
Higher-Order Modules and the Phase Distinction

Robert Harper * John C. Mitchell t
Carnegie Mellon University St anford University

Pittsburgh, PA 15213 Stanford, CA 94305

Eugenio Moggi $
University of Cambridge

Cambridge CB2 3QG, UK
(on leave from Univ. of Edinburgh)

Abstract

In earlier work, we used a typed function calculus,
XML, with dependent types to analyze several as-
pects of the Standard ML type system. In this pa-
per, we introduce a refinement of XML with a clear
compile-time/run-time phase dislinclion, and a di-
rect compile-time type checking algorithm. The cal-
culus uses a finer separation of types into universes
than XML and enforces the phase distinction using a
nonstandard equational theory for module and signa-
ture expressions. While unusual from a type-theoretic
point of view, the nonsta.ndard equationa. theory
arises naturally from the well-known GrotNhendieck
construction on an indexed category.

1 Introduction

The module system of Standard ML [HMM86] pro-
vides a convenient mechanism for factoring ML pro-
grams into separate but interrelated program units.
The basic constructs are struciures, which are a. form
of generalized “records” with type, value and struc-
ture components, and functors, which may be re-

*Supported by the Office of Naval Research under con-
tract N00014-84-K-0415 and by the Defense Advanced Re-
search Projects Agency (DOD), ARPA Order No. 5404, moni-
tored by the Office of Naval Research under the same contract.

tPartiaIIy supported by an NSF PYI Award, mntchiug
funds from Digital Equipment Corporation, Xerox Corporat,ion
and the Powell Foundation and by NSF grant CCRSS14921.

isupported by ESPRIT Basic Research Action No. 3003,
Categorical Logic In Computer Science.

Permission to copy without fee ail or part of this matertial is granted pro-
vided that the copies am not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise. or to republish,
requires a fee and/or specific permission.

0 1990 ACM 089?91-3434/90/0001/0341 $1 SO 341

garded as parameterized structures or functions from
structures to structures. The types of structures and
functors are called signatures. The signature of a
structure lists the component names and their t,ypes,
while the signature of a functor also includes the types
of all parameters. Typically, program units are repre-
sented as structures that are linked together by func-
tor application. When two structure pa.ramet,ers of
a. functor must share a common substructure, this
is specified using a “sharing” constraint within the
functor parameter list. III Standard ML as currently
implemented, there a.re no functors with funct*or pa-
iameters. Iii this respect, the current language only
uses “first-order” modules.

There are two formal analyses of the module
system, one operational and the other a symac-
tic tra.nslation leading to a. denotational semantics.
The structured operational sema.ntics of [HMT87h,
H MT87a, Tof87] includes a computationa. character-
iza.tion of the type checker. This gives a precise,
implementation-independent definition of the Stan-
da.rd ML language that may be used for a variety
of purposes. The second formal analysis is a t,ype-
theoretic description of ML, which lea.ds to a denota-
tional semantics to the language. The second line
of work, beginning with [Mac861 and continued in
[MH88], uses dependent sum types Cx:A.B to explain
structures and dependent function types II2:A.B for
functors. In addition t.o providing some insight into
the functional behavior of the module constructs,
the XML calculus introduced in [MH88] establishes a
fra.mework for studying a class of ML-l&e languages.
Because variants of Standard ML may be considered
as XML theories, the emphasis of this approa.ch is
on properties of Standa.rd ML that rema.iu invariant
under extensions of the la.nguage. In a.ddition, XML
is most naturally defined with higher-order modules,
suggesting a useful extension of Standard ML. How-
ever, some important aspects of Standard ML are not
accurately reflected in the XML analysis.

Although ML is designed to allow compile-time
type checking, it is not clear how to “statically”
type check versions of XML with certain additional
type constructors or with higher-order modules. This
is particularly unfortunate for higher-order modules,
since these seem useful in supporting separate com-
pilation or as an alternative to ML’s “sharing” spec-
ifications [BL84, MacSG]. In this paper, we redesign
XML so that compile-time type checking is a.n in-
trinsic part of the type-theoretic framework. Since
it is difficult to characterize the difference between
compile-time and run-time precisely, we focus on es-
tablishing a phase dislin.cfion,, in the terminology of
[Car88]. However, to give better intuition, we gen-
erally refer to these phases as compile-time and run-
lime. The main benefit of our redesign is that type
checking becomes decidable, even in the presence of
higher-order functors and arbitrary equational ax-
ioms between “run-time” expressions.

The main difficulty with higher-order functors may
be illustrated by considering an expression e contain-
ing a “functor” variable F which maps type, int pairs
(representing structures) to type, inl pairs. Such an
expression e might occur as the body of a higher-order
functor, with functor parameter F. In type checking
e, we might encounter a type expression of the form
Fst(F[int,q]), f re erring to the type component of the
structure obtained by applying the functor parameter
F to structure [int,el]. Since F is a formal para.m-
eter, we cannot hope to evaluate this type expres-
sion without performing functor application, which
we consider a “run-time,” or second phase, operation.
However, in type checking e, we might need to decide
whether two such type expressions, say Fst(F[inf,ei])
and Fst(F[int,eJ), are equa.1. The natural equality to
consider involves deciding whether structure compo-
nents ei and es are equal. However, if these are com-
plicated integer expression, perhaps containing recur-
sive functions, then it is impossible to algorithmically
compare two such expressions for equality, While it
is possible to simplify type checking using syntactic
equality of possibly divergent expressions, this is too
restrictive in practice.

In this paper, we present a typed calculus XML
which includes both higher-order modules and a clear
separation into “phases” which correspond intuitively
to compile-time a.nd run-time. The new calculus is
at once a refinement and an extension of XML. The
universe structure of XML is refined so that the core
language (i.e., the language without modules) pos-
sesses a natural phase distinction. Then the lan-
guage is extended in a systematic way to include de-
pendent types for representing structures and func-
tors. In order to preserve the phase distinction a

non-standard formulation of the rules for dependent
types is needed. Rather than restrict the syntax of
structures and functors, as one might initially expect,
we adopt non-standard equational axioms that allow
us to simplify each structure or funct,nr into separate
“compile-time” and “run-time” parts. Referring back
to the example above, we test whether Fsi(F[int,el])
and Fsf(F[inf,ez]) are equal essentially by simplify-
ing F to a pair of maps, one compile-time and the
other run-time. This allows us to compute compile-
time (type) values of these expressions without evai-
uating run-time expressions el or es. This approach
follows naturally from the development of [Mog89a],
which defines the category of modules over any suit-
able indexed category representing a typed language.
In categorical terms, the category of modules is the
Grothendieck construction on an indexed category,
which is proved relatively Cartesian closed when cer-
tain natural assumptions about the indexed category
are satisfied. Our XML calculus is a concrete out-
growth of Moggi’s categorical development, provid-
ing an explicit lambda notation for the category of
modules.

Like XML, AML may be extended with any typed
constants and corresponding equationa. axioms. In
contrast to XML, constants and non-logicad AML a.x-
ioms only affect the “run-time” theory of the language
and do not interact with type checking. We show
that XML typing is decidable for any variant of the
calculus based on any (possibly undecidable) equa-
tional theory for “run-time” expressions. A similar
development may be carried out using the compu-
tational &calculus approach of [Mog89b] in place of
equational axioms, but we will not go into t1ra.t in this
paper.

The paper is organized as follows. In Section 2 we
introduce the core calculus, XML, which we later ex-
tend to include modules. AML is essentially the HML
calculus given in [MogSSa] and cIosely related to the
Core-XML calculus given in [MH88]. In Section 3
we introduce Xgid, the full calculus of higher-order
modules. We prove that Xztd is a definitiona. exten-
sion of a simpler “structures-only” calculus and use
this result to establish decidability and compile-time
type checking for the full calculus of modules. Brief
concluding remarks appear in Section 4.

2 Core Calculus

We begin by giving the definition of the XML core
ca.lculus, XML, which is essentially the calculus HML
of [Mog89a]. This calculus captures many of the es-
sential features of the ML type system, but omits,

342

for the sake of simplicity, ML’s concrete and ab-
stract types (which could be modeled using existen-
tial types [MPS8]), recursive types (which can be de-
scribed through a X ML theory), and record types. We
also do not consider pattern matching, or computa-
tional aspecls such as side-effects and exceptions. A
promising approach toward integrating these features
is described in [Mog89b].

2.1 Syntactic Preliminaries

There are four basic syntactic classes in XML:
kinds,constructors,types and terms, The kinds in-
clude T, the collection of all monotypes, and are
closed under formation of products and function
spaces. The constructors, which include monotypes
such as in& and type constructors such as list, are
elements of kinds. The types of XML, whose elements
are terms, include Cartesian products, function spaces
,and polymorphic types. The terms of the calculus
correspond to the basic expression forms of ML, but
are written in an explicitly-typed syntax, following
[MH88]. It is important to note that our “types”
correspond roughly to ML’s “type schemes,” the es-
sential difference being that we require them to be
closed with respect to quantification over all kinds
(not just the kind of monotypes) and function spaces.
These additional closure conditions for type schemes
are needed to make the the category of modules for
XML relatively Cartesian closed (i.e., closed under for-
mation of dependent products and sums).

The organization of XML is a refinement of the
type structure of Core-XML[MH88]. The kind T of
monotypes corresponds directly to the first universe
171 of Core-XML. However, the second universe, Uz,
of Care-XML is separated into distinct collections of
kinds and types. For technical reasons, the cumula-
tivity of the Core-XML universes is replaced by the
explicit “injection” of T into the collection of types,
written using the keyword set.

2.2 syntax.

The syntax of AML raw expressions is given in Ta-
ble 1. The collection of term variables, ran.ged over by
Z, and the collection of constructor variables, ranged
over by V, are assumed to be disjoint. The metavari-
able r ranges over the collection of monotypes (con-
structors ‘of kind ‘?). Contexts consist of a sequence
of declarations of the form v:k and z:cr declaring the
kind or type, respectively, of a constructor or term
variable. In addition to the context-free syntax, we
require that no variable be declared more than once
in a context G so that we may unambiguously regard

Cp as a partial function with finite domain Dam(@)
assigning kinds to const,ructor variables and types to
term variables.

2.3 Judgement Forms

There are two classes of judgements in AML, the GOT-

malion judgements and the equality judgements. The
formation judgements are used to define the set of
well-formed AML expressions. With the exception of
the kind expressions, there is one formation judge-
ment for each syntactic category. (Every raw kind ex-
pression is well-formed.) The equality judgements are
used to axiomatize equivalence of expressions. (There
is no equality judgement for kinds; kind equivalence
is just syntactic identity.) The equality judgements
are divided into two classes, the compile-time equa-
tions and the run-time equations, reflecting the in-
tuitive phase distinction: kind a.nd type equivalence
are compile-time, term equivalence is run-time. The
judgment forms of XML are summa.rized in Table 2.
The metavariable F ranges over formation judge-
ments, Cc ranges over eyua.lity jndgements, and ,7
ranges over all forms of judgement. We sometimes
write Q >> cr to sta.nd for an arbitrary judgement
when we wish t,o make t,he context part explicit.

2.4 Formation Rules

The syntas of XML IS specified by a set of inference
rules for deriving form&ion judgements. These re-
semble rules in [MHSS, MogSSa] and are essentially
standard. Due to space constraints, they are omit-
ted from this conference pa.per. We write XML k 7
to indicate that the formation judgement F is deriv-
able using these rules. The formation rules may be
summarized as follows. The constructors and kinds
form a simply-typed X-ca.lculus (with product and
unit types) with ba.se kind T, and basic constructors
1, x,and-+. The collection of types is built from base
types 1 and set(r), where r is a constructor of kind T,
using the type constructors x a.nd 3, and quantifi-
cation over an arbitrary kind. The terms amount to
an explicitly-typed presentation of t,he ML core ian-
guage, similar to t,ltat presented in [MHSS]. (The let
construct is omitted since it is definable here.)

2.5 Equality rules

The rules for deriving equational judgements also re-
semble rules in [MHSS, Mog89a] a.nd are essentia.lly
standard. We write XML k t’ to indicate that an
equation I is derivable in accordance with these rules.

343

k E kind :: = 1 1 T 1 ICI x liz 1 ICI - kz
u E constr ::= Vjll x 14 1 * 1 (Ul,U2) I %(U) I @J:k.u> I u1 wt
u E type :: = set(u) 1 U] x (32 1 51 -52 1 (Vv:k.u)
e E term :: = x 1 * 1 (el,ez) 1 K,(e) 1 (Ax:u.e) 1 el e2 1 (hv:k.e) I e[tlj
Q E context :: = 0 1 a’, v:k I ip, X:(T

Table 1: XML raw expressions

5% conlezt (9 is a context
cp >> u : k u is a constructor of kind k

@ >> 5 type u is a type
@,>>e:u e is a term of type U

<p >> u1 = u2 k ~1 and ~2 are equal constructors of kind k
+ > 51 = 52 type 51 and CTZ are equal types
ip >> el = e2 : u er and e2 a.re equal terms of type schema u

Table 2: X”‘lL judgement forms

The X”‘L equational rules are formulated so as to en-
sure that if an equational judgement is derivable, t,hen
it. is well-formed, meaning that the evident associated
formation judgements are derivable. For the sake of
convenience we give a brief summary of the equational
rules of XA4L

2.5.1 Compile-Time Equality

Constructors Equivalence of constructor expres-
sions is the standard equivalence of terms in the
simply-typed X-calculus based on the following ax-
ioms:

(x P)
Cp > ul : ICI Cp >> u2 : k2

Q > ri((Ul, ~2)) = ‘Eli : ki
(i = 1,2)

@ >> u : kl x kz

(- P)
@ > u1 : kl a, v:kl >> 212 : kz

+ >> (Av:kl .u2) u1 = [ul/v]uz : k2

(- ‘7)
Q >> u : kl t k2

Q, > (Av:kl.uv) = u : kl -k:!
(v $J Dom(a))

Types The equivalence relation on types includes
the following axioms expressing the interpretation of
the basic ML type constructors

(1 T=)
@ context

+ > set(l) = 1 type

(x T=)
(P>>q:T @!>>7i:T

Cp > set(Tr x ~2) = set(rr) x set(r2) type

(-+T=)
Qr >> rl : T Cp > r2 : T

0 >> set(71+72) = set(rr) +set(T2) type

2.5.2 Run-Time Equality

Terms There are seven axioms corresponding to
the reduction rules associated with each of the type
constructors:

(1 17)
Q>>e:l

@Be=*:1

0 >> el : 51 @ >> e2 : 52

@ > 7ri((el, e2)) = ej : 5i
(i = 1,2)

fb >> e :51 x52

(’ ‘) Cp > (7rl(e),a2(e)) = e : 51 X 52

(“-+ PI
+ >> el : 51 (P,X:(Tl >>e2 : 52

@ > (kUl.ea) el = [el/X]Q : 52

344

(-+ 77)
+‘>>e:al-+a2

<p >> (Xx:ul.ex) = e : (~1 -+u2 (x e Do+v

(9 >> u : k Q,v:k >> e : u

(’ ‘) Cp > (hv:k.e)[n] = [u/v]e : [u/v]u

(’ n)
<p >> e : (Vv:k.u)

@ > (hv:k.e[v]) = e : (Vv:k.u) (’ ’ Dam(‘))

2.6 Theories -...

The XML calculus is defined with respect to an ar-
bitrary theory 7 = (a7,d7) consisting of a well-
formed context cPr and a set AT of run-time equa-
tional axioms of the form el = e2 : u with Qc >> ei : u
derivable for i = 1,2. A theory corresponds to
the programming language notion of standard pre-
lude, and might contain declara.tions such as inl : T
and fiz : Vt:T. set((t -+ t) + t), and a.xioms such
as expressing the fixed-point property of f;z. For
7 = (G7 ,dl), we write X ML[7] I- J to indicate that
the judgement J is derivable in JML, taking the vari-
ables declared in a’ as basic constructors and terms,
and taking the equa.tions in Cc7 as non-logical axioms.
We write X”!‘L[7] Ect J t#o indicate that the judge-
ment ,7 is deriva.ble from theory ‘7 using only the
compile-time equational rules‘arid equational axioms
of 7.

2.7 Properties of XML

We will describe the pha.se distinct/on in XML by sepa-
rating contexts into sets of “compile-time” and “run-
time” declarations. If @ is a J4A4L context, we let (PC
be the context obtained by omitting all term vari-
able declarations from Q and let Qr .be the context
obtainecl by eliminating all constructor variable dec-
lara.tions from (5,. The following lemma expresses the
compile-t,ime t,ype checking property of AntL:

Lemma 2.1 Let 7 be any theory. Tht?follo,wing im-
plications hold:

If x97] l-

Cp context
Q >> u : k

then XML[@‘I,O] tct

V, @ context
, ~- ,

I -- *.

? I Oc > u1 = u2 type a >> 61 = (72 tYP(4
@ >> e : u @,@‘>>e:i --

+ >> el = e2 : u Qc,Qr > ei : u

Since the constructors and kinds form a simply-
typed X-calculus, it is a routine matter to show
that equality of well-formed constructors (and, conse-
quently, types) in XML is decidable. It is then easy to
show that type checking in XML is decidable. This is a
well-known property of the polymorphic la.mbda cal-
culus F,, (c.f. [Gir’ll, Gir72, Rey74, BMM89]), which
may be seen as an impredicative extension of the XhgL
calculus.

Lemma 2.2 There is a straightforward one-pass al-
gorithm which decides, for an arbitrary well-formed
theory 7 and formation judgement 3, whether or not
PL[7] I- 3.

The main technical accomplishment of this paper
is to present a full calculus encompassing the module
expressions of ML which has a compile-time decidable
type checking problem.

3 Modules Calculus

3.1 Overview

In the XML account of Standard ML modules
[Ma&G, MHS8] (see also [NPS88, C+SG, Mar841 for
related ideas), a structure is an element of a strol~g
snm type of the form Cx:A.B. For example, a struc-
ture with one type and one value component is re-
garded as a pair [T, e] of type S = 2:T.u. Although
Standard ML structures bind names to their compo-
nents, component selection in XML is simplified us-
ing the projections Fst and Snd. Functors are treated
as elements of dependent function types of the form
IIz:A.B. For example, a functor mapping structures
with signature S to structures with the same signa-
ture would have type IIs:(Et:T.a).(Ct:T.u). In XML,
functors are therefore written as X-terms mapping
structures to structures. As discussed in the intro-
duction, the standard use of dependent types con-
flicts with compile-time type checking since a type
expression (which we expect to evalua,te a compile
time) may depend on an arbitrary (possibly run time)
expression. For example, if F is a functor variable
of- signature S -+ S (where S is as above), then
Fst(F [int, 31) is a.n irreducible type expression in-
volving a run-time sub-expression.

In this section we develop a calculus Xgbd of higher-
order modules with a phase distinction based on the
categorical analysis of [Mog89a]. We begin with a
simpler “structures-only” calculus that is primarily
a technical device used in the proofs. The full cal-
culus of higher-order modules has a standard syntax
for dependent strong sums and functions, resembling

345

XML, but a non-sta.ndard equational theory inspired
by the categorical interpretation of program mod-
ules [Mog89a]. The calculus also employs a single
non-standard typing rule for structures that we con-
jecture is not needed for decidable typing, but which
allows a more generous (and simple) type-checking al-
gorithm without invalidating the categorical seman-
tics. Although inspired by a ca.tegorical construc-
tion, we prove our main results directly using only
standard techniques of lambda calculus. The non-
standard aspects of XEtd calculus are justified by
showing tha-t this calculus is a definitional extension
of the “structures-only” ca.lculus, which itself bears
a straightforward relationship to the core calculus.
This definitional extension result is used to prove that
Xtid type equivalence is decidable and that the lan-
guage therefore has a pra.ctical type checking algo-
rithm.

3.2 The Calculus of Structures

In this section, we extend XML with structures and
signatures. The resulting calculus, Xzt, has a
straightforward phase distinction and forms the ba-
sis for the full calculus of modules. We assume we
have some set of structure variables that are disjoint
from the constructor and term va.riables, and use s, s’,

Sl, . . as metavariables for structure variables. The
a.dditional synt,a.x of X z,” is given in Table 3. Note
that contexts are extended to include declarations of
structure identifiers, but structures are required to
be in “split” form [u, e]. (A variable s is not a struc-
ture and t,here is no need for operations to select the
components of a. structure.)

The judgement forms of XdWL are extended with two
additional formation judgements, and two additional
equality judgements, summarized in Table 4. The
rules for deriving judgements in Afie are obtained by
extending the rules of XhfL (taking contexts now in
the extended sense) with the obvious rules for struc-
tures in “split” form, in particular the following two
rules governing the use of structure variables:

(13 El)
Q context
+ > $C k (@(s) = b:W)

([I Ed
0 condext

a > sr : [SF/t+
@(s) = [v:k,u])

The notion of t.heory and derivability with respect to
a theory are the same as in X”‘.

The ca.lculus of structures may be understood in
terms of a translation into the core calculus, which
amounts to showing that Azk may be interpreted into
the category of modules of [MogSSa]. For <p a A$!

context, define @* to be the AML context obtained by
replacing all structure variable de&rations s : [v:k, 01
by the pair of declarations sc : k and sr : [sc/v]u.

Lemma 3.1 Let 7 be a well-formed XML theory.

Xff:[?-] l- fD > [v:k,a] sig i;tT XML[7] I-
W,v:k >> u type, and similarly for signature
equality.

Xft[‘ir] l- (P > [u, e] : [v:k,u] i#XML[7] I- @* >>
u : k and AML[7J I- a* >> e : [u/v]a, and simi-
larly for structure equality.

AZk[I] I- a > a ig XML[7”j I- 0” >> a, for
any judgement (Y other than of the four forms
considered in items 1. and 2. above.

It is an immediate consequence of this lemma and
the decidability of X ML type equivalence that X2:
type equivalence is decidable. This will be impor-
tant for the decidability of type checking in the full
modules calculus.

3.3 The Calculus of Modules

The relative Cartesian closure of Moggi’s category of
modules implies that higher-order functors are defin-
able in X2:. This may seem surprising, since X$t
is a rather minimal ca.lculus of structures, with noth-
ing syntactically resembling lambda abstraction over
structures. The key idea in understanding this phe-
nomenon is to regard all modules as “mixed-phase”
entities, consisting of a compile-time part and a run-
time part. For basic structures of the form [u, e], the
partitioning is clear: U, a constructor, may be evalu-
ated at compile-time, while e, a term, is left until run-
time . For more complex module expressions such as
functors, the separa.tion requires further explanation.

Consider the signature S = [v:T, set(v)], and let
F:S + S be a functor. Since this functor lies within
the first-order fragment of XML, we may rely on Stan-
dard ML for intuition. The functor F takes a struc-
ture of signature S as argument, and returns a struc-
ture, also of signature S. On the face of it, F might
compute the type .component of the result as a func-
tion of both the type and term component of the ar-
gument. However; no such computation is possible in
ML since there are no primitives for building types
from terms. Thus we may regard F as consisting
of two parts, the compile-time part, which computes
the type component of the result as a function of the
type component of the argument, and the run-time
part, which computes the term component of the re-
sult as a function of both the type and term com-
ponent of the argument. (Since we are working in

346

k E kind :: = . . .
21 E conslr :: = . . . 1 s‘
u E 2ype :: = . . .

E iem
i Esig

::= ___ 1 sr
:: = [v:k,o]

M E mod :: = [u,e]
Q E conle22 :: = . . .) Q, s:S

Table 3: X2: raw expressions

a >> s sig S is a signature
@>>M:S A4 is a structure of signature S

@ >> S1 = S2 sig Sr and S2 are equal signatures
Cp >> Mr = Mz : S Mi and A42 are equal modules of signature S

Table 4: X2,! judgement forms

a typed framework with explicit polymorphism, the
term component may contain type information that
depends on the compile-time functor argument,) For
a more concrete example, suppose I is the identit,y
functor Xs:S.s. Separated into compile time and run
time parts, I becomes the structure

[AsC:T.sC, AsC:T.~sr:set(sC).sr]

of signature

[f:T--+T, Vs’;T. set(sc+fsC)].

In other words, I may be represented by the structure
consisting of the identity constructor on types, and
the polymorphic identity on terms. (A technical side
comment is that the structure corresponding to I has
more than one signature, as we shall see.)

With functors represented by structures, functor
application becomes a form of “structure a.pplica.-
tion.” In keeping with the above discussion, structure
application is computed by applying the first compo-
nent of the functor to the first component of the ar-
gument, and the second component of the functor to
both components of the argument. More precisely, if
[u, e] is a structure of signature [f:k’ - k,Vv’:k’.r’ -

if v’I44 t and [u’, e’] is a structure of signa.ture
[v’:k’, 0’1, then the application [u, e] [u’, e’] is defined
to be the structure [uu’, cue’] of signature [v:k, 01. As
we shall see below, the appropriate typing conditions
are satisfied whenever the first. structure is the im-
age of a functor under the translation sketched in the
next paragraph. Moreover, both type correctness and
equality are preserved under the translation.

Although X$f,” already “ha.9 higher-order mod-
ules, the syntax for representing them forces the
user to explicitly decompose every functor into dis-
tinct compile-time and run-time parts, even for the
first-order functors of Standard ML. This is syn-
tactically cumbersome. In keeping with the syntas
of Standard ML, and practical programming con-
siderations; we will consider a more natural nota-
tion based, on [Ma&G, MH88]. However, our calcu-
lus will nonetheless respect the phase distinction in-
herent in representing functors as structures. This
is achieved by employing a non-standard equational
theory t1~a.t; when used during type checking, makes
explicit the underlying- “split” interpretation of mod-
ule expressions, and hence eliminates apparent phase
viol&ions. For example, if A is a functor of signa-
ture [t:T> set(ini)]-+[t:T, 11, then the type expression
u = Fsl(A [in2,3]) is equal, using the non-standard
rules, to Fs$(A) int, which is free of run-time subex-
pressions. As a result, if e is a term of type (T, then
t.lie application

is type-correct, whereas in the absence of the non-
standard equations this would not be so (assuming
3 # 5 : inl).

The raw syntax of Xz& is an extension of that of
XklL; the extensions are given in Table 5. The judge-
ment forms are the same as for AZ,&, and are asiom-
a.tized by standard structure and functor rules, as in
[MHS8]. The Xgid calculus is parametric in a the-

347

k E kind :: = , . ,
U E constr :: = . / F&(M)

u E type :: =

e E ierm :: = . . . 1 Sad(M)
S Esig :: = [v:k,cr]] 1] (Cs:S&)] (IIs:Sl.Sz)
M E mod :: = s I [u, 4 I * I WI, Mz) I ri(M) I (Xs:S.M) I Ml MZ
Cp E contezt :: = . . (Q,s:S

Table 5: XKid raw expressions

ory, defined as in XML (i.e., we do not admit module
constants, or axioms governing module expressions.)

The formation rules of A$$d are essentially the
standard rules for dependent strong sums and depen-
dent function types. The equational rules include t,he
expected rules for dependent types, together with t,he
non-standard rules summarized in Table 6.

Beside the non-standard equational rules (and “or-
thogonal” to them), there is a.)so a non-standard typ-
ing rules for structures:

Q >> M : [v:k, o]

a, v:k > u’ type

@ > Snd M : [Fst M/v]o’

@ > M : [v:k, CT’]

The non-standard typing rule is consistent with the
interpretation in the category of modules [MogSSa],
but (we conjecture that) without it the main propcr-
ties of X^,aL,, namely the compile-time type checking
theorem and the decidability of typing judgements,
would still hold. The reason for ha.ving such rule
is mainly pra.gmatic: to have a. simple type check-
ing algorithm (see Definition 3.9). Moreover, this
additional typing rule captures a. particularly uatu-
ral property of C-types (once uniqueness of type has
been a.ba.ndoned), namely that a structure M should
be identified with its expansion [Fst M, Snd A/r]. A
typical example of typing judgement derivable by
the non-standard typing rule is s:[v:t,a] >> s :
[v:k, [Fst s/z+].

3.4 Translation of A:$ into At::

The non-standard equationa. theory used in the def-
inition of ,!zkd is justified by proving that ?I:&, is a
definitional extension of X2:, in a sense t,o be made
precise below. This definitional extension result will
then play an important role in establishing the decid-
ability and compile-time type checking property of
AML mod’

We begin by giving a tra,nslation _b from raw XKfd
expressions into raw A$& expressions. This transla-
tion is defined by induction on the structure of AEfd
expressions. Apart from the cases given in Table 7,
the translation is defined to commute with the expres-
sion constructors. For the basis we associate with ev-
ery module variable s a constructor variable s‘ and a
term variable sr in X 2,“. For convenience in defining
the tra.nslation we fix a constructor variable v tha.t
may occur in expressions of X2:, but not in expres-
sions of X$bd. Signatures of Aztd will be translated
to X2: signatures of the form [v:k,a]. The transla-
tion is extended “declaration-wise” to contexts: ab
is obta.ined from (P by replacing declarations of the
form X:CT by x:gb, a.nd decla.rations of the form s:S
by s:Sb Note that the translation leaves XML expres-
sions fixed; consequently, the translation need not be
extended to theories.

Lemma 3.2 (Substitutivity) The translation -b
commutes with substitution.
1~1 particvlnr if Mb = Lute], then ([M/S]-)b =
[u, e/SC, ~3’](-~).

Theorem 3.3 (! interpretation) Let 7 be a well-
formed theory, and let 3 be a $ftd judgement. If
A$~~[71 t ,7, then Astr ML[7] t gb.

Conversely, AZ;4 is essentially a sub-calculus of
JKtd, differing only in the treatment of structure vari-
ables. To make this precise, define the embedding -e
of Xz,c raw expressions into A,MoLh raw expressions by’
replacing all occurrences of sc by Fit(s), and all oc-
currences of sr by Snd(s).

Theorem 3.4 (-e interpretation) Let 7 be a
,well-formed theory, and let J’ be a X2,” judgement.
If A$,?[71 t J, then Azfd[7] t Je.

Theorem 3.5 (Definitional extension) Let 7 be
a well-formed theory,

l For any formation judgement 3 of A$,“, if
A$![71 t 3, then (3e)b is syntactically equal
to 3, modulo the names of bound vam’ables.

348

Non-standard equational rules for signatures

(1 >I
53 conte2d

0 > 1 = [v:l, l] sig

a, vl:kl >> 01 type Cp, vl:kl, vz:kz >> CT:! type

(’ ‘) Cp >> (Cs:[vl:kl,ul].[vz:ka, [Fst(s)/v&~z]) = [k k [/] v: 1 x 2, 8121 Vl Ul x KlzI, 7r221/tJ1, w&72] sig [

(’ ‘)
0, vl:kl > ul type @,vl:kl, vz:kz >> (32 type

+ >> (IIs:[v1:kl, ul].[vz:k2, [Fst(s)/v&7-& = [v:kl + kz, (Vvl:kl.ul -+[v w/v&2)] sig

Non-standard equational rules for modules

(1 I >>
Q, context

cp 29 * = [*, *] [v:l, l]

@, vl:kl >> VI type (Q,zII:~I, vz:kz > (~2 type

Q >> u1 : kl @ >> el : [UI/VI]UI

@ >> 242 : k2

@ I >) * >> ([w, el], [u2, e2.j) =

@ >> e:! : [UI, UZ/~I, ~~$72

[(W,UZ), (el,ez)] : [v:b x k 2 XlV (~1 u1 x [qv, 7r2V/V1) L;2]4 , [/, 1

(C El >>

(C E2 >>

(JJ E 4

9, vl:kl >> ~1 type @, vl:kl, vz:kz >> (12 type

0 > u : kl x k2 Q >> e : [xlzl/vJvl X[R~U, 7r2u/v1,v4u~

<P>> 7rl[u,e] = [K~U, ale] : [vl :kl, 011

a., vl;kl >> u1 type a’, vl:kl, v2:kz > U-J type

@ > u : kl x k2 Cp >> e : [~F~u/~I]vI x [7r1’11, K~U/VI,I~U~

Qp > w[u, e] = [wu, me] : [wkz, [7r14+721

a, wl:kl > ‘~1 type @, q:kl, vz:kx >> u2 type

@,q:kl > u : k2 @‘, vl:k~, z:ul > e : [u/v~]u~
Cp >> (Xs:[vl:kl, vl].[Fst s, Snd s/211, z][u, e]) = [(Xvl:kl.21), Avl:k1.Xx:ul.e) :

[v:kl+ kz, (Vvl:kl.ul -+[.~~v~/v~]u~)]

@, vl:kl > u1 type Q,vl:kl, vq:kz >> u2 type

Q > ul : kl @ > el : [UI/VI]UI

<p >> u : kl--+ k2 + >> e : (Vvl:kl.ul -+[vv~/v~]u~)

@ 22 [u, e] [ICI, eJ = [u ~1, e[ul] ell : [vz:hz, [141/v11~2]

Table 6: Non-standmd equations

349

expression translalion

Fs:sz(M) u

Snd(M) e
I s IsC. dl

induction hypotheses

where Mb = [u,e]

where Mb = [~,e] -----

i”:“, u] ‘- b:;, i;i4~bl

(Cs:S1 .Sz) [=I(& x kp), ([R~v/v]u~ X[KIV, RZV/&, v]u2)] where 5’: = [v:ki, ci]
(rkS1 .S2) [v:(ICI - kz), vsc:t1 .[sC/v]q -+[v sC/v]a2] where Sib = [v&,ai]
* I*. *l

(M1,M2) i(k:u2), (el,e2)1 where M: = [u;, ei]
7TiM [xiu, Tie] where Mb = [u,e]

(Xs:S.M) [(XsC:k.u), (Asc:k.Asr:[sc/v]g.e)J where Sb = [v:Ic, V] and Mb = [u, e]-

_ Ml M2 b17-42, el b21 e21 where Mi = [ui, ei]

Table 7: Translation of X$td into X$,6

l If X$$7l t- @ >> M : S, then the following
equality judgements are derivable in AEid[7]:

- +p, >> @(s) = (a(~)‘)~ sig, for all s E
Dam(@), where + 3 a,, s:@(s), P (and
similarly fort and v in Dam(@))

- 4 >> S = (Sb)e sig

- Q > M = (Mb)” : S

(an.d similarly for the other formation judge-
ments.)

Corollary 3.6 (Conservative extension) Let 7
be an arbitrary well-formed theory. For any A$!
judgement J, X r;l,J771 I- Je @ qf,Lp-1 I- 3.

3.5 Compile-Time Type Checking for
FL mod

The compile-time equational theory of XE$ and X5:
is det,ermined using a restricted equational proof sys-
tem, defined as follows.

Definitiou 3.7 (Compile-time calculus)
Compile-time provability in XKtd and A$,! is defined
by disallowing the use of all /I and 97 rules for ierm

eq7liualence, and all 0 and 11 rules for module equiv-
alence, apart from those related to =basic” signatu,r.es
fv:k, u].

Let us designate the P and 7 axioms for terms of XML
hy Bq, then the full XEtd calculus may be recovered
by working in the theory (0,/37), since the p and ?I
a.xioms for modules are derivable in such a theory.

It may be easily verified that the variants of Theo-
rems 3.3, 3.4 and 3.5 obtained by considering compile-
time derivability hold.

Theorem 3.8 (Compile-time type checking)
Given any well-formed theory ‘T = (a7, A7), the fol-
lowing implications hold:

If AE$[T] t- then f[@,0] I-,t

Cp context Cp context

Cp > u type @ > u type
@ >> S sig Cp >> S sig
a,>>tb:k @>>u:k
@>>e:a 0 >> e : u
@>M:S @>M:S

3.6 Decidability of xttd

The decidability of Xzfd is proved by giving au algo-
rit,hm that “flattens” structures and signatures dur-
ing type checking. As a result, checking signature
equivalence is reduced to checking type equivalence
in X2:, and this is, a.s we have already argued, decid-
able. The main complication in the algorithm stems
from the failure of unicity of types. For example, the
structure [int, 31 has both of the inequivalent signa-
tures [t:T, set(t)] and [i:T, ini]. Our approach is to
compute the “most specific” signature for a structure
(in the foregoing exa.mple this would be the second)

350

which will always have the form [v:lc, u] where v does
not occur free in CT. As a notational convenience,
we will usually omit explicit designation of the non-
occurring variable, and write such signatures in the
form [:rC,cr]. The algorithm defined below takes as
input a raw context G and, for instance, a raw mod-
ule expression M of Xgtd and produces one of the
following results:

Theorem 3.11 (Completeness) Let 7 be cll~y
well-formed theory. The following implicutions hold:

then TqIJ I- & X$,“[7] tct

l The context CDb and Mb EE [~,e]:[:k,a], meaning
that (9 B- M : [%,a] is derivable in X$td.

l An error, meaning that @ context is not derivable
in JI~:~ or that 0 >> M : S is not derivable in
X$td for any S.

Definition 3.9 (Type-checking algorithm) The
type-checking algorithm TC is given by a determin-
istic set of inference rules to derive judgements of the
following form:

input output

91 --+) Qb context

Q >> e -++ Qb > eb : u

a! >> A4 ---H ab >> Mb : [:k,u]

In the last three cases TC not only computes the
translation, but also a kind/type/signature. A sample
of the inference rules that constitute the algorithm is
given in Table 8.

TC is parametric in a theory 7, and we write
Tq7] for the instance of the algorithm in which
the constants declared in cP7 are regarded as vari-
ables. More precisely, Q! - Qb context in Tq’T] iff
#I, + --H <p7, Ob context in TC.

Theorem 3.10 (Soundness) Let 7 be a well-
formed theo y. ‘The following implications hold:

If TPI t- then X Em t-ct
Cp + Ob context Cp context

‘@2-u.--Hb 2-u’ type @ >> u type

Cp > S - cpb > Sb sig 42 > S sig
@ >> u + ab >> ub : k @>>u:k

0 >> e - ab > eb : u @B-e::’

CP >> M ---H @b >> [u, e] : [:k, u] + > M : [:k, u’]

Q >> u type @ >> u - Qb >> ub type
@ >> S sig 0 >> S - Qb >> Sb sig
+>>u:k a, >> u - ab >> ub : k
Q?>>e:a 0 >> u - @ b

>> u
b

type

Cp >> e - Qb > eb : CT’

ab >> ub = u’ type
+>M:S Cp >> S - Qb >> [v:k, u] sig

Q >> M --H @ >> [u, e] : [:k, u’]
ipb > IS’ = {u/vJa type

_ If v%fP-l t‘ct then TC$T] t & XzF[?-] kct

Cp > ul = ~2 type @ >> ui 4-k Q, 6 >> ai type
Qb > uQ1 = 0; type

0 > S1 = S2 sig 0 >> S; - cpb > Si sig
eb >> S\ = Si sig

(9 >> u1 = ug : k <p >> ui - Qb >> ui : k
ab > ~“1 = 11; : k

Q >> el = e2 : u Cp >> u -.Gb > ub type

I

@ >> ei 4-t ab >> ei : ui

Qb >> ub = ui type
i@b >> eb, = ei : Ub

@>>M1=M2:SI @B-S +

I.-

-l

Qb >> [pi, ei] : [:k, ui]
Gb >> u1 = u2 : k
Gb 23 u = [ui/v]ui type
Qb > el s e2 : u

Theorem 3.12 (Decidahility) It
is decidable whether a raw type-checking judgemenf
lhs --H rhs is derivable using the inference rules in
Definition 3.9.

Corollary 3.13 Given any zoell-formed theory 7,
th.e derivability of formation judgements in Xttd[7]
is decidable and does not depend on pun-time axioms
nor the axiom.s in 7.

4 Conclusion

Although the relatively stra.ightforward ML-like func-
tion calculus XML of [MH88] illustrates some impor-
tant properties of ML-like languages, it does uot pro-

vide an adequate basis for the design of a. compile-
time type checker. Similar problems arise in other
programming language models based on dependent

351

(Q, s:S)

([I w)

([I 0

(II El)

([I E2)

h’T)

(1 1)

cp > s - cpb > Sb sig
Cp, s:S --+ Qb, s:Sb context

(s 4 DomW

+, v:k >> u - ab, v:k >> rb type

a > [l&u] - ab > [WC, ub] : sig

dp >> u - ab > ub : k Q, >> e - ab >>eb : u

@ >> [u, e] - Qb >> [u, e] : [:k, CT]

@ >> M --++ Qb >> [u, e] : [:k, o]

Q >> Fst(M) - Gb >> u : k

+ > M + Gb >> [u, e] : [:k, a]

Q > L&d(M) -++ + b >e: u

0 --+ Qb context
cp >> s --n ab >> [sc, sr] : [:k, [s”/v]cT] (@b(s) = “:k’al)

+ context - 5Bb context

a > * - ab > [*,*I: [:lJl

(22 Ei)
Q, >> ri M - Bb >> [riu, xie] : [:ki, gi]

m I) @',s:Sl > M - Gb, s:[v:kl,rrJ >> [u, e] : [:kz, ~23

@ >> (Xs:SpM) --++ Qb >> [(Asc:k~.~~),(AsC:k~.Xsr:[sc/v]a~.e)] :
[:kl-+k2,VsC:k1.[sC/v]u1~~2]

@ >> Jv -+ Gb >> [u,e] : [:kl + k7,Vw:kl.al --m2]

Table 8: Type checking algorithm (selected rules)

352

types. To address this pragmatic issue, we have devel-
oped an alternate form of the XML calculus in which
there is a clear compile-time/run-time distinction.
Essentially, our technique is to add equational ax-
ioms that allow us to decompose structures and func-
tors into separate compile-time and run-time compo-
nents. While the phase distinction in XML reduces
to the syntactic difference between types and their
elements, the general technique seems applica.ble to
other forms of phase distinction.

The basis for our development is the “category
of modules” over an indexed category, which is an
instance of the Grothedieck construction. General
properties of the category of modules are explained
in the companion paper [Mog89a]. In the specific case
of XML, our non-standard equational axioms lead to
a calculus which bears a natural relationship to the
category of modules. In future work, it would be
interesting to explore the exact connection between
our calculus and the categorical construction, and to
develop phase distinctions.for languages whose type
expressions may contain “run-time” suhexpressions
in more complicated ways.

References

[BL84]

[BM M89]

[C+S6]

[Car881

[Gir71]

[Gir72]

R. Burstall and B. Lampson. A kernel lan-
guage for abstract data types and mod-
ules. In Proc. Int. Symp. on Semuntics
of Data’Types, Sophia-Antipolis (France),
Springer LNCS 173, pages l-50, 1984.

K. B. Bruce, A. R. Meyer, and J. C.
Mitchell. The semantics of second-order
lambda calculus. Information and Cont-
putation, 1989. (to appear).

Constable et al. Implementing Mathe-

matics with the Nuprl Proof .Development
System, volume 37 of Gradzlafe Texts in
Mathematics. ‘Prentice-Hall, 1986.

L. Cardelli. Phase, distinctions. in type
theory. Manuscript, 1988.

J.-Y..
Girard. Une extension de l’interpretation
de Godel & l’analyse, et son application &
l’elimination des coupures’dans l’analyse
et la thiorie des types, In J.E. Fenstad,
editor, 2nd Scandinavian Logic Sympo-
sium, pages 63-92. NorthlHolland, 1971.

J.-Y. Girard. Interpretation fonc-
tionelle et elimination des coupures de

[HMM86]

[I-I h!lT87a]

[HMT87b]

[Ma.c86]

[Mar841

[MH88]

[Mog89a]

[MogSSb]

[MPSS]

[N PSSS]

l’arithmetique d’ordre superieur. These
D’Eta.t, Universit,e Paris VII, 1972.

R. Harper, D.B. MacQueen, and R. Mil-
ner. Standard ml. Technical Report
ECS-LFCS-86-2, Lab. for Foundations
of Computer Science, University of Edin-
burgh, March 1986.

R. Harper, R. Milner, and M. Tofte. The
semantics of standard ML. Technical Re-
port ECS-LFCS-87-36, Lab. for Founda-
tions of Computer Science, University of
Edinburgh, August 1987.

R. Harper, R. Milner, and M Tofte. A
type discipline for program modules. In
TAPSOFT ‘87, volume 250 of LNCS.
Springer-Verlag, March 1987.

D.B. MacQueen. Using dependent types
to express modular structure. In Proc. 1%
th ACM Symp. on Principles of Program-
ming Languages, pages 277-286, 1986.

P. Martin-Lof. Intuitionistic Type Theory.
Bibliopolis, Napoli, 1984.

J.C. Mitchell and R. Harper. The essence
of ML. In Proc. 15th ACM Sym.p.
on Principles of Programming Languages,
pages 28-46, January 1988.

E. Moggi. A category-theoretic account of
program modules. In Summer Conf. on.
Category Theory and Computer Science,
pages 101-117, 1989.

E. Moggi. Computational lambda calcu-
lus and monads. In Fourth IEEE Symy.

Logic in Computer Science, pages 14-23,
1989.

J.C. Mitchell and G.D. Plotkin. Abstract
types have existential types. ACM Trans.
on Programming Languages and Systems,
10(3):470-502, 1988. Preliminary ver-
sion appeared in Proc. 12-th ACM Symp.
on Principles of Programming Languages,
1985.

B. Nordstrom, K. Peterson, and J. Smith.
Programming in martin-16f’s type theory.
University of Gothenburg / Chalmers In-
stitue of Technology, Book draft of Mid-
summer 1988.

353

IRey741 J .C. Reynolds. Towards a theory of
type structure. In Paris Colloq. on

Programming, pages 405-425. Springer-
Verlag LNCS 19, 1974.

[Tof87] M. Tofte. Operational Semanfics and

Polymorphic Type Inference. PhD thesis,
University of Edinburgh, 1987.

354

