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1 Introduction

The design and veri�cation of security protocols is a diÆcult problem. Some of
the diÆculties come from subtleties of cryptographic primitives. Further diÆcul-
ties arise because security protocols are required to work properly when multiple
instances of the protocol are carried out in parallel, where a malicious intruder
may combine data from separate sessions in order to confuse honest partici-
pants. Moreover, although the protocols themselves are often very simple, the
security properties they are supposed to achieve are rather subtle and should be
formulated with great care.

A variety of methods are used for analyzing and reasoning about security
protocols. Although such methods di�er in signi�cant ways, many of them
re
ect the same basic assumptions about the way an adversary may interact
with the protocol or attempt to decrypt encrypted messages . In the common
model, largely derived from [10] and suggestions found in [24], a protocol ad-
versary is allowed to choose among possible actions nondeterministically. This
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is a convenient idealization, intended to give the adversary a chance to �nd an
attack if there is one. In the presence of nondeterminism, however, the set of
messages an adversary may use to interfere with a protocol must be restricted
severely. Although the idealized assumptions make protocol analysis tractable,
they also make it possible to \verify" protocols that are in fact susceptible to
simple attacks that lie outside the adversary model. Another limitation is that
a deterministic or nondeterministic setting does not allow us to analyze proba-
bilistic protocols. In other words, actual protocols use actual cryptosystems that
may have their own weaknesses, or might employ probabilistic techniques not
expressed in the idealized model.

Recently there have been several research e�orts to relate the idealized model
to cryptographic techniques and the computational model based on probabilistic
polynomial-time computation, including [7, 16, 23, 25, 26, 3, 2, 9, 4]. While these
e�orts develop rigorous mathematical settings carried out so far only \by hand",
it is hoped that they will eventually lead to a new generation of \high �delity"
automated tools for security analysis that will be able to express the methods
and concepts of modern cryptography.

Our initial contribution to this line of research was a formulation of a pro-
cess calculus proposed in [16, 23] as the basis for a form of protocol analysis
that is formal, yet closer in foundations to the mathematical setting of modern
cryptography. The framework relies on a language for de�ning communicat-
ing polynomial-time processes. The reason we restrict processes to probabilistic
polynomial time is so that we can reason about the security of protocols by
quantifying over all \adversarial" processes de�nable in the language. In e�ect,
establishing a bound on the running time of an adversary allows us to relax the
simplifying assumptions. Speci�cally, it is possible to consider adversaries that
might send randomly chosen messages, or perform sophisticated (yet probabilis-
tic polynomial-time) computation to derive an attack from messages it overhears
on the network. An important aspect of our framework is that we can analyze
probabilistic as well as deterministic encryption functions and protocols. With-
out a probabilistic framework, it would not be possible to analyze an encryption
function such as [11], for which a single plaintext may have more than one ci-
phertext.

Some of the basic ideas of our prior work are outlined in [16, 23]. Further
example protocols are considered in [17]. The closest technical precursor is [1],
which uses observational equivalence and channel abstraction but does not in-
volve probability or computational complexity bounds. Prior work on CSP and
security protocols, e.g., [28, 29], also uses process calculus and security speci�ca-
tions in the form of equivalence or related approximation orderings on processes.

This approach is based on the intuition that security properties of a proto-
col P may be expressed by means of existence of an idealized protocol Q such
that for any adversaryM , the interactions between M and P have the same ob-
servable behavior as the interactions between M and Q. The idea of expressing
security properties in terms of some comparison to an ideal protocol goes back at
least to [15, 6, 5, 20]. Here we emphasize a formalization of this idea by using ob-



servational equivalence, a standard notion from programming language theory.
That is, two protocols P and Q are observationally equivalent if any program
C[P ] has the same observable behavior as the program C[Q], with Q instead
of P . The reason observational equivalence is applicable to security analysis is
that it involves quantifying over all possible additional processes represented by
the contexts C[ ] that might interact with P and Q, in precisely the same way
that security properties involve quantifying over all possible adversaries. Our
framework is a re�nement of this approach. In our asymptotic formulation [16,
23], observational equivalence between probabilistic polynomial-time processes
coincides with the traditional notion of indistinguishability by polynomial-time
statistical tests [13, 30], a standard way of characterizing cryptographic primi-
tives.

In this paper we derive a compositionality property from inherent structural
properties of our process calculus. Basically, compositionality states that com-
posing secure protocols remains secure. We obtain a general result of this kind
in two steps. We consider a notion of a secure realization, or, emulation of an
ideal protocol, motivated by [7] but here expressed by means of asymptotic ob-
servational equivalence. We show that the notion of emulation is congruent with
the primitives of the calculus. Compositionality follows because the security re-
quirements are expressed in the form that a real protocol securely realizes an
ideal protocol.

We also illustrate some of these concepts on a traditional cryptographic ex-
ample of oblivious transfer [27, 12, 14, 9]. We show how the natural security re-
quirements may be expressed in our calculus in the form that a real protocol em-
ulates an ideal protocol. Finally, we establish an important relationship between
the process calculus framework and the interactive Turing machine framework
discussed in [7, 9, 25, 26, 3]. Indeed, the work based on [7] provides an encyclope-
dic treatment of a number of security requirements in a compositional setting.
However, the framework of interactive Turing machines, even if optimal to deal
with complexity results, is rather low-level and does not seem naturally suited
for speci�cation of and reasoning about cryptographic protocols. Moreover, the
framework of interactive Turing machines comes about from the connections be-
tween cryptography and complexity, and therefore, some e�ort must be spent to
obtain structural results, such as the composition theorem.

Basic de�nition and properties of the process calculus are discussed in Section
2. In Section 3 we discuss the notion of emulation, prove a general composition
theorem, and analyze the example of oblivious transfer. A comparison to the
interactive Turing machine model is given in Section 4. We conclude the paper
in Section 5.

2 Probabilistic polynomial-time process calculus

In this section, we describe a version of the probabilistic polynomial-time process
calculus [16, 23], with the intention of using of the calculus to derive composi-
tionality properties of secure protocols.



2.1 Syntax

We assume as given once and for all a countable set C of channels. In a discussion
of security protocols it is common to consider a security parameter n 2 N. From
now on, the symbol n is reserved to designate such security parameter. The role
of this parameter is twofold. It bounds the length of expressions that can be sent
through each channel by a polynomial in jnj, the length of n. This is written
into the syntax: we introduce a bandwidth map w : C ! q, where q is the set
of all polynomials in one variable taking positive values on natural numbers.
Given a value n for the security parameter, a channel c can send messages with
at most w(c)(jnj) bits. It turns out that the security parameter also bounds all
the computation in the calculus by probabilistic polynomial time. This property
the calculus is proved in [23].

The protocol language consists of a set of terms, or functional expressions
that do not perform any communication, and processes, which can communicate
with each other.

We assume a set of numerical terms T (endowed with a set of variables
V ar) with the following two properties. For any probabilistic polynomial (in the
length of the security parameter n) time function f there is a term t 2 T and
the associated probabilistic Turing machine Mt that computes f . Furthermore,
given any term t 2 T , the associated probabilistic Turing machine Mt is always
probabilistic polynomial time, PPT, with input n and the numerical values of
variables of t. (An example of such a set of terms T is described in [22], but
the details of the construction are not needed here.) In order to ease notation,
we shall confuse a term t(x) with the a probabilistic polynomial time function
f(x; n) associated to the PPT machine Mt. Hence, one can envision T simply
as the set of all probabilistic polynomial time functions, neglecting any further
syntax. Once again, mind that all terms denote probabilistic polynomial time
functions in the length of the security parameter n. After �xing n, we denote by
P (t(a)! a) the probability ofMt(a; n) converging to a and P (t(a) = t0(b)) the
probability of both associated Turing machines converging to the same value.

We now present our language of process expressions, a version of Milner's
Calculus of Communicating Systems, CCS [21]. Bear in mind, though, that for
us the overall computation must be probabilistic polynomial time and hence we
use only polynomially bounded replication.

De�nition 1. The language of process expressions L is obtained inductively as
follows:

1. 0 2 L (empty process: does nothing);
2. �c:Q 2 L where c 2 C and Q 2 L (private channel: do Q with channel c

considered private);
3. htic 2 L where t 2 T and c 2 C (output: transmit the value of t on channel

c);
4. (x)c:Q 2 L where c 2 C, x 2 V ar and Q 2 L (input: read value for x on

channel c and do Q);
5. [t1 = t2]:Q 2 L where t1; t2 2 T and Q 2 L (match: if t1 = t2 then do Q);



6. (Q1jQ2) 2 L where Q1; Q2 2 L (parallel composition: do Q1 in parallel with
Q2);

7. !qQ 2 L where Q 2 L and q 2 q (polynomially bounded replication: execute
q(jnj) copies of Q in parallel).

Every input or output on a private channel must appear within the scope of
a �-operator binding that channel, that is, the channel name in the scope of a
�-operator is considered bound. A process is a process expression in which the
security parameter is replaced with a �xed natural number. Observe that the
length of any process expression in L is polynomial in jnj.

For each �xed value k of the security parameter, we can remove replication
by replacing each subexpression !qR of an expression Q by q(jkj) copies of R in
parallel, denoted Qk.

Let us also �x the following terminology and useful conventions. We assume
that in any process expression in L private channels are named apart from other
channels, which we call public. Analogously to �rst-order logic, a variable x is
said to occur free in a process expression Q 2 L if there is an occurrence of x
that does not appear in the scope of a binding operator (x)c. The set of all free
variables of Q is called the parameters of Q and is denoted by PQ. A process
expression without parameters is called closed.

Intuitively, messages are essentially pairs consisting of a \channel name"
and a data value. The expression hMic places a pair hc;Mi onto the network.
The expression (x)c:P matches any pair hc;mi and continues process P with x
bound to the least signi�cant w(c)(jnj) bits of valuem, because of the bandwidth
restrictions. When (x)c:P corresponds to a pair hc;Mi, the pair hc;Mi is removed
from the network and is no longer available to be read by another process.
Evaluation of (x)c:P does not proceed unless or until a pair hc;mi is available.

Although we use channel names to indicate the intended source and destina-
tion of a communication, any process can potentially read any message, except
when a channel is bound by the �-operator, hiding communication. However,
we only intend to use private channels for ideal speci�cations and for model-
ing various initial conditions in protocols regarding secret data, but we do not
use private channels for modeling actual protocols. This communication model
allows an adversary (or any process) to intercept a message between any two
participants in a protocol. Once read, a pair is removed so that an adversary has
the power to prevent the intended recipient from receiving a message. An adver-
sary (or other process) may overhear a transaction without interfering simply
by retransmitting every communication that it intercepts.

Observe that the output primitive of the calculus allows us to compute the
image of a probabilistic polynomial time function f into some value a and send a
through a channel c (or part of it if the bandwidth of c is too small). Moreover,
the matching condition endows the calculus with the possibility of checking
whether two terms converge to the same value. As we shall see, by combining
these primitives we give a lot of power to the calculus.

In order to illustrate the 
exibility of the process calculus we present the
following two examples:



Example 1 (RSA encryption and decryption).
Start by considering a very simple process S that knows some messageM and

integers a;m and just outputsMa mod m, this dummy process can be presented
as S(M) := hMa mod miu. Let us develop this just a bit more, and consider a
remote procedure that receives x and outputs xa mod m. This procedure can
be modeled by the following process: RP := (x)c:S(x).

Finally, consider that p; q are primes, and a; b are integers such that ab �
1 mod �(pq). Consider the process RSA(a; b; pq) := Send(M) j Rec, where
Send(M) := hMa mod pqiu and Rec := �u0 :(x)u:hx

b mod pqiu0 .
Here the sender sends a message encrypted with the receiver's encryption key

a and the receiver decrypts with its decryption key b and stores the plaintext
privately.

Example 2 (Modular sequential composition). Suppose that a process Q(c! u)
receives inputs through public channels c, works these inputs in some way, and
returns relevant outputs through public channels u. If another process R needs
at some point to use Q, R just needs to feed Q with the required inputs, say
i and wait for Q to output through channels u. Indeed, process R could be
de�ned, for instance, as R := hiicj(x)u: R

0jQ(c! u).

2.2 Semantics

The semantics of a process Q is a Markov chain S(Q) over multisets of a special
kind of processes, which we call eligible. Intuitively, the states of S(Q) represent
reduction stages of the process and the transitions denote probabilistic choices
between reductions. Recall that only the values on public channels are observed,
and thus in the semantics these channels have special status.

The initial state S0 of S(Q) is the multiset consisting of certain subprocesses
of Q running in parallel, that is, if Q = Q1j : : : jQm then S0 = fQ1; : : : Qmg
where the head operator of each Qi is not parallel composition. This setting
captures the idea that in the initial state all such subprocesses are available
for reduction. Actually, one obvious exception to this construction needs to be
considered: if Q = 0 then there is no process to be reduced, and so, S0 is the
empty multiset. At this stage, we assume that the security parameter n is �xed,
and therefore, all iterations have been replaced by parallel compositions.

Taking into account the discussion above, it is clear that we have to dis-
tinguish processes with head operator di�erent from parallel composition. We
call all these processes eligible for reduction and they can be de�ned formally as
follows:

De�nition 2. The set of eligible processes E is de�ned inductively as follows:

{ 0 2 E ;
{ htic 2 E where t 2 T and c 2 C;
{ (x)c:Q 2 E where c 2 C, x 2 V ar and Q 2 L;
{ [t1 = t2]:Q 2 E where t1; t2 2 T and Q 2 L;



In order to present the operational semantics, we set some notation on �nite
multisets. A �nite multiset M over a set L is a map M : L ! N such that
M�1(N+ ) is �nite. The di�erence of M and M0 is the multiset MnM0 where
(MnM0)(l) = max(0;M(l)�M0(l)). The union of two multisetsM andM0 is
the multisetM[M0 where (M[M0)(l) =M(l)+M0(l). We say thatM�M0

i� M(l) � M0(l) for all l 2 L. Furthermore, we say that l 2 M i� flg � M.
Finally, we call }fm(L) the set of all �nite multisets over L.

As discussed above, given a process Q = Q1j : : : jQm we need to construct the
initial state S0 = fQ1; : : : Qmg where Qi is an eligible process. This construction
is also useful during reduction, since after reducing some processes more parallel
compositions may appear.

To deal with the binding channel operator � we consider a set of fresh chan-
nels F and a fresh function

fresh : C ! F

that maps a channel c to a fresh channel c0 (that is, that does not occur anywhere
else) such that w(c) = w(c0). This fresh function insures that one can �nd a
channel c0 not occurring in any other process and therefore c0 can be considered
private to some process at hand. As expected, the communication through these
channels is not observed.

Once again, at this step we assume a �xed security parameter n and that all
iterations have been replaced by parallel compositions.

De�nition 3. Given a process Q 2 L without iteration we obtain the multiset
of sequences of Q, which we denote by MQ, as follows:

{ MQ = fg whenever Q = 0;
{ MQ = fQg whenever Q is eligible and di�erent from 0;
{ MQ = MRc

fresh(c)
whenever Q = �c:R and where Rc

fresh(c) is the process

where all free occurrences of c where replaced by fresh(c);
{ MQ =MQ0 [MQ00 whenever Q = Q0jQ00.

Instead of presenting the semantics with probabilistic labeled transition sys-
tems as in [16, 23], here we will use an alternative: Markov chains, a well-
established concept from the stochastic processes community, following the style
in [19].

Recall that a Markov chain A over a set S can be modeled as a state machine
with state space S where transiting from state s to state s0 has probability
0 � A(s; s0) � 1. Obviously, these probabilities are such that for any s 2 SX

s02S

A(s; s0) = 1:

Example 3. The following simple Markov chain models the stochastic process of
independently tossing a fair coin ad nauseam:

Heads

1=2
))

1=2
,,
Tails

1=2

ll

1=2

ss



Markov chains are specially suited to model the semantics of the process
algebra, since, like in [16, 23], process reduction is probabilistic and depends
only of the (multi)set of subprocesses that remain to be reduced. Thus, the
semantics of a process Q is a Markov chain over the multisets of eligible process
subprocesses of Q.

In order to establish the semantics for all processes, one can consider a huge
Markov chain S, that given any multiset of eligible processes decides, accordingly
to some probabilistic rules, which terms should be reduced. Such Markov chain
is usually called a scheduler. Hence, given a multiset M of eligible processes
there is a probability S(M;M0) of reducingM toM0. The semantics of a single
process Q is recovered by restricting the scheduler S to the states reachable from
the multiset MQ of sequences of Q.

Note that one can not accept any Markov chain as a scheduler. For instance,
if the scheduler is at state fg, and therefore there is no process to reduce, the
scheduler can not transit to, say, fQg with positive probability. In other words,
S(fg; fQg) must be zero. Hence, if the scheduler transits from one state to an-
other with positive probability then at least one reduction must be enabled. For
this reason, it is relevant to enumerate all possible reductions:

1. Term reduction: a term not in the scope of any input is reduced.
2. Match: a match between terms occurs.
3. Mismatch: a mismatch between terms occurs.
4. Communication: two processes communicate via an input and output.
5. Termination: none of the previous reductions is enabled (and so reduction

has terminated).

Communication has lower priority than term reduction, match and mismatch.
Hence, communication is only enabled when none of the previous mentioned
reductions are enabled. As stated before, each reduction impose restrictions on
the scheduler. For instance, Termination imposes that if there is no reduction
enabled at state M then S(M;M) = 1. All other restrictions are more else
obvious and are captured in the following de�nition.

De�nition 4. A scheduler S for a security parameter n is a Markov chain with
state space }fm(E) such that if S(M1;M2) > 0 then one of the following con-
ditions hold:

1. Term reduction: htic 2 M1 andM2 = (M1 nfhticg)[fhmicg; htic not in the
scope of any input, t does not have any free variables, t evaluates to m0 with
positive probability and m corresponds to the least signi�cant w(c)(jnj) bits
of m0; the transition probability is given by

S(fhticg; fhmicg) =
X

m0:m=m0jw(c)(n)

P (t! m0):

2. Match: [t1 = t2]:Q 2 M1 where t1; t2 are closed terms and M2 = (M1 n
f[t1 = t2]:Qg) [MQ; the transition probability is given by

S(f[t1 = t2]:Qg; fQg) = P (t1 = t2):



This transition is probable whenever there is a match expression inM1 and
t1 evaluates to the same value than t2 with positive probability.

3. Mismatch: [t1 = t2]:Q 2 M1 where t1; t2 are closed terms and M2 = (M1 n
f[t1 = t2]:Qg); the transition probability is given by

S(f[t1 = t2]:Qg; fg) = P (t1 6= t2):

This transition is probable whenever there is a match expression inM1 and
t1 evaluates to a di�erent value than t2 with positive probability.

4. Communication: fhmic; (x)c:Qg �M1; all other transitions are not probable
forM1;M2 = (M1nfhmic; (x)c:Qg)[MQx

m
whereQx

m stands for the process
where we substitute all (free) occurrences of x by m in Q; This transition is
probable whenever there is a pair input/output for a channel c in M1 and
no term reduction, match or mismatch transition is probable.

5. Termination: M1 = M2; S(M1;M2) = 1; and all other transitions are
not probable for M1. Whenever all reductions were made, the only enabled
transition is the loop over the same state, which means that the reduction
has terminated (and therefore M1 is an absorbing state).

Note that from a practical view point, a scheduler can be seen as a process
dispatcher, that decides, based on some policy, which is the next process to
reduce. Moreover, schedulers are expected to have the following good properties:

1. Channel and variable independence: probabilities are independent of the
names of the channels and variables, that is:
{ S(M1;M2) = S(M1

x
y ;M2

x
y) provided that x occurs free with respect

to y in all processes of M1 and M2.
{ S(M1;M2) = S(M1

c
d;M2

c
d) where w(d) = w(c) and d does not occur

in all processes of M1 and M2;
2. Environment independence: probabilities are independent of the processes

which are not involved in the transition, that is

S(M1;M2jM �M1 \M2) = S(M1 nM;M2 nM):

3. Computational eÆciency: the scheduler is modeled by a probabilistic poly-
nomial time Turing machine.

It is straightforward to check that the scheduler that gives uniform distribution
to all possible transitions veri�es the above properties.

As stated before, the operational semantics for a process Q is de�ned by
restricting the scheduler.

De�nition 5. Given a process Q and a scheduler S, the operational semantics
of Q is the subMarkov chain S(Q) of S consisting of all states reachable from
MQ such that S(Q)0 =MQ that is, the initial state of S(Q) is MQ.

Note that the loops in S(Q) are the absorbing transitions, and hence, all the
states are either transient or absorbing. This fact implies that for k suÆciently
large we have P (S(Q)k = S(Q)k+m) = 1 for all m 2 N: In other words, any
random sampling of S(Q) will end in an absorbing state, and therefore S(Q)
always terminates. This is more or less expected, since in [23] it has been shown
that S(Q) can be modeled by a PPT machine and so, S(Q) always terminates.



2.3 Observations

In order to establish the observations of a process Q, we consider a modulated
Markov process K(Q) = (S(Q); O(Q)) where O(Q) is the stochastic process of
observations of Q. The term modulated here means the probability distribution
over the observations is computable from the distribution over the states.

This process is de�ned as expected: when a communication with a pub-
lic channel occurs the pair (channel,output) is observed; when another type of
transition occurs nothing is observed, which is modeled by the special symbol � .
Hence, the set of observations is (C � N) [ f�g. Naturally, the probabilities of
the observations are guided (modulated) by the probabilities on S(Q). Given a
scheduler S, we can obtain the global observation process K(S;O) as follows:

De�nition 6. Given a scheduler S and a security parameter n, we de�ne the ob-
servation modulated Markov process K = (S;O) where O is a stochastic process
over (U � N) [ f�g such that:

{ K((M1; o1); (M2; o2)) = S(M1;M2) whenever one of the following condi-
tions hold:
� o2 = (c;m) and the public channel c outputs m in the transition of M1

to M2 in S (note that c can not be a fresh channel);
� o2 = � and the transition fromM1 toM2 in S was not a communication
over a public channel.

{ K((M1; o1); (M2; o2)) = 0 for all other cases.

Observe that K is indeed a Markov process modulated by S, since there exists
a function f such that K((M1; o1); (M2; o2)) = S(M1;M2)f(M1;M2): Once
again, by restricting K to S(Q) we obtain the required modulated stochastic
process of observations K(Q) for the process Q. For the sake of easing notation
we denote the set of all observations by Ob = (U � N) [ f�g.

In order to establish observational equivalence, we need to compute the prob-
ability of observing some output o 2 Ob at any point of the reduction trace. We
denote this probability by P (o 2 T ) and it can be computed as follows:

De�nition 7. Given an observation process K = (S;O) the probability of ob-
serving some output o 2 Ob at any point of the reduction trace is

P (o 2 T ) =

1X
i=1

P

0
@ î

j=1

Oj 2 Cj

1
A

where Ci =

�
fog if j = i

Ob n fog otherwise
:

After �xing a scheduler S, the probability of the trace outputting o is calcu-
lated by an in�nite series. Each term of the series represents the probability of o
being output for the �rst time at the i-th reduction step. Hence, for any process
Q, T (Q) measures the probability of Qn generating the output o at any point of
its reduction.

Next, we present a toy example to articulate the concepts discussed above.



Example 4. Start by considering the following simple process expression Q

< Rand + 1 >c j (x)c:hx + 1id j h2id j (y)d:hy + 1ie

where Rand is a uniform Bernoulli random variable taking values over f0; 1g
(that is, it has 1

2 probability of taking value 0 or 1). The multiset of sequences
of Q is

MQ = f< Rand + 1 >c; (x)c:hx+ 1id; h2id; (y)d:hy + 1ieg:

We proceed by considering three di�erent types of schedulers. For the sake of
simplicity we skip over some additions.

1) Assume that the scheduler gives more priority to reducing the leftmost pro-
cesses than to reducing the rightmost ones. For this particular example, we
assume that MQ is ordered just to express clearly which terms are reduced �rst
by the scheduler. In that case S(Q) is as follows:

fhRand + 1i; (x)c:hx+ 1id; h2id; (y)d:hy + 1ieg

1
2

xxrrrrrrrrrr
1
2

&&MMMMMMMMMM

fh1ic; (x)c:hx+ 1id;
h2id; (y)d:hy + 1ieg

1

��

fh2ic; (x)c:hx+ 1id;
h2id; (y)d:hy + 1ieg

1

��
fh2id; h2id; (y)d:hy + 1ieg

1

��

fh3id; h2id; (y)d:hy + 1ieg

1

��
fh2id; h3ieg

1

DD fh2id; h4ieg

1

ZZ

The modulated observation Markov process K(Q) = (S(Q); O(Q)) is:

fhRand + 1i; (x)c:hx+ 1id; h2id; (y)d:hy + 1ieg

1
2
:�

xxrrrrrrrrrr
1
2
:�

&&MMMMMMMMMM

fh1ic; (x)c:hx+ 1id;
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Hence, the probability of observing an output in the trace T is as presented in
the following table:

hc; 1i hc; 2i hd; 2i hd; 3i � o

1
2

1
2

1
2

1
2 1 0

where o is any output in Ob n fhc; 1i; hc; 2i; hd; 2i; hd; 3i; �g.

2) Now, suppose that the scheduler gives more priority to reducing the rightmost
processes than to reducing the leftmost ones. Once again we assume that the
multiset is ordered. In that case S(Q) (together with K(Q)) is as follows:
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Note that even if reduction is from the right to the left, evaluating Rand has
priority over any other reduction. The probability of observing an output in the
trace T is:

hc; 1i hc; 2i hd; 2i � o

1
2

1
2 1 1 0

where o is any output in Ob n fhc; 1i; hc; 2i; hd; 2i; �g.

3) Finally, suppose that the scheduler chooses uniformly which processes to
reduce. In that case S(Q) (together with K(Q)) is of the following form:
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The probability of observing an output in the trace T is:

hc; 1i hc; 2i hd; 2i hd; 3i � o
1
2

1
2

7
8

1
8 1 0

where o is any output in Ob n fhc; 1i; hc; 2i; hd; 2i; hd; 3i; �g.

From now on, we assume �xed once and for all a scheduler S. Thus, all
random quantities mentioned in the sequel are bound to S.

2.4 Observational Equivalence

Let us now discuss the asymptotic formulation of observational equivalence for
our process calculus introduced in [16, 23], which draws on two sources. One
source is programming language theory with its standard notion of observa-
tional equivalence of two programs P and Q, which intuitively means that in
any environment, P has the same observable behavior as Q does in that same
environment.



Another source of our asymptotic formulation is the notion of computational
indistinguishability by polynomial-time statistical tests, standard in cryptogra-
phy [13, 30]. Intuitively, two probability distributions are computationally in-
distinguishable if it is not feasible to distinguish them. Stated somewhat more
formally, this means that the two distributions cannot be distinguished, up to
a negligible function of a security parameter, by probabilistic polynomial-time
tests.

In order to present the asymptotic formulation of observational equivalence
in detail in the setting of our calculus, we use the following de�nition of a context,
intended to formalize an intuitive idea of a program environment:

De�nition 8. The set of contexts Ctx is de�ned inductively as follows: [ ] 2
Ctx; �c:C[ ] 2 Ctx provided that C[ ] 2 Ctx; (x)c:C[ ] 2 Ctx provided that
C[ ] 2 Ctx; [t1 = t2]:C[ ] 2 Ctx provided that C[ ] 2 Ctx; C[ ]jQ 2 Ctx

provided that C[ ] 2 Ctx and Q 2 L; QjC[ ] 2 Ctx provided that C[ ] 2 Ctx

and Q 2 L; and !qC[ ] 2 Ctx provided that C[ ] 2 Ctx and q 2 q.

Given a context C[ ] and a process expression Q, the notation C[Q] means
that we substitute the process Q for the [ ] in C[ ]. We recall that for each �xed
value k of the security parameter, the process C[Q])k is obtained from C[Q] by
replacing each subexpression !qR by q(jkj) copies of R in parallel.

Let us also recall that to establish the trace process T we rely on a proba-
bilistic polynomial-time scheduler S and the associated observation process K.
Hence, any trace process T is parameterized by a probabilistic polynomial-time
scheduler S.

De�nition 9. Let Q1 and Q2 be closed process expressions. We say that Q1

and Q2 are observationally equivalent or computationally indistinguishable i� for
every scheduler S, every context C[ ], every polynomial q(), every observation
(u;m) and n suÆciently large

jP (T (C[Q1])n) = (u;m))� P (T (C[Q2])n) = (u;m))j � 1=q(n):

In this case we write Q1 ' Q2.

Therefore two closed process expressions are computationally indistinguish-
able i� they are indistinguishable by contexts, that is, there is no context that can
distinguish, up to a negligible function of the security parameter, the observable
behavior of the given process expressions in that context. Intuitively, this de�ni-
tion merges with the standard de�nition of computational indistinguishability,
since process expressions can be modeled by probabilistic polynomial-time Tur-
ing machines [23] and the contexts C[ ] induce the required distinguishing prob-
abilistic polynomial-time tests. However, one bene�t of our process language-
based approach is the following proposition:

Proposition 1. Computational indistinguishability is a congruence relation with
respect to the primitives of L.



Proof. Both symmetry and re
exivity are trivial to check. Transitivity follows
by triangular inequality, and taking into account that 1

2q(n) is a polynomial.
Finally, congruence on the operators follows by noticing that for any contexts
C[ ] and C 0[ ], C 0[C[ ]] is also a context. ut

3 Emulation and Composition Theorem

One rather 
exible and expressive way of formulating the requirement that a
given protocol satisfy some security property or ful�lls a cryptographic objec-
tive or task is by relating the given protocol to an ideal protocol that clearly
satis�es the property or ful�lls the task. This idea appears in various forms al-
ready in [15, 6, 5, 20]. In our approach [22, 23, 17], motivated by [28, 29, 1], we
formulate the relationship between the given and the ideal protocol by means of
observational equivalence. It is also very useful, especially for security properties
that allow protocol participants to behave in an adversarial way toward each
other, to structure the notion of an ideal protocol so that the generic descrip-
tion of the security property or the cryptographic task itself is separated from
the description of the intended adversarial behavior of the participants or even
external adversaries. This may be presented by means of the so-called emulation
relation [7]. Let us discuss how this method may be expressed in our process
calculus framework.

Let I be a generic, ideal representation some cryptographic objective or task.
One can think of I as a generic process that accomplishes the objective. Such
a process I is sometimes called a functionality. The adversarial behavior, or
the threat model, may be expressed as the kind of environment B or an ideal
adversary, in the presence of which I is intended to be executed. In our setting
the description of the environment is given by means of families of contexts.

A similar distinction may be made between actual protocols, written as pro-
cess expressions Q, and their intended adversaries A which are de�ned as certain
families of contexts. We say that a protocol Q securely realizes the functionality
I , or that Q emulates I , if for any real adversary, say represented by a context
A[ ] 2 A, the trace process of A[Q] is observationally equivalent to the trace
process of B[I ] for some ideal adversary, represented by a context B[ ] 2 B,
where an ideal adversary is an adversary which cannot corrupt I . This property
asserts that given a real adversary A[ ] we cannot computationally distinguish
the public outputs of A[Q] from the public outputs of the well-behaved process
B[I ] for some B[ ] 2 B. Therefore, we infer that A[Q] is also well-behaved. Re-
call that we use outputs to model what information participants possess, so if
A is able to obtain some data eÆciently from Q that A should have not, then
A can issue an output with such information. In this case, we would not �nd
any ideal adversary B which is able to gather from I similar information (by
choosing correctly the set Bof ideal adversaries), and hence, the trace process
of A[Q] is not going to be observationally equivalent from B[I ] for any possible
ideal adversary B[ ] 2 B.



This discussion leads to the concept of emulation with respect to a set of real
adversaries A and ideal adversaries B.

De�nition 10. Let Q and I be closed process expressions and A and B sets
of contexts, then Q emulates I with respect to A and B i� for all contexts
A[ ] 2 A there exists a context B[ ] 2 B such that A[Q] ' B[I ]: In such case
we write Q �A;B I and say that Q is an emulation of I , or that Q is a secure
implementation of I with respect to A and B.

A desirable property of the emulation relation is a compositionality property,
informally discussed in the setting for secure computation already in [20] and
more recently in [7]. Intuitively, if Q is a secure implementation of I , if R and
J are two protocols that use the ideal protocol I as a component, and if R is a
secure implementation of J , then RI

Q should be a secure implementation of J .
This property may be formally captured in our process calculus as follows:

Theorem 1. LetQ; I be closed process expressions, let J [ ] and R[ ] be contexts,
and let A;B; C and D be sets of contexts. If R[B[I ]] �C;D J [B[I ]] for any B[ ] 2 B
and Q �A;B I , A[ ] 2 A there exists B[ ] 2 B such that R[A[Q]] �C;D J [B[I ]].

Proof. Let A[ ] 2 A and B[ ] 2 B be such that A[Q] ' B[I ]. Now choose
some C[ ] 2 C. Clearly C[R[A[Q]]] ' C[R[B[I ]]] since ' is a congruence relation.
Moreover, since R[B[I ]] �C;D J [B[I ]], there is a D[ ] 2 D such that C[R[B[I ]]] '
D[J [B[I ]]]. Finally, by transitivity of ', we have that C[R[A[Q]]] ' D[J [B[I ]]]
and hence R[A[Q]] �C;D J [B[I ]]. ut

Ideal protocols often consist of a generic, honest part I and an ideal adversary
B, and are therefore of the form B[I ]. This justi�es why we consider R[B[I ]] in
the proposition above instead of R[I ]. Moreover, adversaries for R and J might
be di�erent from those of Q and I . Therefore, we need to consider two pairs of
sets of contexts, C, D and A, B.

3.1 Example: Oblivious transfer

Oblivious transfer (OT) [27, 12, 14, 9] is a two-party protocol where one agent is
called the sender and the other the receiver. The sender's input is a vector of k
bits b = b1 : : : bk and the receiver's input is a number i, 1 � i � k. The purpose
of the protocol is, intuitively, to transfer the i-th bit bi of the vector b to the
receiver without revealing any other bit to the receiver and without revealing the
address i to the sender. We will refer to these two informal security requirements
as sender security and receiver security, respectively.

Following the general paradigm just discussed at the beginning of this Sec-
tion, we would like to express either of these security requirements by means
of observational equivalence to a certain ideal protocol, in this case, an ideal
version of oblivious transfer. In an ideal setting there is a trusted and neutral
third party, T = (x)v :(y)v0 :hxyiv00 that expects the vector of k bits b from the
sender and the value i from the receiver, and then sends bi to the receiver, where



by convention bi = bk if i � k. Informally, we can think of the sender and the
receiver as each communicating with T on separate private channels, or even
more simply, that the sender and the receiver are subsumed into T . In any case,
the only information T reveals to anyone is xy on channel v00. T has no other
outputs. T (or a copy of T with the channels renamed) is the oblivious transfer
functionality.

What are the appropriate threats to consider? In the worst case the adversary
may be adaptive [9], i.e., the adversary can corrupt any of the parties at any
point in response to data received during the protocol execution. We do not
discuss this threat model here. Rather, we restrict ourselves to the simpler and
somewhat weaker variant, the so-called non-adaptive or static adversaries [9],
which can corrupt parties only once, at the beginning of the protocol execution.
In this variant, it makes sense to consider several cases separately, depending on
which party, the sender or the receiver, is honest and which is an adversary, and
furthermore, the distinction between which is which does not change during the
run of the protocol. We consider only one case, where the sender is honest and
the receiver is an adversary, and in this case we are interested in sender security.

What should the static adversary receiver be able to do in the presence of the
ideal oblivious transfer, the functionality T ? In our setting everyone is bounded
by probabilistic polynomial time, so in any case the receiver's output must be a
probabilistic polynomial-time computable function, say f , of the receiver's input,
i, and of any reply that the receiver can get from T , that is, one bit of the vector
b. This may not be the very i-th bit because the receiver could have sent another
request, j, to T in order to gain more information. But T gives only one reply
so the receiver cannot learn more than one bit from T . That is, the adversary
receiver's output must be of the form f(i; bg(i)), where f and g are probabilistic
polynomial-time computable functions. We will assume that an ideal adversary
receiver is basically a parallel composition of processes, with one private call to a
subroutine (intended to be T ). The following de�nition describes this in a formal
way:

De�nition 11. An ideal receiver adversary is a context B[ ] such that B[T ] is
observationally equivalent to R[T ], where R[ ] is a context of the form

P j(z1)u1 : : : : (zm)um :(y)v1 :�v0 :�v00 :(ht(y)iv0 j[ ]j(z)v00 :Q);

where the other input channel of T (channel v in the description above) does
not occur and where the only output not corresponding to any input is public
and it occurs in Q, and this output is of the form ht0(y; z)iu, where t and t0 are
terms. We denote the set of all ideal receiver adversaries by I.

Real adversaries that will attack a real sender have no restrictions whatsoever
to the amount of information they might obtain from interacting with a real
sender, other than that they must do that in probabilistic polynomial time, and
that they cannot corrupt the sender. We shall assume that a real adversary is a
process running in parallel with the sender, that is,



De�nition 12. A real receiver adversary is a context of the form [ ]jAWe denote
the set of all real receiver adversaries as R.

We say that a protocol QS jQR is a sender secure oblivious transfer protocol,
if the sender QS running in parallel with any real adversary emulates the ideal
setting, that is:

De�nition 13. A protocol QS jQR is a sender secure oblivious transfer protocol
i� QS �R;I T .

Note that the condition that the de�nition imposes only involves the real
sender QS , not the real receiver QR. Furthermore, note that the correctness
condition on the protocol may be expressed in a similar way, by requiring that
QS jQR be observationally equivalent to R[T ] for some honest ideal adversary
receiver R[ ] that makes an honest request to T and outputs T 's reply, i.e., such
that t(y) = y and t0(z; y) = zy.

The following result is an immediate corollary of Theorem 1.

Proposition 2. The notion of sender secure is compositional. That is, let J [ ]
andK[ ] be contexts and let C and D be sets of contexts. IfK[B[T ]] �C;D J [B[T ]]
for any B[ ] 2 I and QS �R;I T , then for any adversary A 2 R there exists
B[ ] 2 I such that K[QSjA] �C;D J [B[T ]].

We now present a well-known oblivious transfer protocol. We consider the
version presented in [9, 14], which is an adaptation of the original protocol due
to Rabin [27]. In order to establish this protocol, one needs to introduce some
assumptions: a collection of trapdoor permutations f = ff� : D� ! D�g�2I ,
where each f� is probabilistic polynomial-time in n but hard to invert; a trap-
door generator G which is is probabilistic polynomial-time in n and generates a
pair (�; t) with � 2 I ; and a hard-core predicate B on f . Mind that for a pair
(�; t) there is a function f�1(t; :), probabilistic polynomial-time in n, such that
f�1(t; :) is the inverse of f�. Moreover, a hard-core predicate B : D� ! f0; 1g
is a predicate computable in polynomial time (in its input) such that knowing
f�(x) does not help to predict B(x), that is, it is hard to predict B from an image
by f�. We ask the reader to see [13] for more details on these assumptions.

Example 5 (Rabin OT protocol). The protocol is composed of two parallel agents,
the Sender and the Receiver. First, on k-bit input b1 : : : bk, the Sender se-
lects a trapdoor pair (�; t) using a term G and private channel vS and then
sends � to the Receiver. Upon reading an input i and receiving �, the Re-
ceiver chooses uniformly and independently at random k elements e1; : : : ek of
D� and then, sends the elements y1 : : : yk to the Sender with yi = f�(ei), and
yj = ej when j 6= i. (Thus the receiver knows f�1

� (yi) = ei but cannot pre-
dict B(f�1

� (yj)) for any j 6= i.) When the Sender receives y1 : : : yk it sends
back the tuple (bj � B(f�1(t; yj)))j2f1;:::;kg, where � denotes the usual bit ad-
dition operation. (Recall that f�1(t; yj) = f�1

� (yj) for every j 2 f1; : : : ; kg.)
The Receiver upon receiving the tuple picks the i-th element ci and gets bi via
ci � B(ei) = (bi � (B(f�1

� (f�(ei)))) � B(ei) = bi. The protocol can be written
in the process calculus as follows:



{ S = (b1; : : : ; bk)v0 :�vS (
hGivS j
(�; t)vS : (

h�iv2 j
(y1; : : : ; yk)v3hb1�B(f

�1(t; y1)); : : : ; bk�B(f
�1(t; yk))iv4

)
) ;

{ R = (i)v1 :(�)v2 :�vR : (!khRand(D�)ivR)j
(e1)vR : : : (ek)vR : (

he1; : : : ; ei�1; f�(ei); ei+1; : : : ; ekiv3 j
(c1; : : : ; ck)v4 : hci �B(ei)iu
).

Proposition 3. The Rabin OT protocol is not sender secure.

Proof. The honest receiver in the protocol is too generous: an adversary receiver
can easily do for each j 6= i what the honest receiver in the Rabin protocol
does only for i, and thus get from the sender all the bj 's. That is, consider the
following real receiver adversary:

R[i] = (i)v1 :(�)v2 :�vR : (!khRand(D�)ivR)j
(e1)vR : : : (ek)vR : (

hf(e1); : : : ; f(ek)iv3 j
(c1; : : : ; ck)v4 : hc1 �B(e1); : : : ; ck �B(ek)iu
).

It is easy to see that this receiver outputs all the bi's. Clearly this is a successful
attack by the receiver, who learns the entire input string of the sender. Formally,
the output containing all the bi's can be computationally distinguished from an
output of an ideal receiver adversary, which is of the form f(i; bg(i)), where f
and g are probabilistic polynomial-time functions. ut

In Section 8 of the full paper [9] and in Section 7.4 of [14] it is shown how to
compile this protocol into an oblivious transfer that is sender secure as well as
receiver secure. A related compilation method is discussed in [8]. The details of
the compiler itself can be expressed in our process calculus, but that falls beyond
the scope of this paper.

4 Related work

We brie
y compare our approach with related work based on interactive Turing
machines [7, 9] and secure reactive systems [25, 26, 3, 4].

The approach in [7, 9] is formulated in terms of interactive Turing machines
(ITM), which are basically the familiar Turing machines with several additional
tapes: read-only random input tape, read-and-write switch tape (consisting of
a single cell), and a pair of communication tapes, one read-only and the other
write-only. Several ITMs can be linked through their communication tapes. The



security parameter, usually written in unary, is a shared input among a collection
of linked ITMs, but each ITM may have separate, additional inputs. It is assumed
that the linked ITMs are polynomial-time in the security parameter. Details may
be found in [7, 13].

The framework proposed in [7] involves a relationship between a real model
representing protocol execution of actual protocols and an ideal model repre-
senting a generic version of a cryptographic task. A protocol in the real model
securely realizes the task if it emulates an ideal process for the task. Either model
consists of a �nite set of ITMs representing the parties in the protocol, another
ITM representing the protocol adversary, and yet another ITM representing the
computational environment, including other protocol executions and their ad-
versaries, other users, etc. The environment has external input known only to
itself. The environment provides the inputs to other parties and it reads their
outputs. The basic idea is that from the environment's point of view, execut-
ing the protocol in the real model should look the same as the ideal process. In
somewhat more detail, a real protocol P securely realizes an ideal process I if for
any real adversary A there is an ideal adversary S such that no environment can
tell with non-negligible probability whether it is interacting with P and A in the
real model or with I and S in the ideal model. A general composition theorem
is proved in [7] and a wide variety of protocols have been studied in this frame-
work in [7, 9] and in several other papers. A related framework based on secure
reactive systems, in which ITMs are seen from the perspective of input/output
automata [18] is studied in [25, 26, 3, 4].

In comparison, keeping in mind that our language of functional terms is rich
enough to re
ect probabilistic polynomial-time computable functions (and only
those functions), functions computed by single ITMs may be represented in the
framework discussed in this paper by simple process expressions, with channels
representing communication tapes. Keeping in mind that our language of func-
tional terms is rich enough to re
ect probabilistic polynomial-time computable
functions. Finite sets of ITMs may be represented by a parallel composition
of processes, or more generally, by contexts that involve parallel composition.
Adversaries and the environment are represented by contexts. In this paper we
presented this in more detail in the example of oblivious transfer in the case of
non-adaptive adversaries. We have investigated several other protocols in this
light and we believe there is a general correspondence between our framework
and the frameworks based on ITMs. In this regard it is useful to remember that
any process expression in our calculus is provably executable in probabilistic
polynomial-time [23]. An interesting technical point is that we consider exter-
nal probabilistic polynomial-time schedulers of input/output communications on
channels while in [7] the scheduling of communications is done by the adversary.
It is possible, however, to force the scheduling by structuring the contexts ap-
propriately, in particular the contexts playing the role of the adversary. This
feature is already present in the speci�c example in the previous section.



5 Conclusions

We have expressed security requirements for cryptographic protocols in the
framework of a probabilistic polynomial-time process calculus. We have also
proved an abstract composition theorem for security properties. These results
provide a framework for a compositional analysis of security protocols. We
showed how to express an oblivious transfer protocol and its security require-
ments in the process calculus. Finally, we have discussed a relationship between
our process calculus and the interactive Turing machine approaches in [7, 25].

There are several advantages of using a process calculus instead of interactive
Turing machines. Namely, the process calculus is a much more natural and clear
language for specifying protocols than the low-level vocabulary of interactive
Turing machines. Indeed, the precise, formal process calculus expressions remind
one of high-level programming language code and are often actually shorter than
even the informal descriptions of the protocol in English, let alone the low-level
details of Turing machines. Another advantage lies in the fact that compositional
issues are dealt with in an intrinsic, built-in way using process calculus. Indeed,
in order to show the composition theorem, it is enough to prove a congruence
property for the emulation relation. The candidate for the congruence relation is
obvious: if A emulates B then C[A] emulates C[B] for any context C. Moreover,
we note that probabilistic polynomial-time process calculus provides an adequate
setting for the concepts related to computational security, since both the parties
and the adversaries expressed in the process calculus are provably bounded by
probabilistic polynomial-time algorithms. Indeed, the work presented here may
be seen as a contribution to the more general e�ort of giving rigorous de�nitions
of security properties independent or particular protocols.
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