login frame. However, the window 
policy is insufficiently strict to protect users because the 
gadget attacker does have a foothold in a trusted win-
dow in a mashup. (Recall that, in a mashup, the integra-
tor combines gadgets from different sources into a single 
experience.)

•	 Aggregators: Gadget aggregators, such as iGoogle, My 
Yahoo! and Windows Live, provide one form of mashup. 
These sites let users customize their experience by 
including gadgets (such as stock tickers, weather pre-
dictions, and news feeds) on their home page. These 
sites put third-party gadgets in frames and rely on the 
browser to protect users from malicious gadgets.

•	 Advertisements: Web advertising produces mashups 
that combine first-party content, such as news articles 
or sports statistics, with third-party advertisements. 
Most advertisements, including Google AdWords, are 
contained in frames, both to prevent the advertisers 
(who provide the gadgets) from interfering with the 
publisher’s site and to prevent the publisher from using 
JavaScript to click on the advertisements.

We refer to pages with advertisements as simple mashups 
because the integrator and the gadgets do not communi-
cate. Simple mashups rely on the browser to provide isola-
tion but do not require interframe communication.

The windows policy offers no protection for mashups 
because the integrator’s window contains untrusted gad-
gets. A gadget attacker who supplies a malicious gadget does 
control a frame in the honest integrator’s window, giving 
the attacker the foothold required to mount a gadget hijack-
ing attack.14 A malicious gadget can navigate a target gad-
get to attacker.com and impersonates the gadget to the 
user. For example, iGoogle is vulnerable to gadget hijacking 
in browsers, such as Firefox 2, that implement the permis-
sive or window policies; see Figure 2. Consider an iGoogle 
gadget that lets users access their Hotmail account. If the 
user is not logged into Hotmail, the gadget requests the 
user’s Hotmail password. A malicious gadget can replace 
the Hotmail gadget with and steal the user’s Hotmail pass-
word. As in the cross-window attack, the user is unable to 
distinguish the malicious password field from the honest 
password field.

3.4. Stricter policies
Although browser vendors do not document their naviga-
tion policies, we reverse engineered the policies of existing 
browsers (see Table 2). In addition to the permissive and 
window policies, we found two other policies:

Descendant Policy
A frame can navigate only its descendants.  

Child Policy
A frame can navigate only its direct children.  

The Internet Explorer 6 team wanted to enable the child pol-
icy by default but shipped the permissive policy because the 
child policy was incompatible with a large number of Web 
sites. The Internet Explorer 7 team designed the descen-
dant policy to balance the security requirement to defeat the 
cross-window attack with the compatibility requirement to 
support existing sites.18

To select a frame navigation policy that provides the best 
trade-off between security and compatibility, we appeal to 
the principle of pixel delegation. When one frame embeds 
a child frame, the parent frame delegates a region of the 
screen to the child frame. The browser prevents the child 
frame from drawing outside of its bounding box but does 
allow the parent frame to draw over the child using the 
position: absolute style. Frame navigation attacks 
hinge on the attacker escalating his or her privileges and 
drawing on otherwise inaccessible regions of the screen. 
The descendant policy is the most permissive (and therefore 

Figure 2: Gadget hijacking. Under the window policy, the attacker 
gadget can navigate other gadgets.

(a) Before

(b) After
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most compatible) policy that prevents the attacker from 
overwriting screen real estate “belonging” to another origin. 
Although the child policy is stricter than the descendant 
policy, the added strictness does not provide a significant 
security benefit because the attacker can simulate the visual 
effects of navigating a grandchild frame by drawing over 
the region of the screen occupied by the grandchild frame. 
The child policy’s added strictness does, however, reduce 
the policy’s compatibility with existing sites, discouraging 
browser vendors from deploying the child policy.

Maximizing the compatibility of the descendant policy 
requires taking the browser’s scripting policy into account. 
Consider one site that embeds two child frames from a sec-
ond origin. Should one of those child frames be permitted 
to navigate its sibling? Strictly construed, the descendant 
policy forbids this navigation because the target frame is a 
sibling, not a descendant. However, this navigation should 
be allowed because an attacker can perform the navigation 
by injecting a script into the sibling frame that causes the 
frame to navigate itself. The browser lets the attacker inject 
this script because the two frames are from the same origin. 
More generally, the browser can maximize the compatibility 
of the descendant policy by recognizing origin propagation 
and letting an active frame navigate a target frame if the tar-
get frame is the descendant of a frame in the same origin as 
the active frame. Defined in this way, the frame navigation 
policy avoids creating a suborigin privilege.11 This added per-
missiveness does not sacrifice security because an attacker 
can perform the same navigations indirectly, but the refined 
policy is more convenient for honest Web developers.

We collaborated with the HTML 5 working group9 and 
standardized the descendant policy in the HTML 5 speci-
fication. The descendant policy has now been adopted by 
Internet Explorer 7, Firefox 3, Safari 3.1, and Google Chrome. 
We also reported a vulnerability in Flash Player that could be 
used to bypass Internet Explorer 7’s frame navigation policy. 
Adobe fixed this vulnerability in a security update.

4. FRAME COMMUNICATION
Unlike simple aggregators and advertisements, sophisti-
cated mashups comprise gadgets that communicate with 
each other and with their integrator. For example, Yelp 
integrates the Google Maps gadget, illustrating the need 
for secure interframe communication in real deployments. 
Google provides two versions of its Maps gadget:

•	 Frame: In the frame version, the integrator embeds a 
frame to maps.google.com, in which Google displays 
a map of the specified location. The user can interact 
with the map, but the integrator cannot.

•	 Script: In the script version, the integrator embeds 
a  <script> tag that runs JavaScript from maps.

google.com. This script creates a rich JavaScript API 
that the integrator can use to interact with the map, but 
the script runs with all of the integrator’s privileges.

Yelp, a popular review Web site, uses the Google Maps gad-
get to display the locations of restaurants and other busi-
nesses. Yelp requires a high degree of interactivity with the 
Maps gadget because it places markers on the map for each 
restaurant and displays the restaurant’s review when the 
user clicks on the marker. To deliver these advanced fea-
tures, Yelp must use the script version of the Maps gadget, 
but this design requires Yelp to trust Google Maps com-
pletely because Google’s script runs with Yelp’s privileges, 
granting Google the ability to manipulate Yelp’s reviews and 
steal Yelp’s customer’s information. Although Google might 
be trustworthy, the script approach does not scale beyond 
highly respected gadget providers. Secure interframe com-
munication promises the best of both alternatives: sites 
with functionality like Yelp can realize the interactivity of 
the script version of Google Maps gadget while maintaining 
the security of the frame version of the gadget.

4.1. Fragment identifier messaging
Although the browser’s scripting policy isolates frames from 
different origins, clever mashup designers have discovered 
an unintended channel between frames, fragment identi-
fier messaging,1, 21 which is regulated by the browser’s less-
restrictive frame navigation policy. This “found” technology 
lets mashup developers place each gadget in a separate 
frame and rely on the browser’s security policy to prevent 
malicious gadgets from attacking the integrator and honest 
gadgets. We analyze fragment identifier messaging in use 
prior to our analysis and propose improvements that have 
since been adopted.
Mechanism: Normally, when a frame is navigated to a new 
URL, the browser requests the URL from the network and 
replaces the frame’ document with the retrieved content. 
However, if the new URL matches the old URL everywhere 
except in the fragment (the part after the #), then the browser 
does not reload the frame. If frames[0] is currently located 
at http://example.com/doc,

frames[0].location = “http://example.com/doc#msg”;

changes the frame’s location without reloading the frame 
or destroying its JavaScript context. The frame can read its 
fragment by polling window.location.hash to see if the 
fragment has changed. This technique can be used to send 
messages between frames while avoiding network latency.
Security Properties: The fragment identifier channel has 
less-than-ideal security properties. The browser’s scripting 

IE 6 (Default)	IE  6 (Optional)	IE  7 (Default)	IE  7 (Optional)	F irefox 2	S afari 3	 Opera 9

Permissive	 Child	 Descendant	 Permissive	 Window	 Permissive	 Child

Table 2: Frame navigation policies deployed in existing browsers prior to our work.
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policy prevents other origins from eavesdropping on mes-
sages because they are unable to read the frame’s loca-
tion (even though the navigation policy lets them write the 
frame’s location). Browsers also prevent arbitrary origins 
from tampering with portions of messages. Other security 
origins can, however, overwrite the fragment identifier in 
its entirety, leaving the recipient to guess the sender of each 
message.

To understand these security properties, we draw an 
analogy with the well-known properties of network chan-
nels. We view the browser as guaranteeing that the frag-
ment identifier channel has confidentiality: a message can 
be read only by its intended recipient. The fragment identi-
fier channel fails to be a secure channel, however, because 
it lacks authentication: a recipient cannot determine the 
sender of a message unambiguously. The attacker might 
be  able to replay previous messages using the browser’s 
history API.

The fragment identifier channel is analogous to a chan-
nel on an untrusted network in which each message is 
encrypted with the public key of its intended recipient. 
In both cases, when Alice sends a message to Bob, no one 
except Bob learns the contents of the message (unless Bob 
forwards the message). In both settings, the channel does 
not provide a reliable procedure for determining who sent 
a given message. There are two key differences between the 
fragment identifier channel and the public-key channel:

1. � Public-key channel is susceptible to traffic analysis, 
but an attacker cannot determine the length of a mes-
sage sent over the fragment identifier channel. An 
attacker can extract timing information by polling the 
browser’s clock, but obtaining high-resolution timing 
information degrades performance.

2. � Fragment identifier channel is constrained by the 
browser’s frame navigation policy. In principle, this 
could be used to construct protocols secure for the 
fragment identifier channel that are insecure for 
the  public-key channel (by preventing the attacker 
from navigating the recipient), but in practice this 
restriction has not prevented us from constructing 
attacks on existing implementations.

Despite these differences, we find the network analogy use-
ful in analyzing interframe communication.
Windows Live Channels: Microsoft uses fragment iden-
tifier messaging in its Windows Live platform library to 
implement a higher-level channel API, Microsoft.Live.
Channels.21 The Windows Live Contacts gadget uses this 
API to communicate with its integrator. The integrator can 
instruct the gadget to add or remove contacts from the user’s 
contacts list, and the gadget can send the integrator details 
about the user’s contacts. Whenever the integrator asks the 
gadget to perform a sensitive action, the gadget asks the 
user to confirm the operation and displays the integrator’s 
host name to aid the user in making trust decisions. Prior to 
our analysis, Microsoft.Live.Channels used a proto-
col to add authentication to the fragment identifier channel. 
By reverse engineering the implementation, we determined 

that the library used the following protocol to establish a 
secure channel:

A ® B  :  NA, URIA 

B ® A  :  NA, NB 

A ® B  :  NB, Message1

In this notation, A and B are frames, NA and NB are fresh 
nonces (numbers chosen at random during each run of the 
protocol), and URIA is the location of A’s frame. Under the 
network analogy described above, this protocol is analogous 
to the classic Needham–Schroeder public-key protocol.17 The 
Needham–Schroeder protocol was designed to establish a 
shared secret between two parties over an insecure channel. 
Instead of using encryption as in the Needham–Schroeder 
protocol, Windows Live relies on the fragment identifier 
channel to provide confidentiality.

The Needham–Schroeder public-key protocol has a well-
known anomaly, due to Lowe,15 that leads to an attack in 
the browser setting. In the Lowe scenario, an honest princi-
pal, Alice, initiates the protocol with a dishonest party, Eve. 
Eve then convinces honest Bob that she is Alice. In order to 
exploit the Lowe anomaly, an honest principal must be will-
ing to initiate the protocol with a dishonest principal. This 
requirement is met in mashups because the integrator initi-
ates the protocol with the gadget attacker’s gadget when the 
mashup is initialized. The Lowe anomaly can be exploited to 
impersonate the integrator to the gadget:

Integrator ® Attacker  :  NI, URII 

    Attacker ® Gadget  :  NI, URII

  Gadget ® Integrator  :  NI, NG

Integrator ® Attacker  :  NG, Message1

After these four messages, the attacker possesses NI and 
NG and can impersonate the integrator to the gadget. We 
have implemented this attack against the Windows Live 
Contacts gadget. The anomaly is especially problematic 
for the Contacts gadget because it displays the integra-
tor’s host name to the user in its security user interface (see 
Figure 3).
Securing Fragment Identifier Messaging: The channel can 
be secured using a variant of the Needham–Schroeder–Lowe 
protocol.15 As in Lowe’s improvement to the original proto-
col, we recommend including the responder’s identity in the 
second message of the protocol, letting the honest initiator 
detect the attack and abort the protocol:

A ® B  :  NA, URIA

B ® A  :  NA, NB, URIB

A ® B  :  NB

We contacted Microsoft, the OpenAJAX Alliance, and IBM 
about the vulnerabilities in their fragment identifier mes-
saging protocols. Microsoft and the OpenAJAX Alliance have 
adopted our suggestions and deployed the above protocol in 
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updated versions of their libraries. IBM adopted our sugges-
tions and revised their SMash14 paper.

4.2. postMessage
HTML 510 specifies a new browser API for asynchronous 
communication between frames. Unlike fragment identi-
fier messaging, postMessage was designed for cross-ori-
gin communication. The postMessage API was originally 
implemented in Opera 8 and is now supported by Internet 
Explorer 8, Firefox 3, Safari 3.1, and Google Chrome. We dis-
covered a vulnerability in an early version of the API, which 
has since been eliminated by modifications we suggested. 
To send a message to another frame, the sender calls the 
postMessage method:

frames[0].postMessage(“Hello world.”);

In the recipient’s frame, the browser generates a message 
event with the message, the origin (scheme, host, and port) 
of the sender, and a reference to the sender’s frame.
Security Properties: The postMessage channel guarantees 
authentication, messages accurately identify their senders, 
but the channel lacks confidentiality. Thus, postMessage 
has almost the “opposite” security properties as fragment 
identifier messaging. The postMessage channel is analo-
gous to a channel on an untrusted network in which each 
message is cryptographically signed by its sender. In both 
settings, if Alice sends a message to Bob, Bob can determine 
unambiguously that Alice sent the message. With post­
Message, the origin property identifies the sender; with 
cryptographic signatures, the signature identifies signer. 
One difference between the channels is that cryptographic 
signatures can be easily replayed, but postMessage resists 
replay attacks.

Attacks: We discover an attack that breaches the confidenti-
ality of the postMessage channel. Because a message sent 
with postMessage is directed at a frame, an attacker can 
intercept the message by navigating the frame to attacker.
com before the browser generates the message event:

•	 Recursive Mashup Attack: If an integrator calls postMes­
sage on a gadget contained in a frame, the attacker can 
load the integrator inside a frame and intercept the mes-
sage by navigating the gadget frame (a descendant of the 
attacker’s frame) to attacker.com. When the integrator 
calls postMessage on the “gadget’s” frame, the browser 
delivers the message to the attacker (see Figure 4).

•	 Reply Attack: Suppose the integrator uses the origin 
to decide whether to reply to a message event:

if (evt.origin == “https://gadget.com”)  
   evt.source.postMessage(secret);

•	 The attacker can intercept the secret by navigating the 
source frame before the browser generates the message 
event. This attack can succeed even under the child 
frame navigation policy if the honest gadget sends its 
messages via top.postMesage( . . . ). The attacker’s 
gadget can embed a frame to the honest gadget and nav-
igate the honest gadget before the integrator replies to 
the “gadget’s” frame (see Figure 5).

Securing postMessage: Although sites might be able to build 
a secure channel using the original postMessage API, we 
recommend that postMessage provide confidentiality 
natively. In MashupOS,22 we previously proposed that inter-
frame communication APIs should let the sender specify 
the origin of the intended recipient. Similarly, we propose 

Figure 3: Lowe Anomaly. The gadget believes the request came from 
integrator.com, but in reality the request was made by attacker.
com.

Figure 4: Recursive mashup attack. The attacker navigates the 
gadget’s frame to attacker.com.

Figure 5: Reply attack. The attacker intercepts the integrator’s 
response to the gadget’s message.
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extending the postMessage API with a second parameter: 
targetOrigin. The browser will deliver the message only 
if the frame’s current origin matches the specified target­
Origin. If the sender uses “*” as the targetOrigin, the 
browser will deliver the message to any origin. Using this 
improved API, a frame can reply to a message using the fol-
lowing idiom:

if (evt.origin == “https://gadget.com”)  
   evt.source.postMessage(secret, evt.origin);

We implemented this API change as patches for Firefox 
and Safari. Our proposal was accepted by the HTML 5 work-
ing group.8 The improved API is now available in Internet 
Explorer 8, Firefox 3, Safari 4, and Google Chrome.

5. RELATED WORK

5.1. Mitigations for gadget hijacking
SMash14 mitigates gadget hijacking (also known as “frame 
phishing”) by carefully monitoring the frame hierarchy and 
browser events for unexpected navigations. Although neither 
the integrator nor the gadgets can prevent these navigations, 
the mashup can alert the user and refuse to function if it detects 
an illicit navigation. SMash waits 20s for a gadget to load before 
assuming that the gadget has been hijacked. An attacker might 
be able to fool the user into entering sensitive information dur-
ing this interval, but using a shorter interval might cause users 
with slow network connections to receive spurious warnings. 
The descendant policy makes such mitigation unnecessary.

5.2. Safe subsets of HTML and JavaScript
One way to sidestep the security issues of frame-based 
mashups is to avoid using frames by combining the gadgets 
and the integrator into a single document. This approach 
forgoes the protections afforded by the browser’s security 
policy and requires gadgets to be written in a “safe subset” 
of HTML and JavaScript that prevents a malicious gadget 
from attacking the integrator or other gadgets. Several open-
source implementations (FBML, ADsafe, and Caja) are avail-
able. FBML is currently the most successful subsets and is 
used by the Facebook Platform.

5.3. Subspace
In Subspace,13 we used a multilevel hierarchy of frames 
that coordinated their document.domain property to 
communicate directly in JavaScript. Similar to most frame-
based mashups, the descendant frame navigation policy is 
required to prevent gadget hijacking.

5.4. Module tag
The proposed <module> tag 2 is similar to the <iframe> 
tag, but the module runs in an unprivileged security context, 
without a principal, and the browser prevents the integra-
tor from overlaying content on top of the module. Unlike 
postMessage, the communication primitive used with 
the <module> tag is explicitly unauthenticated because the 
module lacks a principal.

5.5. Security = restricted and jail
Internet Explorer supports a security attribute16 for 
frames. When set to restricted, the frame’s content 
cannot run JavaScript. Similarly, the proposed <jail> 
tag5 encloses untrusted content and prevents the jailed 
content from running JavaScript. Unfortunately, eliminat-
ing JavaScript prevents gadgets from offering interactive 
experiences.

5.6. MashupOS
In MashupOS,22 we proposed new primitives both for isola-
tion and communication. Our improvements to frame navi-
gation policies and postMessage let developers realize 
some of the benefits of MashupOS using existing browsers.

6. CONCLUSION
Web sites that combine content from multiple sources 
can leverage browser frame isolation and interframe com-
munication. Although the browser’s same-origin security 
policy restricts direct access between frames, recent brows-
ers have used differing policies to regulate when one frame 
may navigate another. The original permissive frame naviga-
tion policy admits a number of attacks, and the subsequent 
window navigation policy leaves mashups vulnerable to 
similar attacks. The better descendant policy, which we col-
laborated with the HTML 5 working group to standardize, 
balances security and compatibility and has been adopted 
by Internet Explorer 7 (independently), Firefox 3, Safari 3.1, 
and Google Chrome.

In existing browsers, frame navigation can be used for inter-
frame communication via a technique known as fragment 
identifier messaging. If used directly, fragment identifier 
messaging lacks authentication. We showed that the authen-
tication protocols used by Windows.Live.Channels, 
SMash, and OpenAjax 1.1 were vulnerable to attacks but can 
be repaired in a manner analogous to Lowe’s variation of the 
Needham–Schroeder protocol.15 This improvement has been 
adopted by Microsoft Windows Live, IBM Smash,14 and the 
OpenAjax Alliance.

Originally, postMessage, another interframe commu-
nication channel, suffered the converse vulnerability: using 
frame navigation, an attacker could breach confidentiality. 
We propose extending the postMessage API to provide 
confidentiality by letting the sender specify an intended 
recipient. Our proposal has been adopted by the HTML 
5 working group, Internet Explorer 8, Firefox 3, Safari 4, 
Google Chrome, and Opera.

With these improvements, frames provide stronger iso-
lation and better communication, becoming a more attrac-
tive feature for integrating third-party Web content. One 
important area of future work is improving the usability of 
the browser’s security user interface. For example, a gad-
get is permitted to navigate the top-level frame, redirecting 
the user from the mashup to a site of the attacker’s choice. 
Although the browser’s location bar makes this navigation 
evident, many users ignore the location bar. Another area 
for future work is improving isolation in the face of browser 
implementation errors, which could let a gadget subvert the 
browser’s security mechanisms.
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