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Abstract

We study the complexity of type inference for pro-

gramming languages with subtypes. There are three

language variations that effect the problem: (i) ba-

sic functions may have polymorphic or more limited

~ype%(ii) the subtype hierarchy may be fixed or varY

as a result of subtype declarations within a program,

and (iii) the subtype hierarchy may be an arbitrary

partial order or may have a more restricted form, such

as a tree or lattice. The naive algorithm for infer-

ring a most general polymorphic type, under variable

subtype hypotheses, requires deterministic expo~en-

tial time. If we fix the subtype ordering, this upper

bound grows to nondeterministic exponential time.

We show that it is Np-hard to decide whether a lambda

term has a type with respect to a fixed subtype hier-

archy (involving only atomic type names). This lower

bound applies to monomorphic or polymorphic lan-

guages. We give PSPACE upper bounds for deciding

polymorphic typability if the subtype hierarchy has a

lattice structure or the subtype hierarchy varies arbi-

trarily. We also give a polynomial time algorithm for

the limited case where there are of no function con-

stants and the type hierarchy is either variable or any

fixed lattice.

1 Introduction

Subtyping is a basic feature of typed object-oriented

languages, such as C++ and Eiffel [Str86, Mey88],
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and also occurs in many other languages in limited

cases such as the relation between integer and real (or

floating-point) numbers. In 1984, the second author

described an algorithm for Milner-style type inference

with subtyping [Mit84, Mit91]. Given a pure, untyped

lambda term, this algorithm finds a most general typ-

ing statement that describes the set of possible typings

with respect to any subtype hierarchy. Various aspects

of the algorithm have been studied by other authors,

with Fuh and Mishra elaborating algorithmic alter-

natives [FM90] and Wand and O ‘Keefe studying the

computational complexity of typability [W089]. An

extension with polymorphic record operations [JM88]

has been implemented by Jategaonkar [Jat89]. Unfor-

tunately, the straightforward implementation of the

type inference algorithm with subtypes requires ex-

ponential time, even in the absence of polymorphic

let declarations (see [KMM91]). This may be an ob-

stacle to practical type inference for object-oriented

languages. It is therefore important to investigate the

inherent complexity of type inference and type check-

ing in the presence of subtypes.

The most general typing assertion about a pure

lambda term (without constant symbols) may have

exponential size, even using concise directed acyclic

graph (dag) representations of type expressions. Con-

sequently, it is not possible to compute most general

types with subtyping in less than deterministic expo-

nential time. However, the related “decision problem”

of determining whether a term has any type might be

solved more efficiently. By comparison, even though

the Curry-type of a pure lambda term without subtyp-

ing can be exponential, when written as a string, there

exist linear-size dag representations and linear algo-

rithms that decide Curry-typability [KMM9 1]. The

decision problem is relevant to practice since an ef-

ficient decision procedure could verify the absence of

type errors at compile time without printing most-

general types. Since this is the only form of typing

problem that could be solved in less than exponential

time, we focus on decision problems for type inference.

There are

effect on the
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three language variations that have an

complexity of typing:



Term constants may be polymorphic functions or

restricted to monomorphic functions or atomic

data (non-functions).

The subtype hierarchy may be fixed or vary as a

result of subtype declarations within a program.

The subtype hierarchy may be an arbitrary par-

tial order or may have a more restricted form,

such as a tree or lattice.

If term constants have restricted functionality, this

may simplify the type inference problem. Therefore,

when possible, we prove lower bounds for restricted

term constants and upper bounds for polymorphic

types.

A subtle issue is the relationship between the sub-

type hierarchy at the point of declaration of some iden-

tifier and the subtype hierarchy at a possible point of

use. For example, consider a function ~ of two argu-

ments that requires the type of the first argument to

be a subtype of the type of the second. An implicit

assumption in [Mit 84, Mit 9 I.] is that the appropriate

typing statement to infer about f is some formaliza-

tion of this English description, regardless of whether

types A and B with A a subtype of B have been

declared. The reason is that we may want to call

the function f in some scope where two such types

have been declared. Therefore, the type inference al-

gorithm given in [Mit84, Mit91] deduces a most gen-

eral typing statement that includes arbitrary assump-

tions about the relationships between types of func-

tion parameters. While this seems reasonable for pure

lambda terms without constant symbols, the situation

becomes more complicated in a realistic programming

language. This is discussed in Section 3.

The main lower bound in this paper is that it is

NP-hard to decide whether a lambda expression with

constants has a type, given a set of subtyping rela-

tionships between ground (atomic) types. This ap-

plies to polymorphic and monomorphic languages, and

languages without functional constants. This lower

bound improves the main result of [W089], which re-

quires a constant with a polymorphic type. We also

observe that if type parameters and subtype assump-

tions are given explicitly in the syntax of terms, it fol-

lows from the results in [Tiu91] that deciding whether

an explicitly-typed term has a type is PSPACE hard.

We give two algorithms for the decision problem.

The more general algorithm applies to terms with ar-

bitrary constants, but assumes either that the subtype

hierarchy may vary arbitrarily or that the fixed sub-

type hierarchy is a lattice. (Either condition makes it

possible to determine in polynomial space whether an

exponential-size set of subtype assumptions is satisfi-

able.) In the special case that there are no functional

constants and the subtype hierarchy is either vary-

ing or is a fixed lattice, our second algorithm solves

the problem in linear time. Since this case is NP-hard

for arbitrary partial orders, our results emphasize the

value of restricting the subtype relation to obtain prac-

tical typing algorithms.

Further discussion of the relevant language char-

acteristics and their relationship to type inference is

given in Section 3, following the preliminary defini-

tions in Section 2. The lower bound is presented in

Section 4 and the upper bounds in Sections 5 and 6.

For those familiar with [W089], we note that their

claim that the decision problem reduces to the par-

tial order problem PO-SAT has been retracted [Wan91].

This invalidates both the claimed NP algorithm for

the general problem and the claimed polynomial algo-

rithm when the subtype hierarchy is a tree.

2 Preliminaries

We review the essential definitions and results

from [Mit84, Mit91]. We study typing algorithms for

untyped lambda terms, possibly cent aining constant

symbols. Lambda terms are formed according to the

grammar

M::= z/c] MlM2 Ikr. ikf,

where z may be any variable, c a constant symbol,

lvfliMz is the application of Ml to h4z and Ax.11 is

a lambda abstraction defining a function.

For simplicity, we only consider function types, writ-

ten using type variables and type constants. Type ex-

pressions have the form

T ““= tlo/7-l+T2. .

where t maybe any type variable, 6’ a type constant,

and rl --+ rz is the type of functions from ~1 to T2 .

A subtype assertion has the form ~ ~ T The stan-

dard meaning of an assertion u ~ T M that ~ is a

subset of r . An alternative interpretation that we will

not discuss in any detail is that there is some coercion

function fa+T which transforms values of type a into

values of type ~ . Some discussion of this alternative

may be found in [Mit91].

An atomic subtype assertion is a statement a ~ b ,

where a and b are either type variables or type con-

stants. All of our subtyping hypotheses will be atomic.

Without this assumption, subtyping hypotheses such

as the pair b ~ b+b and b+b ~ b would ex-

press “domain equations,” and therefore allow all pure

lambda terms (terms without constants) to be typed

(see [Mit91]).

Terms and types will be written over some selected

signature. A signature X = (B, S, T) is a triple con-

sisting of a set B of type constants, a set S of atomic

subtype assertions about type constants in B , and a

set T of term constants, each with a specific type built
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from type variables, type constants from B and + .

We say a term constant c: u is polymorphic if u con-

tains one or more type variables and non-polymorphic

otherwise.

Intuitively, two type expressions match if they have

the same shape. This does not involve any substitu-

tions. More specifically, we define matching as fol-

lows: if u is a type variable or type constant, then

u matches T if and only if T is a type variable or

type constant; if u = al + UT , then u matches r if

and only if T = q --+ TV and al matches q , and UP

matches Tr . The entailment relation, # , on subtype

assertions is defined by the following proof system.

Note that if C is a set of atomic subtype assertions,

and C 1- u ~ r, then u matches T.

c 6’u{(7<T}t_U<T

R c’1-u~u

The C rule allows subtype assumptions to be used in

a derivation. The R rule is reflexivity of ~ , T is tran-

sitivity, and the Arrow rule gives subtyping for func-

tion types. Note that function types are antimono-

tonic in the left, or argument position, and monotonic

in the right, or result position. If C and C’ are sets

of subtype assertions, we write C h C! to indicate

that Cku<Tforeveryu <Tin C’.

A typing statement is a formula C, A E M: u, where

C is a set of atomic subtype assertions, A is a set of

type assumptions of the form z: a, where z is a term

variable, M is an untyped lambda term, and ~ is a

type expression. The typing statement C, A 1- M : u

may be read as, “Under the subtype assumptions C

and assumptions A about the types of variables, the

term M has type u .“

The following proof rules determine typability with

respect to any signature X = (B, S, T) . The subtype

proof system enters through the Sub, or “subsump-

tion” rule. In Const, R may be any substitution of

type expressions over E for type variables.

Const C, A!- C:RU (c:a GT)

Var C, AU{ Z:u}\x:a

App
C, AF-M:u--+T C, AEN:U

C, A1-(MN):r

Abs
C, AU{ Z:a}EM:~

C, A1-(k.M):u-+r
(z@ A)

Sub
C, AkM:cT cUsku~T

c,Atiif:T

The Const rule allows a typed constant from the sig-

nature to be given any substitution instance of its

specified type. (If c : a is non-polymorphic, then the

substitution R will have no effect.) The Var, App,

and Abs rules are standard. The Sub rule forces a

term with one type to belong to every supertype. We

say that a typing statement C, A F M : n is provable

with respect to signature Z = (B, S, T) if all of the

term constants in A4 appear in T and all uses of

Const and Sub in the derivation of the typing stat-

ment are in accordance with the signature.

As stated in [Mit84] and proved in [Mit91], one may

normalize proofs of typing statements so that the only

uses of the Sub rule are immediately following uses

Var and Const. That is, the steps in any proof of a

typing statement may be permuted so that the Sub

rule only appears at the leaves of the proof. This prop-

erty is important because the other four inference rules

of this system are syntax-directed. That is, there is at

most one normal proof of any type assertion up to uses

of Sub. This property is used in the typing algorithms

in [J M88, Mit91] and in all algorithms discussed in this

paper. An alternative way of stating this proof nor-

malization property is that the rules above are equiva-

lent to the proof system obtained by eliminating Sub

and replacing Var and Const by variants that allow

a constant or variable to be given any supertype of its

given type.

If R is a substitution of types for type variables,

then we say R respects a set C of atomic subiyping

assertions if, for every a < b in C , the type expres-

sion Ra matches Rb . If R respects atomic C , then

there is a set C’ of atomic subtype assertions such

that C’ F Ra ~ Rb for every a < b in C, and if

C“ is another set of atomic subtype assertions with

this property, then C’ E C“. We write R. C for any

such “minimal” set of atomic subtype assertions. The

set R. C is efficiently computable from R and C , as

outlined in [Mit84, Mit 91]. If A is a set of assump-

tions about the types of variables, then RA is the set

RA={x:Ro Ix:u GA}. Wesay C’, A’kiVl:& isan

instance of C, A F M: u if there is some substitution

R of types for type variables such that

RC 1- C’, RA ~ A’ and R~ = O’

A typing C, A 1- M : IS is a most general typing for

M , with respect to some signature, if it is derivable

and has every other derivable typing statement for M

is an inst ante.

Theorem 2.1 [Mit84, Mit91] Jf M is -typab/e with

respect to some signature, then there is a most gen-
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era! typing statement for M , computable from M in

exponential time.

Although the theorem given in [Mit84, Mit91] is

only stated for pure lambda terms without constant

symbols, the algorithm and proof are easily extended

to constants with specified variable-free types. The

algorithm may also be extended to terms with poly-

morphic constants, as described in [JM88, Jat89]. It

is possible to decide whether a set of atomic subtype

assertions is satisfiable in a partial order, in nondeter-

ministic time polynomial in the size of assertion set

and the present ation of the partial order. This gives

us the following corollary.

Corollary 2.2 There is a nondeterministic exponen-

tial time algon”thm for deciding whether a typing

0, A t- M : u is derivable with respect to a given sig-

nature.

3 Type inference, constants

and decision problems

While the algorithm given in [Mit84, Mit91] finds the

most general type of any pure term, the application

of this algorithm to a specific programming language

is relatively subtle. If M does not cent ain constant

symbols, then the most general typing for M will only

cent ain t ype variables, and type constants do not enter

into the problem. With both type and term constants,

there are some questions regarding the set of subtype

assumptions that might reasonably appear in a typ-

ing statement. A simple example that illustrates one

of the problems with type constants is the signature

with type constants int and real, with ant ~ real, and

term constants 1: int , 2: int , mult : int --+ int --+ int

and div : real+ real+ real. In this signature, we can

multiply integers 1 and 2 by writing mult 12 since

both arguments have type integer, and divide by writ-

ing div 12 since by the assumption int ~ real, both

integers also have type reai. However, consider the

expression,

mult (div 12) 2.

This is not well-typed, given the signature, since the

subexpression (div 12) only has type reai and not

type int. The typing algorithm in [Mit84, Mit91],

when extended to constants in the simplest way, would

produce a typing statement for this term, namely,

real < int F (mu/i (div 12)2) : int

Intuitively, this typing statements says that if real is a

subtype of int, then the expression denotes an integer.

This is a correct hypothetical statement, but since the

hypothesis is false, it does not seem to be a useful

output from the type checker. The reason that the

algorithm infers a typing statement with additional

subtype hypotheses is that, in general, this is the only

way to obtain most general types. However, it is not

reasonable to change the relationship between int and

real by adding new subtypes of existing types. There-

fore, as in [FM90, W089], it makes sense to design”

a type checker that fails on the example expression

above.

There are several reasonable restrictions on addi-

tional subtype assumptions. The first is to reject any

term that requires subtype relations not given by the

signature. Given a term A4 , we must find some t yp-

ing statement 0, A \ M : u with empty subt yping hy-

potheses. We call this the typing problem with jixed

subtype ordering since the only subtype relations are

those fixed by the signature. A second typing problem

is to find a typing statement C, A k M : u such that

the only required relationships between type constants

are those given by the signature. In other words, we

require any inferred C to be conservative over the sig-

nature. We call this the typing problem with varying

subtype orderingl since it is motivated by considering

languages where the subtype ordering varies between

different parts of the program. Conservativity rules

out the typing for mult ( div 12) 2 above, since the

signature does not imply real < int . Both of these

typing problems may be solved by computing the most

general typing for a given term and then testing the

set of subtyping assumptions to see if it can be made

empty or conservative over the signature by applying a

type substitution. For a particular programming lan-

guage with subtyping, the appropriate typing prob-

lem may lie somewhere between these two extremes:

additional type declarations will extend the subtype

relation conservatively, but it may not be possible to

obtain all conservative extensions.

The typing problems we consider in this paper are

summarized in Table 1. We consider both fixed and

varying subtype relations, as indicated along the top

of the table. Restrictions on the signature are listed at

the left. We consider arbitrary signatures, signatures

in which all term constants have non-polymorphic

types, and signatures in which the type of each term

constant is a type constant. This gives us a two-

dimensional matrix of typing problems. A third di-

mension is to consider possible restrictions on the sub-

type relation. With a variable subtype relation, the

relation given by the signature has little effect. With

a fixed subtype relation, we consider both arbitrary

partial orders and lattices. For each of the problems,

the table lists an upper bound on the upper line, and

lower bound on the lower line, with trivial upper and

lower bounds omitted. As the reader will readily see,

we do not have matching upper and lower bounds for

most of the problems listed. It is easy to show that

each problem is reducible to the problem above it in
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Signature Fixed Subtype Relation Varying Subtype Relation

Arbitrary Lattice

Constants of any type F1 NExP upper bound L1 PSPACE upper bound V1 PsPAcE upper bound

conservative over F2 conservative over L2 conservative over V2

No polymorphic types F2 reducible toFl L2 reducible toLl V2 reducible toVl

conservative over F3 conservative over L3 conservative over V3

Atomic types only F3 reducible to F1 L3 linear time V3 linear time

NP lower bound linear time linear time

Table 1: Summary of problems and results. Lower bounds for F1-3 and upper bounds for L1-3 and Vi-3.

the table, and conservative over the problem below it.

This is because all are defined using the same proof

rules. The linear upper bound for problem L3 actu-

ally holds for any order that is the disjoint union of

any number of partial orders with maximum elements.

We state problems F1-3,, and Vi–3 in full below.

Problems L1-3 are identical to F1–3, respectively, ex-

cept that the subtype order must be a lattice.

Fl:

F2:

F3:

Vl:

V2:

V3:

Given an untyped lambda term M, possibly con-

taining constant symbols from some signature X ,

determine whether there exists a provable typing

statement @,A ~ M : u without additional sub-

typing assumptions.

Given an untyped lambda term M , possibly con-

taining constant symbols from some signature E ,

where all constants have variable-free type, deter-

mine whether there exists a provable typing state-

ment @,A t M : u without additional subt yping

assumptions.

Given an untyped lambda term M , possibly con-

taining constant symbols from some signature Z ,

where all constants have atomic type, determine

whether there exists a provable typing statement

0, A h M : u without additional subtyping as-

sumptions.

Given an untyped lambda term M , possibly con-

taining constant symbols from some signature

Z = (B, S, ‘T) , determine whether there exists

a provable typing statement C, A t M : u such

that for all type constants bl, b2 c B , we have

CUSt-bl ~b2iff St- bl<b2.

Given an untyped lambda term M, possibly

containing constant symbols from some signa-

ture Z = (B, S, T) , where all constants have

variable-free type, determine whether there exists

a provable typing statement C, A 1- M : u such

that for all type constants bl, ba ~ B , we have

CUSkb1~b2iff Sk bl~b2.

Given an untyped lambda term M , possibly

containing constant symbols from some signa-

ture E = (1?, S, T) , where all constants have

atomic type, determine whether there exists a

provable typing statement C, A 1- M : u such

that for all type constants bl, b2 G B , we have

CUSkb1~b2iff St b1<b2.

An example may help clarify the difference

between problems F1 and V1. The term

(Av.((b.(v CI))(W Ca))) is typable in the signature

with two constants c1 :8= , C2 : 8b and empty subtyp-

ing relation, according to the constraints of V1 but

not F 1. The reason is that the variable v must have

type u + ~ for some o greater than 8. and db .

A variation we will not consider is to give more in-

formation about a term to be typed. For example,

we could give term h4 and type u , and ask whether

there is a provable typing statement C, A F M : u .

This might appear easier than the type decision prob-

lem, since the added information could narrow the

range of possibilities to consider. However, it is easy to

see that an arbitrary term M has a type iff the term

Ax. KzM has type T + T , where K is the lambda

term k. ~y. z . Therefore, it does not help to supply

a type.

4 Subtype Inference is NP-Hard

Wand and O’Keefe give an argument for the NP-

hardness of type inference which requires the use of a

constant of polymorphic type, specifically, a constant

T with polymorphic type Va.(a + a + a) [W089],

roughly corresponding to our problem F 1. In this sec-

tion we improve their lower bound by proving that

the strictly weaker problem F3 is iw-hard. Since F2

and F1 are conservative over F3, this lower bound also

applies to these problems.

We will reduce POL-SAT, stated as follows, to F3.

Given a partial order (P,<) and a set of inequalities

I of the form p < w, w < w’ , where w and w’ are

variables, and p is a constant drawn from P , is there

is an assignment from variables to members of P that

satisfies all the inequalities 1 ? This problem is very

similar to PO-SAT, proven NP-complete by Wand and
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Figure 1: poset for

O ‘Keefe [W089]. PO-SAT differs from POL.SAT in that

it allows inequalities of the form w < p, which amount

to upper bounds. PO-SAT may also be described as

the satisfiability problem for inequations over a poset.

Similarly, POL-SAT is also the satisfiability problem for

inequations over a poset with the added restriction

that no inequations have the form w < p for variable

w and constant p. We first show that POL-SAT is

NP-complete, and then show that POL-SAT reduces to

F3.

Lemma 4.1 POL-SAT is NP-cornpiete.

Proof. It is easy to see that this problem is in NP,

since one may simply guess an assignment of constants

to variables, and check that every inequality in I is

satisfied.

To show that this problem is Np-hard, we give a

reduction from 3-SAT. We begin with the empty set

A , and for each clause Clausei = Pil V Pi2 V F’~3,

we add the element named C’i to A , and further

add 7 more elements to A , one for each truth as-

signment which sat isfies the clause. For convenience,

we name these 7 elements by simply concatenating

the names of the clauses with the names of the vari-

ables they cent ain, using overbars to denote negation:

“ C~P~~P~zP~3 “, “ C~P~lPiz~”, “CiP~~~Pi~ “, etc.

For each propositional variable Pj , we add three el-

ements to A , named “ Pj “, “ PJ+ “, and “ Pj._ “. In-

tuitively, these stand for the j-th proposition being

undecided, true, and false, respectively.

With the above set of constants, we define a par-

tial order relation < on them as follows. We define

the relation RP,OP to include, for each proposition

pi , Pi+ < Pi and Pi– ~ Pi . We define the rela-

tion RClau~e to include, for each clause Clausei =

Pil V Pi2 V Pi3 occurring in the 3-SAT problem, and

each truth assignment which satisfies the clause, Ci <

c~pil P~2Pi3 . We also define the relation Rtvue to

include, for each clause Clause~ = Pil V P~Z V Pis ,

and each proposition in that clause Pij , a relation

P+ < CiPil Pi2Pi3 for each of the 3 or 4 clause—
el~ments which correspond to Pij being true, Simi-

larly, we define the relation R~at$e to include, for each

(P VQ)A(QV=R)

clause Clausei = Pil V Pi2 V Pi3 , and each proposi-

tion in that clause Pij , a relation pi; < Ci 1%1Pizl’is

for each of the 3 or 4 clause types which correspond

to Pij being false. The final partial order of inter-

est wilI be (A, RProP U Rcl.use U Rtrue U Rjar,e) . The

partial order has height one, and contains 8 ( = 23) el-

ements for each 3-SAT clause, plus three elements for

each proposition. Figure 1 displays the partial order

produced for the SAT problem (P V Q) A (Q V vR) .

Clauses of length two were used, and the name pq

was used in place of Clpq , for example, in Figure 1

to improve readability.

We use a set of variables, one Wpj and one wuj

for each proposition Pj , and one wcj for each clause

ClaUSej . We define a set of inequations IC1aU.e to

include, for each- clause Clausei = Pil V Pi2 V Pi3 ,

the inequality Ci < Wci , and for each proposition

Pij in that clause, wpij < Wci . We also define a set

of inequations lP~oP to include, for each proposition

Pi , wpi ~ wui and Pi ~ wui . Thus there are four

inequalities in IC1aU~e per 3-SAT clause, and two in-

equalities in IPVOP for each proposition. Continuing

with our simple example, (P V Q) A (Q V -IR) , the

inequations Icl.u,, = {Cl ~ WC1, WPP d WC1, Wpq S

Wcl, C2 < WC2, Wpq < WC2J Wpr < WC2) , and IPTOP =

{WPP < WUP, WP, < Wuq, wpr < WU., P < WUP, Q 5

Wuq, R < WUr }

We claim that the POL-SAT problem given by the

partial order (A, R )prop U fkause U .&rue U Rfatse ,

with the inequalities IP.OP U IC1aU~e has a solution

if and only if the original 3-SAT problem has one.

This may be observed by noting that every wci must

be assigned some CiPil Pi2Pi3 , since wci must be

greater than Ci and some propositions. Also, the only

CiPi1Pi2Pi3 which exist in A correspond to assign-

ments of propositions which satisfy the clause. Fur-

ther, wuj must be assigned Pj , and wpj must be

assigned either P}+ or Pj~ . We claim there is a cor-

respondence between a proposition Pj being assigned

true (or false, resp.) in the 3-SAT problem, and Wj

being assigned Pj+ ( Pj: , resp.) in the PO L-SAT prob-

lem. Thus one may see that a solution to the 3-SAT

may be derived from any solution to the constructed
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POL-SAT problem and vice-versa. ■

This construction may be simplified somewhat, by

omitting the inequalities 1pt.op , and the elements Pj

(nodes labeled P, Q, and R in the example poset).

In this case the correctness of the reduction is more

difficult to establish. However, in either case the con-

structed poset has depth one, and both the poset and

the set of inequalities have size linear in the input 3-

SAT problem.

Lemma 4.2 POL-SAT reduces to F$.

Proof. A POL-SAT problem is given with par-

tial order (P, <) , set of variables W, and set of

inequalities 1. We define the set of type constants

B = {13~lpi G P}, and a set of constants and their

typings T = {ci : Oi ]Pi 6 P}. That is, for each ele-

ment of the POL-SAT partial order, we define a type

t$ , and a constant of that type c~ .

We define S to be a set of atomic coercions such

that for each pi < pj in the POL-SAT partial order,

Oi ~ Oj is in S. That is, we simply copy the partial

order from the POL-SAT problem into a set of subt ype

assertions about corresponding type constants.

We then collect the above together into a signature

E=(l?,S,T).

For each variable Wi appearing in any inequality in

the POL-SAT problem, we define the notation for two

lambda term variables vi and ui . We number the m

inequalities I in the POL-SAT problem il, ..., i~ , and

define the translation [ij] of inequalities aS follows:

(.PY 5 %1 = (Vz c,)

[w 5 w,] = (v, (Vc ‘uC))

Finally, we build the term

(Au,. $. .(hln.(. . .((AV,. . . .(Avn.

((kc. [i,]) ((kr.[iz]) ~~. ((Ax. [im_,])[im]) ~. ))

(Ar.r))(k.%)) . . .(AZ.Z)) ~~.)))

In words, we encode each lower bound on a variable

as an application of that variable to the corresponding

constant, and encode each relation bet ween variables

VI and V2 as an application of VI to the result of

applying vz to uz . The variable U2 only serves as

a dummy variable to which one can apply V2 . If the

partial order has a bottom element, one could replace

all uses of u variables with a single constant with the

type of the bottom element of partial order. We build

an abstraction over the set of function variables vi ,

with a body that includes a subterm for each inequal-

it y, but throws all the results away except the first.

We tie the upper and lower bounds on each function

variable together by applying each abstraction to the

identity function (~a .x) , and finally abstract over the

u variables.

Figure 2: Fixed NP-hard poset

We claim without proof that this term is typable if

and only if the corresponding POL-SAT problem haa a

solution. ■

Thus we have shown that F3 suffices to capture the

essential NP-hardness oft ype checking with subtypes.

As stated above, Wand and O’Keefe show that PO-SAT

reduces to F 1 [W089]. However, there also exists a

straightforward extension of the above into a reduction

from PO-SAT to F2: define the constant c~ to be of

type t% -+ Oi, and [w. < Py] = (c: (v. u,)). Of

course, there are reductions from F3 to F2, and F2 to

F1, since the problems strictly subsume each other.

Theorem 4.3 F3, F2, and F1 are m-hard.

Proof. F3 is NP-hard from the above two lemmas,

and F2 and F1 are conservative over F3, so the result

follows immediately. ■

Recent work by Pratt and Tiuryn [PT91] has shown

that PO-SAT remains Np-complete for certain fixed

posets. Our construction builds a different poset and

set of inequations for each 3-SAT problem. Pratt’s

construction builds a different set of inequalities over

a fixed poset, although it uses inequations of the form

w < p. Thus Pratt’s result subsumes the m-hardness

of PO-SAT. With a simple modification, Pratt’s NP-

hardness result can be extended to cover the case of

restricted inequalities, which corresponds to POL-SAT.

Pratt shows that PO-SAT is m-complete even over

the fixed poset containing only four elements, drawn

in Figure 2. The following reduction from PO-SAT to

POL-SAT, although not sound in general, is correct for

this particular poset. Thus POL-SAT is also m-hard

for this poset. Given a set of inequations, we must

translate them into a form where no upper bounds

w < p appear for variable w and constant p. We

add two new variables, W. and Wb , and the new in-

equalities {a < W., b < ‘Wb}. We then translate all

upper bounds (which are disallowed in POL-SAT) as:

[w<a]={w <w.}

[w< b]={w<wb}

If c is used as an upper bound on some variable w ,

then simply replace w by c in the entire set of inequa-
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tions, and similarly for d. Thus even for fixed posets

with aa few as four elements POL-SAT is NP-complete.

Through the reduction stated formally in Lemma 4.2,

we therefore have the result that I?3 is m-hard even

for fixed posets.

Theorem 4.4 F3, F2, and F1 are rw-hard for a jixed

posets with four elements.

Note that the above m-hardness results for POL-

SAT and PO-SAT make critical use of non-lattice partial

orders. In fact, we have the following properties:

Proposition 4.5 PO-SAT is solvable in polynomia[

time over a lattice.

Proposition 4.6 POI,-SAT is sotvable in polynomial

time over a lattice.

These results lead to a polynomial algorithm for L3,

as stated later in Proposition 6.2. At an intuitive level

problem V3 allows one to complete the given partial

order into a lattice, leading to a similar polynomial

time algorithm for V3 as well. Thus the NP-hardness

results of this section apply only to the problems F1-3,

and do not directly apply to L1-3 nor to VI-3.

5 Subtype Inference in PSPACE

In this section we investigate the computational com-

plexity of problems V1 and L1. We give a PSPACE

algorithm for V1 and then show that the same algo-

rithm also solves problem L1.

The algorithms proposed in earlier papers to solve

V1 (or Fl) suffer from two sources of inefficiency. The

first source of inefficiency is the non-lattice structure

of subtype orders in the signature. These lend a cer-

tain NP flavor to the decision problem. The second

source of inefficiency is the MATCH (and SIMPLIFY) al-

gorithm, which forces subtype relationships between

complex types into sets of subtype relationships be-

tween atomic types. The expansion of type inequal-

ities c(to the leaves)’ causes an exponential blowup in

the inequalities, and thus causes previous algorithms

to use exponential space and time. To overcome this

obstacle, we develop a data structure of linear size and

associated naming convention for new type variables

which allow us to represent the required subtype re-

lationships succinctly. Using this approach, we may

decide typability in PSPACE.

Rather than present a deterministic PSPACE algo-

rithm directly, we give a nondeterministic PSPACE

algorithm that recognizes untypable terms. Since

NPSPACE = PSPACE and PSPACE is closed under com-

plement, this gives us a PSPACE upper bound. Our

algorithm begins by building a proof up to uses of

Sub. As discussed earlier this amounts to a normal

form for the type derivation proof, except that the

proofs above Sub are left incomplete. Next the DAG

representation of the Curry-type of the term is com-

puted, as if the type of each constant and variable were

renamed with new type variables at each leaf occur-

rence. In [Wan87] an algorithm similar to ours up to

this point is presented. However, in our algorithm, the

Sub rule presents a new kind of relation, and we ac-

tually solve the equations generated by the algorithm

in [Wan87] with unification, producing a DAG which

represents the types of all subterms. Note that the

unifications performed at this step never fail, due to

type renaming, as is the case in [Hin89]. At each leaf a

constraint u ~ r is generated by the Sub rule, which

we encode as a “dashed” arc on the DAG. Note that

these inequalities (represented by dashed arcs) may in-

volve terms such as n + /3 containing function types.

We will call the arcs forming the original DAG descen-

dent arcs and dashed arcs due to uses of the Sub rule

sub arcs.

We say a term Al is Curry-typable over signature

X = (B, S, T) , if M is typable over the signature

X’ = (1?, S’, T) , where S’ is the complete relation (all

atomic types are related, and thus all atomic types are

interchangeable).

Lemma 5.1 Given a term M , possibiy containing

constant symbols from some signature X = (B, S, T) ,

then M is Curry- iypable over E if and only if there

is a provable typing statement C, A 1- M :0 over 22

where C may have any relationship to S.

Lemma 5.2 Given a Curry- typable untyped lambda

term M , possibly containing constant symbols from

some signature X = (B, S, T) , then VI is solvable for

M if and only if the most general typing statement

C, A k M : u for M provable with respect to .X is

such that Qbl, bz. if CUSt bl < b2 then S t bl ~ b2 .

Thus there are two kinds of type failure for V1.

The first is failure of Curry-typability, which occurs

when a type variable is required to match its own an-

cestor or descendant because of coercions, For ex-

ample, terms with self application, such as h.(z z) ,

are impossible to type. The second type of failure,

implication of nonexistent coercion, occurs if there is

some chain or sequence of implied coerci~ns 19i < al ,

al ~ U2, . . ..un_1 ~ CTn,Un < Oj such that it is not

the case that St- Oi ~ (?j .

The first type of failure is relatively easy to detect,

and may be checked in linear time. If one considers the

sub arcs of the DAG to be undirected, the first type

of failure occurs if and only if the DAG contains a

cycle which contains at least one descendent arc. This

condition may be checked in linear time by considering

the the sub arcs to be equations between parts of the

DAG made up of descendent arcs. The DAG and the

300



(3@-----------m

“’’’’@n)
Figure4: Untypable Self Application’s DAG

resulting unification probiem are of linear size, and

unification may be performed in linear time [PW78].

For example, consider the attempted typing of

~x.(x x) shown in Figure 3. This is the unique syntax-

directed proof, up to II and A , which are left in-

complete by the algorithm. However, the coercions

a ~ /3 -+ cr and a ~ ~ have a derived inconsistency.

That is, ~ must match /3 - n, and thus no sub-

stitution of types for type variables can satisfy those

inequations. Figure 4 displays the two color DAG our

algorithm builds for this term. The DAG which rep-

resents the type of all subterms is represented with

descendent arcs shown as solid arcs in Figure 4. The

dashed arcs in that figure represent sub arcs.

Assuming that the first type of failure does not oc-

cur, we must detect the second. One could imagine

converting all subtype relations between non-atomic

types into relations between atomic types, and then

searching for a solution to that easier problem. How-

ever, an exponential number of atomic subtype rela-

tions may be generated by such a procedure. The

algorithm presented below avoids this blowup.

For each type variable a , we use the notation al

and a, , where their relationship with a is defined

by a = al + ay . This is simply notation; we do not

explicitly construct all such type variables, and the

notation is meaningless if a is of atomic type. We

define a path to be a string on the alphabet {1, r} ,

and we use o as path concatenation. We define the

relation implied by a sub arc from a to c through

path p as follows. If p is empty, then the sub arc

simply signifies that a < a . If p = r o p’ , then

the sub arc implies the same relation as the sub arc

from c+ to CT through path p’ . If p = 10 p’ , then

the arc implies the same relation as the arc from al

to CYl through path pl . Note that because of the

antimonotonic Arrow rule, the sub arc in the 1 case

has changed direction.

The algorithm begins by guessing two atomic type

constants 61 and 02 which are not in the relation

01 <02 in the given signature. Then the algorithm

guesses two types c and a and a path p such that

there is a dashed arc from u to a and the relation im-

plied by this arc from u to CY through p is 01 < T1 .

Or the algorithm guesses that ~1 is a type constant

Oi such that S t- 61< Oi .

The algorithm then repeatedly guesses types and

paths in this way such that for guess i , the relation

Ti _ 1 ~ ri is implied. Finally, the algorithm guesses

types such that rn <02 is implied. If this algorithm

succeeds in all these steps, the term is not t ypable.

That is, the algorithm as described nondeterministi-

cally checks nun-typability” in PSPACE.

As an example of the second type of failure, con-

sider the attempted derivation of a type for the

term (( Av.(odd? (v 5.7))) (kc.x)) in the signature

with three types constants, int , real, and bool,

with the only subtype assumption enforcing that

int~ real , and two constants, odd? : int + bool and

5.7: real . We give the derivation in parts, leaving

the proofs numbered 1.. .4 incomplete, just as our

algorithm would do, in Figures 5, 6, and 7.

We may now see that this term has no type satis-

fying the restrictions of V1. From the required sub-

type relation marked 1 in the above proof display,

int --+ bool < ct + ~ . From this, by the arrow rule, we

must have booi ~ ~ and a < int . Similarly, from

the required subtype relation marked 2 in the above

proof display, a --+ -y < r --+ a , which implies y ~ a

and ~ < a . Using these subtype relations, and those

from 3 and 4, real ~ T and ~ ~ 7, we may build

the following chain of subtype relations:

We now describe how our algorithm would discover

this inconsistency with the given partial order. First,

it would build the proof up to the applications of Sub,

creating the DAG as described above, a fragment of

which is represented in Figure 8. The algorithm then

guesses that a derived inconsistency lies in the sub-

type relation real ~ int . It then guesses the sub arc

from ~ to real , and the empty path. This implies

real ~ r. It then guesses the sub arc from r --+ a

to a + ~ , and the path i . This implies r ~ a. The

next guess is the sub arc from ~ to u , with the empty

path, implying a ~ y . Then the sub arc from ~ + a

to o --+ -y is guessed again, this time with path r ,

implying 7 ~ a . The last guess is the sub arc from

a--+ /3 to int --+ bool , with path r, implying a ~ int .

The last step is through a part of the DAG not repre-

sented in Figure 8. Thus the algorithm finds a chain of

types which together imply real ~ int , contradicting

the given signature.

Theorem 5.3 Problem VI is solvable in PSPACEi.

Proof. The “untypability” algorithm described

above operates in polynomial space, since the prepro-

cessing phases building the DAG may be completed

in linear time and space, and the nondeterministic

sequence of choices can be made with only linearly

bounded storage space, since the depth of the curry-

type is linearly bounded. Because PSPACE is closed
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Figure 3: Untypable Term’s Attempted Derivation

1

C,{v:o--+~} t odd? :int+boolco”st CUSt int--+booi~ a+/3 sub

C,{v:n+y} l-odd? :~+P

Figure 5: Partial derivation A

2
Var

3
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“
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Figure 7: Whole derivation

Figure 8: Fragment of Untypable Term’s DAG



under complement, this demonstrates the existence of

a PSPACE algorithm. D

We now turn our attention to problems L1-3.

Lemma 5.4 L1 and F1 are solvable for term M over

signature 2 if and only if M is Curry typable and

C, A } M : u, the most general typing statement for

M, is such that C is satisfiable over X .

Proof. Immediate from the problem definitions and

Theorem 2.1. The key here is that if C is satisfi-

able over E, then there is some substitution R and

provable instance 0, RA 1- M : RF. m

The following lemma states that problem L1 is es-

sentially the same as problem VI if the partial order

is already a lattice.

Lemma 5.5 If (B, S) forms a lattice and C is a

set of atomic subtyping assertions, possibly involving

constants from B , then C is satisfiable over (B, S)

if and only if for every pair of constants bl , bz from

B,if CUStb1~b2 then St- bl<b2.

Proof. Suppose that for every pair of constants

bl, b2from B,if CUSkb1<b2 then Skbl<

b2 . We show C is satisfiable by giving a satisfying

assignment. For each variable z in C , let LB(s) be

the set of elements b of B such that C U S 1- b < x .

We assign variable x the least upper bound of the

set .LB(z) . This upper bound exists since (B, S) is

a lattice. To show that this assignment satisfies C,

we consider three cases:

● For b < z , it is the case that b c LB(z) , so ~

is assigned an element of B that is greater than

or equal to b .

● For z < y, we have by transitivity that LB(z) C

LB(y) , so y is assigned an upper bound of

LB(x) , so x is assigned some element of B that

is less than or equal to y.

● For x < b , we have to use the hypothesis of the

lemma. By hypothesis, b’b’ . b’ E LB(x) , then

C U S 1- b’ < b and so b’ ~ b. ‘Therefore the least

upper bound of LB(z) 1s less than or equal to

b.

■

Theorem 5.6 Probtems Ll, L2, and L9 are solvable

in PSPACE.

Proof. We begin by observing that the only proper-

ties specific to problem V1 that are used in the proof

of Theorem 5.3 are stated in Lemmas 5.1 and 5.2.

Since Lemmas 5,4 and 505 characterize problem L1 in

exactly the same way, the proof of Theorem 5.3 also

shows that L1 also may be solved in PSPACE. By the

obvious conservativity, we have the result for L2 and

L3. ■

6 L3,F3 are Polynomial

In this section we present a linear time algorithm for

L3, the restricted case of problem F3 where the given

subtype order is a lattice. This algorithm also extends

to F3 where the order is the sum of partial orders, each

with its own top element. That is, partial orders with

the property that there is a unique least upper bound

of the upper bounds of any element. Also, this al-

gorithm extends to V3 over any partial order. Since

problem F3 is Iw-hard in general, we see that minor

assumptions about the subtype order permit great re-

ductions in the computational complexity of the as-

sociated decision problems. Also, small amounts of

flexibility in the subtype order (V3) permit similar re-

ductions in the computational complexity.

In [W089], it is claimed that subtype inference may

be performed in low order polynomial time if the given

subtype order in the signature happens to be a tree.

However, we have found examples where the algorithm

suggested in [W089] uses exponential space and time.

Lemma 6.1 Let X be a signature in which all con-

stants have atomic type. If M is an untyped term

over X , then in the most general typing for M , all

subtype assumptions have the form p < w , w < w’ ,

where w and w’ are variables, and p is a type con-

stant from E .

Proposition 6.2 L3 is solvable in linear time.

Proof. Again, we solve the decision problem without

producing a most general typing. By Lemma 6.1, the

only relevant subtyping constraints are lower bounds

on the types of terms. Thus one could choose to build

all types of subterms from the topmost type constant.

Since all types are subsumed by the topmost type con-

stant this choice will not lead to any type errors which

are not inevitable. One may view this as collapsing the

entire poset down to the single topmost point.

Thus our algorithm can be described as follows:

replace all constants in the given term by a single

fixed constant of topmost type and then apply the

well-known linear algorithm for determining Curry-

typability. If the resulting term is Curry-typable, then

the given term is typable with subtypes. If the modi-

fied term is not Curry-typable, then the original term

is not typable. ■

We now consider a somewhat more general problem.

A connected component of signature is a subset of the

elements of the signature which is connected if the

subtype relation is taken to be bidirectional.

Proposition 6.3 F3 is solvable in linear time if every

connected component of the signature has a topmost

element.

303



Proof. Similar to 6.2. In this case, replace each con-

stant of type T with a constant of the topmost type

connected to r. One may view this as collapsing all

connected components into their individual topmost

elements. The result is a completely flat partial order,

over which Curry-typability works in linear time with

small modification. ■

Special cases of this class of ‘(easy” signatures in-

clude flat partial orders, lattices, trees, forests, etc.

Proposition 6.4 V3 is solvable in linear time.

Intuitively, V3 allows new elements to be added to

the signature. Thus we may simply add a top element

to the signature, and then check typability as above

in Proposition 6.2. Thus F3 is NP-hard over certain

partial orders, but V3 is solvable in linear time over

any partial order.

7 Conclusion

We identify and study several variations on the type

inference problem for languages with subtypes. We

give a single NP lower bound for three of these prob-

lems, improving the previous lower bound of [W089].

Since the size of the most general typing of a term

may be exponentially larger than the given term, any

algorithm which prints the most general typing with

subtypes must take exponential time. However, we

show that it is possible to determine whether a term

is typable at all using only PSPACE for VI–3 and L1–3.

We do not know whether this algorithm can be im-

proved to run in NP, and have no useful lower bound

on VI–2 or L1–2.

The most promising indication for practical appli-

cations is that typing over special partial orders (such

as lattices) and varying subtype relations (as would

arise in languages with subtype declarations) may be

far simpler than typing over arbitrary partial orders.

We have seen this in the difference between problem

F3 and L3 and V3: while L3, over arbitrary partial

orders, is NP-hard, the restriction, L3, to lattices may

be solved in linear time and so may the correspond-

ing problem, V3, for languages with varying subtype

relations. These results show that the complexity of

type inference is sensitive to the kind of subtype rela-

tion that may occur in a given programming language,

and whether this order may vary.

In designing type inference algorithms for languages

with type declarations (and therefore varying subtype

relations), we believe it will be useful to take into ac-

count the ways that the subtype relation may change.

To give an concrete example, suppose that in language

L subtype declarations may only add new subtypes,

not supertypes of existing types. Then in defining a

type checker for language L, we would like to reject

any declaration that will only make sense when su-

pertypes of existing types are added. In general, we

expect to find typing problems that are special cases

of both our fixed and varying subtype problems, with

only certain kinds of subtype relations definable by

programs, and only certain kinds of variations achiev-

able by additional type declarations.
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