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Abstract

We investigate type inference for programming languages
with subtypes. As described in previous work, there are

several type inference problems for anygiven expression lan-
guage, depending on the form of the subtype partial order

andtheability todefine newsubtypes in programs. Our first

main result is that foranyspecific subtype partial order, the

problem of determining whether alambda term is typable

is algorithmically (polynomial-time) equivalent to a form of

satisfiability problem over thesame partial order. This gives

the first exact characterization of the problem that is in-

dependent of the syntax of expressions. In addition, since
this form of satisfiability problem is l%p,4CE-hard over cer-
tain partial orders, this equivalence strengthens the previous

lower bound of iw’-hard to pspAcE-hard. Our second main

result is a lower bound on the length of most general types
when the subtype hierarchy may change as a result of addi-
tional type declarations within the program. More specifi-

cally, given any input expression, a type inference algorithm
tries to find a most general (or prtncipal) typing. The prop-

erty of a most general typing is that it has all other possible

typings as instances. However, there are several sound no-

tions of instance in the presence of subtyping. Our lower

bound is that no sound definition of instance would allow
the set of additional subtyping hypotheses about a term to
grow less than linearly in the size of the term.

1 Introduction

Subtyping is a basic feature of typed object-oriented lan-
guages. The main importance of subtyping is that it allows

substitutivity: if A is a subtype of B, then elements of

type A can be used anywhere that an element of type 1?

is required. Among the many implications for statically-
typed languages, this allows data structures such as hetero-

geneous lists, where elements of the list come from arbitrary

subtypes of some given type. This paper studies the prob-
lem of type inference in the presence of subtyping. Type

inference, used in languages such a. ML [GM W79, Mi185],
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Haskell [HF92, H+ 92] and Miranda [Tur85], is the process

of inferring type information that has been omitted from ex-
pressions. Type inference allows type errors to be detected
at compile time, without forcing programmers to include
type annotations in programs.

Although an algorithm for type inference with subtyping

was published in 1984 [Mit84, Mit91b], this algorithm has

seen little if any practical use. Apart from the fact that lan-

guages which could take advantage of this algorithm are only
now emerging, the main problems seem to be that the algo-

rithm is inefficient and the output, even for relatively simple

input expressions, appears excessively long and cumbersome

to read. Some attempts to make the algorithm more prac-
tical appear in [FM89, FM90]; some studies of the inherent

difficulty of the problem are [W089, LM92, Tiu92, Ben94].
The previous studies show that some simplifications can be

made to the output of the algorithm, the problem is at least
i-w-hard in the general case (even assuming that the ba-

sic operations that occur in programs have relatively sim-

ple types) but some special cases could be solved more effi-
ciently.

Our first main result is the algorithmic equivalence be-
tween typability with subtyping and a satisfiability problem

over partial orders. In particular, for any subtype partial

order, deciding whether an expression hes any typing at all
is equivalent to determining whether a form of satisfiabil-
ity problem is solvable over this partial order. This gives
us a characterization of the decision problem for typing in

the presence of subtypes that is independent of the syntax
of expressions. One reason why this is important is that,
when considering programming languages with particular
restrictions on the subtype partial order, we can focus on

the satisfiability problem and rest assured that any satisfi-
ability problem could arise in practice. Since this particu-
lar satisfiability problem over partial orders has been shown

PsF’i%cE-hard, over partial orders in general or certain fixed
partial orders, our equivalence also strengthens the best pre-

vious lower bound of m-hard to pspACE-hard. As noted in

[LM92] the naive upper bound is exponential time.
Our equivalence between typability and partial order sat-

isfiability holds even with very restricted assumptions about
the types of basic symbols that appear in program expres-
sions. More specifically, it is shown in [LM92] that it is
iw-hard to decide whether a lambda term hss a type even
if all term constants are restricted to having only atomic
types. This is done by showing how the satisfaction of in-

equalities of the form b < t,s < t over a partial order can
be represented as typability of terms using constants only
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of atomic type. (We use b for an element of the partial or-

der of types and s and t for type variables.) In this paper,

we show how arbitrary inequalities of the form s < t+ u

and s > t+ u also arise in typing lambda terms using only

constants of atomic types. Using earlier results on the com-
plexity of the satisfaction of subtype inequalities [Tiu92], we

can use this equivalence to show that the typability problem

is I?3p,4CE-hard, even when all constants in expressions have

only atomic types.
Our equivalence clearly implies that the only way to de-

vise a practical, polynomial-time type inference algorithm in

the presence of subtyping is to restrict the programming lan-
guage so that only certain forms of subtype partial orders are
definable. This is in fact reasonable since, for example, sin-
gle inheritance always results in forests of trees. In [Ben94],

it is claimed that the satisfiability problem is solvable in

polynomial time for this case. Therefore, if most programs

use only single inheritance, we might expect polynomial-

time behavior in practice. However, a practical type infer-

ence algorithm must print more than a simple yes/no answer
in response to an input language expression. This is partic-

ularly important when a program may declare additional

types and subtypes. Since a function declared at the top
of the program may be called in several different lower con-
texts, the initial type-checking of the function must tell the
programmer which uses of the function will be type correct

and which will be erroneous. Otherwise, it will be very dif-
ficult to determine, when the type checker rejects a later

application of this function, whether the problem lies in the
function declaration or its use. Unfortunately, an efficient

satisfiability algorithm for special partial orders still does

not help us optimize the output of a type inference algo-

rithm.

Given any input expression, a type inference algorithm
tries to find a most general (or principal) typing. The prop-

erty of a most general typing is that it has all other possible
typings as instances. Without subtyping, “instance” boils
down to “substitution instance.” A consequence is that the
most general typing of any given expression is also the syn-

tactically shortest, since no substitution can decrease the
size of an expression. However, with subtyping, “instance”
involves both substitution and entailment of subtyping hy-

potheses. Since substitution can render a set of subtyping
hypotheses tautologous, a most general typing that involves

any subtyping hypotheses about type variables will never be

the shortest typing for the expression.
Given a fixed notion of instance, there maybe most gen-

eral typings of different lengths. In [FM89, FM90], an at-

tempt is made to optimize the algorithm from [Mit84] so
that the shortest most general typing is produced. How-
ever, simple examples given in Section 5 of the present pa-
per show that this is not the best one can do. Specifically,
by adopting a more powerful notion of instance than used

in previous studies, we can reduce the length of the shortest

most general type. In fact, for some expressions, we can

eliminate subtyping hypotheses altogether from their most

general types. If we were able to do this for all expressions,
this would dramatically simplify the output of the type infer-

ence algorithm. However, we show that no sound definition
of instance would allow the set of additional subtyping hy-
potheses about a term to grow less than linearly in the size
of the term.

The rest of the paper is organized as follows. In Sec-
tion 2, we define the type system incorporating subtyping.
Besides establishing notation, this allows us to define the

decision problems of typability and subtype inequality sat-

is fiability. Section 3 and Section 4 are devoted to proving

the polynomial-time equivalence of these two decision prob-

lems. In Section 5, we investigate the size of most general

typings of terms with respect to any sensible definition of
instance. Finally, we end with some directions for future

work in Section 6.

2 Preliminaries

We study a type system for typing untyped lambda terms,

possibly containing constant symbols. The set of untyped
lambda-terms are generated by the following grammar

where x may be any variable and c a constant symbol.

The types of lambda terms are formed using type vari-

ables and type constants. Let 1? be a set of base types (id,
bool, . ..). Then the set of types over 1? is generated by the

following grammar

u ::=bltla’+o

where t is a type variable and b c B, We let Type~ be the
set of types over B with no type variables. These are also
called the set of ground types over B.

Given a set of base types B, a subtype assertion or con-
tainment is a formula of the form o < ~, where a, ~ are

types over B. A subtype assertion u ~ r is said to be

atomic if u and 7 are either type variables or base types.

Let <EI be a partial order on B. Intuitively, this order-
ing indicates the subtype ordering on base types in B. Let

C be a set of subtype assertions. The following proof sys-

tem defines the relation C 1- u * r which can be read,
“o is a subtype of ~ under the ad~ltional subtype assump-
tions of C”. If C, C’ are sets of subtype assertions, we
use C R Cl to denote that C E o < r for every subtype
assertion u ~ r E C’.

(asmp)

(Wj) CI- U-JO

(trans)
CF015U2 ckff2~U3

ct-u15u3

(+)
CFU25UI CFT15T2

ckc71+T15U24T2

Given a partial order (B, <B ) on a set of base types B,

we define the partial order ~ B on the set of types over B,

as o + 7 iff ~ + o ~ T. we call the relation ~B the

subt ypzng relation induced by <B. This is the subtyping

relation without additional subtyping hypotheses.

We are now ready to define the problem of satisfaction of

subtype inequalities. A system of inequalities over a partial
order B = (B, +) is a finite set of formulas of the form
al <02, where al and U2 are types over B, Let V be the

set of type variables that appear in a system of inequalities,
T. We say that Z is satisfiable in the partial order B if

there is a substitution q: V + TypeB such that P(U1 ) SB

y4az) for every inequality al < Im in Z. We then have
the following decision problems for satisfiability of subtype
inequalities (abbreviated SS1):
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(SS1) Given a finite partial order B and a system Z of
inequalities, is T satisfiable in B ?

(f3-SSI) Given a system Z of inequalities, is Z satisfiable
in a fixed partial order B ?

The difference between the two problems is that in (SS1), a

problem instance is a pair (B, T), while an instance of ( Z3-

SS1) is a set Z of inequalities to be satisfied over the fixed

partial order B. In other words, there is a problem ( B-SSI)

for each partial order B.

To be able to type lambda terms, we need to know types

for the term constants. And, to incorporate subtyping, we
also need to know the subtype ordering on base types. A

signature ~ = (~, <B, T) consists of a Set ~ of base types,
a partial order <B on B, and a set T of pairs of the form
(c, u) with c a term constant and u 6 TypeB. A typing

~udgement is a formula C, r D M: u where C is a set of
atomic subtype assertions and r is a set of assumptions of
the form z: a, with x a variable. Intuitively, the context r

represents the type declarations of the free variables used

in a program and the coerczon set C reflects the additional

subtyping declarations that may appear in a program. The
following proof system is used to identify the set of well-

typed terms.

(var)

(const)

(abs)

(app)

(subtp)

C,r DX:u ifz:acr

c,r~c:u if (c, a) c T

C,r[z:a]DM:7

rD~x.IM:u+T

C, I’DM:O-+T c,rb N:o

Cj17bfkfiV:r

C’,17DiVf:o

C,rDkf:T
if Cku~r

In the (abs) rule, we use r [z: o] to denote the context
given by r[z:a] = (r – {%:7}) u {z:o-} if z:~ e r, and
r [z: a] = r u {z: a}, otherwise. We call the above proof

system ST< , for simply-typed J-calculus with subtyping.

We use Z ~sT’< C, r~ M: CT to denote that the typing judge-
ment C, r D ~ o is derivable over signature X. The reason

for including a set C of containment not given by the sig-

nature, and allowing type variables, is to represent sets of

possible typings. For example, if a signature has int s real

and char ~ string, then typing s ~ t, 1#1B ~x. x: s -+ t will

have both Ax. x: int + real and Ax. x: char + string as in-

stances, according to the definition we give in Section 5. We
say that a term M is typable or well-typed (over a given
signature X ) if there exists a context r and type a such
that ~ tsT< $, r D M: u. As a notational convenience, we

often drop t%e coercion set C from typing judgments if it
is empty, i.e., we use rD&f: a for the judgement +, rDM: a.

Just as for SS1, we have the following two decision problems

for type inference in the presence of subtyping (abbreviated

TIS):

(TIS) Given a signature Z and a term h’, is M typable

over the signature Z ?

( X-TIS) Given a term M, is M typable over a fixed sig-
nature E ?

The difference between the two problems is that in (TIS), a
problem inst ante is a pair (X, M) , while an instance of (E-
TIS) is a typability problem over the fixed signature E. In

other words, there is a problem ( X -TIS) for each signature
E.

As in [Mit 91 b], we can prove that the type of an expres-

sion M only depends on the type assumptions about its free

variables. We use the not at ion r(z) to denote the unique

~ such that X: u E r.

Lemma 2.1 Assume that bsT+ C, rD M: u. Suppose r’ M

a context such that for all varhbles x that are free in M,

r’(z) = r(z). Then k.ST+ C, r’ D M: C7.

A useful consequence of restricting the assertions in the

coercion set of typing judgments to be atomic is the follow-
ing property which states that one may normalize proofs in
ST< so that the only uses of (subtp) rule occur immediately

after (var) and (const) .

Lemma 2.2 For every provable typing statement C, rDIVf: o,

there ZS a proof in which rule (subtp) us only used immedi-

ately after the typing azzoms (var) and (const).

3 Type Inference Reduced to Inequality Satisfaction

It is well-known that the typability problem for simply-typed
J-calculus can be reduced to unification [ASU86, Wan87].
In this section we show that the analagous constraint sat-
isfaction problem for typability in the presence of subtying
is the satisfiability of subtype inequalities. More precisely,
we exhibit a polynomial time reduction from TIS to SS1 in

which the poset constructed only depends on the signature.

This reduction was implicit in [Mit91b] and [Tiu92].
In the rest of the paper we will use formulas of the form

o = T, when defining a system of inequalities, as an abbre-

viation for the pair of inequalities u < r and T ~ o. Since
<B is a partial order (as opposed to a preorder) the equation

a = ~ is satisfiable iff ~ < ~ and ~ ~ ~ are satisfiable.

If X = (B, <B, l“) is a signature with subtyping, then

we define the partial order Pz to be (B, ~~) .

Lemma 3.1 Given a signature (with subtyping) X, the de-

ctsion problem for typabdzty over Z as polynomial time re-

ducible to the sattsfiability problem for subtype inequalities

over %, i.e., E -TIS ~~ % -SS1.

Proof Let X = (B, <B, T) be a signature. For any term M

and a cent ext A such that A(z) is a type variable for every

x E Dom (A), we define S1(M’, A) = (t, Z) by induction on
the structure of M as follows, with t a type variable and Z
a system of inequalities.

SI(X, A) = (t, {A(z) s t})

where t is a fresh type variable not in A

SI(C, A) = (t, {0 < t})

where (c, cr) c C and t is fresh.
SI(MJV, A) = let (tl,Zl)= SI(M, A)

(t,, Z,) = SI(N, A)

in
(t,ZlU Z2 U {tl = t, +t}), t is fresh.

S1(ke. M,A) = let (tl,Zl)= SI(M, A U {z: s})

where s is fresh
in

(t, z,u{t=s+t,})

where t is fresh
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The reduction from Z -TIS to PE -SS1 can then be given as

follows. For any term A4, we produce the set of inequalities

Z, where S1(A4, A) = (t, Z) with A a context that maps

each variable x, free in A4, to a distinct type variable. Using

Lemma 2.2 it can be easily seen that this is a reduction.

Since each inductive clause in the definition of S1 adds only

two new inequalities (a constant number) IZI ~ c IIZI, and

this is a polynomial time reduction. m

Corollary 3.2 The problem of deciding whether a given term
is typable over a given signature, with subtyping, is polyno-

mial time reducible to the satisjiability of subtype inequalities
problem, i.e., TIS <m SSI.

In the next section we will focus attention on systems

of inequalities in which all formulas are of the form b ~ t,

s<t, s<t+u, ort+u<s where s,t, u~V, and bGB.

We call the satisfiability problem for this restricted system
of inequalities SS1 res~,. If the signature E = (1?, <B, T)

is such that all constants have atomic types, z.e., for all
(c, a) c T, cr c B, we call the TIS problem for such input
signature TIS .t.~. Note that Z -TIS atom really restricts

the signature Z rather than instances of the problem.

Corollary 3.3 The decision problem for typability over a
signature X in which all constants have atomic types is

polynomial time reducible to the satisfiability problem for

restricted systems of subtype inequalities over PZ, i.e., Z -

TISatom <m PZ -SSIr.st, . Hence, TISatom <~ SSIr~~t~.

Proof The inequalities added in the inductive cases of S1

when the term is an application or J-abstraction are of the
form s = t+ u. When the term is a variable the inequality
is of the form s < t. When the term is a constant the
inequality added is o < t which is of the form b ~ t when
u is atomic. ■

4 Reducing Inequality Satisfaction to Typability

In Section 3, we showed how a solution to the type-inference

problem in the presence of subtypes can be obtained from

a solution to the problem of satisfaction of subtype inequal-

ities. In this section, we establish the converse reduction,

namely, we prove that SS1 is polynomial time reducible to

TIS. As corollaries of this reduction, we are able to translate
lower-bound results about SS1 to TIS. Together with results
in Section 3, this shows the equivalence of the two problems

TIS and SS1. When there are no subtype assumptions on

base types, type-checking for simply-typed lambda calcu-
lus with subtyping reduces to that of simply-typed lambda

calculus. And satisfaction of subtype inequalities over a dis-
crete partial order is the same as unification. This gives the

well known equivalence between type inference for simply-
typed lambda calculus and unification [Tys88, Mit91a, Wan87]

as a consequence of our results.
Although interest in type inference with subtypes gave

rise to the earlier studies of satisfaction of subtype inequal-
ities over partial orders [PT91, Tiu91, Tiu92], the precise
connection between the two problems was not previously
understood. In fact, comments in [Tiu92] suggest the be-

lief that the satisfaction of inequalities would turn out to
be algorithmically more complex. This suggests some of

the subtlety of our proof that the two problems are in fact
polynomial-time equivalent.

4.1 SS1 ,,st, reduced to TIS .t.~

We begin by showing how inequalities of the restricted form

can be simulated by corresponding terms. More precisely,

we will exhibit a polynomial time reduction from SS1 restr

to TIS .tOm. Before doing that, we state two lemmas that

we will need in the proof of correctness of the reduction.

Lemma 4.1 Suppose D is a derivation of 17DM: o in ST< .

Let p be any substitution. Define the derivation P(D) to

be the one obtained by replacing every line of the form I“ D

M’: a’ by p(r’)DM’: p(a’). Then P(D) is a valid derivation
in ST4 .—

Proof We can prove by induction on rl that if rl <B TZ

then for any substitution p, p(~l ) ~J3 p(~z). The lemma

now easily follows by inspection of each axiom and inference

rule of ST+. ■

In partiular by choosing p to be a ground substitution,
i.e., one that maps all variables to ground types, Lemma 4.1

shows that if any term M is typable then it has a typing

derivation in which all type occurrences are ground types.
Furthermore, by Lemma 2.2 we can assume that the deriva-
tion uses (subtp) only after (var) or (const).

The following lemma shows that typing an application

term forces certain subtype inequalities to be satisfied. This
is an easy consequence of Lemma 2.2.

Lemma 4.2 Let D = (B, fi~, C) be a signature, suppose
Z EST< r D zy:a. Then I’(z) = PI +71, I’(y) = PZ with

@ &_jl and 71 ~B CJ.

Proof Consider any derivation of r>xy: u of the form given

by Lemma 2.2

rDX:&~u rby:c$l

rDZg:c7

with r(z) ~B & + o and r(y) <B 61. Then r(z) =
pl + rl and with 61 5B pl and rl ~B o which gives us
the statement of the lemma. ■

Let ‘P = (F’, <p ) be any poset. Define the signature

Egt”m = (F’, +,T) where T = {cP:p I p G P}, i.e., for

each element of the partial order, we define a constant of

that type. Note that Z$Om assigns atomic types to all

constants. We axe now ready to establish the converse to

Corollary 3.3.

Lemma 4.3 The satisjiability problem for restricted sys-

tems of subtype inequalities over a poset P is polynomial

time redu~~~~ to the typability problem over the atomic sig-

nature & , i.e., P -SSITestr <~ ~$”m - TIS.

The reduction and the proof of its correctness appear in
the AppendIx.

Corollary 4.4 The satisfiability problem for restricted sys-

tem of inequalities is polynomial time reducible to the prob-

lem of deciding whether a given term is typable over a given

signature in which all constants have at omit types, i.e.,

SSITestv sm ‘i’’ISatom .

Corollary 4.5 There exists a signature Z which maps con-
stants to atomic types such that E - TISatom is wAcE-hard.

Hence, the problem TISatom is also psPAcE-hard.

Proof By results in [Tiu92], there exists a poset T for
which P -SS1 rest. is PsPAcE-hard. Lemma 4.3 translates

this result to TIS atom. ■
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4.2 SS1 reduced to TIS

We now generalize the reduction described in Section 4.1
to show how satisfiability of a set of arbitrary inequalities
can be simulated by typability of a term. To simulate in-

equalities that are not necessarily of a restricted form, we
no longer have the requirement that the signature give only

atomic types to constants.

Let ‘P = (F’, <P) be any poset. We define the sig-

nature 2P = (F’, <P, T) where T = {(c$,~+~) I ~ G

P} U {(c;, p) I p G P}. Note that the signature X7 is
not atomic. The following lemma generalizes the reduction

of P-SSI ~e~t~ to X$tom -TIS and shows how arbitrary in-

equalities can be simulated by terms in the signature XT

using the constants c;’s of functional type.

Lemma 4.6

(t) The sattsfiabdity problem for subtype inequalities over

a poset P is polynom~al time reducible to the typability

problem over a signature Xp , i.e., P -SS1 <m X7 -

TIS.

(’Ii) The satisfiabdity of subtype inequalities problem aspoly-

nomial time reducible to the typability problem, t. e.,

SSI <~ TIS.

Proof

(i) For any type o over P, we define a term Mm and

a context Cm [ ] with one hole simultaneously by in-

duction u. Intuitively, MO is defined so that c is a
subtype of any type of Mm , and C. [ ] is defined so

that for any term N, a typing of Cm [N] constrains

the type of N to be a subtype of a. If o is a type
over variable set V = {t 1,. ... t~ } then Lfo and Cm [ ]

have free variables U1, vl, . . . . Un, Vn.

● Mt* = V, u,

Ct, []=v. []

● Mp=c~

CPII=+J[l
● MO+. =AZ. KM7C. [Z]

Ca+r[]=CT[[] Ma]

where K is the combinator oz. (Ay. z)). Given an

arbitrary inequality al < CTZ, we can now define the

term [al < OZ] as follows:

[m < a2] = c., [fw,]

As in lemma 4.3, for any system 1 of inequalities, we

produce the following term

M = Jul. .. Aun.

(Jo, . . . A’un.

(Ax. [il])((Xz. [22])(. ~~((Az. [Im-l])[im]) . ))

) (Az. z) (Az. z)

~ times

where ~={il, . . ..i~}

(ii) The signature Xp can be produced from the partial

order T in polynomial time.

■

From Corollaries 3.2, 3.3, 4.4, and Lemma 4.6, we have
the following theorem.

Theorem 4.7

(i)

(ti)

The satisfiabiltty problem for restricted system of sub-

type anequalittes (SSIre~tT ) and the typability problem

over a signature in whzch all constants have atomzc
types (TISatOm ) are polynomial time equivalent.

The sattsfiabzltty of subtype inequalities (SSI) and the

typability problems (TIS) are polynomial tzrne equiva-

lent.

5 Most General Typings

In this section we investigate a general theory of instances
and most-general typing judgments for the type system

ST< . While the typability problems we considered before

wer% with respect to the given fixed subtype ordering on

base types, we will now study most general tyings for typ-
ing judgments with additional subtype assumptions. One

reason for allowing additional subtype hypotheses is that, in

general, this is the only way to obtain most general types.
A second justification is that from the most general typ-
ing for an expression which includes additional subtype as-

sumptions, it is possible to decide whether the expression is
typable with respect to any fixed subtype ordering.

Intuitively, a most general typing judgement for a term
is one which characterizes all possible t ypings for it. In more

detail, if C, 17DM: a is a most general typing for M, then all

other derivable t ypings C’, r’ D M: o’ can be obtained from

it. The precise manner in which C’, r’ D M: a’ is obtained

from the most general typing C, I_ ~ M: u is via a definition

of instance, a binary relation on typing judgments. Then

a most general typing for a term Al is a derivable typing

judgement such that all other derivable typings for M are
inst antes of it. Thus, most general typings are crucially
related to the notion of instance that one uses. In [Mit91b],

the following definition of instance is given:

Definition 5.1 A typing statement C’, I“ b M: U’ z. an in-
stance of C, I’ D M: u zf there exists a substitution S such
that:

(z) C’l-scj

(ii) u’=SU,

(in) V.Z E Dom(r), r’(z) =s r(z).

[Mit91b] also gives an algorithm GA which infers a most

general typing for any term with respect to the stated defi-
nition of instance. Unfortunately, the size of the coercion set

in the most general typing produced by GA can become ex-

ponential in the size of the term. Since an important aspect
of any type-inference algorithm is the size and readability of
its output, there has been previous work on optimizing the
type inference algorithm to produce the shortest most gen-

eral t ypings [FM89, FM90]. However, there is an intrinsic
limit to the shortest most general typings that can be pro-
duced if we adhere to Definition 5.1 of instance. To give a
relatively simple example, there are typings for terms which

cannot be inst antes of any typing with empty coercion set.
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Example 5.2 Let M = Jj. Ax. Jy. K (j Z) (f y) . Using type

s for x and type t for y, a derivable typing for M is:

{s~u, tfu, v~w}, @P M:(u+v)+s+t+w (1)

A typing for the term M wzth empty coercion set is:

c#, c#DM:(s+t)+s+s+t (2)

However, the typing (l?) with empty coercion set cannot have
the typing (1) as an instance, using Definition 5.1. For,

there can be no substitution S such that SO = u’, where

a=(s+t)+s+s+t andcr’=(u+v)+s+t+ w.

Since the problem in Example 5.2 arises from the defini-
tion of instance that one has chosen, a natural object of in-

terest is an alternative formulation of the notion of instance
which would permit most general typings with succinct set

of subtype assumptions. It would be particularly good, if
for example, one can obtain most general typings in which

the subtype assumption set is always empty. The following
more general definition of instance allows the typing (1) to

be an instance of (2), and thus allows a most general typing
of M from Example 5.2 with an empty coercion set.

Definition 5,3 A typing statement C’, I“ P M: u’ is an in-
stance of C, I’ D M: u if there exists a substitution S such

that:

(2) C’1-sc,

(u) c’1-su~ u’,

(iii) VZ c Dom(r), c’ F r’(z) < S r(z).

We can see that the typing (2) has (1) as an instance,

by Definition 5.3, using the the substitution S defined by
S(s) = u and S(t) = v. Unfortunately, even this more pow-
erful notion of instance does not allow typings with empty

coercion sets to be more general than all other derivable
typings for arbitrary terms.

Example 5.4 Take M = f (f x) . Consider any derivable

typing for M, @,17 b M: o, with empty coercion set. Then

we must haoe r(z) = a, I’(f) = a + u. We can see that
this typing with empty coercion set cannot have the following

typing for M as an instance.

{s<t, u~v, u~t}, {f:t+u, z:s}bf(fz):u

For consider any substitution S. By condition (ii) of Defi-

nition 5.3, we must have C! + S(u) ~ v, where C’ = {s ~

t, u ~ v, u ~ t}. By inspection of C’, this implies that

S(a) = u or S(u) = v. In etther case, we cannot satisfy

condition (iii) for the variable x, since C! ~ s < u and

c’ys~v.

Investigation of other plausible notions of instance by
the authors also failed to allow typings with empty coercion
sets to be most general. It was therefore a natural question
whether there could be any definition of instance that would

permit such elegant most general typings. In this section,
we show that this is impossible. The main result of this
section is that there is no suitable definition of instance for

which there is a bound on the size of the coercion set in most
general typings of terms. Thus we need to allow arbitrarily
many subtype assumptions in giving the most general types

of terms, in general.

We begin with a formalization of the properties of any

suitable definition of instance. An instance relation , +, is

a binary relation on typing judgments. Intuitively, C, r D

M: u > C, I“ D M: o’ means that the typing judgement

C, r D M: a is more general than C’, I“ b ill: CT’. A defi-
nition of instance usually does not depend on the term M

appearing in the judgments. Further, a basic property that
one requires of any definition of instance, is the closure of

derivability under instantiation. These two properties are
captured in the following definition. Since all the properties
in this section are proved for pure A-terms, i.e., without

any term constants, we omit mentioning any signature in
the following definition and the rest of this section.

Definition 5.5 Let > be a definition of instance on typing
judgments. Then + is a sound definition of instance if:

(i) C, I’DM:u FC’,1’’DM:u’ iff C, I’DN:u FC’, I?D
N: u’ , for all terms N.

(ii) If C, I’DM:o+C’,1’’~M:o’ andkST< C, I’DM:O

then kST< c’, r’ D M: u’ .

Given a definition of instance, +, a typing judgement C, rD

M: o is a most general typing for term M if

● The typing judgement C, r > M: o is derivable.

● For all derivable typing judgments C, I“ D M: a’ , we

have C, I’~M:~+C,l?~M:&.

We can now show that the term f ( f Z) cannot have a

most general typing, under any sound definition of instance,

in which the coercion set is empty. This is a special case
of a more general theorem that we will prove later, but its
proof is illustrative in understanding the proof of the more

general theorem.

Lemma 5.6 Let M = f (f z) and > be any sound deji-
nitzon of instance. Then M does not have a most general
typing in which the coercion set is empty.

Proof Consider any derivable typing +, rDM: a with empty

coercion set. Then we must have ~: a, f: u + a E r. We will
show that ~, 17~ M: o cannot be a most general typing for

M.

Let C’={sft, uSt, u5u}, r’={~:s, f:t+u}, o’=
v, clearly, +ST+ (J’, 1? D M: a’. Consider the term N = z.

Since X:u c 17,-wehave ~ST< 4, r D N: u. But since C’ ~

s f v, we have Y. ST<C’, I“ ; N: a’. By property (ii) of a
sound definition of iristance,

$,r DN:o#C’, r’DN:cr’

Hence, by property (i) of a sound definition of instance,

+,1’ bM:of C’, r’DM:u’

■

We will now generalize Lemma 5.6 to show that no bound

on the size of the coercion set will suffice to express most
general typings of all terms. For any atomic coercion set C
and set of type variables T, define the coercion set C IT to

be the set
{s ft~Cls~Tort GT}

We say that an atomic coercion set C is closed if for any
non-trivial atomic subtyping assertion, s ~ t with s # t,
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C K s ~ t iff s ~ t ~ C. For any atomic coercion set C,
define its closure as the atomic coercion set defined by

clos(c) ={s5tls#t, et-s <t}

We use FTV(C’) to denote the type variables appearing in

the coercion set C, and use FT’V(a), FTV(17) for a type a
and context P, similarly. We now state without proofs some

technical lemmas involving free type variables in coercion

sets which will be useful in the proof of our main theorem.

Lemma 5.7 For any atomic coercion set C,

(i) C1OS(C) M closed.

(ii) Fz’v(clos(c)) g JTv(c) .

Lemma 5.8 Let C be an atomzc coercion set.

(i) If C1-u~r then Clos(C)t-u <T.

(%i) If kST4 C, 17P M: o then ksT5 C1OS(C), r D M: u .

Lemma 5.9 Suppose C is a closed atomic coercion set.

(z) If C 1-0 s T and FTV(U) ~ T or FTV(7) ~ T then

CIT
+O~T.

(ii) If EST+ C, rbkf: CT and M has no J -abstractions then

‘~ c~iTV(I’)9 r D “*”

We are now ready to show that we cannot bound the size

of the coercion set of most general typings. As in Lemma

5.6, we will use terms of the form f ( f Z) in proving our
result. More precisely, we show that the term

M = .2 fl(fl cl)...fk+l(fk+l Zk+l)

cannot have a most general typing which uses at most k

subtype assumptions. Roughly, the argument is as follows.
If there are no subtype assumptions involving the types in
one of the subterms f~ ( fi Zi ) then this subterm has been

typed using an empty coercion set and hence by an argument

similar to Lemma 5.6, this typing cannot be most general.
Otherwise, a typing which uses at most k subtype assump-

tions must relate the types used in two subterms f; ( f, z,)

and fj (fj X3). Since this is a constraint that does not have

to be enforced in typing M, such a typing must not be more

general than a typing in which the type assumptions used in
typing the subterms f, (f, z,) and fj (fj Xj ) are completely

unrelated. All this is made more precise, using Lemmas 5.7,

5.8, 5.9, in the proof of the following theorem which is given
in the Appendix,

Theorem 5.10 Let + be any sound definition of instance.
For every k there is a term Mk with [Mk I = O(k) such
that the most general typing of Mk requires a coercion set
with at least k + 1 elements, i. e., the size of the coercion set

grows at least linearly in the size of the term.

6 Conclusion

This paper contains two results on type inference with sub-
typing. The first shows that typability of a term in the
presence of a fixed subtype ordering is equivalent to satisfia-

bility of subtype inequalities over the same subtype ordering.
A natural special case of typability arises when all program

constants only have atomic types. This special case is equiv-
alent to satisfiability of a certain restricted form of subtype

inequalities. Since this restricted satisfiability problem has

been shown previously to be psPACE-hard, our equivalence
gives a PSPACE lower bound on the algorithmic problem of

typability with either general or atomic types. The second
main result is concerned with most general typings, which

are the typical output of a type-inference algorithm. In-

stead of working with a particular notion of instance, we

have given a general lower bound that is independent of the
notion of instance one may chose. Our lower bound is that
for any sound notion of instance, the number of subtype as-
sumptions in the most general typing grows linearly in the
length of the term.

One important investigation is a precise characterization
of the structural complexity of the problem of typability.
The equivalences shown here demonstrate the importance

of the problem of subtype inequality satisfaction and the
importance of inequalities of the restricted form. One open

problem is to find the complexity-theoretic relationship be-

tween satisfiability with arbitrary subtype inequalities and

satisfiability with inequalities of the restricted form. An-

other problem is to give matching upper bounds and lower

bounds for each problem.

The lower bounds in this paper suggest the importance
of finding more tractable subproblems. This would have
important consequences for programming language design.

Both the algorithmic complexity of typability and the lack
of succinct most general typings appear to arise due to par-
ticuhw partial orders that may not arise in practice. It is

therefore important to identify classes of subtype orderings
that lead to reasonably flexible programming languages and,

at the same time, yield tractable type inference problems.
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A Appendix

Proof of Lemma 4.3 Suppose P = (P, <p). Let Z be a

restricted system of inequalities over 7, with type variables

from a finite set V = {t ~,..., tn}. For any inequality i c Z,

we will define a term [i] over @Om with free variables

U1, W,. ... %7%. In defining the terms [i], the variables vi
should be understood as having function types u, -+ r, with
ui serving as a lower bound on any satisfying substitution
for the type variable ti,and Ti serving as an upper bound.
Thus, the application of v, to ui yields a term whose type

has to be a supertype of the substitution for t;,while the

application of v, to a term N, forces the type of N to be

a subtype of the substitution of ti.Using these two ideas,
the terms [i] are then so defined as to enforce the subtype
relations implied by the inequality i.

~<ti] = 7.l~Cp

[t% < tj] W$ (Vi ‘Ui)

[ti < tj +t/f] = Wk ((ViW) (VjUj))
[tj+ tk< ti] = vi(~~.K(vk ‘Uk) (Vj Z))

where K is the combinator (Az. (Ay. z)).

Finally, we produce the following term

M = ~U1...JU~.

(Au, . . . Aun.

(kc. [il])((kz. [iZ])(. ~. ((AX. [im-l])[im]) . . .))

) (Az.x) . . . (Az. z)

~ times

Abstracting the variables vi and applying to the identity
functions Az. x forces each variable vi to be of the desired

function type that was assumed in the construction of the

terms [i].

We now prove that A4 is typable iff Z is satisfiable.
If Z is satisfiable by substitution qr, it can be easily

seen that M can be typed by using type ~Z (t])for uj and

pz(tj ) + pz(tj ) for Vj.
For the converse, assume that M is typable. By our

previous comments, consider a derivation D of M in which

all type occurrences are ground types and in which (subtp)

is used only after (var) and (const).

Note that if EST< r D k. x: T then ~ = ~1+ ~, where

~1 4P T.. By the fillowing derivation fragment in which
there are no (subtp) occurrences after (app) or (abs)

. . . ,v:TD( ):a

...D~v. :T+o . . . D~x. x:7

. . . P (Au. ( ))( ks. z):a

it follows by constructing D backwards that D must have

a line of the form

ruv D (k. [il])((Az. [iz]).. .):0

where I’~V={ul: pl, . . ..u~. p~, vl:al+~l, ..., V.: C7. +T. }

for some types pi,.. .,p~, al, a~, ~l,,,~~.. .,~~ with ai 5P

Ti and ~i,ri ETP.

Take p to be any substitution with u~ 5P p(z,) 3P r,,

such a p exists since ui, Ti G TP . We prove that p is a

satisfying substitution for Z. By constructing D backwards
we also see that ruu D [it]: O; for some oj. We prove that
p as defined above will then satisfy il. We only show two
representative cases:

Case it - ti <t, +t~ : Then [it] = (vk ((vi ui) (~j uj)))t

Since 17tiv D [ii]: O;, we must have occurring in D

r..DVk:&~U~ (3)

ruv D ((vi Ut)(Vj Uj)):62 (4)

from (4) we must have that

ru. D(Viu~):61 -+62 (5)

ru. D (Vj Uj): & (6)

By Lemma 4.2, ri 3P 61 + 62, Tj 3P 61. Thus

Ti = Si +wi and 61 5P si and wi 5P 62. Since
r(Vk) = Uk ~ Tk it fOllOWS that Uk ~ Tk 5P 62~ O(,
i.e., & 5P cr~.

Thus r% = S, +wi with Tj <p si and wi 5P Ok , i.e.,

p(t,) <p T, <p rj ~Uk <P ~(tj) +p(tk). He-,

~(ti) <P ~(tj +tk).
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Case il = tj-+tk< ti:Then [i/] = v,N, where

N = (Jz. ~(v~ u~) (Vj z)).

Then we must have occurring in D

F=W,X:CZ DVkUk:61 (7)

ru.,x:ff. D VI X:62 (8)

17.. D N: O. +63 (9)

where 61 5P 153, since if ~ST< r D K: T then T =
—

T1 +T( ~ T, With T1 fp r, .

By Lemma 4.2, from (8) we get that cra <p a3 and

from (7) we get that Tk 5P 61. Then by similar rea-
soning as before since E,ST< r.. D v,N: . . . we get that
u. _+c$3 <p CT;, z. e.,

~(tj + tk) = p(tj) + ~(t, )

<p GJ +rk

~p u. -+61

~p 0. +63

5P 0%

~p p(tt)

w

Proof of Theorem 5.10 Consider any k >0. Take

~ = Z ~l(fl Zl) . . . .fk+l(.fk+l ~k+l)

We will prove that M cannot have a most general typing

whose coercion set has at most k elements. Consider any
provable typing C, I_ D M: a with ICl < k. We will exhibit

a provable typing C’, 17’ B M: o’ such that C, 17D M: a $

C’,l’’DM: o’.
Let pi and p: be the typing assumptions for x, and

~Z respectively, in r, i.e., let p, = r(z, ), p: = I’(f. ) for
i=l ,..., k+l. Then, define

r, = {~t:pt, ft:p~}, i=l, . . ..k+l

S, = FTV(C) nFTV(r,), i = 1,...,k+ 1

Case I: Forsomej, l<j<k+l, SJ =+. Take

C’ = U {S <ti,U* <~,~z <vi}

I<z<k+l

r’ = {z:v1+v2+ . ..+vk+1+w}u

U {~i,s,ft:tt+W}

l<t<k+l

U’=w

Since >ST< C, rl>kf: a and C is atomic, using Lemma

2.2 there i; a proof D as in Table 1.

Suppose that S’j = q$. From the proof ~, we have

that *ST< C, r D fj (.fj zj): aj. Using Lemma 2.1, we
have that-~ST< C, 17jD.fj (fj Zj ): aj. By Lemma 5W),

EST< Clos(C)~I’, > f, (f, z,): a, . By Lemma 5.7(i) and

Lem-ma 5.9(ii),

hsT< C~Os(C) ~FTV(r,)~ rj Dfj(.fjzj):f7j.
—

Now

c~os(c) tFTv(r, ) = Ck(cq ~FTv(r, )nFTv(ctOs(c))

By Lemma 5.7(ii),

mw(rj) n F7’V(G70S(C)) = ~.

Hence,

c~os (c) ~~Tv(r, ) = ‘4$.

Thus,

ks~< @,rj p ~j(.f~ ZJ):a~—

Hence, it must be that

PJ=~J> P~=~3+u3 (lo)

Consider the term

N = ~(f, (flzl)) . .

U-1(. f-l x,-l)) z, .

(.fk+l(fk+l~k+l))

From (10), we know that l_sT< C, rD Z3: aj . PhIgging

this proof instead of C, 17D fj ~fj XJ ): aJ in the deriva-

tion D, we get that ~ST< C, r D N: o. But, we can-

not have that t_sT+ C!, r? b N: U’ since C’ v SJ d VJ

and thus N is not–typable under assumptions
Thus, ~sT4 C’, r’ D “ii: u’. Since + is s&nd,

C,rFN:u~C’,r’DN:/

* C,r DM:u#C’, r’DM:u’

Case II: SJ #@, for j=l,..., k+l. Consider

c’=q5
r’ = {z:p1+p2+ ..+ Pk+1+w}

u {Gp,,.ft:pt+pt}

I<, <k+l

U’=w

c’, r’.

u

Consider the sets C lsl,... ‘ Cfsk+l “
Then they cannot

all be pairwise disjoint. For, if they were, we have

Ic[s, u ~~~Uctsk+,l = Ic[sll + ““” + Iqsk+,l
> 1+... +1 (St #@)
= k+l

Claim A.1 There extst type varvables s,, SJ, u such
that si G FTV(rz), Sj c F’TV(17j) and C 1- S{ ~

U,cksl <u.

‘roof ‘ince c~s. ncrsj #d, lets 5 t E cts,nc~s,.
Then sort isin S,and sortis inSj.

● s~S,, t~Sj. Take s,=s, s3=t, u =t.

e teS,, se Sj. TakesZ= t,s~=s, u=t.

● scS,, sESJ. Take s~=s2= U=S.

. t~St, tESf. Takes,= s3=u=t.
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c,r~z:pz c,r~fl(.flzl):al

c,rDZ(fl(flZl)):... C,rbfz(.fz.fz):az

“.

C}r D fk+l(fk+l Zk+l): Ok+l

Table 1: Derivation D of Theorem 5.10

The term EQ is defined as

which ensures that EQ M N is typable iff M and N
can be given the same type. Then we can make the
following observations:

(i) EST+ C, ru{yl: fi}bF(&): T for some type ~, i.e.,

F’(61~ is typable under the assumptions C, r U

{Yl:&}.

(ii) Suppose that E.ST< C’, r“D~(&): ‘r and 17°317’.

Then r“ (Y1) = IX ~

Case IIa: One of ~i, oj, @i, ,Bj, vi, Tj k not a type
variable. Then let c$l be the one that is not. Con-

sider the term

From Observations (i) and (ii), we get that

Case IIb: AH of cw, @, ~1 are type variables. By Claim

A.I, we have variables s~, sj, u satisfying the re-

quired properties. We also know that s~ = at, @i or Tl
forl=iorj and

~ST+ C,rU{yi:si,yj:sj}D~Qyiyj:T

From Observations (i) and (ii), taking

N = K M (Ayi. Jyj. ~w. W ~(Si) F(Sj) (~Qyi ?4j))

we have that

Hence, in either case

C,r PLf:o#C’, r’Dkf:u’

Taking the term kfk = z .fl(.fl zl) . . . ik+l(.fk+l ~k+l), we

see that lMk\ = O(k). m
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