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Abstract 

In earlier work, we used a typed function calculus, 
XML, with dependent types to analyze several as- 
pects of the Standard ML type system. In this pa- 
per, we introduce a refinement of XML with a clear 
compile-time/run-time phase dislinclion, and a di- 
rect compile-time type checking algorithm. The cal- 
culus uses a finer separation of types into universes 
than XML and enforces the phase distinction using a 
nonstandard equational theory for module and signa- 
ture expressions. While unusual from a type-theoretic 
point of view, the nonsta.ndard equationa. theory 
arises naturally from the well-known GrotNhendieck 
construction on an indexed category. 

1 Introduction 

The module system of Standard ML [HMM86] pro- 
vides a convenient mechanism for factoring ML pro- 
grams into separate but interrelated program units. 
The basic constructs are struciures, which are a. form 
of generalized “records” with type, value and struc- 
ture components, and functors, which may be re- 
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garded as parameterized structures or functions from 
structures to structures. The types of structures and 
functors are called signatures. The signature of a 
structure lists the component names and their t,ypes, 
while the signature of a functor also includes the types 
of all parameters. Typically, program units are repre- 
sented as structures that are linked together by func- 
tor application. When two structure pa.ramet,ers of 
a. functor must share a common substructure, this 
is specified using a “sharing” constraint within the 
functor parameter list. III Standard ML as currently 
implemented, there a.re no functors with funct*or pa- 
iameters. Iii this respect, the current language only 
uses “first-order” modules. 

There are two formal analyses of the module 
system, one operational and the other a symac- 
tic tra.nslation leading to a. denotational semantics. 
The structured operational sema.ntics of [HMT87h, 
H MT87a, Tof87] includes a computationa. character- 
iza.tion of the type checker. This gives a precise, 
implementation-independent definition of the Stan- 
da.rd ML language that may be used for a variety 
of purposes. The second formal analysis is a t,ype- 
theoretic description of ML, which lea.ds to a denota- 
tional semantics to the language. The second line 
of work, beginning with [Mac861 and continued in 
[MH88], uses dependent sum types Cx:A.B to explain 
structures and dependent function types II2:A.B for 
functors. In addition t.o providing some insight into 
the functional behavior of the module constructs, 
the XML calculus introduced in [MH88] establishes a 
fra.mework for studying a class of ML-l&e languages. 
Because variants of Standard ML may be considered 
as XML theories, the emphasis of this approa.ch is 
on properties of Standa.rd ML that rema.iu invariant 
under extensions of the la.nguage. In a.ddition, XML 
is most naturally defined with higher-order modules, 
suggesting a useful extension of Standard ML. How- 
ever, some important aspects of Standard ML are not 
accurately reflected in the XML analysis. 



Although ML is designed to allow compile-time 
type checking, it is not clear how to “statically” 
type check versions of XML with certain additional 
type constructors or with higher-order modules. This 
is particularly unfortunate for higher-order modules, 
since these seem useful in supporting separate com- 
pilation or as an alternative to ML’s “sharing” spec- 
ifications [BL84, MacSG]. In this paper, we redesign 
XML so that compile-time type checking is a.n in- 
trinsic part of the type-theoretic framework. Since 
it is difficult to characterize the difference between 
compile-time and run-time precisely, we focus on es- 
tablishing a phase dislin.cfion,, in the terminology of 
[Car88]. However, to give better intuition, we gen- 
erally refer to these phases as compile-time and run- 
lime. The main benefit of our redesign is that type 
checking becomes decidable, even in the presence of 
higher-order functors and arbitrary equational ax- 
ioms between “run-time” expressions. 

The main difficulty with higher-order functors may 
be illustrated by considering an expression e contain- 
ing a “functor” variable F which maps type, int pairs 
(representing structures) to type, inl pairs. Such an 
expression e might occur as the body of a higher-order 
functor, with functor parameter F. In type checking 
e, we might encounter a type expression of the form 
Fst(F[int,q]), f re erring to the type component of the 
structure obtained by applying the functor parameter 
F to structure [int,el]. Since F is a formal para.m- 
eter, we cannot hope to evaluate this type expres- 
sion without performing functor application, which 
we consider a “run-time,” or second phase, operation. 
However, in type checking e, we might need to decide 
whether two such type expressions, say Fst(F[inf,ei]) 
and Fst(F[int,eJ), are equa.1. The natural equality to 
consider involves deciding whether structure compo- 
nents ei and es are equal. However, if these are com- 
plicated integer expression, perhaps containing recur- 
sive functions, then it is impossible to algorithmically 
compare two such expressions for equality, While it 
is possible to simplify type checking using syntactic 
equality of possibly divergent expressions, this is too 
restrictive in practice. 

In this paper, we present a typed calculus XML 
which includes both higher-order modules and a clear 
separation into “phases” which correspond intuitively 
to compile-time a.nd run-time. The new calculus is 
at once a refinement and an extension of XML. The 
universe structure of XML is refined so that the core 
language (i.e., the language without modules) pos- 
sesses a natural phase distinction. Then the lan- 
guage is extended in a systematic way to include de- 
pendent types for representing structures and func- 
tors. In order to preserve the phase distinction a 

non-standard formulation of the rules for dependent 
types is needed. Rather than restrict the syntax of 
structures and functors, as one might initially expect, 
we adopt non-standard equational axioms that allow 
us to simplify each structure or funct,nr into separate 
“compile-time” and “run-time” parts. Referring back 
to the example above, we test whether Fsi(F[int,el]) 
and Fsf(F[inf,ez]) are equal essentially by simplify- 
ing F to a pair of maps, one compile-time and the 
other run-time. This allows us to compute compile- 
time (type) values of these expressions without evai- 
uating run-time expressions el or es. This approach 
follows naturally from the development of [Mog89a], 
which defines the category of modules over any suit- 
able indexed category representing a typed language. 
In categorical terms, the category of modules is the 
Grothendieck construction on an indexed category, 
which is proved relatively Cartesian closed when cer- 
tain natural assumptions about the indexed category 
are satisfied. Our XML calculus is a concrete out- 
growth of Moggi’s categorical development, provid- 
ing an explicit lambda notation for the category of 
modules. 

Like XML, AML may be extended with any typed 
constants and corresponding equationa. axioms. In 
contrast to XML, constants and non-logicad AML a.x- 
ioms only affect the “run-time” theory of the language 
and do not interact with type checking. We show 
that XML typing is decidable for any variant of the 
calculus based on any (possibly undecidable) equa- 
tional theory for “run-time” expressions. A similar 
development may be carried out using the compu- 
tational &calculus approach of [Mog89b] in place of 
equational axioms, but we will not go into t1ra.t in this 
paper. 

The paper is organized as follows. In Section 2 we 
introduce the core calculus, XML, which we later ex- 
tend to include modules. AML is essentially the HML 
calculus given in [MogSSa] and cIosely related to the 
Core-XML calculus given in [MH88]. In Section 3 
we introduce Xgid, the full calculus of higher-order 
modules. We prove that Xztd is a definitiona. exten- 
sion of a simpler “structures-only” calculus and use 
this result to establish decidability and compile-time 
type checking for the full calculus of modules. Brief 
concluding remarks appear in Section 4. 

2 Core Calculus 

We begin by giving the definition of the XML core 
ca.lculus, XML, which is essentially the calculus HML 
of [Mog89a]. This calculus captures many of the es- 
sential features of the ML type system, but omits, 
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for the sake of simplicity, ML’s concrete and ab- 
stract types (which could be modeled using existen- 
tial types [MPS8]), recursive types (which can be de- 
scribed through a X ML theory), and record types. We 
also do not consider pattern matching, or computa- 
tional aspecls such as side-effects and exceptions. A 
promising approach toward integrating these features 
is described in [Mog89b]. 

2.1 Syntactic Preliminaries 

There are four basic syntactic classes in XML: 
kinds,constructors,types and terms, The kinds in- 
clude T, the collection of all monotypes, and are 
closed under formation of products and function 
spaces. The constructors, which include monotypes 
such as in& and type constructors such as list, are 
elements of kinds. The types of XML, whose elements 
are terms, include Cartesian products, function spaces 
,and polymorphic types. The terms of the calculus 
correspond to the basic expression forms of ML, but 
are written in an explicitly-typed syntax, following 
[MH88]. It is important to note that our “types” 
correspond roughly to ML’s “type schemes,” the es- 
sential difference being that we require them to be 
closed with respect to quantification over all kinds 
(not just the kind of monotypes) and function spaces. 
These additional closure conditions for type schemes 
are needed to make the the category of modules for 
XML relatively Cartesian closed (i.e., closed under for- 
mation of dependent products and sums). 

The organization of XML is a refinement of the 
type structure of Core-XML[MH88]. The kind T of 
monotypes corresponds directly to the first universe 
171 of Core-XML. However, the second universe, Uz, 
of Care-XML is separated into distinct collections of 
kinds and types. For technical reasons, the cumula- 
tivity of the Core-XML universes is replaced by the 
explicit “injection” of T into the collection of types, 
written using the keyword set. 

2.2 syntax. 

The syntax of AML raw expressions is given in Ta- 
ble 1. The collection of term variables, ran.ged over by 
Z, and the collection of constructor variables, ranged 
over by V, are assumed to be disjoint. The metavari- 
able r ranges over the collection of monotypes (con- 
structors ‘of kind ‘?). Contexts consist of a sequence 
of declarations of the form v:k and z:cr declaring the 
kind or type, respectively, of a constructor or term 
variable. In addition to the context-free syntax, we 
require that no variable be declared more than once 
in a context G so that we may unambiguously regard 

Cp as a partial function with finite domain Dam(@) 
assigning kinds to const,ructor variables and types to 
term variables. 

2.3 Judgement Forms 

There are two classes of judgements in AML, the GOT- 

malion judgements and the equality judgements. The 
formation judgements are used to define the set of 
well-formed AML expressions. With the exception of 
the kind expressions, there is one formation judge- 
ment for each syntactic category. (Every raw kind ex- 
pression is well-formed.) The equality judgements are 
used to axiomatize equivalence of expressions. (There 
is no equality judgement for kinds; kind equivalence 
is just syntactic identity.) The equality judgements 
are divided into two classes, the compile-time equa- 
tions and the run-time equations, reflecting the in- 
tuitive phase distinction: kind a.nd type equivalence 
are compile-time, term equivalence is run-time. The 
judgment forms of XML are summa.rized in Table 2. 
The metavariable F ranges over formation judge- 
ments, Cc ranges over eyua.lity jndgements, and ,7 
ranges over all forms of judgement. We sometimes 
write Q >> cr to sta.nd for an arbitrary judgement 
when we wish t,o make t,he context part explicit. 

2.4 Formation Rules 

The syntas of XML IS specified by a set of inference 
rules for deriving form&ion judgements. These re- 
semble rules in [MHSS, MogSSa] and are essentially 
standard. Due to space constraints, they are omit- 
ted from this conference pa.per. We write XML k 7 
to indicate that the formation judgement F is deriv- 
able using these rules. The formation rules may be 
summarized as follows. The constructors and kinds 
form a simply-typed X-ca.lculus (with product and 
unit types) with ba.se kind T, and basic constructors 
1, x,and-+. The collection of types is built from base 
types 1 and set(r), where r is a constructor of kind T, 
using the type constructors x a.nd 3, and quantifi- 
cation over an arbitrary kind. The terms amount to 
an explicitly-typed presentation of t,he ML core ian- 
guage, similar to t,ltat presented in [MHSS]. (The let 
construct is omitted since it is definable here.) 

2.5 Equality rules 

The rules for deriving equational judgements also re- 
semble rules in [MHSS, Mog89a] a.nd are essentia.lly 
standard. We write XML k t’ to indicate that an 
equation I is derivable in accordance with these rules. 
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k E kind :: = 1 1 T 1 ICI x liz 1 ICI - kz 
u E constr ::= Vjll x 14 1 * 1 (Ul,U2) I %(U) I @J:k.u> I u1 wt 
u E type :: = set(u) 1 U] x (32 1 51 -52 1 (Vv:k.u) 
e E term :: = x 1 * 1 (el,ez) 1 K,(e) 1 (Ax:u.e) 1 el e2 1 (hv:k.e) I e[tlj 
Q E context :: = 0 1 a’, v:k I ip, X:(T 

Table 1: XML raw expressions 

5% conlezt (9 is a context 
cp >> u : k u is a constructor of kind k 

@ >> 5 type u is a type 
@,>>e:u e is a term of type U 

<p >> u1 = u2 k ~1 and ~2 are equal constructors of kind k 
+ > 51 = 52 type 51 and CTZ are equal types 
ip >> el = e2 : u er and e2 a.re equal terms of type schema u 

Table 2: X”‘lL judgement forms 

The X”‘L equational rules are formulated so as to en- 
sure that if an equational judgement is derivable, t,hen 
it. is well-formed, meaning that the evident associated 
formation judgements are derivable. For the sake of 
convenience we give a brief summary of the equational 
rules of XA4L 

2.5.1 Compile-Time Equality 

Constructors Equivalence of constructor expres- 
sions is the standard equivalence of terms in the 
simply-typed X-calculus based on the following ax- 
ioms: 

(x P) 
Cp > ul : ICI Cp >> u2 : k2 

Q > ri((Ul, ~2)) = ‘Eli : ki 
(i = 1,2) 

@ >> u : kl x kz 

(- P) 
@ > u1 : kl a, v:kl >> 212 : kz 

+ >> (Av:kl .u2) u1 = [ul/v]uz : k2 

(- ‘7) 
Q >> u : kl t k2 

Q, > (Av:kl.uv) = u : kl -k:! 
(v $J Dom( a)) 

Types The equivalence relation on types includes 
the following axioms expressing the interpretation of 
the basic ML type constructors 

(1 T=) 
@ context 

+ > set(l) = 1 type 

(x T=) 
(P>>q:T @!>>7i:T 

Cp > set(Tr x ~2) = set(rr) x set(r2) type 

(-+T=) 
Qr >> rl : T Cp > r2 : T 

0 >> set(71+72) = set(rr) +set(T2) type 

2.5.2 Run-Time Equality 

Terms There are seven axioms corresponding to 
the reduction rules associated with each of the type 
constructors: 

(1 17) 
Q>>e:l 

@Be=*:1 

0 >> el : 51 @ >> e2 : 52 

@ > 7ri((el, e2)) = ej : 5i 
(i = 1,2) 

fb >> e :51 x52 

(’ ‘) Cp > (7rl(e),a2(e)) = e : 51 X 52 

(“-+ PI 
+ >> el : 51 (P,X:(Tl >>e2 : 52 

@ > (kUl.ea) el = [el/X]Q : 52 
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(-+ 77) 
+‘>>e:al-+a2 

<p >> (Xx:ul.ex) = e : (~1 -+u2 (x e Do+v 

(9 >> u : k Q,v:k >> e : u 

(’ ‘) Cp > (hv:k.e)[n] = [u/v]e : [u/v]u 

(’ n) 
<p >> e : (Vv:k.u) 

@ > (hv:k.e[v]) = e : (Vv:k.u) (’ ’ Dam(‘)) 

2.6 Theories -... 

The XML calculus is defined with respect to an ar- 
bitrary theory 7 = (a7,d7) consisting of a well- 
formed context cPr and a set AT of run-time equa- 
tional axioms of the form el = e2 : u with Qc >> ei : u 
derivable for i = 1,2. A theory corresponds to 
the programming language notion of standard pre- 
lude, and might contain declara.tions such as inl : T 
and fiz : Vt:T. set((t -+ t) + t), and a.xioms such 
as expressing the fixed-point property of f;z. For 
7 = (G7 ,dl), we write X ML[7] I- J to indicate that 
the judgement J is derivable in JML, taking the vari- 
ables declared in a’ as basic constructors and terms, 
and taking the equa.tions in Cc7 as non-logical axioms. 
We write X”!‘L[7] Ect J t#o indicate that the judge- 
ment ,7 is deriva.ble from theory ‘7 using only the 
compile-time equational rules‘arid equational axioms 
of 7. 

2.7 Properties of XML 

We will describe the pha.se distinct/on in XML by sepa- 
rating contexts into sets of “compile-time” and “run- 
time” declarations. If @ is a J4A4L context, we let (PC 
be the context obtained by omitting all term vari- 
able declarations from Q and let Qr .be the context 
obtainecl by eliminating all constructor variable dec- 
lara.tions from (5,. The following lemma expresses the 
compile-t,ime t,ype checking property of AntL: 

Lemma 2.1 Let 7 be any theory. Tht?follo,wing im- 
plications hold: 

If x97] l- 

Cp context 
Q >> u : k 

then XML[@‘I,O] tct 

V, @ context 
, ~- , 

I -- *. 

? I Oc > u1 = u2 type a >> 61 = (72 tYP( 4 
@ >> e : u @,@‘>>e:i -- 

+ >> el = e2 : u Qc,Qr > ei : u 

Since the constructors and kinds form a simply- 
typed X-calculus, it is a routine matter to show 
that equality of well-formed constructors (and, conse- 
quently, types) in XML is decidable. It is then easy to 
show that type checking in XML is decidable. This is a 
well-known property of the polymorphic la.mbda cal- 
culus F,, (c.f. [Gir’ll, Gir72, Rey74, BMM89]), which 
may be seen as an impredicative extension of the XhgL 
calculus. 

Lemma 2.2 There is a straightforward one-pass al- 
gorithm which decides, for an arbitrary well-formed 
theory 7 and formation judgement 3, whether or not 
PL[7] I- 3. 

The main technical accomplishment of this paper 
is to present a full calculus encompassing the module 
expressions of ML which has a compile-time decidable 
type checking problem. 

3 Modules Calculus 

3.1 Overview 

In the XML account of Standard ML modules 
[Ma&G, MHS8] ( see also [NPS88, C+SG, Mar841 for 
related ideas), a structure is an element of a strol~g 
snm type of the form Cx:A.B. For example, a struc- 
ture with one type and one value component is re- 
garded as a pair [T, e] of type S = 2:T.u. Although 
Standard ML structures bind names to their compo- 
nents, component selection in XML is simplified us- 
ing the projections Fst and Snd. Functors are treated 
as elements of dependent function types of the form 
IIz:A.B. For example, a functor mapping structures 
with signature S to structures with the same signa- 
ture would have type IIs:(Et:T.a).(Ct:T.u). In XML, 
functors are therefore written as X-terms mapping 
structures to structures. As discussed in the intro- 
duction, the standard use of dependent types con- 
flicts with compile-time type checking since a type 
expression (which we expect to evalua,te a compile 
time) may depend on an arbitrary (possibly run time) 
expression. For example, if F is a functor variable 
of- signature S -+ S (where S is as above), then 
Fst(F [int, 31) is a.n irreducible type expression in- 
volving a run-time sub-expression. 

In this section we develop a calculus Xgbd of higher- 
order modules with a phase distinction based on the 
categorical analysis of [Mog89a]. We begin with a 
simpler “structures-only” calculus that is primarily 
a technical device used in the proofs. The full cal- 
culus of higher-order modules has a standard syntax 
for dependent strong sums and functions, resembling 
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XML, but a non-sta.ndard equational theory inspired 
by the categorical interpretation of program mod- 
ules [Mog89a]. The calculus also employs a single 
non-standard typing rule for structures that we con- 
jecture is not needed for decidable typing, but which 
allows a more generous (and simple) type-checking al- 
gorithm without invalidating the categorical seman- 
tics. Although inspired by a ca.tegorical construc- 
tion, we prove our main results directly using only 
standard techniques of lambda calculus. The non- 
standard aspects of XEtd calculus are justified by 
showing tha-t this calculus is a definitional extension 
of the “structures-only” ca.lculus, which itself bears 
a straightforward relationship to the core calculus. 
This definitional extension result is used to prove that 
Xtid type equivalence is decidable and that the lan- 
guage therefore has a pra.ctical type checking algo- 
rithm. 

3.2 The Calculus of Structures 

In this section, we extend XML with structures and 
signatures. The resulting calculus, Xzt, has a 
straightforward phase distinction and forms the ba- 
sis for the full calculus of modules. We assume we 
have some set of structure variables that are disjoint 
from the constructor and term va.riables, and use s, s’, 

Sl, . . as metavariables for structure variables. The 
a.dditional synt,a.x of X z,” is given in Table 3. Note 
that contexts are extended to include declarations of 
structure identifiers, but structures are required to 
be in “split” form [u, e]. (A variable s is not a struc- 
ture and t,here is no need for operations to select the 
components of a. structure.) 

The judgement forms of XdWL are extended with two 
additional formation judgements, and two additional 
equality judgements, summarized in Table 4. The 
rules for deriving judgements in Afie are obtained by 
extending the rules of XhfL (taking contexts now in 
the extended sense) with the obvious rules for struc- 
tures in “split” form, in particular the following two 
rules governing the use of structure variables: 

(13 El) 
Q context 
+ > $C k (@(s) = b:W) 

([I Ed 
0 condext 

a > sr : [SF/t+ 
@(s) = [v:k,u]) 

The notion of t.heory and derivability with respect to 
a theory are the same as in X”‘. 

The ca.lculus of structures may be understood in 
terms of a translation into the core calculus, which 
amounts to showing that Azk may be interpreted into 
the category of modules of [MogSSa]. For <p a A$! 

context, define @* to be the AML context obtained by 
replacing all structure variable de&rations s : [v:k, 01 
by the pair of declarations sc : k and sr : [sc/v]u. 

Lemma 3.1 Let 7 be a well-formed XML theory. 

Xff:[?-] l- fD > [v:k,a] sig i;tT XML[7] I- 
W,v:k >> u type, and similarly for signature 
equality. 

Xft[‘ir] l- (P > [u, e] : [v:k,u] i#XML[7] I- @* >> 
u : k and AML[7J I- a* >> e : [u/v]a, and simi- 
larly for structure equality. 

AZk[I] I- a > a ig XML[7”j I- 0” >> a, for 
any judgement (Y other than of the four forms 
considered in items 1. and 2. above. 

It is an immediate consequence of this lemma and 
the decidability of X ML type equivalence that X2: 
type equivalence is decidable. This will be impor- 
tant for the decidability of type checking in the full 
modules calculus. 

3.3 The Calculus of Modules 

The relative Cartesian closure of Moggi’s category of 
modules implies that higher-order functors are defin- 
able in X2:. This may seem surprising, since X$t 
is a rather minimal ca.lculus of structures, with noth- 
ing syntactically resembling lambda abstraction over 
structures. The key idea in understanding this phe- 
nomenon is to regard all modules as “mixed-phase” 
entities, consisting of a compile-time part and a run- 
time part. For basic structures of the form [u, e], the 
partitioning is clear: U, a constructor, may be evalu- 
ated at compile-time, while e, a term, is left until run- 
time . For more complex module expressions such as 
functors, the separa.tion requires further explanation. 

Consider the signature S = [v:T, set(v)], and let 
F:S + S be a functor. Since this functor lies within 
the first-order fragment of XML, we may rely on Stan- 
dard ML for intuition. The functor F takes a struc- 
ture of signature S as argument, and returns a struc- 
ture, also of signature S. On the face of it, F might 
compute the type .component of the result as a func- 
tion of both the type and term component of the ar- 
gument. However; no such computation is possible in 
ML since there are no primitives for building types 
from terms. Thus we may regard F as consisting 
of two parts, the compile-time part, which computes 
the type component of the result as a function of the 
type component of the argument, and the run-time 
part, which computes the term component of the re- 
sult as a function of both the type and term com- 
ponent of the argument. (Since we are working in 
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k E kind :: = . . . 
21 E conslr :: = . . . 1 s‘ 
u E 2ype :: = . . . 

E iem 
i Esig 

::= ___ 1 sr 
:: = [v:k,o] 

M E mod :: = [u,e] 
Q E conle22 :: = . . . ) Q, s:S 

Table 3: X2: raw expressions 

a >> s sig S is a signature 
@>>M:S A4 is a structure of signature S 

@ >> S1 = S2 sig Sr and S2 are equal signatures 
Cp >> Mr = Mz : S Mi and A42 are equal modules of signature S 

Table 4: X2,! judgement forms 

a typed framework with explicit polymorphism, the 
term component may contain type information that 
depends on the compile-time functor argument,) For 
a more concrete example, suppose I is the identit,y 
functor Xs:S.s. Separated into compile time and run 
time parts, I becomes the structure 

[AsC:T.sC, AsC:T.~sr:set(sC).sr] 

of signature 

[f:T--+T, Vs’;T. set(sc+fsC)]. 

In other words, I may be represented by the structure 
consisting of the identity constructor on types, and 
the polymorphic identity on terms. (A technical side 
comment is that the structure corresponding to I has 
more than one signature, as we shall see.) 

With functors represented by structures, functor 
application becomes a form of “structure a.pplica.- 
tion.” In keeping with the above discussion, structure 
application is computed by applying the first compo- 
nent of the functor to the first component of the ar- 
gument, and the second component of the functor to 
both components of the argument. More precisely, if 
[u, e] is a structure of signature [f:k’ - k,Vv’:k’.r’ - 

if v’I44 t and [u’, e’] is a structure of signa.ture 
[v’:k’, 0’1, then the application [u, e] [u’, e’] is defined 
to be the structure [uu’, cue’] of signature [v:k, 01. As 
we shall see below, the appropriate typing conditions 
are satisfied whenever the first. structure is the im- 
age of a functor under the translation sketched in the 
next paragraph. Moreover, both type correctness and 
equality are preserved under the translation. 

Although X$f,” already “ha.9 higher-order mod- 
ules, the syntax for representing them forces the 
user to explicitly decompose every functor into dis- 
tinct compile-time and run-time parts, even for the 
first-order functors of Standard ML. This is syn- 
tactically cumbersome. In keeping with the syntas 
of Standard ML, and practical programming con- 
siderations; we will consider a more natural nota- 
tion based, on [Ma&G, MH88]. However, our calcu- 
lus will nonetheless respect the phase distinction in- 
herent in representing functors as structures. This 
is achieved by employing a non-standard equational 
theory t1~a.t; when used during type checking, makes 
explicit the underlying- “split” interpretation of mod- 
ule expressions, and hence eliminates apparent phase 
viol&ions. For example, if A is a functor of signa- 
ture [t:T> set(ini)]-+[t:T, 11, then the type expression 
u = Fsl(A [in2,3]) is equal, using the non-standard 
rules, to Fs$(A) int, which is free of run-time subex- 
pressions. As a result, if e is a term of type (T, then 
t.lie application 

is type-correct, whereas in the absence of the non- 
standard equations this would not be so (assuming 
3 # 5 : inl). 

The raw syntax of Xz& is an extension of that of 
XklL; the extensions are given in Table 5. The judge- 
ment forms are the same as for AZ,&, and are asiom- 
a.tized by standard structure and functor rules, as in 
[MHS8]. The Xgid calculus is parametric in a the- 
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k E kind :: = , . , 
U E constr :: = . / F&(M) 

u E type :: = 

e E ierm :: = . . . 1 Sad(M) 
S Esig :: = [v:k,cr] ] 1 ] (Cs:S&) ] (IIs:Sl.Sz) 
M E mod :: = s I [u, 4 I * I WI, Mz) I ri(M) I (Xs:S.M) I Ml MZ 
Cp E contezt :: = . . ( Q,s:S 

Table 5: XKid raw expressions 

ory, defined as in XML (i.e., we do not admit module 
constants, or axioms governing module expressions.) 

The formation rules of A$$d are essentially the 
standard rules for dependent strong sums and depen- 
dent function types. The equational rules include t,he 
expected rules for dependent types, together with t,he 
non-standard rules summarized in Table 6. 

Beside the non-standard equational rules (and “or- 
thogonal” to them), there is a.)so a non-standard typ- 
ing rules for structures: 

Q >> M : [v:k, o] 

a, v:k > u’ type 

@ > Snd M : [Fst M/v]o’ 

@ > M : [v:k, CT’] 

The non-standard typing rule is consistent with the 
interpretation in the category of modules [MogSSa], 
but (we conjecture that) without it the main propcr- 
ties of X^,aL,, namely the compile-time type checking 
theorem and the decidability of typing judgements, 
would still hold. The reason for ha.ving such rule 
is mainly pra.gmatic: to have a. simple type check- 
ing algorithm (see Definition 3.9). Moreover, this 
additional typing rule captures a. particularly uatu- 
ral property of C-types (once uniqueness of type has 
been a.ba.ndoned), namely that a structure M should 
be identified with its expansion [Fst M, Snd A/r]. A 
typical example of typing judgement derivable by 
the non-standard typing rule is s:[v:t,a] >> s : 
[v:k, [Fst s/z+]. 

3.4 Translation of A:$ into At:: 

The non-standard equationa. theory used in the def- 
inition of ,!zkd is justified by proving that ?I:&, is a 
definitional extension of X2:, in a sense t,o be made 
precise below. This definitional extension result will 
then play an important role in establishing the decid- 
ability and compile-time type checking property of 
AML mod’ 

We begin by giving a tra,nslation _b from raw XKfd 
expressions into raw A$& expressions. This transla- 
tion is defined by induction on the structure of AEfd 
expressions. Apart from the cases given in Table 7, 
the translation is defined to commute with the expres- 
sion constructors. For the basis we associate with ev- 
ery module variable s a constructor variable s‘ and a 
term variable sr in X 2,“. For convenience in defining 
the tra.nslation we fix a constructor variable v tha.t 
may occur in expressions of X2:, but not in expres- 
sions of X$bd. Signatures of Aztd will be translated 
to X2: signatures of the form [v:k,a]. The transla- 
tion is extended “declaration-wise” to contexts: ab 
is obta.ined from (P by replacing declarations of the 
form X:CT by x:gb, a.nd decla.rations of the form s:S 
by s:Sb Note that the translation leaves XML expres- 
sions fixed; consequently, the translation need not be 
extended to theories. 

Lemma 3.2 (Substitutivity) The translation -b 
commutes with substitution. 
1~1 particvlnr if Mb = Lute], then ([M/S]-)b = 
[u, e/SC, ~3’](-~). 

Theorem 3.3 (! interpretation) Let 7 be a well- 
formed theory, and let 3 be a $ftd judgement. If 
A$~~[71 t ,7, then Astr ML[7] t gb. 

Conversely, AZ;4 is essentially a sub-calculus of 
JKtd, differing only in the treatment of structure vari- 
ables. To make this precise, define the embedding -e 
of Xz,c raw expressions into A,MoLh raw expressions by’ 
replacing all occurrences of sc by Fit(s), and all oc- 
currences of sr by Snd(s). 

Theorem 3.4 (-e interpretation) Let 7 be a 
,well-formed theory, and let J’ be a X2,” judgement. 
If A$,?[71 t J, then Azfd[7] t Je. 

Theorem 3.5 (Definitional extension) Let 7 be 
a well-formed theory, 

l For any formation judgement 3 of A$,“, if 
A$![71 t 3, then (3e)b is syntactically equal 
to 3, modulo the names of bound vam’ables. 
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Non-standard equational rules for signatures 

(1 >I 
53 conte2d 

0 > 1 = [v:l, l] sig 

a, vl:kl >> 01 type Cp, vl:kl, vz:kz >> CT:! type 

(’ ‘) Cp >> (Cs:[vl:kl,ul].[vz:ka, [Fst(s)/v&~z]) = [ k k [ / ] v: 1 x 2, 8121 Vl Ul x KlzI, 7r221/tJ1, w&72] sig [ 

(’ ‘) 
0, vl:kl > ul type @,vl:kl, vz:kz >> (32 type 

+ >> (IIs:[v1:kl, ul].[vz:k2, [Fst(s)/v&7-& = [v:kl + kz, (Vvl:kl.ul -+[v w/v&2)] sig 

Non-standard equational rules for modules 

(1 I >> 
Q, context 

cp 29 * = [*, *] [v:l, l] 

@, vl:kl >> VI type (Q,zII:~I, vz:kz > (~2 type 

Q >> u1 : kl @ >> el : [UI/VI]UI 

@ >> 242 : k2 

@ I >) * >> ([w, el], [u2, e2.j) = 

@ >> e:! : [UI, UZ/~I, ~~$72 

[( W,UZ), (el,ez)] : [v:b x k 2 XlV (~1 u1 x [qv, 7r2V/V1) L;2]4 , [ /, 1 

(C El >> 

(C E2 >> 

(JJ E 4 

9, vl:kl >> ~1 type @, vl:kl, vz:kz >> (12 type 

0 > u : kl x k2 Q >> e : [xlzl/vJvl X[R~U, 7r2u/v1,v4u~ 

<P>> 7rl[u,e] = [ K~U, ale] : [vl :kl, 011 

a., vl;kl >> u1 type a’, vl:kl, v2:kz > U-J type 

@ > u : kl x k2 Cp >> e : [~F~u/~I]vI x [7r1’11, K~U/VI,I~U~ 

Qp > w[u, e] = [wu, me] : [wkz, [7r14+721 

a, wl:kl > ‘~1 type @, q:kl, vz:kx >> u2 type 

@,q:kl > u : k2 @‘, vl:k~, z:ul > e : [u/v~]u~ 
Cp >> (Xs:[vl:kl, vl].[Fst s, Snd s/211, z][u, e]) = [ (Xvl:kl.21), Avl:k1.Xx:ul.e) : 

[v:kl+ kz, (Vvl:kl.ul -+[.~~v~/v~]u~)] 

@, vl:kl > u1 type Q,vl:kl, vq:kz >> u2 type 

Q > ul : kl @ > el : [UI/VI]UI 

<p >> u : kl--+ k2 + >> e : (Vvl:kl.ul -+[vv~/v~]u~) 

@ 22 [u, e] [ICI, eJ = [u ~1, e[ul] ell : [vz:hz, [141/v11~2] 

Table 6: Non-standmd equations 
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expression translalion 

Fs:sz(M) u 

Snd(M) e 
I s IsC. dl 

induction hypotheses 

where Mb = [u,e] 

where Mb = [~,e] ----- 

i”:“, u] ‘- b:;, i;i4~bl 

(Cs:S1 .Sz) [=I(& x kp), ([R~v/v]u~ X[KIV, RZV/&, v]u2)] where 5’: = [v:ki, ci] 
(rkS1 .S2) [v:( ICI - kz), vsc:t1 .[sC/v]q -+[v sC/v]a2] where Sib = [v&,ai] 
* I*. *l 

(M1,M2) i(k:u2), (el,e2)1 where M: = [u;, ei] 
7TiM [xiu, Tie] where Mb = [u,e] 

(Xs:S.M) [(XsC:k.u), (Asc:k.Asr:[sc/v]g.e)J where Sb = [v:Ic, V] and Mb = [u, e]- 

_ Ml M2 b17-42, el b21 e21 where Mi = [ui, ei] 

Table 7: Translation of X$td into X$,6 

l If X$$7l t- @ >> M : S, then the following 
equality judgements are derivable in AEid[7]: 

- +p, >> @(s) = (a(~)‘)~ sig, for all s E 
Dam(@), where + 3 a,, s:@(s), P (and 
similarly fort and v in Dam(@)) 

- 4 >> S = (Sb)e sig 

- Q > M = (Mb)” : S 

(an.d similarly for the other formation judge- 
ments.) 

Corollary 3.6 (Conservative extension) Let 7 
be an arbitrary well-formed theory. For any A$! 
judgement J, X r;l,J771 I- Je @ qf,Lp-1 I- 3. 

3.5 Compile-Time Type Checking for 
FL mod 

The compile-time equational theory of XE$ and X5: 
is det,ermined using a restricted equational proof sys- 
tem, defined as follows. 

Definitiou 3.7 (Compile-time calculus) 
Compile-time provability in XKtd and A$,! is defined 
by disallowing the use of all /I and 97 rules for ierm 

eq7liualence, and all 0 and 11 rules for module equiv- 
alence, apart from those related to =basic” signatu,r.es 
fv:k, u]. 

Let us designate the P and 7 axioms for terms of XML 
hy Bq, then the full XEtd calculus may be recovered 
by working in the theory (0,/37), since the p and ?I 
a.xioms for modules are derivable in such a theory. 

It may be easily verified that the variants of Theo- 
rems 3.3, 3.4 and 3.5 obtained by considering compile- 
time derivability hold. 

Theorem 3.8 (Compile-time type checking) 
Given any well-formed theory ‘T = (a7, A7), the fol- 
lowing implications hold: 

If AE$[T] t- then $f$[@,0] I-,t 

Cp context Cp context 

Cp > u type @ > u type 
@ >> S sig Cp >> S sig 
a,>>tb:k @>>u:k 
@>>e:a 0 >> e : u 
@>M:S @>M:S 

3.6 Decidability of xttd 

The decidability of Xzfd is proved by giving au algo- 
rit,hm that “flattens” structures and signatures dur- 
ing type checking. As a result, checking signature 
equivalence is reduced to checking type equivalence 
in X2:, and this is, a.s we have already argued, decid- 
able. The main complication in the algorithm stems 
from the failure of unicity of types. For example, the 
structure [int, 31 has both of the inequivalent signa- 
tures [t:T, set(t)] and [i:T, ini]. Our approach is to 
compute the “most specific” signature for a structure 
(in the foregoing exa.mple this would be the second) 
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which will always have the form [v:lc, u] where v does 
not occur free in CT. As a notational convenience, 
we will usually omit explicit designation of the non- 
occurring variable, and write such signatures in the 
form [:rC,cr]. The algorithm defined below takes as 
input a raw context G and, for instance, a raw mod- 
ule expression M of Xgtd and produces one of the 
following results: 

Theorem 3.11 (Completeness) Let 7 be cll~y 
well-formed theory. The following implicutions hold: 

then TqIJ I- & X$,“[7] tct 

l The context CDb and Mb EE [~,e]:[:k,a], meaning 
that (9 B- M : [%,a] is derivable in X$td. 

l An error, meaning that @ context is not derivable 
in JI~:~ or that 0 >> M : S is not derivable in 
X$td for any S. 

Definition 3.9 (Type-checking algorithm) The 
type-checking algorithm TC is given by a determin- 
istic set of inference rules to derive judgements of the 
following form: 

input output 

91 --+) Qb context 

Q >> e -++ Qb > eb : u 

a! >> A4 ---H ab >> Mb : [:k,u] 

In the last three cases TC not only computes the 
translation, but also a kind/type/signature. A sample 
of the inference rules that constitute the algorithm is 
given in Table 8. 

TC is parametric in a theory 7, and we write 
Tq7] for the instance of the algorithm in which 
the constants declared in cP7 are regarded as vari- 
ables. More precisely, Q! - Qb context in Tq’T] iff 
#I, + --H <p7, Ob context in TC. 

Theorem 3.10 (Soundness) Let 7 be a well- 
formed theo y. ‘The following implications hold: 

If TPI t- then X Em t-ct 
Cp + Ob context Cp context 

‘@2-u.--Hb 2-u’ type @ >> u type 

Cp > S - cpb > Sb sig 42 > S sig 
@ >> u + ab >> ub : k @>>u:k 

0 >> e - ab > eb : u @B-e::’ 

CP >> M ---H @b >> [u, e] : [:k, u] + > M : [:k, u’] 

Q >> u type @ >> u - Qb >> ub type 
@ >> S sig 0 >> S - Qb >> Sb sig 
+>>u:k a, >> u - ab >> ub : k 
Q?>>e:a 0 >> u - @ b 

>> u 
b 

type 

Cp >> e - Qb > eb : CT’ 

ab >> ub = u’ type 
+>M:S Cp >> S - Qb >> [v:k, u] sig 

Q >> M --H @ >> [u, e] : [:k, u’] 
ipb > IS’ = {u/vJa type 

_ If v%fP-l t‘ct then TC$T] t & XzF[?-] kct 

Cp > ul = ~2 type @ >> ui 4-k Q, 6 >> ai type 
Qb > uQ1 = 0; type 

0 > S1 = S2 sig 0 >> S; - cpb > Si sig 
eb >> S\ = Si sig 

(9 >> u1 = ug : k <p >> ui - Qb >> ui : k 
ab > ~“1 = 11; : k 

Q >> el = e2 : u Cp >> u -.Gb > ub type 

I 

@ >> ei 4-t ab >> ei : ui 

Qb >> ub = ui type 
i@b >> eb, = ei : Ub 

@>>M1=M2:SI @B-S + 

I.- 

-l 

Qb >> [pi, ei] : [:k, ui] 
Gb >> u1 = u2 : k 
Gb 23 u = [ui/v]ui type 
Qb > el s e2 : u 

Theorem 3.12 (Decidahility) It 
is decidable whether a raw type-checking judgemenf 
lhs --H rhs is derivable using the inference rules in 
Definition 3.9. 

Corollary 3.13 Given any zoell-formed theory 7, 
th.e derivability of formation judgements in Xttd[7] 
is decidable and does not depend on pun-time axioms 
nor the axiom.s in 7. 

4 Conclusion 

Although the relatively stra.ightforward ML-like func- 
tion calculus XML of [MH88] illustrates some impor- 
tant properties of ML-like languages, it does uot pro- 

vide an adequate basis for the design of a. compile- 
time type checker. Similar problems arise in other 
programming language models based on dependent 
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(Q, s:S) 

([I w) 

([I 0 

(II El) 

([I E2) 

h’T) 

(1 1) 

cp > s - cpb > Sb sig 
Cp, s:S --+ Qb, s:Sb context 

(s 4 DomW 

+, v:k >> u - ab, v:k >> rb type 

a > [l&u] - ab > [WC, ub] : sig 

dp >> u - ab > ub : k Q, >> e - ab >>eb : u 

@ >> [u, e] - Qb >> [u, e] : [:k, CT] 

@ >> M --++ Qb >> [u, e] : [:k, o] 

Q >> Fst(M) - Gb >> u : k 

+ > M + Gb >> [u, e] : [:k, a] 

Q > L&d(M) -++ + b >e: u 

0 --+ Qb context 
cp >> s --n ab >> [sc, sr] : [:k, [s”/v]cT] (@b(s) = “:k’al) 

+ context - 5Bb context 

a > * - ab > [*,*I: [:lJl 

(22 Ei) 
Q, >> ri M - Bb >> [riu, xie] : [:ki, gi] 

m I) @',s:Sl > M - Gb, s:[v:kl,rrJ >> [u, e] : [:kz, ~23 

@ >> (Xs:SpM) --++ Qb >> [(Asc:k~.~~),(AsC:k~.Xsr:[sc/v]a~.e)] : 
[:kl-+k2,VsC:k1.[sC/v]u1~~2] 

@ >> Jv -+ Gb >> [u,e] : [:kl + k7,Vw:kl.al --m2] 

Table 8: Type checking algorithm (selected rules) 
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types. To address this pragmatic issue, we have devel- 
oped an alternate form of the XML calculus in which 
there is a clear compile-time/run-time distinction. 
Essentially, our technique is to add equational ax- 
ioms that allow us to decompose structures and func- 
tors into separate compile-time and run-time compo- 
nents. While the phase distinction in XML reduces 
to the syntactic difference between types and their 
elements, the general technique seems applica.ble to 
other forms of phase distinction. 

The basis for our development is the “category 
of modules” over an indexed category, which is an 
instance of the Grothedieck construction. General 
properties of the category of modules are explained 
in the companion paper [Mog89a]. In the specific case 
of XML, our non-standard equational axioms lead to 
a calculus which bears a natural relationship to the 
category of modules. In future work, it would be 
interesting to explore the exact connection between 
our calculus and the categorical construction, and to 
develop phase distinctions.for languages whose type 
expressions may contain “run-time” suhexpressions 
in more complicated ways. 
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