A PROBABILISTIC POLYNOMIAL-TIME PROCESS CALCULUS
FOR THE ANALYSIS OF CRYPTOGRAPHIC PROTOCOLS

JOHN C. MITCHELL, AJITH RAMANATHAN, ANDRE SCEDROV,
AND VANESSA TEAGUE

ABSTRACT. We prove properties of a process calculus that is designed for
analysing security protocols. Our long-term goal is to develop a form of pro-
tocol analysis, consistent with standard cryptographic assumptions, that pro-
vides a language for expressing probabilistic polynomial-time protocol steps,
a specification method based on a compositional form of equivalence, and a
logical basis for reasoning about equivalence.

The process calculus is a variant of CCS, with bounded replication and
probabilistic polynomial-time expressions allowed in messages and boolean
tests. To avoid inconsistency between security and nondeterminism, messages
are scheduled probabilistically instead of nondeterministically. We prove that
evaluation of any process expression halts in probabilistic polynomial time and
define a form of asymptotic protocol equivalence that allows security proper-
ties to be expressed using observational equivalence, a standard relation from
programming language theory that involves quantifying over all possible envi-
ronments that might interact with the protocol.

We develop a form of probabilistic bisimulation and use it to establish the
soundness of an equational proof system based on observational equivalences.
The proof system is illustrated by a formation derivation of the assertion,
well-known in cryptography, that El Gamal encryption’s semantic security is
equivalent to the (computational) Decision Diffie-Hellman assumption. This
example demonstrates the power of probabilistic bisimulation and equational
reasoning for protocol security.

INTRODUCTION

There are many methods used in the analysis of security protocols. The main sys-
tematic or formal approaches include specialised logics such as BAN logic [13,19,27],
special-purpose tools designed for cryptographic protocol analysis [39], and theo-
rem proving [55,56] and model-checking techniques using several general purpose
tools [43,46,51,61,63]. Although these approaches differ in significant ways, all
reflect the same basic assumptions about the way an adversary may interact with
the protocol or attempt to decrypt encrypted messages. This common model,
largely derived from Dolev and Yao [26] and suggestions due to Needham and

Key words and phrases. Process Algebra, Observational Equivalence, Probabilistic Bisimulation,
Security Protocol Analysis.
The authors were supported by DoD MURI “Semantic Consistency in Information Exchange,”
ONR Grant N00014-97-1-0505 and OSD/ONR CIP/SW URI “Software Quality and Infrastructure
Protection for Diffuse Computing,” ONR Grant N00014-01-1-0795.

Additional support by OSB/AFOSR MURI “Cooperative Networked Control of Dynamical
Peer-to-Peer Vehicle Systems” Grant.

The third author was additionally supported by NSF Grants CCR-9800785 and CCR-0098096.

The fourth author was additionally supported by a Stanford Graduate Fellowship.

1

2 J. C. MITCHELL, A. RAMANATHAN, A. SCEDROV, AND V. TEAGUE

Schroeder [53], allows a protocol adversary to nondeterministically choose among
possible actions (see [19]). This convenient idealisation is intended to give the ad-
versary a chance to find an attack if one exists. In the presence of nondeterminism,
however, the set of messages an adversary may use to interfere with a protocol
must be restricted severely. Although Dolev-Yao-style assumptions make protocol
analysis tractable, they also make it possible to ‘verify’ protocols that are in fact
susceptible to simple attacks that lie outside the adversary model (see e.g., [55,62]).
A further limitation of deterministic or nondeterministic settings is the inability to
analyse probabilistic protocols.

In this paper we describe some technical properties of a process calculus that was
proposed earlier [41,42,45,50,52] as the basis for a form of protocol analysis that
is formal, yet close in foundations to the mathematical setting of modern cryptog-
raphy. A recent conference paper [59] contains material excerpted from this paper.
The framework relies on a language for defining communicating polynomial-time
processes [50]. The reason we restrict processes to probabilistic polynomial time
is so that we can reason about the security of protocols by quantifying over all
‘adversarial’ processes definable in the language. In effect, establishing a bound on
the running time of an adversary allows us to relax the simplifying assumptions
on what the adversary might do. In particular, we can consider adversaries that
might send randomly chosen messages, or perform sophisticated (yet probabilistic
polynomial-time) computation to derive an attack from messages they overhear
on the network. An important aspect of our framework is that we can analyse
probabilistic as well as deterministic encryption functions and protocols. With-
out a probabilistic framework, it would not be possible to analyse an encryption
function such as ElGamal [28], for which a single plaintext may have more than
one ciphertext. A probabilistic setting is important also because the combination
of nondeterminism and bit-level representation of encryption keys renders any en-
cryption function insecure [41].

Some of the basic ideas of this work are outlined in [41], with the term language
presented in [50] and further example protocols considered in [42]. Some portions of
this paper are summarised in [52,59]. Subsequent to the publication of [59] an error
was found in the operational semantics. In fixing this problem, some rules in the
proof system given in [59] were found to be false. Fortunately, none of our major
results were found to be untrue. The closest, independent technical precursor is
the Abadi and Gordon spi-calculus [2, 3] which uses observational equivalence and
channel abstraction but does not involve probability or computational complexity
bounds; subsequent related work is cited in [1], for example. Prior work on CSP
and security protocols, e.g., [61,63], also uses process calculus and security specifi-
cations in the form of equivalence or related approximation orderings on processes.
One important parallel effort with similar goals, the paradigm of ‘universally com-
posable security’, can be found in [14-18]. The relationship of this paradigm to
our process calculus framework and its compositionality is discussed in [45]. The
paper [45] does not deal with probabilistic bisimulation or the proof rules for our
calculus. Another one based on I/O automata can be found in [7,8,57,58]. Pre-
vious literature on probabilistic process calculi includes, e.g., [11,40,65]. However,
asymptotic equivalence as used in security does not appear in any of these refer-
ences. There are studies of asymptotic equivalence in the context of bisimulations
though, including e.g., [22,23]. This is an orthogonal approach since in this work,

A PROCESS CALCULUS FOR THE SECURITY ANALYSIS OF PROTOCOLS 3

expressions represent non-terminating entities. So, when two expressions are said
to be asymptotically equivalent, it means that the the probabilistic behaviour of the
two expressions approach each other over the course of their (infinite) evaluation
i.e., the two expressions converge over time.

In our setting, expressions denote families of terminating processes indexed by
a security parameter, since we wish to model security protocols. Security proper-
ties are specified as observational equivalences. Specifically, P = Q means that for
any context C[-], the behaviour of expression C[P] is asymptotically (in the secu-
rity parameter) computationally indistinguishable from the behaviour of expression
C[Q]. If P is a protocol of interest, and Q is an idealised form of the expression that
uses private channels to guarantee authentication and secrecy, then P = Q is a
succinct way of asserting that P is secure. We have found this approach, also used
in [14-18,58], effective not only for specifying security properties of common net-
work protocols, but also for stating common cryptographic assumptions. For this
reason, we believe it is possible to prove protocol security from cryptographic as-
sumptions using equational reasoning. The possibility is realised in this paper by
proving security of El Gamal encryption from the standard Decision Diffie-Hellman
assumption, and conversely.

Several advances over our previous efforts [41,42,45,52] were needed to make
these formal equational proofs possible. First, we have refined the operational se-
mantics of our process calculus. Most importantly, we define protocol execution
with respect to any probabilistic scheduler that runs in polynomial time and oper-
ates uniformly over certain kinds of choices (to avoid unrealistic collusion between
the scheduler and a protocol attacker), and we give priority to private (‘silent’)
actions by executing private actions before public communications. Second, we de-
velop a form of probabilistic bisimulation that, while not a complete characterisation
of asymptotic observational equivalence, gives a tractable approximation. Third,
we present an equational proof system and prove its soundness using bisimulation.
Finally, the material in Sec. 7 dealing with computational indistinguishability, se-
mantic security, El Gamal encryption, and Decision Diffie-Hellman is entirely new.

Although our main long-term objective is to base protocol analysis on standard
cryptographic assumptions, this framework may also shed new light on basic ques-
tions in cryptography. In particular, the characterisation of ‘secure’ encryption
function, for use in protocols, does not appear to have been completely settled.
While the definition of semantic security [34] appears to have been accepted, there
are stronger notions such as non-malleability [25] that are more appropriate to pro-
tocol analysis. In a sense, the difference is that semantic security is natural for the
single transmission of an encrypted message, while non-malleability accounts for
vulnerabilities that may arise in more complex protocols. Our framework provides
a setting for working backwards from security properties of a protocol to derive nec-
essary properties of underlying encryption primitives. While we freely admit that
much more needs to be done to produce a systematic analysis method, we believe
that a foundational setting for protocol analysis that incorporates probability and
complexity restrictions has much to offer in the future.

PRELIMINARIES

In this section we establish several basic notions that we will require throughout
this monograph. We start by introducing a notion of probabilistic function tailored

4 J. C. MITCHELL, A. RAMANATHAN, A. SCEDROV, AND V. TEAGUE

to our needs. Next we recapitulate standard treatments and establish notation and
terminology for probabilistic Turing machines, equivalence classes and multisets.

Probabilistic Functions. Let f: X x Y — [0, 1] be a function satisfying:

(1) vx e X: Zyeyf(ny) < 1; and,

(2) ¥x € X: {y € Y|f(x,y) >0}l ¢ N.
Then f is a probabilistic function from X to Y, written f: X --» Y. The second
condition in the definition ensures that the sum in the first condition is well-defined
by stipulating that only a finite number of terms in the sum in the first condition
are non-zero.

We will say that the domain of f is the set X, the codomain of f is the set Y,
and the range of f is the set {y € Y|Ix € X: f(x,y) > 0}. We will write f(x) N y
or Prob [f(x) = y] = p just when f(x,y) = p. A stochastic probabilistic function
f: X --» Y is one in which Vx € X: 3} v f(x,y) = 1.

The composition gof: X x Z — [0,1] of two probabilistic functions f: X --»Y
and g: Y --+ Z is defined as the function satisfying:

Vx S X.Vz S Z: (g Of)(X,Z) = Z f(va) : g(y,Z)
yey

It is easy to verify that the composition g o f: X x Z — [0, 1] of two probabilistic
functions f: X --» Y and g: Y --» Z is a probabilistic function.

Probabilistic Turing Machines. Our presentation follows standard treatments
(see e.g., [6,54]). A random Turing machine (RTM) is a Turing machine with
an extra random-tape and three extra states qrand, Jone and (gero. Initially, the
machine starts with the input on the working tape and an infinite sequence of bits
on the random-tape. When the machine enters state g,anq, control passes to state
Jone if the bit to the right of the current position of the random-tape head contains a
1 and to state (e if the bit to the right contains a 0. Given a probabilistic Turing
machine M we will write M (¥, @) for the result of M on input @ using random bits
given by T.

The RTM M runs in probabilistic poly-time if there exists a polynomial ¢(X) such
that M(¥, @) halts in time q(|d]) for all sequences 7 of bits on the random-tape. We
note that if M runs in probabilistic polynomial time, then M reads at most q(X)
bits of the random-tape. We can view this M as a probabilistic poly-time Turing
machine (PPTM) if we choose the bits on the random-tape uniformly at random
from the space of bitstrings that M can read in its timebound of q(X). In particular,
we will write that M (@) = a with probability p if, choosing a sequence of q(d) bits
uniformly at random, the probability that M(¥,d) = a is p.

We say that a PPTM M computes a probabilistic function f: X --» Y if for all
inputs x € X for all outputs y € Y, we have Prob [f(x) =y] = Prob[M(x) = y].
A probabilistic function f: X --» Y is poly-time computable, or just poly-time, if
it is computed by a PPTM. We note that every function computed by a PPTM
satisfies condition 2 in the definition of a probabilistic function and is, therefore, a
probabilistic function.

Equivalence Relations. An equivalence relation R on X is a subset R of X x X
such that:

(1) Ris reflexive i.e., ¥x € X: (x,x) € R;

A PROCESS CALCULUS FOR THE SECURITY ANALYSIS OF PROTOCOLS 5

(2) R is transitive i.e., Vx,u,z € X: (x,u),{y,z) € R = (x,z) € R; and,

(3) R is symmetric i.e., Vx,y € X: (x,y) € R = (y,x) € R.
For any set X, element x € X, and equivalence relation R C X x X, [x]g is the
equivalence class of x with respect to R and X/ is the set of equivalence classes of
X induced by R. Let E € X/g be an equivalence class of X under the relation R. We
write rep E for a representative element of E i.e., any x € E.

1. A PROBABILISTIC POLY-TIME PROCESS CALCULUS

We assume a countable set Var of variables, a distinguished variable 1 not in
Var, a countable set Channel of channel names partitioned into two countable sets
Unbindable and Bindable, a set Poly = {q: N — N|Va € N: q(a) > 0} of positive
polynomials, a total function width: Channel — Poly, and a symbol = denoting
syntactic identity.

1.1. Terms. We assume the existence of a class of basic terms © for probabilistic
poly-time numeric functions of arbitrary -arity, and a probabilistic function <—: @ x
N* — N called basic term reduction, such that:

(1) If 0 is a basic term with k arguments, then there exists a probabilistic poly-
time Turing machine Mg with k inputs such that Mg(ay, ..., ax) returns
a with probability p iff 0(aq, ..., ax) L, a with probability p; and,

(2) For each probabilistic poly-time function f: N* — N, there exists a k-ary
basic term 6 such that Mg computes f.

The first condition guarantees that all basic terms are computable in polynomial
time, while the second condition guarantees that any probabilistic poly-time func-
tion of type N¥ — N can be expressed by some basic term. One example of such
class of terms is the term calculus OSLR studied in [50] (based in turn on [9,37]).
As a consequence of these two conditions, we will, henceforth, freely move between
terms and functions. Whenever we need to explicitly specify a basic term, we will
use a notation styled on A-calculus. For example, Ax.Ay.(x +y) denotes the basic
term that computes the sum of its two inputs.

Definition 1 (Terms). Letting 6 range over basic terms and x range over Var U {n},
the class Term of terms is given by the grammar:

T == x|n|rand]|(0) Tq,...,Tx where 0 is a basic term of k arguments

We emphasise that the distinguished variable 1 is treated just like any ordinary
free variable of the term. We can define the term reduction of terms with no
variables inductively:

(1) The term rand reduces to either 0 or 1 with uniform probability. We use
rand as a source of truly random bits.

(2) The term (0) Ty,..., Tk is reduced by first reducing T4, ..., Tk yielding
the values ay, ..., ax and then reducing 6(ay,. .., ax).

Given a term T with variables xi,...,xx (where there might exist i such that
x; is) we write [ay,...,ax/x1,...,xx]T for the term obtained by substituting a;
(1 <1< k) for each free occurrence of x; in T. We will write T(aq, ..., ax) D orm @
just when [aq,...,ax/x1,...,%x]T reduces to a with probability p.

A term T is an atom just when it has no free variables and reduces to itself with
probability 1. It is easy to see that the terms representing the natural numbers are

6 J. C. MITCHELL, A. RAMANATHAN, A. SCEDROV, AND V. TEAGUE

all atoms. Given a term T all of whose variables are among x1, . .., X, it is easy to
construct a probabilistic polynomial-time Turing machine Mt with k inputs such
that Mr(ay,...,ax) = a with probability p just when T(ay,...,ax) L

Since terms are essentially substitution instances of basic terms, it is easy to
see that all terms always terminate in polynomial time (since the basic terms are
precisely the set of probabilistic polynomial time functions).

1.2. Syntax.

Definition 2 (Expressions). Letting T range over Term, x range over Var, ¢ range
over Channel, ¢ range over Bindable, and ¢(-) range over Poly, the class Expr of
expressions of the probabilistic poly-time calculus (PPC) is given by the grammar:

P o= 0 (empty)
v(c).(P) (channel binding)
in(c,x).(P) (input)
out(c, T).(P) (output)
[T].(P) (match)
(PP (parallel composition)
Lyt -(P) (bounded replication)

Intuitively, @ is the empty process that does nothing. The channel binding
v(¢).(P) binds the channel name ¢ in P. Only channels in Bindable can be bound
to a v operator. Essentially, we have two kinds of channel names: channels in
Unbindable that cannot be bound which we call unbindable channels, and chan-
nels in Bindable that can be bound which we call bindable channels. We will use
bindable channels to create various secure primitives (such as secure authenticated
channels). To this end, we will stipulate that messages on bindable channels occur
with higher priority than messages on unbindable channels i.e., bindable channels
will be used to construct internal channels of protocols. Additionally, when a bind-
able channel is bound to a v, no entity outside the scope of the v will be able to
interact with the channel i.e., a bound channel produces no observable behaviour
and cannot be read from or written to by an adversary. We emphasise that all free
channels (which include bindable channels that have not been bound) produce ob-
servable behaviour. For simplicity we will assume that all bound channel names are
distinct from each other and from unbound channel names. The input expression
in(c,x).(P) binds all free occurrences of the variable x in P. Intuitively, the input
expression receives an input value a on the channel ¢ and then substitutes a for all
free occurrences of the variable x in P. The output expression out(c,T).(P) first
reduces T to some atom a and then transmits that value on the channel ¢ before
proceeding with P. We note that both the input operator and the output operator
act as guards on the expression affixed as a suffix since, for example, P in the ex-
pression out(c, T).(P) cannot be evaluated until the output out(c, T) is performed.
In PPC all computation is performed using terms; the process expressions simply
move values around between the various “islands of computation” that the terms
embody. The picture here is meant to conform closely to the picture of a network
(modelled by PPC) connecting various computers (modelled by terms). The match
expression [T].(P) guards the expression P by only allowing the evaluation of P if
the guarding term T reduces to the atom 1. Otherwise, the match evaluates to
©. The expression v(c¢).(out(e, T1 = T5).(@) | in(e,x).([x = 1].(P) | [x = 01.(Q)))
can be used to implement an “if-then—else—fi” construct. The parallel composition

A PROCESS CALCULUS FOR THE SECURITY ANALYSIS OF PROTOCOLS 7

(P1] P2) allows the expression on the left to evaluate independently of the expres-
sion on the right. Alternatively, the two expressions can communicate with each
other by one sending a message (via an output) to the other (who receives it via an
input on the same channel). We assume that | associates to the left. Finally, the
bounded replication !q(y).(P) is simply the q(n)-fold parallel composition of P. The
parameter 1 is supposed to signify a security parameter, a basic notion in cryptog-
raphy that allows one to characterise the ‘strength’ of a cryptosystem (see [31,44]).
We assume that the value for the security parameter is given in unary—this is
standard practice in the community and has the nice effect of ensuring that [n| = n.

Ezample 3. Here are some sample expressions.

(1) We assume that we have terms rsaParams that generates the public values
of an RSA cryptosystem parameterised by n and randMsg that generates
a random message of length determined by 1. The expression:

(in(c1,x).(in(ca, y).(out(d, rsa(x, y)).(@)))
| (out(cy, rsaParams).(@) | out(co, randMsg).(@)))

computes the RSA ciphertext of the message y in the RSA cryptosystem
determined by x.
(2) The expression:
lon-(out(c,rand).(@))
can potentially transmit 2n random bits given a suitable number of inputs
on the channel c to receive the bits.
(3) Writing || for concatenation, we can guess 1-length keys using:

(out(c,rand).(@) |ly.(in(c,x).(out(c,x || rand).(@))))

Definition 4 (Contexts). Letting T range over Term, x range over Var, ¢ range
over Channel, ¢ range over Bindable, and ¢(-) range over Poly, the class CExpr of
context expressions of PPC is given by the grammar:
Cl-1 == [-] (hole)

v(e).(CL- 1)

in(c,x).(C[-])

out(c, T).(C[-])

[T.(€ [1)
(9D \ @ 1)
(11?P)
lym)-(CL- 1)

We define the substitution of the expression P into the context expression C[-],
written C[P], inductively in an entirely straightforward manner: for the basis we
stipulate that [P] = P. Similarly, we can define the substitution of context expres-
sions into context expressions. Given two expressions P and Q we will say that Q
is a subexpression of P just when there exists a context expression C[-] such that
P = @[Q]. Similarly, we can define context subexpressions.

Given an expression Q, when we find a C[-] for some P such that C[P] = Q, we
note that, in addition to witnessing that P is a subexpression of Q, €[-] also locates
P in Q. That is to say, a context can be used to uniquely identify the location of a
subexpression in another expression. In practice it will be useful to simultaneously
identify the location of several subexpressions. For example, if we wish that a

8 J. C. MITCHELL, A. RAMANATHAN, A. SCEDROV, AND V. TEAGUE

particular input receive a message from a particular output, it will be useful to
write a context with two holes that pick out the designated input and output. By
allowing derivations of the form (C[-] | €[-]), we can construct such multi-holed
context expressions. We assume that the holes in a multi-holed context expression
are uniquely numbered so as to render substitution unambiguous. Given a k-holed
context expression C[- 1,..., -] we denote the expression obtained by plugging in
the expressions Pq, ... Py into the holes [-]1, ..., [-]k respectively, by C[Pq,..., Pi].
Naturally, substituting j < k expressions into a k-holed context expression yields
a (k —j)-holed context expressions. Given C[- 1,..., -] and P1,...,P and Q
such that C[P1,...,Px] = Q, we will say that C[- 1,..., -] locates P1,... Py
in Q. In a similar manner (and for a similar reason) we also define multi-holed
contexts. We denote the set of all multi-holed context expressions (resp. multi-
holed contexts) by MultiCExpr (resp. MultiCon). Clearly, CExpr C MultiCExpr
and Con C MultiCon. We will drop the numbering of holes in multi-holed context
expressions and contexts whenever we can safely do so.

We define the free variables of an expression P, denoted FreeVar(P), inductively:

def

FreeVar((P1 | Po = FreeVar(P:) UFreeVar(Ps)
FreeVar(!y().(P)) < FreeVar

FreeVar(@) & 0
FreeVar(v(c).(P)) = FreeVar(P)
FreeVar(in(c,x).(P)) = FreeVar(P) —{x}
FreeVar(out(c,T).(P)) ¥ FreeVar(T)U FreeVar(P)
FreeVar([T].(P)) ¥ FreeVar(T)U FreeVar(?P)
)) (
(

An expression is variable-closed when it has no free variables, and variable-open oth-
erwise. We let Channel(P) be the set of channels names appearing in P. The set of
public channels of P, denoted PubChan(P), is {c € Channel(P)|c € Unbindable}.
The set of private channels of P, denoted PrivChan(P), is {¢ € Channel(P)|c €
Bindable}. The set of bound channels of P, denoted BoundChan(P), is the largest
subset of the channels of P whose members are all bound by av in P. The free chan-
nels of P, denoted FreeChan(P), is the given by Channel(P) \ BoundChan(P).
Clearly, PubChan(?) C FreeChan(?) and BoundChan(?P) c PrivChan(?P). Sim-
ilarly, we can define the sets of channels, free channels, bound channels, public
channels and private channels of a context expression.

The reader will recall that each channel name has a polynomial in one variable
associated with it by the map width. The argument to this bandwidth polynomial
is given by the choice of value for 1 (which, we remind the reader, is equal to
the size of 1 since it is written in unary). Intuitively, the bandwidth of a channel
controls how much data can be sent along a channel in one message. Limiting
the bandwidth of a channel to a polynomial in n will be crucial in proving that
variable-closed expressions can be evaluated in time polynomial in the size of 1 (see
Thm. 28). If channels could transmit messages of unbounded size, then we could
construct exponentially-long messages using a technique like repeated squaring. If
these messages were then used as inputs to polynomial-time functions, the result
would be an expression that takes exponential time to evaluate.

Our goal will be to develop an equational reasoning system for processes. In
order to obtain an easy mechanism of generic compositionality, we will require that
process equivalence be a congruence. The intuition here is that we can represent

A PROCESS CALCULUS FOR THE SECURITY ANALYSIS OF PROTOCOLS 9

a security protocol as an expression, and an adversarial environment in which that
protocol executes as a context. If we can show that an expression representing
a protocol is congruent to some expression representing an ideal specification, we
will have shown that no adversary can distinguish (i.e., attack) the protocol with
non-negligible advantage. As a result, process equivalence will give us both generic
compositionality (from its congruence properties) and correctness of security pro-
tocols (by generating equivalences with ideal specifications).

Henceforth, when writing (context) expressions we will drop any parentheses that
are not required for giving an unambiguous parse to the (context) expression. We
will also drop the @ expression affixed as suffixes to input and output expressions.

Processes and Contexts. We now discuss the distinguished variable n that appears
in the definitions of expressions, terms, and in the bandwidths associated with
channel names. This variable is supposed to represent the security parameter of a
cryptographic scheme or security protocol. Given an expression P we can substitute
a number 1 for the security parameter to obtain the process [i/n]P. Thus every ex-
pression P can be viewed as defining the uniform family of processes {[i/n]P|1 € N}.
We can similarly define context processes or contexts from context expressions. All
the definitions given in the previous section for expressions and context expressions
can be easily extended to processes and contexts. We will write width([i/n]P,c)
to denote the value 2Wdth(c)(1) This is one more than maximum value that can
be transmitted on the channel ¢ in the process [i/n]P—any message transmitted
on the channel c¢ in the process [i/1]7P is reduced modulo width([i/n]P,c).
Wherever we can safely do so, we will drop the explicit indication of the value
chosen for the security parameter and simply write P for a process or C[-] for a
context. We note that processes do not contain replications since, by fixing a value
for the security parameter, we can replace replications by parallel compositions.
We define Proc and Con to be the set of processes and contexts respectively. Since
Proc (resp. Con) consists of expressions (resp. context expressions) in which the
security parameter does not appear, it follows that Proc C Expr and Con C CExpr.

1.3. An Abstract Operational Semantics for PPC. We start by giving the
operational semantics for variable-closed processes; we will later outline an ex-
tension to variable-open processes and expressions. Intuitively, we envision the
evaluation of variable-closed processes as a series of alternating reduction and com-
munication steps. During a reduction step we evaluate as many terms and match
expressions as we can. This step is supposed to embody all the (internal) compu-
tation a process can perform without requiring a communication step. Hence, we
stipulate that reduction steps occur with higher priority than communication steps.
A communication step consists of an input receiving a message from an output on
the same channel. The communication step is chosen according to some probabilis-
tic schedule from the set of all possible communications available to the process.
This procedure of alternating reduction and communication steps continues until
no further communication steps are possible.

There are several subtleties in this intuitive notion of process evaluation. The
most important is the decision to make use of probabilistic scheduling. Our goal
in this project is to develop a framework for reasoning about the computational
model of security. Hence, we do not make Dolev-Yao-style simplifying assumptions.
On the other hand, if we retain the traditional nondeterministic scheduling seen

10 J. C. MITCHELL, A. RAMANATHAN, A. SCEDROV, AND V. TEAGUE

in [1-3,13,61-63], the adversary has exponential computing power. Consider the
process:

in(d,y).in(ci,x1). -+ in(c, xi).out(c, Decrypty, ... x, (¥)) |

| out(cy,0) | --- | out(cy,0) | out(ci,1) |- | out(cy, 1)

With nondeterministic scheduling, the adversary can guess a k-length key by con-
catenating k bits. Since we do not make Dolev-Yao assumptions, the adversary is
fully justified in manipulating bit-level representations of keys. In practice though,
the adversary can only successfully reconstruct the key with probability at most
27% which, for sufficiently large k, is considered negligible. Hence, abandoning the
Dolev-Yao model drives us to probabilistic scheduling.

However, we cannot a priori fix a probabilistic schedule when we give the oper-
ational semantics for PPC. Since we will wish to define process equivalence with
respect to all adversaries, and adversaries are modelled as having control over the
network, we will need to quantify over all probabilistic schedules. Consequently,
we will define for each process a labelled transition system where the probabilities
annotating edges do not take into account a particular schedule: we will have a
reactive labelled transition system (see [40,65]) in that the transition system for
a process represents the behaviour of the process in the presence of an external
entity that selects the communication step to perform at every step of evaluation.
In particular, our transition rules will associate with each process a set of distri-
butions indexed by actions. Thus, while the labelled transition system will yield
probabilistic behaviour given an particular action label, we can only guarantee that
the process displays probabilistic behaviour over all choices of actions once we fix
a schedule. This will be done by applying a scheduler to the labelled transition
system (Sec. 3.1). Strictly speaking the values that will be associated with tran-
sitions are not probabilities in the sense that the overall behaviour of a process
is not guaranteed to be probabilistic. However, for convenience, we will refer to
these numbers as probabilities because, given a scheduler, they yield probabilistic
behaviour.

Another issue stems from what counts as a communication step. Intuitively, a
communication step is just an input-output pair on the same channel: the output
transmits the value used by the input. However, we would like to develop a syntactic
treatment of compositionality. Consequently, we need some way of modelling the
evaluation of a process in any context. In order to do this, we will make use of
partial steps that are single inputs and outputs representing a communication with
an arbitrary context in which the process is being evaluated. The result is that we
develop an abstract operational semantics that gives the behaviour of a process in
an arbitrary context.

Finally, there is the question of what to do with communications on bindable
channels versus unbindable channels. As already mentioned, bindable channels
will be used to build primitives like authenticated secure channels. Their primary
goal is to model channels which cannot be seen by the adversary. In order to
do this, it is necessary to make communications on bindable channels occur with
higher priority than communications on unbindable channels. Additionally, an
important element in constructing these secure primitives is that the adversary
cannot interact with the channel. For this reason, we require the notion of syntactic
scope provided by the v operator. Any actual communication consisting of an input

A PROCESS CALCULUS FOR THE SECURITY ANALYSIS OF PROTOCOLS 11

Figure 1 The Reduction Rules for Variable-Closed PPC Processes

1

© —redxn @ (RZ)
in(c, X)P i’redxn in(c, X)P (RI)
q
P = Z{beN\ a=b mod width(P,c)} PTOD [T —term b], P =redsn P (RO)
out(c, T)P ﬂ’redxn OU.t(C, a)'P/
P L>1redxn Pla T i>term 1
[T]P ﬂ)1redxn P’ (RMP)
T i>term 1 (RMF)
[T]P 1_—q\’redxn @
P ircdxn P/, Q i>rcdxn QI
P ‘ Q ﬂ>redxn P/ | Q, (RPC)
P 2 edn P/
“red (RCB)

V(C)~P 1>redxn V(C)-P/

and output on a bound channel should produce no observable. However, a message
on an free bindable channel is observable since the adversary can interact with
it. Hence, all communications steps on bindable channels (including partial ones)
generate observable behaviour in exactly the same way as communication steps on
unbindable channels. Once a bindable channel is bound, within its scope no partial
steps can occur (since the arbitrary context in which we evaluate the process cannot
communicate with the bound channel) and all normal communication steps produce
no observable behaviour. We remind the reader that we have three different levels
of priorities for actions:

(1) Reduction actions which occur with the highest priority,
(2) Actions on bindable channels which occur with medium priority, and,
(3) Actions on unbindable channels which occur with low priority.

The operational semantics for PPC in Fig. 2 require definitions of the notions of
process reduction (Sec. 1.3.1), an action (Sec. 1.3.2), and the normalisation function,
Norm, (Sec. 1.3.3) used in computing the probabilities of transitions under parallel
composition. We proceed by defining these notions in turn before we discuss the
operational semantics (Sec. 1.3.4). A treatment of probabilistic scheduling can be
deferred until later (Sec. 3.1) since, as mentioned, we do not require a particular
probabilistic schedule in providing the operational semantics.

1.3.1. Process Reduction. We define process reduction via the inference rules of
Fig. 1. Intuitively, reduction is meant to capture the computation a process does
between communication steps. Since a free variable in a process can be viewed as

12 J. C. MITCHELL, A. RAMANATHAN, A. SCEDROV, AND V. TEAGUE

a resource that needs to be delivered to the process via a communication step, it
stands to reason that a variable-open process cannot do any computation (since
it is waiting on a communication to deliver the missing resource). So reduction is
defined only over variable-closed processes.

Given a variable-closed process, we evaluate all terms that have no free variables
(in keeping with the just-given intuition). Since the only binding operator on free
variables are inputs, we reduce all terms that do not appear in the scope of an
input operator. We say that an output operator or a match operator is exposed if
it does not appear in the scope of an input operator. Similarly, we say that a non-
atomic term appearing in an exposed output! or any term appearing in an exposed
match is exposed as well. We note that since we are considering only variable-closed
processes, all exposed terms have no free variables. To reduce a process, we need to
evaluate all the exposed terms. We will say that a variable-closed process is blocked
just when it has no exposed terms, and unblocked otherwise.? We will say that Q
is a reduct of P just when Prob [P — cqxn Q] > 0. Finally, for a set of processes R:

Prob [P —redxn R] déf Z Prob [P —redxn R]
RER

Lemma 5. Prob [P — 4. Proc] < 1.

Proof. A trivial induction on the structure of processes. [

As an immediate corollary we see that for any set of processes R, we have
Prob [P] —ieaxn R < 1. We conclude this section with some remarks on some
features of the reduction rules. Intuitively, an output out(c,T).P represents the
sending of the message a computed by the term T. However, the bandwidth on
channels means that the value transmitted by the output might be truncated if T
evaluates to a large value. We handle this truncation mechanism by ensuring that
our reduction rules reduce an output term to a suitably truncated value. Hence,
the probability of the output reduction must be taken over all elements in the
codomain of the term that, when truncated, result in the same value. We remark
that our reduction rules imply that if P Lredxn @ then [T].P Lredxn @. We remind
the reader that the reduction rules of Fig. 1 make no mention of replications since
processes do not contain any replications.

Lemma 6. P i%dm P iff P has no exposed terms i.e., P is blocked.

Proof. (=) An examination of the inference rules of Fig. 1 shows that the only
rules that can directly cause a syntactic change to a process are (RO), (RMP),
and (RMF). Assuming P Lredxn P implies that the match cases do not occur and
the term in the output case reduce to an atom with probability 1 (i.e., the term is
an atom). Hence, P must contain no exposed terms.

(«<=) This case is obvious since (1) a lack of exposed terms implies that the match
rules are never invoked, and (2) the terms in exposed outputs are atomic. O

1Since atomic terms are constant expressions, they do not represent computation that needs to be
done. Hence, we will not refer to an atomic term in an exposed output as exposed.

20ur choice of the terms ‘blocked’ and ‘unblocked’ is guided by the intuition that a blocked process
cannot perform any local computation and, hence, must wait for a communication step to occur.

A PROCESS CALCULUS FOR THE SECURITY ANALYSIS OF PROTOCOLS 13

1.3.2. Actions. An action is an abstraction of a communication step. There will be
four kinds of actions in our calculus: (1) actual actions, which are actions consisting
of an input and an output and are supposed to represent the intuitive notion of a
communication step; (2) input actions, each of which is just an input and represents
communications where a message is received from an arbitrary evaluation context;
(3) output actions, each of which is just an output and represents messages sent to
an arbitrary evaluation context; and, (4) silent actions which are actions that the
adversary cannot see or schedule. We define three sets:

Ain = {{(c,a)|c € Channel, a € N}
Aout = {(¢,a)lc € Channel,a € N}
{

Asitent = {(T¢,a)| ¢ € Bindable} U {e}

We define a partial function -: Ajn U Agut X Ain U Agut — Ain X Aout such that
Vc € Channel.Vx € Act: (c,a)-(c,a) = (C,a) - {c,a) and - is injective everywhere
else. We can then define a fourth set:

Adctual = {{(c,a) - (¢, a)| c € Channel, a € N}

We will call A, the set of input actions, Aoyt the output actions, Aqctuar the
actual actions, Asitent the silent actions, and € the reduction action. The symbol
€ represents a reduction step i.e., the application of the rules of Fig. 1 to a process.
Since € does not occur on any channel, and so cannot produce any observable
behaviour, we treat it as a kind of silent action.

The set of actions of PPC, denoted Act, is the set Ain UAgut UAqctuat UAsitent-
For any action «, we define Channel(a) as either the channel on which « takes
place in the case in the case that & # €, or € in the case that « = €. The channels
in the set PubAct, defined as {a| &« € Act \ Agitent), are the public actions of PPC.
The set Ain U Agut is the set of partial actions of PPC. An actual action o - 3 is
the simultaneous occurrence of the actions « and (3. Ignoring €, a silent action is
just some actual action that occurs on some bound channel.

It will be convenient to define the ‘opposite’ of an action i.e., define an action
3 which generates the complementary observable behaviour of an action «. Given
&, B € Ain U Agut, we will say that 3 is the coaction of «, written 3 = &, exactly
when either:

(1) «={(c,a) and p = (¢, a); or,
(2) @« ={(c,a) and B = {(c, a).

In the rest of this paper, we use « to range over all actions, and & to range over
all coactions. We will also use T to range over silent actions. It is easy to see that
Adactual 18 just the set of all actions of the form « - &.

1.3.3. The Normalisation Function. We inductively define a normalisation func-
tion, Norm: Proc x Act — Z, that computes the number of ways an unblocked
process can take a particular action:

(1) Va € Act: Norm(@,) = 0. The zero process cannot perform any actions.

(2) Ya € [0.width(P,c) — 1]: Norm(in(c,x).P,{c,a)) = 1. Recall that mes-
sages are truncated by the channel bandwidth.

(3) Norm(out(c,a).P,(c,a mod width(P,c))) = 1. Recall that messages are
truncated by the channel bandwidth.

14 J. C. MITCHELL, A. RAMANATHAN, A. SCEDROV, AND V. TEAGUE

(4) Yo € Act: (¢ # Channel(a)) = Norm(v(c¢).P,a) = Norm(P, «). The
private channel operator does not affect the number of ways in which actions
that do not occur on the channel ¢ can be taken.

(5) Norm(v(c).P,{(t.,a)) = Norm(P, (c,a)-(¢,a)). The expression v(c).P can
take a silent action on the channel ¢ in the same number of ways that P
can take actual actions on the channel c.

(6) Yoo € Act — Agetuar: Norm(P | Q,) = Norm(P, «) + Norm(Q,). We
compute the number of ways in which partial or silent actions « can be
taken by P | Q by adding the number of ways & can be taken by P and Q
individually. We note that in the case of silent actions, either Norm(P, «) or
Norm(Q, &) will be equal to zero since we assume that all private channels
are renamed apart.

(7) Norm(P | Q, - &) = Norm(P | Q,«) - Norm(P | Q, &). To compute the
number of ways that P | Q can take an actual action o« - &, we multiply the
total number of ways that P and Q can take & and & respectively.

For all other cases, the normalisation function evaluates to zero. The normalisation
factor computed by this function will be used to normalise the probability of an
action happening when combining processes via the parallel composition operator.
This ensures that the total probability of an process being able to take a particular
action never exceeds 1.

1.3.4. The Operational Semantics for Variable-Closed PPC Processes. In Fig. 2 we
give an operational semantics for variable-closed PPC processes. These operational
semantics will be used to construct a labelled transition system for each process
(Sec. 1.3.5). We extend this semantics to variable-open PPC processes in the ob-
vious way by defining a set of labelled transitions systems for each variable-open
PPC process (see pg. 18).
We will write:
L)

p P’

iff it can be derived from the rules of Fig. 2. We refer to P odpl, P’ as an «-transition

or just transition and its intuitive meaning is that if P takes the action labelled «,
then with probability p it will become P’. We emphasise that this probability p is
over all a-labelled transitions that P can take, not over all transitions (regardless
of label) that P can take. Thus, the transition rules do not define probabilistic
behaviour over all transitions, but only over all transitions of a given label. The
choice of label is made by an external agent so as to capture the behaviour of the
process under any (potentially nasty) scheduling of actions. We remind the reader
that applying a particular schedule to the transition system will yield probabilistic
behaviour (see Lemma 19); in light of this fact, we will continue to call these
values annotating transitions as probabilities even though, strictly speaking, they
are not. We will write Prob [P=P’] to denote the probability of an «-transition
taking P to P’. We will say that P has an a-transition if there exists P’ such that
Prob [P5P’] > 0. We will say that P’ is an «-child of P if Prob [P-5P’] > 0 and
write Childreny(P) for the set of «-children of P. The children of P is the set
Uxeact Childreny(P) and is denoted Children(P).

A PROCESS CALCULUS FOR THE SECURITY ANALYSIS OF PROTOCOLS 15

Let us discuss the inference rules. The full list is given in Fig. 2. The first group
consists of a pair of axioms for inputs and outputs.

Va € [0.width(P,c) — 1: in(c,x).P =2, [q/xp 0
out(c,a).P (¢,a mod width(P,c))[1] P (O)

The axiom (I) states that an input on the channel ¢ binding the variable x can
receive any value that can ‘fit’ on the channel. This value is the substituted for
all free occurrences of x in the scope of the input. Similarly, axiom (O) states
that an output containing an atomic term on the channel ¢ can transmit a suitably
truncated version of that atom before proceeding with the process being guarded
by the output.

The rule (R) deals with unblocked processes.

P unblocked, P 2 cqsn P’

elp] (R)
P — P’
Our operational semantics will give the highest priority to reduction transitions
since these represent local computation. Hence all other rules will require as a
precondition that the processes being considered be blocked. The only way to
‘block’ an unblocked process is via this rule. We note that axioms (I) and (O)
deal with blocked processes and so do not need the precondition just described.
Rule (R) simply states that if P reduces to P’ with probability p then there is an
e-transition from P to P/ with probability p.
We now examine the group of rules dealing with |, parallel composition.

P,Q blocked, P <L p7.
Channel(«) € Bindable V Q has no actions on bindable channels

(CL)
a[p Wormira s
P1Q P'1Q
P, Q blocked, Q 29, @,
Channel(a) € Bindable V P has no actions on bindable channels (CR)
PO ala- NeSmrrre ar PO
/ ‘X[q /
P, Q blocked, pIP.p ,Q — Q/,
Channel(a) € Blndable V P, Q have no actions on bindable channels)

[(P N]:(;]:LTLFQ“;) (q N]:(i:nn?P\Qanc))]

PIQ- P Q'
Rules (CL) and (CR) state that if a process P can take an action «, then so can the
processes P | Q and Q | P for any process Q. However, the probabilities change since
Q might be able to take the same action. To reflect this modified probability we
simply re-normalise using the normalisation factor Norm(P | Q, «). Additionally,
we must preserve the priorities on channels—P | Q and Q | P can take « only if
Q has no actions of higher priority. Rule (C) allows two processes composed by |
to communicate with each other. Again, we need to re-normalise probabilities and
preserve priorities on actions. We note that in (C), the actions cannot be silent
because the scope given by v cannot extend over both processes. Furthermore,
n (CL) and (CR), if o is silent we effectively do not re-normalise since the silent

16 J. C. MITCHELL, A. RAMANATHAN, A. SCEDROV, AND V. TEAGUE

actions in P occur on different channels from the private channels of Q whence
Norm(Q | P,t) = Norm(P | Q,t) = Norm(P, T1).

Finally, we consider the group of rules dealing with v, the channel-binding op-
erator.

P blocked, P 2% p/

(P1)
v(c).P tiZN v(c).P’
P blocked, p 124 {&0PL b, ©2)
v(e).p TPl oy pr
P blocked, P &l P’ & & Asitent, Channel(x) # ¢ (P3)

v(e).P 2 v (e).pr

Intuitively, a v just defines the scope within which the bound channel is visible.
Thus, it does not affect scheduling of channels. It simply eliminates partial actions
on the bound channel (since they cannot communicate with the abstract context in
which the process is being evaluated) and makes the actual actions on the bound
channel invisible (since no entity outside the scope of the bound channel can see
the bound channel let alone messages on it). Rule P1 states that av does not affect
already extant silent actions. Rule P2 states that if P has a p-probability transition
labelled by an actual action on the channel ¢ to P/, then v(¢).P has, essentially, the
same transition with the same probability. Rule P3 states that v does not affect
public actions that do not occur on the channel c.

Lemma 7. Let P be a variable-closed process and « an action. Then:
(1) {Q € Proc|Prob [P5Q] > 0} is finite, and,
(2) ¥ Geproc Prob[P5Q] < 1.

Proof. Both claims follow from entirely routine inductions on the structure of
variable-closed processes. [

Lemma 8. Let P be a blocked process. Then
1

XX
Prob {P — Q} ~ Norm(P, « - &)
Proof. Since P is blocked, every input and output that can possibly communicate
must not be in the scope of a match, and every output that can possibly com-
municate with an input must be of the form out(c,a).Q. Then, we continue by
induction on the number of exposed (i.e., not in the scope of an input) |-operators
in the process. Assuming that the lemma holds for up to k | operators, we can show

that
1

~ Norm((c, a), Py | P5)
since the inductive hypothesis allows us to calculate that

Prob [Pl 1Py 29 | Qz}

Prob [Pi fea), Qi} -Norm(Ps, (c, a)) 1

Norm(Py | P2, (c, a)) ~ Norm(P; | Py, (c,a))

We can perform a similar calculation for all actions of the form (¢, a). It then is
immediate that the lemma holds for actions of the form o - &. O

A PROCESS CALCULUS FOR THE SECURITY ANALYSIS OF PROTOCOLS 17

Figure 2 The Operational Semantics for Variable-Closed PPC Processes

Va € [0.width(P,c) — 1]: in(c,x).p S,

(¢,a mod width(P,c))[1]

la/x]P (I
P (0)

out(c,a).P

P unblocked, P 3>redxn P’
P elpl] p’

P,Q blocked, P <L p7,
Channel(x) € Bindable V Q has no actions on bindable channels

(CL)
ol it
PlQ P’ Q
P, Q blocked, Q =L Q’
Channel(x) € Bindable V' P has no actions on bindable channels (CR)
b 1o Sl o
P,Q blocked, P 2P, pr g X o7
Channel(x) € B1ndab1e V P, Q have no actions on bindable channels
Norm(P,x) Norm(Q,&) (C)
p ‘ Q [(p Norm (P[Q,x))(q Norm (PlQ,&))] p/ | Q,
[p]
P blocked, P = P’
ocke [,} — (P1)
v(e).P = v(c).P’
P blocked, p {24 {&9PL b, ©2)
v(e).p T WLy oy pr
P blocked, P 2L P/ & & Aitent, Channel(a) # ¢ ®3)

]

v(e).P 2Ly (e).pr

1.3.5. Labelled Transition Systems. Using the operational semantics given in Fig. 2
we define the labelled transition system for a variable-closed process P.

Definition 9. A labelled transition system (LTS) is a 3-tuple (R, T, I) where:

(1) Ris a set of states each labelled by a variable-closed process,

(2) TCRxActx[0,1] xR is a set of arrows such that T(r, &, p, ') iff ¥ LN 7

where T denotes the process labelling the state r; and,
(3) Iis the initial state and is labelled by P.

An LTS is just the graph induced by the operational semantics for PPC. It is
clear from the definition of an LTS that a process can have several different LTSs.
For example, given the LTS (R, T,I) for P we can construct another LTS (R’, T, I)

18 J. C. MITCHELL, A. RAMANATHAN, A. SCEDROV, AND V. TEAGUE

for P by adding a state u ¢ R labelled by a process Q that is not reachable from
the initial state.

We will consider superfluous all parts of a transition system not reachable from
the root, and we will identify states labelled with the same process. Then we
will denote the unique LTS for a variable-closed process P, obtained by discarding
unreachable states and identifying states labelled with the same process, by L(P).
For simplicity we will, henceforth, identify states and the processes labelling them.
Letting LTS be the set of labelled transitions systems and VarClosedProcs the set
of variable-closed processes, we can also define the mapping IL.: VarClosedProcs —
LTS. It is easy to see that LL(P) is a directed acyclic graph.

We extend L to an interpretation L: Proc — 278 of all processes by extending L
in the following manner. Given a process P and a valuation & of the free variables
of P, we denote by &(P) the process obtained by substituting &(x) for all free
occurrences of x in P. With this notation in place, we define L(P) as the set
{L(&(P))|& is a valuation of FreeVar(P)}. Thus L is a function that maps processes
to sets of LTSs (one for each valuation of the free variables of the process).

We can further extend L to an interpretation L: Expr — 22" of all expres-
sions in the following fashion. Given an expression P, we define L(P) as the set
{L([i/n)P)li € N}. Analogous to L, the function L maps expressions to sets of
sets of LTSs (one set of LTSs for each process in the process family defined by the
expression).

Action Paths. Let IL(P) be the labelled transition system for a process P. An action
path from P to Q is a path in IL(P) from P to Q with each edge in the path having
non-zero probability. Given « € PubAct, an «-path from P to Q is a path all of
whose edges except the final one leading to Q are labelled with silent actions. The
final edge is labelled with «. A length k path has k edges; a length k «-path has
k — 1 edges labelled by silent actions followed by a single edge labelled by «. The
probability of a path 7t is computed by taking the product of the probabilities of
each edge in 7. Given a set of processes R, we say that 7t is a path from P into R
if 7t is a path from P to some process R € R. For any public action «, we write
Paths(P, &, R) to denote the set of all a-paths from P into R.

2. PROBABILISTIC BISIMULATION

In this section we adapt weak bisimulation [49] to a probabilistic setting. Fol-
lowing the elegant and economical development of van Glabbeek, Smolka, and Stef-
fen [65], we will present our probabilistic bisimulation as an equivalence relation
over Proc.

Definition 10. We define p: VarClosedProcs x PubAct x 2VarClosedProcs g 1],
the cumulative mass function (cMF), by the equation

H(Pa &, R) = Z Prob [7'[]
nePaths(P,x,R)

Lemma 11.

VP € VarClosedProcs.Va € PubAct: (P, «, VarClosedProcs) is finite.

A PROCESS CALCULUS FOR THE SECURITY ANALYSIS OF PROTOCOLS 19

Proof. By an induction on the maximum length of a-paths. We give a short sketch
of the proof. We will write u*(P, o, R) to denote that the value u(P,«, R) is cal-
culated over at most k-length paths. For the basis we consider paths with length
at most 1 i.e., paths with no silent actions. Then we can directly apply Lemma 7.
To justify the inductive hypothesis we note that the value p(P, o, VarClosedProcs),
when restricted to at most k-length paths, can be calculated as:

Prob [P & Q}
Q &VarClosedProcs

+ Z Z Prob [P 5 Q] -1 1(Q, «, VarClosedProcs)
TEAsitent Q€ VarClosedProcs

From the inductive hypothesis, we know that u*~!(P, «, VarClosedProcs) is finite.
From Lemma 7, we know tha‘g VT.€ Asilent: ZQevmclosedpmcs Prob LP Q<1
and 3 5 cvarClosedprocs PTOP [P — Q| < 1. Lemma 7 also states that the outdegree
of any process is finite. Therefore:

Z Z Prob [P 5 Q} - u* (P, «, VarClosedProcs)
TEAsitent QEVarClosedProcs

is finite. U

As an immediate corollary we have that p(P, o, R) is finite for any public «
and set of variable-closed processes R. We cannot prove that the cMF for P is
a collection of distributions indexed by « and R (i.e., that (P, o, R) < 1) since
Lemma 7 says that the transition probabilities of a variable-closed process form a
well-defined probability distribution for each type of silent action . To show that a
cMF is a collection of distributions, we would need that the transition probabilities
of a variable-closed process form a well-defined distribution over all silent actions.
We extend cMFs to all processes by defining the cMF of a variable-closed process as
a set of cMFs, one per valuation of the free variables of the process. In particular,
given two variable-open processes, P and Q, we say that u(P, a, R) = u(Q, &, R) if,
under all valuations, the cMF's are pairwise identical.

Definition 12. An equivalence relation B C Proc x Proc is a weak probabilistic
bistimulation or bisimulation just when (P, Q) € B implies that:

(1) VR € Proc/g.Va € PubAct: u(P, o, R) = n(Q, o, R),

(2) If P and Q are blocked, then Vo € Act: Norm(P, o) = Norm/(Q, o),

(3) If either P or Q is unblocked, then:

VR € Proc/g: Prob [P —,caxn Rl = Prob [Q —1caxn Rl

Two processes, P and Q, are bisimulation-equivalent (denoted P ~ Q) if there exists
a weak probabilistic bisimulation B such that (P,Q) € B i.e.,

def

~ = U{BI B is a weak probabilistic bisimulation}

As a short-hand, we will write P ~g Q just when the bisimulation-equivalence of P
and Q is witnessed by the bisimulation B.

We remind the reader that if P and Q are variable-open, then we say that they
are bisimilar if they are pairwise bisimilar under all valuations of their free variables.

20 J. C. MITCHELL, A. RAMANATHAN, A. SCEDROV, AND V. TEAGUE

Lemma 13. Given a collection of bisimulations By (k € K), the following are all
bisimulations:

(1) 1d = {(P,P)|P € Proc}.
(2) B1B, = {(P,R)[3Q: (P,Q) € B1 A (Q,R) € Bs}.

2)
(3) By = ((Q,P)I (P, Q) € Bi).
(4) Uxex Bx where K where k is a countable index set.

Proof. Claims (1), (2) and (3) follow from the fact that every bisimulation is an
equivalence relation. To show claim (4) we proceed as follows. Let (P,Q) €
Uxek Bx. Then, by the construction of (Jicx Bk, there must exist i € K such
that By witnesses the bisimilarity of P and Q. Since By C [J, ok B, it follows that
Uxek Bx witnesses the bisimilarity of P and Q. O

Corollary 14. If Bx (k € K) is a collection of bisimulations, then their reflex-
ive, transitive closure (| J, Bk)* is a bisimulation. Furthermore ~ is an equivalence
relation over Proc.

Proof. For the first claim we apply the fact that bisimulations are closed under
reflexivity, transitivity and union. Since each of the relations By are symmet-
ric, (Jy Bx)* must also be symmetric. Whence (|J, Bk)* must be an equivalence
relation. Furthermore, claim (4) of Lemma 13 asserts that countable unions of
bisimulations are bisimulations. Since ~ is the union of all bisimulations and since
the reflexive, transitive closure of all bisimulations is a bisimulation, it follows that
~ is an equivalence relation. O

2.1. Probabilistic Bisimulation is a Congruence. In this section we prove a
congruence theorem inspired by Milner [49]. In order to simplify the proof, we
adapt the approach of van Glabbeek, Smolka, and Steffen [65]. Essentially, we
reason in terms of the cMFs rather than in terms of the underlying transitions.

Main Theorem 15. Probabilistic bisimulation is a congruence i.e.,
VC[-]1€ Con: P~Q = C[P]~ C[Q]

Proof. We want to show that B & {{C[P],CIQ])|IC[-] € Con,P ~ Q} is a weak
probabilistic bisimulation. We start by noting that any variable in C[P] either
occurs bound in P, free in P but bound in C[-], or free even in C[P]. Since
we defined bisimulation equivalence on variable-open processes C[P] and C[Q] by
considering C[P] and C[Q] under all possible valuations, we can eliminate from
consideration variables that appear free in C[P] and C[Q] as well as variables that
appear free in just C[-].

We proceed by an induction on the maximum of the number of free variables
in P and Q. The basis occurs when neither P nor Q have any free variables. The
proof for this case closely follows the proof of the inductive hypothesis. The only
difference is when we consider a context whose top-level operator is an input. In
that case, the action of the input is trivial since P and Q have no free variables for
the context to bind. Consequently, we leave the details of the proof of the basis to
the reader and, writing Con(P, Q) to mean the set of contexts such that C[P] and
C[Q] have no free variables, we just assume as our first inductive hypothesis that:

YC[-] € Con(P,Q): C[P] ~g CIQ] (2.1)

A PROCESS CALCULUS FOR THE SECURITY ANALYSIS OF PROTOCOLS 21

for any P and Q such that P ~g Q and the maximum on the number of free variables
in P and Q is k.

We establish the first inductive hypothesis by an induction on the structure of
C[-]. We start by defining u™: Proc x PubAct x 2P™¢ — [0, 1] as:

W (P, o, R) = > Prob [7]
nePaths™(P,,R)

where Paths™(P, o, R) denotes the set of all a-paths into R from P that can be
derived by a proof tree of height at most n from the rules of Fig. 2. Intuitively,
W™ (P, &, R) measures the cumulative mass of reaching a process in R from P via an
«-action preceded by at most n — 1 silent actions. We will adopt the convention
that u%(P,,R) = 0. Let us write P ~g when, given the equivalence relation
B C Proc x Proc, we have:

(1) VR € Proc/g.Va € PubAct: u" (P, «,R) = u™(Q, o, R),
(2) If P and Q are blocked, then Voo € Act: Norm(P, o) = Norm(Q,),
(3) If either P or Q is unblocked, then:

VR € Proc/g: Prob [P —,cqxn Rl = Prob [Q —1caxn Rl

Since p(P, o, R) = limy 00 1™ (P, &, R) we need just show, via an induction on n,
that for all n > 0, for all P and Q such that P ~ Q and the maximum on the
number of free variables in P and Q is k + 1, we have:

VC[-] € Con(P,Q): C[P] ~% C[Q] (2.2)

For our second inductive hypothesis, we may assume (2.2) for some n > 0 since the
basis (when n = 0) is trivial. In proving (2.2) for n+1 we undertake a case analysis
depending on the topmost operator of C[-] and only show the < direction of the

first condition on ~} (since the reverse direction is completely symmetric).

(1) C[-1=DI[-]. It is easy to see that u"T(C[P], o, R) = u"™(D[P], &, R) <
uw(D[Q], x,R) = u(C[Q],«,R). Furthermore, if C[P], C[Q] are blocked
then so are D[P], D[Q]. Therefore, we can calculate that Norm(C[P],) =
Norm(DI[P], «) = Norm(D[Q],«) = Norm(C[Q], «). If either C[P] or
C[Q] are unblocked, then Prob [C[P] — cqxn R] = Prob [D[P] —,caxn Rl =
Prob [D [Q] —redxn R] = Prob [C[Q] —redxn R].

(2) C[-] = in(c,x).D[-]. For all & not of the form (c,a) we have that
w1 (C[P], &, R) = u"*1(C[P], «,R) = 0. The same holds true for any « of
the form (c, a) where a > width(CI[P], c).

Let us consider « of the form (c, a) where a < width(C[P],c). The sec-
ond inductive hypothesis yields that D[P] ~ D[Q] and the first inductive hy-
pothesis gives us that [a/x]D[P] ~ [a/x]D[Q]. Whence u™*+!(C[P],,R) =
u*+1(ClQ], &, R) < u(ClQ], «, R) since the limit of u™*t1(C[Q], x,R) as n
approaches oo is u(C[Q], o, R).

Finally, since in(c, x).D[P] and in(c, x).D[Q] are blocked we must check
that Norm(in(c,x).D[P], ®) = Norm(in(c,x).D[Q], «). For any o of the
form (c,a), where a < width(C[P],c), we see that Norm(C[P],«) =
Norm(C[Q],«) = 1 and for all other &, we see that Norm(C[P], «) =
Norm(C[Q], «) = 0.

(3) C[-] = out(c,T).D[-]. Proceeding as in case (2) we can disregard all
actions except those of the form (¢, a) where a < width(C[P],c). For such

22 J. C. MITCHELL, A. RAMANATHAN, A. SCEDROV, AND V. TEAGUE

o, we can calculate that p"+1(C[P], &, R) is:

Z PI‘Ob [T —term b]
{beN|b=a mod width(C[P],c)}

We finish as in case (2).

If D[P] and D[Q] are blocked, and C[- | = out(c,a).[-], then the only
action available to C[P] and C[Q] is of the form (¢, a mod width(C[P], c)).
But then Norm(C[P],«) = Norm(C[Q],«) = 1 when « is of the form
(¢, a mod width(C[P],c)) and Norm(C[P], o) = Norm(C[Q], «) = 0 oth-
erwise. If either C[P] or C[Q] are unblocked then we note that any reduct
of C[P] and C[Q] must be of the form out(c,a).R for some process R. Then
we calculate the reduction probabilities as follows:

Prob [out(c, T).D[P] —1caxn out(c,a).R]
= Prob [T —term a] - Prob [D [P] —redxn R]
= Prob [T —term a] - Prob [D [Q] —redxn R]
= Prob [out(c, T).D[Q] —reaxn 0ut(c,a).R]
(4) C[-]=I[TL.D[-]. Proceeding as in case (2) we see that u"*1(C[P], «,R) =
PI‘Ob [T —term 1] : Hn(D[PL OC, R) < PI‘Ob [T ——term 1] : Hn(D[QL 0(7 R) =
w1 (C[Q], &, R) since the only action available to any unblocked process

is the reduction action. We finish as in case (2).
Since C[P] and C[Q] are unblocked, we check the reduction probabilities:

Prob [[T]D[P] —redxn R] = Prob [T —term a] - Prob [D [P] —redxn R]
= Prob [T —term a] - Prob [D [Q] —redxn R] = Prob [[T]D[Q} —redxn R]

(5) C[-]1=~v(¢).D[-]. Since no rule in the operational semantics eliminates v
operator, we can restrict our attention to equivalence classes of processes
of the form v(c¢).R. For any « € PubAct, the cumulative probability that
an o-path takes C[P] to v(c).R is the sum of the cumulative probability
that an o-path takes D[P] to R directly plus the cumulative probability of
a (¢, a) - (¢, a)-path taking D[P] to some R’ and then from there to R via
an o-path. We compute this probability as:

p"(CPL, &, v(c).R)

=u"(DPL,o,R) + Y w"(DI[Pl{c,a)- (¢,a),R") - u"(rep R',,R) (1)
R’EProc/p

Applying the second inductive hypothesis yields that (1) is upper-bounded
by:

W' (DIQLxR)+ > wM(DIQL (e, a)- (¢,a),R') - u"(rep R, o, R)
R’€EProc/p

= Hn+1(C[Q]a (X,’V(C).R)

Let us assume that at least one of C[P] and C[Q] is unblocked. We note
that any reduct of v(¢).D[P] (resp. v(¢).D[Q]) must be of the form v(¢).R

A PROCESS CALCULUS FOR THE SECURITY ANALYSIS OF PROTOCOLS 23

where R is a reduct of D[P] (resp. D[Q]). Then,

Prob [V(C)D[P] —redxn ’V(C)R] = Prob [D [P] —redxn R]

Wt (DIPI[S, o, Ry | Ro) =

" t(DIPI[S, o, Ry | Ro) =

= Prob [D [Q] —redxn R} = Prob [’V(C)D[Q} —redxn V(C)R]

On the other hand, if both C[P] and C[Q] are blocked then we have three

cases to consider:

(a) « is a partial action or actual action on the bound channel ¢. Then
Norm(C[P], o) = Norm(C[Q], «) = 0.

(b) & = (t¢,a). Then, Norm(C[P],x) = Norm(DIP], (¢, a) - (¢,a)) =
Norm(DI[QI, (¢, a) - (¢,a)) = Norm(C[Q], «).

(¢) « is any other action. Then. Norm(C[P],«) = Norm(DI[P],x) =
Norm(D[Q], o) = Norm(C[Q], «).

C[-]=D[-]|SorC[-]=S]|D[-]. We only study the case where

Cl-] =D[-]]| S since the same argument is employed in the other

case. Since no transition rule in the operational semantics eliminates the |

operator, we can confine our attention to R of the form R; | Ro.

We start by showing that if D[P], D[Q], and S are all blocked, then V& €
Act: Norm(DI[P] | S,«) = Norm(D[Q] | S,«). This is immediate since
for any o € Act — Agctuar we have Norm(DI[P] | S,) = Norm(DI[P], o) +
Norm(S, o) = Norm(D[Q], &) +Norm(S, o) = Norm(D[Q] | S, «). In case
that o € Agctual We note that the result follows by applying the previous
argument after observing that Norm(D[P] | S, « - &) = (Norm(DI[P], &) +
Norm(S, «)) - (Norm(DI[P], &) + Norm(S, &)).

However, if either D[P], D[Q], or S is unblocked, we check the reduc-
tion probabilities by applying the inductive hypothesis after noting that
Prob [D [P] | S —redxn Rl | RZ] = Prob [D [P] —redxn Rl]'PrOb [s —redxn RQ]

We finish by showing that Yo € PubAct: p"t'(D[P] | S,,R; | Rg) =
ut(D[Q] | S,«,R; | Ry) via an induction on the maximum length of
a-paths from D[P] | S and D[Q] | S to R; | Ry. The basis occurs when
considering o-paths of maximum length 2 (i.e., paths which can have at
most 1 silent action as a prefix). There are several cases to consider:

(a) Neither D[P] | S nor D[Q] | S have any silent actions (including reduc-
tion actions). In the case that o affects only D[P] we see that:

Norm(DI[P], «)

~ Norm(DI[P] | S, «)
Norm(DI[Q], «)

= Norm(D[Q] | S,)

n"(D[P], &, R1 | Ro)

w"(DIQ], o Ry | R2) = u" " (DIQ] | S, o, Ry | Ry)

If « affects only S then:

Norm(S,)
" Norm(DI[P] | S, «)
Norm(S,)

= n _ o+l
- NOTm(D[Q] ‘ S,(X)H (S,(X, Rl ‘ R2) =H (D[Q} | S,O(, Rl ‘ RQ)

Hn(& X, Rl | RQJ

24 J. C. MITCHELL, A. RAMANATHAN, A. SCEDROV, AND V. TEAGUE

If & of the form B - p with B affecting D[P] and B affecting S then:
u"*(DIP]|S, o Ry | Ro)

_ Norm(D[PL,B) . Norm($,B) wca
= Norm(D[P]| 5. B) u(D[PL, B,R1 | R2) - Norm(DIP]| S.p) u"(S,B,Ri [Ry)
Norm(D[Q], B) Norm(S,)

u"(D[QL, B,R1 | R2) u"™(S,B,R1 | Ry)

"Norm(D[Q] | S, B)
= u"(D[Q] S, x, Ry | Ry)

(b) Both D[P] | S and DI[Q] | S have silent actions. Therefore, each path
in either LTS is of the form D[P/Q] | S = R] | R, = Ry | Ry. If the
silent transition is not a reduction action, then we know that T must
be a transition of either D[P] or S but not both and the channel on
which T occurs is a channel of either D[P] or S but not both (since the
scope of the binding v does not extend over both components). Thus

= Norm(DIQI [S,)

Prob |D[P] & R{} if T affects D[P], and,

Prob [D[P] IS S R! Ré} - N
Prob |S — Ré] if T affects S.

In the case that T is a reduction action, we have already calculated that
Prob [D[P] | S —1eaxn R] | R4] = Prob [D[P] | S —ycaxn R} | R5]. Thus
we do not have to re-normalise the probabilities of silent actions when
calculating the cMFs of processes combined with a | operator; we need
only re-normalise the probabilities of the final public action. To do so,
we simply apply the arguments of the previous case.

(c) Either D[P] | S or D[Q] | S have a silent action (but not both). We
dispose of the case where the silent action is not a reduction action
using the observation of the previous case: the channel on which the
silent action occurs is not shared between D[P] (resp. D[Q]) and S.
If it is a reduction step, then we make use of the idempotence of re-
duction (Lemma 6) to argue as in the previous case. In particular, one
component of the parallel composition will have a probability one re-
duction to itself and a probability zero reduction to any other process.
Thus, as in the previous case, we need not re-normalize probabilities
of silent actions.

So much for the basis. We will assume Yo € PubAct: u™ " (D[P] | S, &, Ry | Ry) =
u*t1(D[Q] | S, o, Ry | Ry) for all paths of length at most k. To show the k+ 1 case
we note that an at-most-(k + 1)-length o-path consists of at most a single silent
action followed by an at-most-k-length o-path. We finish by applying the arguments
of the basis and using the inductive hypothesis at the appropriate points. (I

3. THE EVALUATION OF EXPRESSIONS

The abstract operational semantics given in Sec. 1.3.4 is overly general in two
repects: (1) it allows a process to take actions that lack either an input or an output,
and (2) it does not impose a distribution on the choice of action to perform. This
generality allows the operational semantics to capture the behaviour of the process
in any arbitrary environment and under any possible schedule. Hence, it provides
a good basis for studying the security of protocols written as processes. However,

A PROCESS CALCULUS FOR THE SECURITY ANALYSIS OF PROTOCOLS 25

in practice, when evaluating a process, we will impose a probabilistic schedule on
actions and we will require that each evaluation step consist of an input and a
matching output. In this section we discuss how scheduling actions is handled and
define the evaluation of a process using a scheduler.

3.1. Probabilistic Scheduling. Our goal is to provide a language-based treat-
ment of security protocols and security properties. To do so, we will model at-
tackers as contexts within which the protocol, modelled as an expression, executes.
However, in the real world, the network over which a protocol is running might be
under the control of the adversary. We model this situation by placing the net-
work (i.e., the order in which messages are sent) under the control of a scheduler
which is then made part of the definition of an adversary. Formally, an adversary
is a pair consisting of a context and a scheduler. Since we do not want to fix a
particular scheduler in our operational semantics, we defined the LTS of a process
without specifying a particular schedule. When we apply a scheduler to a LTS, we
get probabilistically well-defined behaviour: the scheduler selects a label and then
a particular transition labelled with the chosen label occurs with probability given
by the LTS.

Typically, the analysis of a security protocol assumes that the adversary has
total control over the scheduling of messages. In particular, the adversary sched-
ules particular messages. However, in our setting, the scheduler only controls the
scheduling of types of messages (i.e., action labels) rather than the messages them-
selves (the individual communications or transitions labelled by those actions). If
the scheduler had direct control over the scheduling of messages, then we would
be able to distinguish processes in an unreasonable way. For example, a scheduler
that always schedules the leftmost message would be able to distinguish P | Q from
Q | P. That is to say, a scheduler that has total control over the scheduling of mes-
sages themselves can make scheduling-decisions on the basis of information derived
from quirks of the syntax of PPC (such as a well-defined notion of leftmost) rather
than relying just on information having to do with the structure of the protocol’s
communications. By having the scheduler make decisions solely on the basis of
the actions given (rather than the communications that are labelled by those ac-
tions), we blind the scheduler to all information derived from the syntax of PPC
(as opposed to the network behaviour of the protocol).

While restricting scheduling to types of messages is indeed a restriction (since
in principle the adversary cannot assign an arbitrary distribution to the actions
available to a process), we argue that the adversary still has significant power. If
each action available to a process labels exactly one transition, then the scheduler
essentially picks individual transitions from the set of transitions according to some
arbitrary distribution (dictated by the scheduler’s behaviour). We believe that
any security protocol can be systematically rewritten so that at each step of the
evaluation, each actual action labels at most one transition. We can do so by
adding time-stamps to messages, unique message identifiers and so on to ensure
that at no point can a process take two transitions labelled by the same actual
action. We note that, in general, we cannot make a guarantee of this sort for
partial actions: what would it mean to disambiguate input actions in this fashion?
However, since we will reason about properties of processes solely in terms of the
observable behaviour generated by a sequence of actual actions (see Defn. 31), it
seems reasonable to believe that reasoning in such terms captures security under all

26 J. C. MITCHELL, A. RAMANATHAN, A. SCEDROV, AND V. TEAGUE

possible adversaries who can schedule individual communications (as embodied by
transitions). In fact, the examples that we study in this paper all have the property
that each action labels at most one transition. In short, restricting the scheduler to
operating on labels rather than specific transitions seems to be a reasonable solution
since we believe that security protocols can be cast into a form that essentially allows
the scheduler to pick individual communications.

Definition 16. A scheduler S: (2A%\ ()) — Act is a probabilistic poly-time Turing
machine that takes as input a non-empty set A of of actions and selects one of
those actions such that } ., Prob[S(A) = a] = 1. We define Sched as the set of
all schedulers.

The condition) . Prob[S(A) = a] = 1 forces the scheduler to always pick
some action out of its input i.e., this condition forces the scheduler to make progress
each time it is invoked. We note that the time bound on the running time of a
scheduler is polynomial in the size of the set of actions given to it as input.

We remark that the scheduler need not give priority to reduction actions or ac-
tions on bindable channels since the operational semantics is constructed to ensure
that the priorities on actions are correctly observed. We define Sched to be the set
of all schedulers.

3.2. Evaluating Variable-Closed Processes with Schedulers. Here we show
how to evaluate a variable-closed PPC process using a scheduler S. We extend this
definition to all PPC processes by quantifying over all valuations of the free vari-
ables. To evaluate a variable-closed process under a scheduler, we simply compute
the set of possible actions that the process can take, have the scheduler pick one of
those actions, and then take a transition labelled by that action according to the
distribution given by the LTS for the process.

We formalise this idea in two stages. First we define the set of possible actions
available to a variable-closed process. Then, we define what it means to take a
transition under a particular scheduler.

We define the set {&|3Q € Proc|Prob [PQ] > 0} to be the action set of a
variable-closed process P, denoted A(P). We say that a variable-closed process P,
with probability p, evaluates to Q wia an «-transition under scheduler S, written

alp] .

P ——s Q, just when:
(1) There is a transition labelled & from P to Q, and,
(2) p =Prob[S(A(P)) = «f - Prob [P5Q].

Basically, the probability that P can evaluate to Q under scheduler S via an o-
transition is simply the product of the probability that P can take an o-transition
to Q and the probability that the scheduler S elects to perform an o action.

Lemma 17. } o ZQEPMC Prob {P X Q} < 1.
Proof. Reordering the sums and expanding s, we get

> Prob[S(A(P))=a] -) Prob[P5Q]

x€Act QEProc

By Lemma 7 we know that Vo € Act we have Prob [P=>Proc] < 1 and, from the
definition of a scheduler, we know that } .. Prob[S(A(P)) = «f = 1. O

A PROCESS CALCULUS FOR THE SECURITY ANALYSIS OF PROTOCOLS 27

Let us write e - 7w to mean the path obtained by prefixing a path 7t with the
edge e. Writing source e, label e, and Prob [e] respectively for the source process,
action-label, and probability of an edge, we can then define the probability of the
path 7@ under the scheduler S, written Prob [S(7t)], inductively:

(1) Prob[S(e)] = Prob[S(A(source e)) = label e] - Prob [e], and,
(2) Prob[S(e - m)] = Prob[S(e)] - Prob [S(m)].

We can then extend the definition of cMFs to account for the behaviour of a

scheduler.

Definition 18. We define w: Proc x PubAct x 2P™¢ x Sched, the cumulative prob-
ability distribution function (¢cPDF), by the equation:

w(P,,R,S)=) Prob[S(n)]
ntePaths(P,«,R)

We prove that the cPDF for a process P, unlike the cMF of that process, is a
probability distribution on transitions.

Lemma 19. VP € Proc.VS € Sched:) _ pgace @(P, &, Proc,S) < 1.

Proof. The proof is very similar to the proof of Lemma 11 except we make use of
Lemma 17. Let us write w*(P, &, R,S) to denote that the value w(P, &, R,S) is
computed over at most k-length paths. To justify the inductive hypothesis we note
that the value) cpupact @ (P, ,,S), when restricted to at most k-length paths,
can be calculated as:

Z Z Prob [P = Q}

o€PubAct Q €Proc

+ Yy ¥ Prob[PLQ}. Yy w*'(Q «Proc,S))

TEAsilent QEProc aEPubAct

The inductive hypothesis gives us that w*1(Q, &, Proc,S) < 1. From Lemma 17
we know that:

Y Zprob[P&Q]Jr Yy ZProb[PLQ}gl

aePubAct Q€Proc TEAsitent QEProc

The following corollary is immediate.
Corollary 20. VP € Proc.VR C Proc.VS € Sched: } _ puace W(P, &, R,S) < 1.

Unlike the proof that ¢cMF is well-defined, we can prove that the cPDF is a
distribution on transitions because the scheduler assigns a distribution to actions
while the LTS assigns a distributions to transitions labelled with the same action.

4. PPC EVALUATES IN POLYNOMIAL-TIME

In this section we construct a Turing machine M4 that evaluates the variable-
closed expression P. This machine takes as input a value for the security parameter
and the program for the scheduler and then evaluates the expression by selecting the
indicated process and performing alternating reduction and communication steps.
The communication steps are chosen by the scheduler given as input. We will also
prove that this mechanical evaluator runs in time polynomial in the length of the

28 J. C. MITCHELL, A. RAMANATHAN, A. SCEDROV, AND V. TEAGUE

security parameter. Our proof of the polynomial time-bound will proceed in three
stages. First we will show that the length of any perceptible path (i.e., a path whose
edges are labelled only by actual or silent actions) is a polynomial in the length of
the security parameter. Then, we will show that each action along that path takes
time polynomial in the length of the security parameter to evaluate. Finally, we
will show that the scheduling decision also takes time polynomial in the length of
the security parameter.

Before we continue, it will be useful to define a pair of metrics—number of inputs
and number of outputs—on expressions. Let P be a variable-closed expression. We
inductively define Inputs(?P), the number of inputs in P, as:

Inputs(Q; | Qo Inputs(Q;) + Inputs(Qs)

q(m) - Inputs(Q)

Inputs(®) =
Inputs(v(c).Q) = Inputs(Q)
Inputs(in(c,x).Q) = 1 + Inputs(Q)
Inputs(out(c, T).Q) = Inputs(Q)
Inputs([T].Q) = Inputs(Q)
) =
Q) =

Inputs(!q) -

and Outputs(P), the number of outputs in P, as:

Outputs(@) =0
Outputs(v(c).Q) = Outputs(Q)
Outputs(in(c,x).Q) = Outputs(Q)
Outputs(out(c, T).Q) = 1 + Outputs(Q)
Outputs([T].Q) = Outputs(Q)
Outputs(Q; | Qo) = Outputs(Q) + Outputs(Qs)
Outputs(!q)-Q) = q(n) - Outputs(Q)

By definition, it is clear that Inputs(P) and Outputs(P) are polynomials in 1 that
are positive for all input values.

4.1. A Turing Machine for Process Evaluation. In this section we will define
an evaluator for the variable-closed expression P as a probabilistic Turing machine
My that takes as input a value 1 for the security parameter and a perceptible sched-
uler S. The machine then evaluates the variable-closed process [i/n]P as follows:

(1) Tt first performs a reduction step. If the process expression is blocked,
performing a reduction step will not skew any evaluation probabilities since
reductions are idempotent (Lemma 6).

(2) Tt then computes the action set of [i/]P and invokes the scheduler upon
it. The scheduler will select the next action to perform.

(3) Next, it picks a transition of the process labelled by the chosen action and
performs the appropriate communication step. It does this by making a
list of all the inputs and outputs in the process that can generate the ap-
propriate action (recall that since the scheduler is perceptible the action

A PROCESS CALCULUS FOR THE SECURITY ANALYSIS OF PROTOCOLS 29

must consist of an input and an output) and computes all the combina-
tions of inputs and outputs. It then picks one of those input-output pairs
uniformly at random. Lemma 8 assures us that picking an input-output
pair uniformly at random conforms to the distribution on transitions given
by the LTS for the process.

(4) The machine repeats steps 1 to 3 until the action set contains no silent
actions or actual actions, at which point it halts.

We will refer to steps 1 through 3 as a single evaluation step in the evaluation of
a variable-closed expression. The evaluation of variable-open expressions is defined
as evaluation under a valuation of the free variables of the expression.

The formal construction of the evaluator is given in Sec. 4.2. The construction,
not surprisingly, closely follows the sketch just given. However, in order to simplify
the proof that any variable-closed expression can be evaluated in time polynomial
in the security parameter, we make a few simplifying assumptions.

A-Substitutions. Since P is a variable-closed expression, every term with variables
must appear in the scope of sufficiently many inputs to bind those variables. For
example, the term T(xq,...,xi) must appear in the scope of at least 1 inputs, each
of those inputs binding exactly one of those variables. Furthermore, a term is
only reduced when it becomes exposed i.e., is no longer in the scope of any input.
At this point, the term has no variables since values must have been substituted
for all variables in the term. Thus, there is no harm in delaying the substitution
of values into variables of terms until the terms need to be evaluated. In partic-
ular, our Turing machine, instead of performing the substitution indicated by a
communication step, will create a A-substitution instance of that term. For ex-
ample, given a term T(xy,...,%;) and a communication step that substitutes a
for xy, our Turing machine will create the term Axy.T(xy,...,%i) a rather than
T(x1,...,Xk—1,Q, Xk+1,---,Xi) (assuming, of course, that 1 < k < i). The actual
substitution of the value into the variable and subsequent term-reduction to an
atom is delayed until a reduction step is performed. This confers two advantages:
(1) we can quantify the time required to evaluate some substitution instance of a
term in terms on the original term with free variables, and, (2) we can quantify
the change in the length of a term due to the substitution of a value for a variable
(without knowing the number of occurrences of a free variable in a term, it would
be impossible to quantify the change in a term’s length, otherwise).

Padding. Our second assumption has to do with ‘padding’ the process being eval-
uated with blank space so that no evaluation step causes the length of the process
to increase. There are two places where padding is required: (1) variables (since
values will be substituted into them), and (2) terms (since they will be reduced to
atoms, and have As added around them). Let us start with the space required for
variables. Each variable needs enough space to write down any possible value that
can be substituted into that variable. Now, the values that get substituted come
via communication steps i.e., they come over channels. Since each channel has a
bandwidth, we can use the bandwidth to determine the size of the variable. In
particular, the size of the largest value that can be substituted for that variable is
bounded by the bandwidth polynomial associated with the channel on which the
value arrives. Let us write W/(P) for the set of bandwidth polynomials associated
with channel names appearing in P. Clearly, W(P) consists of a finite number (say

30 J. C. MITCHELL, A. RAMANATHAN, A. SCEDROV, AND V. TEAGUE

M) of univariate polynomials. We can assume that the maximum number of terms
in any of the polynomials in W(P) is N, and we will index these terms from 0 to
N — 1. We define a; (0 < i < N) as max", |a; ;| where a;; is the coefficient of
the ith term of the jth polynomial in W(P). We then define the coefficient of the
ith term of the polynomial x’(x) as a; i.e., x/'(x) = Z]i\':_ol a; - x'. It is immediate
from the construction of x’(x) that, Vp(x) € W(P).Vi € N: p(1) < x'(1) i.e., x'(x)
is an upper-bound on any polynomial in W(P). Thus, 2X'() is an upper-bound
on the largest value that can be substituted for any variable in P. However, x’(1)
might be smaller than the number of characters required to write down each vari-
able name. The number of distinct variable names, which we shall denote v(P),
is, clearly, linear in the length of P. Furthermore, v(P) must be a polynomial in
the security parameter since every syntactic element of an expression takes con-
stant space except for replications which require space polynomial in the security
parameter. To ensure that we have enough space to write down any value that can
be substituted into a variable and write down the name of the variable itself, we
define x(x) = x’(x) +v(P) which is, clearly, a univariate polynomial in the security
parameter. We then assume that each variable in P is of size x(n).

Now for the A-substitutions that we create during a communication step. Each
single A-substitution instance of a term requires a constant c¢) amount of space for
the A and enough space for the variable name and the value to substitute for the
variable name. The amount of space required to write down the variable name
is x(n). It is also the amount of space required to write down the value to be
substituted for that variable. Thus each A-substitution takes 2-x(n)+cx space. To
determine the total amount of space required for creating A-substitutions around
a term over the entire course of evaluation, we need to determine the maximum
number of inputs that can be binding free variables in the term. Since there are
Inputs(?P) inputs in P, we need Inputs(P) - (2 - x(n) + ca) space for each term.
However, it may be that the length of the term ct is greater than this value.

To make sure that we leave enough space to write down the term (without any

A-substitutions), we stipulate that the space required for a term T be pr(x) =

ct + Inputs(P) - (2 - x(x) + cp). Then, as we perform communication steps, we
will not have to push symbols aside in order to make space for the A-substitution
instance we want to create.

Finally, we need to check that if we define the space that a term T takes to be
pr(n), then when we reduce the term to an atom during a reduction step, we do
not run out of space to write the value of the atom down. If the term appears in an
output then, since outputs truncate the message sent according to the bandwidth
of the channel on which the output occurs, we need only write down the x(n) least
significant bits of the value obtained. But x(1) < pr(n) just when both Inputs(P)
and Outputs(P) are greater than zero. If either Inputs(P) or Outputs(P) is zero
then, technically, the inequality x(n) < pr(n) is false. However, this is not a
significant issue since evaluation cannot proceed if there are either no inputs or
no outputs (recall that an evaluation step requires an input and an output). For
a term appearing in a match, we note that we never really require the value to
which the term evaluates. All we need know is whether the match holds or fails.
Thus the space allocated to a term is sufficient since all we do is to either erase the
match (assuming the match was passed) or erase the entire expression (assuming
the match was failed).

A PROCESS CALCULUS FOR THE SECURITY ANALYSIS OF PROTOCOLS 31

As a consequence of these assumptions on the length of terms and variables,
each reduction step does not increase the length the process. Furthermore, neither
do communication steps, since we make sure to leave enough space for the As that
substitutions create. To summarise our assumptions, we delay the substitution
of values into variables until a reduction step touches the relevant term, and we
assume that every term and variable has enough space around it to ensure that
reduction and communication steps never increases the length of a process.

4.2. The Evaluator for Variable-Closed Expressions. We will now construct
the machine M. The machine has three input tapes, two working tapes, and two
output tapes. It starts with a value i for the security parameter written out in
unary one one input tape and a description of the Turing machine implementing a
perceptible scheduler S on the other tape—we know such a Turing machine exists
because a perceptible scheduler is a poly-time probabilistic function. Writing the
security parameter in unary allows us to equate the length of the security parameter
with its value, which is convenient in stating the theorems. Additionally, this is
standard practice in the cryptographic community (see [31,44]). The third input
tape starts with the variable-closed expression P that My is supposed to evaluate.
The first step that Mp undertakes is to substitute i for n in P. It then copies [i/n]P
onto one of the working tapes making sure to leave enough space around the terms
as specified by the assumption on the size of terms (we will use the symbol , as
a blank symbol that we use to delete symbols by overwriting them as well as add
padding to terms and variables so that we leave sufficient space as indicated by
the discussion in Sec. 4.1). As we reduce [i/1]P and perform communication steps,
we will rewrite [1/n]P on this working tape. At this point My is ready to begin
evaluation of the process.

An evaluation step consists of a reduction step followed by a communication step.
We note that, due to the idempotence of reduction (see Lemma 6), performing a
reduction step on a blocked process does not alter the probability distribution on
observables induced by P. To perform a reduction step, My must evaluate each
exposed term and each exposed match in [i/n]P (it is easy to determine if a term
or match is exposed—every time an input operator, say in(c, x).[i/n]Q, is encoun-
tered, we consider every subexpression of [i/1]Q as not being exposed). In order to
evaluate the term T we will make use of the Turing machine My associated with
T by the fact that terms are exactly the probabilistic polynomial-time functions
(see Sec. 1.1). We note that no evaluation sequence (i.e., an alternating sequence
of reductions and communication steps) can create terms. Thus, the set of terms
that could possibly be reduced during evaluation of [i/n]exprP can be determined
by inspecting P. Let A: VarClosedExpr — 2T™ be a function from variable-closed
expressions to sets of terms such that A(P) is the set of terms that appear as syn-
tactic elements of P. Since every exposed term must be a substitution instance of
terms in A(P) (recall that P is assumed to be variable-closed, and communication
steps create A-substitution instances of terms), we can evaluate each substitution
instance Axq - - - Axx. T aq - - - ax by simply running the Turing machine M at inputs
ai,...,ar. Inthe case that the term evaluated appears in an output on the channel
¢, we write down the width([i/n]P, c) least significant bits. If the term is part of a
match, we use a working tape to record the entire value of the term. In this man-
ner, we can compute a reduction step by simply invoking the appropriate Turing
machines at the appropriate values and overwriting matches with blank symbols

32 J. C. MITCHELL, A. RAMANATHAN, A. SCEDROV, AND V. TEAGUE

and/or the @ process. It is easy to check that the distribution on process induced
by performing a reduction step on [i/n]P is exactly the same as that specified by
the definition of the reduction function —,eqxn (see Sec. 1.3.1) i.e., M really does
compute a reduction step at this stage of evaluation.

We then need to perform a communication step. We start by computing the set
of input/output pairs that [i/n]P can take. This can be done by simply collecting
all the input and outputs that are not in the scope of other inputs and outputs,
and then building the set E of all pairs of equivalent to (in(c, a),out(c,a)) for
some ¢ and a (whether c¢ is private or not). This is essentially the the action
set of the process restricted to actual actions (we get the action set by rewriting
(in(c, a),out(c,a)) as {c,a) - (C,a)). We augment this set of pseudo-actions with
locating contexts (see Sec. 1.2) that we will use to identify the locations of the
particular input and output making up a particular possible communication step.
We convert E into a set of actions A in the obvious way and use the given perceptible
scheduler S to select one of the actions. Having selected an action out of A, we then
eliminate all input-output pairs from E that do not produce the same observable
as the chosen action. Finally, we pick one of the remaining input-output pairs
uniformly at random and perform the indicated substitution. If the action is a
public one, we record the appropriate observable on the output tape—this tape
will then have all the observables generated during the evaluation of the process.
It is easy to decide if an action is public (this takes time linear in the length of the
process being evaluated). Clearly, at the termination of this step Mg has correctly
performed the substitution indicated by an action available to P. That it has done
so with the right probability follows from Lemma 21. Thus the communication step
performed by My respects the operational semantics of PPC.

Finally, My repeats reduction-and-communication-step pairs until there are no
more actual actions to take. We note that this means that there will be a final
reduction step followed by no communication step, but since that reduction step
produces no observables, it can be ignored.

Our construction is specific to a particular variable-closed expression. Thus each
variable-closed expression has an evaluator associated with it. The reader will
no doubt appreciate that a single Turing machine able to evaluate any variable-
closed expression is a simple extension. The input, in this case, will simply be
the expression to be evaluated, a value for the security parameter, a description of
the Turing machine associated with the scheduler, and descriptions of the Turing
machines associated with each of the terms in the process to be evaluated. In fact
we can even extend this evaluation machine to open expressions by including in
the input a valuation for the free variables of the process (in this case the run-time
will, of course, be polynomial in the security parameter and the sizes of the values
selected for the various free variables of the expression). We leave the details of
these extensions to the interested reader.

Lemma 21. Let P be a variable-closed expression and Msp be the associated evalua-
tor. Then Mx(1,S) generates the observable o with the same probability that [1/n]P
generates the observable o under the perceptible scheduler S.

It is not difficult to extract the proof from the construction just given for evalu-
ators.

4.3. A Bound on the Length of any Evaluation Sequence.

A PROCESS CALCULUS FOR THE SECURITY ANALYSIS OF PROTOCOLS 33

Lemma 22. Let P be a variable-closed process. Then, for all values i for the
security parameter and perceptible schedulers S, during any evaluation of [i/mIP, at
most min{Inputs(P)(1), Outputs(P)(1)} evaluation steps occur.

Proof. Consider any evaluation step that occurs during the evaluation of P. An
evaluation step is made up of a reduction step followed by a communication step.
From the definition of reduction we know that a reduction step cannot increase the
number of inputs or outputs in a process (all it can do is to reduce the number
of inputs and outputs by causing a match to fail). Since a communication step
syntactically eliminates an input/output pair from the expression being evaluation,
each evaluation step must reduce the number of inputs and outputs by at least one.
Furthermore, each evaluation step requires both an input and an output (so that
the communication step can go through). Thus, during evaluation we can only have
at most min{Inputs(P)(i), Outputs(P)(i)} communication steps whence we can only
have at most that many evaluation steps. O

Corollary 23. Let P be a variable-closed expression. Then the number of evalua-
tion steps that can possibly occur during an evaluation of P is a polynomial in the
security parameter.

Proof. Using Lemma 22, we define the number of evaluating steps h(x) that occur
during the evaluation of a P as:

min{Inputs(P)(x), Outputs(P)(x)} < Inputs(P)(x) + Outputs(P)(x)
Clearly, h(n) is a polynomial in the security parameter. O
4.4. A Bound on the Time for an Evaluation Step.

Definition 24. Let P be a variable-closed expression. We inductively define a
polynomial Length(P), the length of P including padding, as follows:

Length(®) =
Length(v(¢).Q) = 1 4 Length(Q)
Length(in(c,x).Q) = 1 4 Length(Q)
Length(out(c, T).Q) = 1 + pr(n) + Length(Q)
Length([T].Q) =1+ prt(n) + Length(Q)
)=

Length(Q; | Q) = 1 + Length(Q;) 4 Length(Q5)
Length(!q(n)-Q) = q(n) - Length(Q)

It is clear from the definition that Length(P) is an always positive polynomial in 1.
We remind the reader that this definition accounts for the padding that we add to
the expression to ensure that we never need to push symbols aside when we perform
communication steps. It is easy to see that if we eliminate the padding, the length
of an expression is still polynomial in the security parameter.

Lemma 25. Let [i/n]P be a process and let the process [i/n]Q be the result of per-
forming some number of evaluation steps on [i/m]P. Then Vi € N: Length(Q)(1) <
Length(P)(1).

Proof. Each reduction step eliminates matches and rewrites output terms with
values. Thus a reduction step cannot increase the length of a process since we have

34 J. C. MITCHELL, A. RAMANATHAN, A. SCEDROV, AND V. TEAGUE

padded terms to ensure that there is plenty of space to write down the value to
which the output term reduces.

Also, each communication step removes at least one input and output from
[i/n]P. Since the contribution to the length of [i/n]P by a particular term T ac-
counts for the maximum size that T can grow to by the creation of successive
A-substitution instances of T during communication steps, Length(Q)(1) cannot ex-
ceed Length(P)(1). O

Lemma 26. Let P be a wvariable-closed, blocked expression and S a perceptible
scheduler. Then the evaluator for P, Mg, selects the next action to perform in
time polynomial in the length of P and polynomial in the length of the security
parameter.

Proof. Since P is blocked, it has no exposed matches or outputs that need reduction.
Before the scheduler is invoked, we need to construct the action set of the process.
This can be done in one pass to collect all the inputs and outputs (this pass is
poly-time in the length of P)—since we are only using perceptible schedulers, every
action that can be scheduled must be an actual action. Since an actual action
consists of an input and an output, the set of actions we need to consider is of
size at most Inputs(P) - Outputs(P). Thus, the action set A of a process can be
computed in time polynomial in the length of n. Finally, the scheduler will pick
an element from A in time polynomial in the size of A. But A is clearly linear
in the (padded) length of P since each action in the action set must consist of
an input and an exposed, reduced output of P. Whence the time needed for the
entire procedure of running the scheduler and deciding which action to perform
is at most a polynomial sp(x) = Ceomm - (Inputs(P) - Outputs(P) + o(Length(P)))
where Ccomm 18 a constant and o(x) is a univariate polynomial. Clearly sp is a
univariate polynomial in the security parameter since the length of an expression
is a polynomial in the security parameter. O

Lemma 27. Let P be a variable-closed expression. Then the evaluator for P, Moy,
performs a communication step in time polynomial in the length of P and 1.

Proof. Whenever Mg touches an exposed term (Ax; ...Ax;.T) a; ... a, it evaluates
T by evaluating the algorithm M at ay,...,ax (recall that since P is variable-
closed, all exposed terms have no free variables) The runtime is bounded by the
polynomial qr(|aif,...,|ax|) (since, terms are probabilistic poly-time functions of
their arguments). However, each argument to a term comes via a communication
step or directly from the choice of value for the security parameter. Thus, each
input has size at most x(n) whence the cost of evaluating a term is given by the
polynomial gr(x(x),...,x(x)) which is just a univariate polynomial tr in the secu-
rity parameter. Since the number of terms in a process is a function of its length,
the reduction step needs to do at most

To(x) £ Length(P) - (Z tTk(x)>
k=1

where the expression P contains just the terms T,..., T.
Next, we need to select an action from the action set of the process using the
scheduler. From Lemma 26, this can be done in time sp(1) which is a polynomial

A PROCESS CALCULUS FOR THE SECURITY ANALYSIS OF PROTOCOLS 35

in n and the length of P. We then select an input-output pair that produces the
same observable as the selected action:

(1) First, we make a list of all the input-output pairs eligible for the substitution
step. This is done in time polynomial in the length of P.
(2) Then, we select one of those actions uniformly at random This procedure
takes time polynomial in the number of input-output pairs that can produce
the same observable as «. This is at most Inputs(P) - Outputs(P) which is a
polynomial in 1.
Thus, selecting the particular action to evaluate can be done in time polynomial in
1 and the length of P. We shall call this polynomial dp.

Next we need to perform the chosen substitution. We can do this in one pass
to substitute the value transmitted by the communication step into the free occur-
rences of the variable bound by the input, and a second pass to erase the selected
input and output (using blank symbols to erase the unnecessary symbols). Thus
we can perform a communication step in time cp = c - Length(P).

Thus the time for an evaluation step is given by the univariate polynomial
er(x) E ro(x) 4+ sp(x) + dp(x) + cp(x) which is a polynomial in n (since the
length of P is a polynomial in 7). O

4.5. A Bound on Evaluation Time.

Main Theorem 28. Let P be a variable-closed expression and My its evaluator.
Then Mg evaluates P in time polynomial in the security parameter.

Proof. Before we evaluate the expression, we need to write out the padded form
of the process [i/n]P. This takes time polynomial in the security parameter since
the padding is of length polynomial in the security parameter and the length of an
expression without padding is polynomial in the security parameter. We shall call
this polynomial a(x).

We know that there are at most h(x) evaluation steps during the evaluation of
P (Lemma 23). Furthermore, each evaluation step takes time no more than ep(x)

def

(Lemma 27). Thus, the overall cost of evaluating P is ®p(x) = a(x) + h(x) - ep(x)
which is just a univariate polynomial in the security parameter. O

5. ASYMPTOTIC OBSERVATIONAL EQUIVALENCE

Given a protocol and a specification, intuitively, the two are equivalent if no
third party can reliably decide whether it is interacting with the protocol or the
specification. The only information available to the third party as it attempts to
determine with whom it is interacting is the observable behaviour of the entity it
is studying. This idea lies at the heart of cryptographic intuitions about how to
characterise security properties of protocols and primitives.

In this section we define an observational equivalence relation and explore the
relationship between it and probabilistic bisimulation. We start by defining an
observable. Essentially, an observable is a datum that an entity can ‘see’ when
interacting with another entity.

Definition 29. An observable o is a pair (c,a) € Channel x N. The set Obs is
the set of all observables. A process P generates the observable (c,a) under the
scheduler S, written P ~»g (c,a), just when while evaluating P, the scheduler S

36 J. C. MITCHELL, A. RAMANATHAN, A. SCEDROV, AND V. TEAGUE

selects the action (c, a) - (¢, a). The probability that P ~»s (c, a) is given by:
w(Pa <C7 Cl> : <67 Cl>7 Proc, S)

+ > w(P, o, R,S) - Prob[rep R ~s (c, a)]
Re€Proc/ -
x€PubAct\{(c,a)-(¢,a)}

An observable must be generated via a sequence of public actions and silent
actions.

Lemma 30. VS € Sched.VP € Proc.Vo € Obs: Prob [P ~~g o] < 1.

Proof. As usual we proceed by an induction on the maximum length of paths. The
value Prob [P ~~g 0] is computed as:

w(P,{c,a) - (c, a),Proc,S)

+ Z w(P, o, R,S) - Prob [rep R ~s (c, al]
REProc/ -
a€Aactuar\{{c,a)(C,a)}

By the inductive hypothesis we know that Prob [rep R ~»s (c, a)] < 1. Furthermore

w(P, (c,a) - (¢, a), Proc,S) + > w(P, R, S)
Re€Proc/ -
‘xe/\actual\{<c>a>'<éva>}
= Z w(P, «, Proc, S)

x€PubAct

Applying Lemma 19 yields the desired result. (I

The reader will have noticed that a scheduler can select partial actions in addition
to actual and silent actions. We define the set PSched of perceptible schedulers to
be the set of all schedulers satisfying:

Vo € Ain UAgut: Prob[S(A) = o] =0

A perceptible scheduler is simply a scheduler that always picks actual actions or
silent actions. When considering the equivalence of two expressions, we will restrict
the choice of schedulers to just the perceptible ones since we are interested only in
communication steps that involve communication between two entities. This allows
us, for example, to talk of a process generating the observable o via a sequence of
only actual and silent actions, in keeping with our intuitive idea of evaluation as a
series of communications between two entities.
We will say that P and Q, written P ~ Q, are asymptotically close just when

Yo € Obs.VS € PSched.Vp(-) € Poly.Fip € N.Vi > ig:

‘ -

[Prob (/)P ~s ol ~ Prob [ii/11 ~s ol <
Definition 31 (observational equivalence). Let P and Q be two expressions and

let Val(P, Q) be the set of all valuations of free variables of P and Q. We will say
that P and Q are observationally equivalent, written P = Q, if:

V& € Val(P,Q).VC[-] € CExpr: &(C[P]) ~ &(C[Q])

—_

A PROCESS CALCULUS FOR THE SECURITY ANALYSIS OF PROTOCOLS 37

It is straightforward to check that = is a congruence. Hence, we state the
following lemma without proof.

Lemma 32. = is a congruence.

The next theorem establishes probabilistic bisimulation as a proof technique for
demonstrating observational equivalences.

Theorem 33. Vie N: [i/m]P~[i/M]Q — P=Q.

Proof. If two processes P and Q are bisimilar then we know that if they are blocked,
the number of ways they can take any action « is the same for the two processes.
Whence it follows for blocked bisimilar processes that the scheduler behaves in the
same way for both processes (since the two processes must be able to take the
same actions). If they are unblocked then the scheduler is not invoked since a
reduction step must be performed. However, the fact that P and Q are bisimilar
means that the reduction step will take P and Q to bisimilar processes with the
same probability. Hence, if P and Q are bisimilar, they are asymptotically close.
Since ~ is a congruence (Thm. 15), we have the desired result. (]

We note that each valuation & can be expressed as a context expression Cg[-].
Let P have k free variables and let & substitute the value a; for the variable x;.
Then, we can capture this valuation in the context:

vicr). - vlek).(out(er,ar) | -+ | out(ex, an)) [in(er,x1). - -+ Anlee, xx).[-]

Via a series of private communications, each of the variables x; (1 < 1 < k) is
replaced with the values a; just as & demands. Thus, = can be defined over all
variable-open expressions without explicitly dealing with valuations. The quantifi-
cation over all context expressions automatically takes care of the quantification

over all valuations.

6. A PrROOF SYSTEM FOR PPC

The congruence and equivalence properties of = will form the basis of our
reasoning system for protocols. We present an incomplete but sound reasoning
system in Fig. 3. We now proceed to sketch justifications for the proof rules.
Rules (CON), (RFLX), (TRN), and (SYM) are formalisations of =’s congruence
properties.

P=0Q C[-]e CExpr
CON
C[P] = C[9] ()
P =P (RFLX)
P=0Q,9=1R
P=R (TRN)
P=Q
YM
Q=P (SYM)

The four rules (P-SYM), (ZERO), (P-ASC), and (P-TRN) formalise various prop-
erties of the parallel composition operator. The three rules (P-SYM), (ZERO),
and (P-ASC) are demonstrated via bisimulations. It is easy to see that the LTSs of
the left-hand side expression and the right-hand side expression in each of these rules

are isomorphic. Once we have the witnessing bisimulations, we apply Thm. 33. As
a consequence of (P-ASC) we will write P | Q | R for either (P | Q) | R or P | (Q]|R).

~

38 J. C. MITCHELL, A. RAMANATHAN, A. SCEDROV, AND V. TEAGUE

Figure 3 A Reasoning System for PPC

P=Q €[] e CExpr

CON
C[P] = C[Q] ()
P=7P (RFLX)
P=Q Q=R
P=R (TRN)
P=Q
Q=P (SYM)
PlQ=Q|P (P-SYM)
Q|P=?P (ZERO)
(PI1QIR=P|(Q|R) (P-ASC)
Pr=P,01 =20,
P-TRN
P12 =P 19 ()
¢ ¢ Channel(€C[2])
EXT
v(c).C[P] = Clv(e).P] ()
P has no public channels
T (ZER)
Clout(c, T)] and Clout(c, U)] are scheduler-insensitive,
¢ ¢ Channel(C[@]), PubChan(Clout(c, T)]) = {c},
Clout(c, T)] = Clout(c, U)] (NU)
ITer . 1, Ugr . 1 € Term: out(c, Ter . 1) = out(c, Ug . 1)
width(c¢) = width(d), d € Channel(P, Q) (NREN)
v(e).P =v(d). P/
width(c) = width(d), d ¢ Channel(P, Q),
¢ € Unbindable <= d € Unbindable, P = Q
pld/cl, ~ gld/cl (PREN)
fr and fy are computationally indistinguishable (EQ1)
out(c,T) = out(c, U)
Vi e [1..k]: out(c, T;) = out(c, U;) (EQ2)
out(d, V(Ty,...,Tx)) = out(d, V(Uy,...,Uy))
Yai,...,ax: out(ci, Ui(ag,...,ax)) = out(ci, Vi(al,...,ax)),1i € [1..m],
FreeVar(Clout(cy, Ur(x1,...,%XK)),...,out(cm, Un(x1,...,xx))]) =
FreeVar(Clout(cy, Vi(xi,...,xx)), ..., out(Cm, Un(x1, ... x))]) = {xi}
1T1(d, Xi)-e[out(claUl (X17 s 7Xk))7 LR Out(Cm, Um(Xla R 7Xk))]
= ln(da Xi).G[OUt(Cl,Vl (Xla s 7Xk))a RS Out(cnhvm(xla s an))]

A PROCESS CALCULUS FOR THE SECURITY ANALYSIS OF PROTOCOLS 39

As for rule (P-TRN), we argue as follows. Using (CON) and the context P | [-],
we have Ql = Q2 1mphes Tl ‘ Q1 = ?1 | QQ. But, Tl = 9)2 1mphes 9)1 | Q2 = ?2 | QQ
(using (CON) with the context [-]| Q2). We use the transitivity of = to complete
the proof.

PIQ=Q|?P (P-SYM)

Q|P=P (ZERO)

(PIAIR=P[(Q[R) (P-ASC)
Pr=Pr,0=Q

P-TRN

P11 =P | Q ()

The rules (EXT), (ZER), and (NU) allow us to manipulate private channels in
various ways. In particular, they allow us to remove or add private channels to
an expression under certain conditions. Rule (EXT) allows us to shrink or ex-
pand the scope of a private channel so long as it does not make formerly public
channels private. The proof relies on the fact that if ¢ is not a channel that ap-
pears in €[-] then, the LTS of v(¢).C[P] is isomorphic to the LTS of C[v(c).P] i.e.,
{(v(e).DIQ], Dlv(c).Q)v(e).DIQ] € L(v(c).C[P])} is a bisimulation. In particular,
v(c).C[P] takes an o-transition to v(c).D[Q] iff Clv(c).P] takes an a-transition to
Dlv(c).Q] with the same probability. This follows since the absence of the channel
¢ in C[-] means that restricting the scope of the binding v to just P does not
make formerly silent actions on the channel ¢ public, nor does it make formerly
impossible partial actions on the channel ¢ possible. Since v does not affect proba-
bilities of actions (except partial ones on the bound channel name) or priorities of
actions, clearly, the two LTSs have to be isomorphic. The rule (ZER) follows from
the fact that an expression that produces no observables is trivially observationally
equivalent to the zero-expression @ since the cumulative mass of any a-path (with
« a public action) to any set of processes is zero.

¢ ¢ Channel(C[2])

v(¢).C[P] = Clv(c).P] (EXT)
P has no public channels
e (ZER)
Clout(c, T)] and Clout(c, U)] are scheduler-insensitive,
¢ € Channel(C[@]), PubChan(Clout(c, T)]) = {c},
Clout(c, T)] = Clout(c, U)] (NU)

ITer ., Ugr .) € Term: out(c,T@[.]) = out(c,U@[.])

Rule (NU) states that if you have a scheduler-insensitive expression (i.e., an ex-
pression where only one action is possible at any stage in the evaluation of the
expression thereby rendering the choice of scheduler superfluous) with only one
output on a public channel, then the entire expression can be written as a single
term placed in an output on the same channel. That is to say, we can fold all
the private behaviour of the expression into the single public output by simulating
this behaviour and generating the appropriate public message in the output term
itself. That we can do this relies on the fact that every expression can be evaluated
mechanically in polynomial time (Thm. 28) and that the choice of scheduler is ir-
relevant (which implies the existence of a single term that correctly simulates the
evaluation of the expression regardless of the choice of scheduler). Essentially, this

40 J. C. MITCHELL, A. RAMANATHAN, A. SCEDROV, AND V. TEAGUE

rule states the silent transitions are completely invisible. The proof is fairly straight-
forward. Consider the term Te; . 1 s that simulates the evaluation of Clout(c, T)]
under the scheduler S and outputs a iff the observable (c, a) is generated. We know
such a term exists since there exists a probabilistic poly-time Turing machine that
evaluates the expression Clout(c,T)] under the scheduler S (see Thm. 28). Since
Clout(c, T)] is scheduler-insensitive, the behaviour of the process does not depend
on the scheduler. Thus, each T¢| . | s (parameterised by the choice of scheduler) is
in fact the same term (since the scheduler does not matter). So in fact we have a sin-
gle term T . 1 that simulates the evaluation of Clout(c, T)] (under any scheduler)
and returns a iff the observable (c, a) is generated. Whence we have demonstrated
the existence of the term Tep . |. Similarly, we construct Ug . |. To finish, we can
easily verify that out(c, Ter . 1) = out(c, Ug(. 1) via the obvious bisimulation.

width(c¢) = width(d), d € Channel(P, Q)

NREN
v(e).P =v(d).Pld/ ()

width(c) = width(d), d ¢ Channel(P, Q),
¢ € Unbindable <= d € Unbindable, P = Q (PREN)

pld/cl ~ gld/c]

The first of the two rules dealing with renaming channels, (NREN), states that one
can rename a private channel to an unused private channel (as long as bandwidths
are respected). In this rule, Pl?/¢! denotes the expression obtained by replacing
the bindable channel name ¢ with the unused bindable channel name d (we define
a similar notation for processes). It is easy to give a bisimulation between v(c¢)P
and v(d)P'/ ¢! (where P is a process in the expression P) since the two LTSs are
isomorphic and produce exactly the same observables. The second rule regarding
renaming, (PREN), allows us to rename public channels to a name that is not
currently in use by the expression. Naturally, we need to respect bandwidths,
but, in addition, we must ensure that we do not change the priority of actions on
a channel by replacing a low priority channel name with a high priority channel
name or vice versa. Since, by assumption P and Q are observationally equivalent,
renaming the same channel in the same way in both expressions, cannot violate
their equivalence (all it does is map observables on the channel ¢ to observables on
the hitherto unused channel d). Thus, a bisimulation can be easily given to verify
this (the bisimulation between pld/el and Q4/¢) is just the bisimulation between
P and Q)—renaming the channels amounts to giving the isomorphism between the
LTS of P (resp. Q) and Pld/¢) (resp. Qld/c)),

The final three proof rules—(EQ1), (EQ2), and (PUL)—allow us to manipulate
computationally indistinguishable terms. The rule (EQ1) states that if the func-
tions fr and fy are computationally indistinguishable then out(c, T') and out(c, U)
are observationally indistinguishable. This rule is just the formalisation, as a proof
rule, of Thm. 40. Since expression the cryptographically-important notion of com-
putational indistinguishability is an important step in our program, rather than
giving a sketch of the proof here, we simply state the result here and point the
reader to the full proof given in Sec. 7.1. Essentially, the argument shows that if
out(c, T) can be distinguished from out(C, U), then the context expression witness-
ing that distinction can be converted into a probabilistic poly-time algorithm that
distinguishes between fr and fy by viewing the context as a function that takes
as input the output of the term plugged into the hole and constructing a machine

A PROCESS CALCULUS FOR THE SECURITY ANALYSIS OF PROTOCOLS 41

that runs the context on the input.

fr and fy are computationally indistinguishable

out(c, T) = out(c, U) (EQL)
Vi e [1..k]: out(c, T;) = out(c, Uj) (BQ2)
out(d,V(Tq,...,Tk)) = out(d, V(Uq,...,Uy))

Yai,...,ax: out(cy, Ui(aq,...,ax)) = out(cy, Vi(ar,...,ax)),1 € [1..ml],
FreeVar(Clout(cy, Ur(x1,...,%xk)),...,out(cm, Un(x1,...,xx))]) =
FreeVar(Clout(cy, Vi(x1,...,%k)), ..., out(cm, Un(x1,...,x))]) = {xi}

in(d, xq).Clout(cy, Uy (x1, ...y X))y - .-, 0ut(cm, Un(x1, ..., xx))]
= in(d,xq).Clout(cy, Vi(x1,...,%xk)),...,out(cm, Vi (x1,...,xx))]
(PUL)
The rule (EQ2) states that if there are k pairs of terms (Tj, U;) that are pair-
wise observationally equivalent, then the two expressions out(d,V(Ty,...,Ty))

and out(d, V(Uy,...,Uy)) are observationally equivalent. The proof proceeds by
contradiction. For each 1 < j < k, we consider two expressions. The first, H;
is defined as out(d, V(T4,...,Tj—1,Uj,...,Ux)) and the second, Hj;1, is defined
as out(d, V(T4,...,Tj, Uj1,...,Ux)). We note that H; and ;4 differ only in
the jth argument to V. Assume that the context C[-] witnesses that 3{; 2 Hjy;.
Then the context defined as in(c, x).Clout(d, V(Ty, ..., Tj—1,x, Uj41, ..., Uk))] dis-
tinguishes between out(c, Tj) and out(c, U;). This contradicts the hypothesis that
each out(c, Tj) is observationally equivalent to out(c,Uj). In this manner we can
build up a chain of equivalences H; = - - - = Hy and employ the transitivity of = to
obtain the desired result. Finally, the rule (PUL) allows us to replace an argument
to a term with a free variable and introduce a binding input under certain condi-
tions. The proof sketch is similar to that employed for (EQ2). As in that case, we
proceed by contradiction. For each 1 < j < m, we consider two processes. The
first, J(;, is defined as:

1T'L(d, Xi)-e[out(clavl (X17 .. an))a ey Out(Cj_l,Vj_l(Xl, o an))a
out(cj, Uj(x1,...,xx)), ..., out(cm, Un(x1, ..., xx))]]

and the second, J{j1, is defined as:

in(d,xi).e[out(cl,\/l(xl, ... ,Xk)), RN out(cj,Vj(xl, - ,Xk)),
out(cjt1, Ujpa(x, .-, xi)), -+ o out(Cm, Un(x1, - - -, xu))]

Note that J(; and Hjy; only differ in the expression plugged into the jth hole.
Let us assume that H; 22 3(;;;. Then there must be set of values ay,..., ax such
that U; and Vj at those values can be distinguished with non-negligible advantage.
But this means that out(cq, Uj(as,...,ax)) 2 out(cy, Vj(ai,...,ax)) which is a
contradiction. Therefore H; = H;j;;. In this manner we can build up the chain
of equivalences H; = Hy = -+ = H,,, and employ the transitivity of = to obtain
the desired result. We could have presented an alternate version of (PUL) where
the ith pair of terms (Uj, Vi) has ki arguments rather than all the terms having
the same number of arguments. A similar version of the reasoning just given would
have worked since it does not depend on U; and Uj (1 # j) having the same number
of arguments, only on U; and V; having the same number of arguments. We
chose the version given for its simplicity. Furthermore, the omission does not cost

42 J. C. MITCHELL, A. RAMANATHAN, A. SCEDROV, AND V. TEAGUE

anything since, by introducing unused parameters, we can make any k-ary function
an (k+ k’)-ary function. Then, using (EQ1) in conjunction with (PUL), we would
be able to deploy the precisely the kind of reasoning made available by the omitted
version of (PUL).

7. CRYPTOGRAPHIC EXAMPLES

In what follows we will denote an element x chosen uniformly at random from
the set X by x €g X. In Sec. 7.1 we will show that our notion of asymptotic
observational equivalence and the standard notion of indistinguishability by poly-
time statistical tests coincide. In Sec. 7.2 we apply the previous observation to define
pseudorandom number generators in PPC. In Sections 7.3 and 7.4 we respectively
define semantic security and the Decision Diffie-Hellman assumption (DDHA) in
terms of equivalences between PPC expressions. Finally, in Sec. 7.5 we derive the
equivalence between the DDHA and the semantic security of ElGamal encryption
by making use of the formal proof system for PPC given in Sec. 6.

7.1. Computational Indistinguishability. Here we show that our asymptotic
observational equivalence relation coincides with the standard cryptographic notion
of indistinguishability by polynomial-time statistical tests. We start by recalling the
notions of a function ensemble used in the cryptographic literature [29-31,44,47,67].

Definition 34 (function ensemble). A function ensemble f is an indexed family
of functions {fi: A; — Bilien. A function ensemble f: Ay — By is uniform if
there exists a single Turing machine M that computes f for all values of 1 i.e.,
Vi € NVa € Ai: M(i,a) = fi(a). A uniform function ensemble f: A; — By is
poly-time if there exists a polynomial q and a single Turing machine M such that
M(1i, a) computes fi(a) in time at most q(|il,|al). A uniform function ensemble
f: Ay — By is probabilistic poly-time if f; is a probabilistic poly-time function. A
poly-time statistical test A: {0,1}™) — 10,1} is a {0, 1}-valued probabilistic poly-
time function ensemble.

The notion of computational indistinguishability is central to cryptography. Gol-
dreich [31], in particular, has an excellent discussion.

Definition 35 (computational indistinguishability). Let q(x) be a positive poly-
nomial. A uniform probabilistic poly-time function ensemble f:) — {0, 1}'*) is
computationally indistinguishable from a uniform probabilistic poly-time function
ensemble g:) — {0, 1}') just when for all poly-time statistical tests A we have:

e ” 1
Vq(x).3io. Vi > 1o |[Prob [Ai(fi()) = “17] — Prob[Ai(gi() = “17]| < T
Definition 36. Let P be a variable-closed expression with no public inputs and
with exactly one public output on the channel ¢ where width(c) = q(x). We
will say that the probabilistic poly-time function ensemble f¥:) — {0,1}9) is
the characteristic function for P with respect to the scheduler S when we have
that Va € N: Prob [f{() = a] = Prob[[i/n]? ~s (c,a)]. Let f: § — {0,1}9%) be
a probabilistic poly-time function ensemble. Let Tf be a term such that M,
computes f. Then, we say that out(c,T¢) is the characteristic expression for f.
Let f: 0 — {0,1}9(*) be a probabilistic poly-time function ensemble and let

P: = out(c,T¢) be its characteristic expression. Then, it is easy to see that

VS € PSched.Va € N: Prob [fi() = a] = Prob [[i/n](Ps | in(c, x)) ~s (¢, a)l.

A PROCESS CALCULUS FOR THE SECURITY ANALYSIS OF PROTOCOLS 43

We want to show, in this section, that the standard notion of computational
indistinguishability can be captured elegantly in our system. Roughly speaking, we
want to show that f is computationally indistinguishable from g iff the characteristic
expression for f is observationally equivalent to the characteristic expression for g.
To do so, we will show two facts:

(1) If there exists a poly-time statistical test A that distinguishes between f and
g, then there exists a context expression C[-] that distinguishes between
the characteristic expressions for f and g under any scheduler. This is
shown in Lemma 37.

(2) If there exists a context expression C[-] that distinguishes between the
characteristic expressions for f and g under a scheduler S, there exists a
poly-time statistical test A that distinguishes between f and g. This is
shown in Lemma 39.

Lemma 37. Let A: {0,1)™) —{0,1} be a poly-time statistical test. Let P be any
variable-closed expression with no public inputs and exactly one public output such
that f7: 0 — {0,1™%) s its characteristic function. Then, we can construct a
context C4[- | such that ¥ o A is the characteristic function for C4[P] under any
scheduler.

Proof. By construction. If A is a poly-time statistical test then we can construct
the context expression C4[- | = in(c,x).out(d, T4(x)) | [] with width(c) = m(x)
and width(d) = 1.

It is easy to see that this context expression applies the test to the m(n)-bit
output of some expression “plugged” into the hole. By assumption, we have that
7 is the characteristic function for P. Now, T4 is the term that computes the
probabilistic poly-time function A. Hence, C4[P] must produce the observables
(d,0) and (d,1). The probability that [i/n]C4[P] produces the observable (d,0)
must be the same as the probability that the function fg’ o Ai produces zeroes
under any scheduler since a scheduler must always make progress (i.e., schedule
something if it can) and [i/n]C4[P] has only one possible communication (the one
between [i/m]P and [i/M]C4l -]).

Similarly, the probability that [i/n]C4[P] produces the observable (d,1) must
be the same as the probability that the function fg’ o A; produces ones under any
scheduler. Hence, fp o A must be the characteristic function for C4[P]. O

We will say that a context so constructed is a poly-time distinguishing contezt.

Definition 38. Let P be a variable-closed expression and o an observable. We will
say that f: @ — {0, 1} is an indicator for P with respect to o under the scheduler S
when

Prob [[i/M]P ~s 0] = Prob [f;() = 1]
and

Prob [[i/n]fP o o} — Prob [fi() = 0]

Lemma 39. Let C[-] be a context and let o be an observable. Let f: () — {0, 1}™()
be any function and Ps be its characteristic variable-closed expression. Then, we
can specify a poly-time statistical test t from the triple (C[- 1,0,S) such that fot is
an indicator for C[P¢] with respect to the observable o under the scheduler S.

44 J. C. MITCHELL, A. RAMANATHAN, A. SCEDROV, AND V. TEAGUE

Proof. Our construction of t follows. We compute fot by evaluating the expression
Clout(d, T¢)] (where My, computes f) under the scheduler S and returning 1 if the
observable o was generated and 0 otherwise. It is easy to check that

Prob[f o t = 1] = Prob [[i/n]Clout(d, T¢)] ~s o]

and that
Prob [f o t = 0] = Prob | [i/n]Clout(d, T¢)] s o}

whence the desired result is obtained. O

Clearly, given a context and a variable-closed expression, each potential observ-
able defines a poly-time statistical test.

Theorem 40. Let f: () — {0,1'™) be a uniform probabilistic poly-time function
ensemble. Let g:) — {0, 1Y) be another uniform probabilistic poly-time function
ensemble. Let F (resp. G) be the characteristic expression for f (resp. g). Then, f
is computationally indistinguishable from g if and only if F = G.

Proof. Assume that ¥ = G and that, by way of producing a contradiction, f is
not computationally indistinguishable from g. Then, we have that there exists
a poly-time statistical test A that distinguishes between the output of f and the
output of g. Hence, by Lemma 37, we can construct a poly-time distinguishing
context C[-] that, under any scheduler, distinguishes between F and G with the
same probability that A distinguishes between f and g. So C[-] will distinguish
between F and § with probability greater than 1/q(i) for some polynomial q(x)
(as A distinguishes between f and g with probability greater than 1/q(i)), thus
producing a contradiction.

Now, assume that f is computationally indistinguishable from g and that, by
way of producing a contradiction, ¥ 22 G. Then we have that for some polynomial
p(x) and scheduler S there exists a context DI -] that distinguishes between the two
processes with probability greater than 1/p(i). Let the distinguishing observation
be (d, a). We can then use Lemma 39 to construct a poly-time statistical test that
distinguishes between the output of f and g with precisely the same probability
that D[-] distinguishes between F and G under the scheduler S, thereby creating
a contradiction. O

7.2. Pseudorandom Number Generators. We can now prove that an algo-
rithm taking short strings to long strings is pseudorandom if and only if the char-
acteristic expression for the algorithm, when evaluated on a short random input, is
observationally equivalent to the expression that returns a long random string.

Definition 41. A function ensemble f: § — {0, 1}'*) is random poly-time if f is a
poly-time function that returns random elements in {0, 1}1(*).

We recall the notion of a pseudorandom number generator from cryptographic
literature [29-31,44,47,67].

Definition 42 (pseudorandom number generator). Let ¢(x) be a positive polyno-
mial. A pseudorandom number generator (PRNG) is a uniform poly-time function

A PROCESS CALCULUS FOR THE SECURITY ANALYSIS OF PROTOCOLS 45

ensemble f: {0, 1}¥(*) — {0, 1}'™) such that for all poly-time statistical tests A:
Vq(x). 3o Vi > i, |Prob [Ai(fi(s)) = “Vgepqo1ye0

— Prob [Ai(r) = “1”L€R{071}1m

< —
q(i)
In general, f: {0,1}*) — {0,1}'") is an interesting PRNG only when Vi €
N:1(1) > k(i).

Theorem 43. Let f': {0,1}**) — {0,1}'*) (Ya € N: l(a) > k(a)) be a uniform
probabilistic poly-time function ensemble. Let v: () — {0, 1)) and s: () — {0, 1)<
be uniform poly-time random function ensembles. Define f as sof’. Let F (resp.
R) be the characteristic expression for f (resp. v). Then, f’ is a PRNG if and only
fF=R.

1
i

The variable-closed expression &, essentially, transmits a random seed generated
by s to f’ (a candidate PRNG) via function composition, and then transmits the
value computed by f’ on a public channel. In contrast, R is a variable-closed
expression that simply transmits the value computed by r (a function that returns
truly random values of the same length as those generated by f) on a public channel.

Proof. This theorem is a special case of Thm. 40. We note that sof’: ¢ — {0, 1}'(*)
is a uniform probabilistic poly-time function ensemble. and that the definition of
PRNG simply states that s o f’ is computationally indistinguishable from . g

7.3. Semantic Security. Semantic security is an important cryptographic prop-
erty due to Goldwasser and Micali [34]. Our definition of semantic security, though,
is adapted from presentations by Goldreich [32] and by Goldwasser and Bellare [10,
33]. The definition of semantic security we work with assumes uniform-complexity.

Before we provide a definition of semantic security, we need to define an en-
cryption scheme. The ideas behind public-key cryptosystems were first proposed
by Diffie and Hellman [24]. Our presentation of public-key cryptosystems is drawn
from Goldreich [32] as well as Goldwasser and Bellare [33].

Definition 44. [24,32,33] A public-key encryption scheme or, more simply, an
encryption scheme is a triple (G, E, D) with the following properties:

(1) The key-generator is a probabilistic poly-time algorithm G that, on input
1¥ (the security parameter) produces a pair (e, d) where e is the public or
encryption key and d is the corresponding private or decryption key.

(2) The encryption algorithm is a probabilistic poly-time algorithm E which
takes as input the security parameter 1%, an encryption key e, and a string
m called the message or plaintext and produces an output string c¢ called
the ciphertext.

(3) The decryption algorithm is a probabilistic poly-time algorithm D which
takes as input the security parameter 1¥, a decryption key d and a ci-
phertext ¢ and produces a message m’ such that for every m, for every
c € E(1%, e, m), the probability that D(1¥, d, c) # m is negligible.

Now onto semantic security. Intuitively, an encryption scheme is semantically
secure if, given a ciphertext, no polynomially-bounded adversary can reliably com-
pute something about the associated plaintext i.e., the encryption scheme does not
reveal anything about the plaintext. We note that this version of semantic security

46 J. C. MITCHELL, A. RAMANATHAN, A. SCEDROV, AND V. TEAGUE

is in a chosen-plaintext model of security since the adversary, being in possession
of the public key, can encrypt a polynomial number of plaintexts that are chosen
by the adversary, before it attempts to compute something about the plaintext
associated with the given ciphertext.

A useful formulation of semantic security is in terms of indistinguishability. Intu-
itively, if it is infeasible for any adversary to distinguish between the encryptions of
any two messages (even when it chooses the messages) then the encryption scheme
cannot be revealing anything about the plaintext. Goldwasser and Micali [34]
showed that if an encryption scheme is secure in the indistinguishable sense, then
it is semantically secure. The reverse direction, that semantic security implies se-
curity in the indistinguishable sense, was shown by Micali, Rackoff, and Sloan [48].
Goldreich [32] has a fairly detailed proof in both directions. We will work with
security in the indistinguishable sense since it is more convenient for our purposes.
Our presentation is drawn from Tsiounis and Yung [64] as well as Goldwasser and
Bellare [33].

Definition 45. An encryption scheme (G, E, D) is indistinguishably secure if for
every probabilistic poly-time Turing machine F, A, for every polynomial q, and for
sufficiently large k:

|Prob [A(1, e, F(1%,e),c) = m|c € E(e,mg)] —

Prob [A(lka eaF(lka e),C) = m‘ cc E(e,m1)]| < ﬁ

where <TT1.(),TT1.1> € F(lk,e).

In other words, it is impossible to efficiently generate two messages (using F) such
that an attack A can reliably distinguish between their encryptions. It is clear that
we are considering adaptive chosen plaintext semantic security since the adversary,
being in possession of the encryption key, can generate a polynomial number of
messages to encrypt before it responds to the challenge.

Encoding the statement of indistinguishable encryptions as an observational
equivalence in PPC is straightforward. In order to so, we will assume an effi-
cient tupling function i.e., a function (xq,...,xx) that is polynomial in the lengths
of x1,...,Xk. Since we truncate messages that are too long, a tupling function
that generates outputs of super-exponential length will not work correctly. Normal
‘diagonal’ pairing or a scheme based on bit-interleaving will do nicely. In what fol-
lows, we will use the notation in(c, (x1,...,Xk)) to mean that the input obtained
on channel ¢ should be treated as a k-tuple whose ith element is named x;. We
start by defining the notion of observationally indistinguishable encryptions.

Definition 46. Let (G, E,D) be an encryption scheme. Then (G, E,D) is an o0b-
servationally indistinguishable encryption scheme iff

v(internal).out(internal, pkey(G(1"))) | in(internal, key).out(pub, (key, 1M)).
in(msg, (mg, my)).out(challenge, (key, (mg, m;), E(key, mg))) (L88)
is observationally indistinguishable from

v(internal).out(internal, pkey(G(1"))) | in(internal, key).out(pub, (key, 1M)).
in(msg, (mg, my)).out(challenge, (key, (mg, m;), E(key,m;))) (RSS)

A PROCESS CALCULUS FOR THE SECURITY ANALYSIS OF PROTOCOLS 47

where pkey is a function that, given a private-public key-pair, returns only the
public key.

We note that all channel names are bindable (and, consequently high priority),
while only internal has been made private. Making the channel names bindable
allows us to make certain channels private, an ability that will be useful in proving
the equivalence of the semantic security of El Gamal encryption and the Decision-
Diffie-Hellman assumption. We remark that making all the channels high-priority
does not affect the order in which communication steps of either L88 or R88 occur
since at each stage there is only one possible communicationstep that can happen.
An examination of the expression L88 shows that it:

(1) Generates a encryption-decryption key-pair,

(2) Publishes the security parameter and the public key,

(3) Obtains a message pair that could be a function of the security parameter®
and the public key. The message-generation algorithm F can adaptively
choose the message-pair based on the public key and security parameter.,

(4) Publishes the encryption of the first message, along with the message pair
and the encryption key. After this point the adversary knows the pub-
lic (encryption) key as well as the message-pair. So the adversary could
mount an adaptive chosen plaintext attack by selecting several plaintexts
and computing their encryptions.

An examination of the expression RSS shows that it is identical to expression £88
except that RSS chooses to encrypt the second message. It should be apparent that
the statement that the two processes are observationally equivalent is a reformula-
tion in PPC of the statement that (G, E, D) is indistinguishably secure (and hence
semantically secure). We now proceed to formalise this intuition.

Theorem 47. Let (G,E,D) be an encryption scheme. Then, (G, E, D) is seman-
tically secure iff (L8S) = (RS8S).

Proof. Let us assume that (G, E, D) is not indistinguishably secure and then show
that £88 = RS88 does not hold. Since (G, E,D) is not semantically secure, there
must exist a pair of probabilistic poly-time algorithms A, F such that, with non-
negligible probability, A can distinguish between encryptions of messages chosen
by F i.e., for some positive polynomial q we have

|Prob [A(1¥,e,F(1¥,e),c) = m|c € E(e,mg)] —

Prob [A(lk,e,F(lk,e),c’) =m|c’ € E(e,ml)” > a0

Let us now construct a context A[-] out of A and F.

[-]]in(pub, (key, sec)).
out(msg, F(sec, key)).in(challenge, (pubkey, msgpair, cipher)).
out(response, A(sec, pubkey, msgpair, cipher))
| in(response, x).Q
3There is no real need to publish the security parameter, as we have done in the previous step.
Since the adversary (context) and the protocol (expression) are run with the same value for the

security parameter, the message-generation function F ‘knows’ the security parameter without the
need for an explicit publish.

48 J. C. MITCHELL, A. RAMANATHAN, A. SCEDROV, AND V. TEAGUE

Let us consider A[LSS] (resp. A[RSS]). The first thing to note is that in any
evaluation path of A[L88] (resp. A[RSS]), at each evaluation step there is only one
communication step that can happen. Hence, the choice of scheduler is irrelevant
since schedulers are stochastic.

The attacking context A[-] supplies a pair of messages chosen by F (based on
the security parameter and public key) to L88 (resp. R88) which then returns the
encryption of the first (resp. second) message along with the encryption key and
the pair of messages. Then, the attacking context A[-] applies A to the tuple
consisting of the security parameter, message-pair, encryption key, and ciphertext.
This yields a guess as to the message that was encrypted. Since Al -] simply
applies A to the encryption of a message chosen from the pair given by F, it must
distinguish between encryptions of messages chosen by F with the same probability
that A distinguishes between encryptions of messages chosen by F. Whence if A
can reliably distinguish between encryptions of messages (i.e., A can distinguish
with probability better than half), it follows that Al -] can distinguish between
L88 and R8S with non-negligible probability (i.e., with probability greater than
1/q(n) which is the probability with which A distinguishes between encryptions of
messages given by F). Thus, £88 2 RS8S since we have constructed a distinguishing
context Al -] out of A and F.

Let us now tackle the reverse direction. We assume that £8S 2 R88 and show
that (G, E, D) is not indistinguishably secure. Since L88 2 R8S, we have a context
expression A[-] that, under some perceptible scheduler S, distinguishes between
L88 and RS8S on the basis of some observable o. Furthermore, we assume Al - |
must provide messages to £L88 (resp. R88) in order for the protocol to run (since
L8S and R8S differ only in the challenge step, any distinguishing observable can
only be generated after the challenge step has occurred). In particular, no context
expression can distinguish between two expressions if the context expression does
not interact with the two expressions. Thus there must exist a probabilistic poly-
time algorithm F such that the probability that A[-], using security parameter
k and public key e, provides the message pair 7t to L88 (resp. RS8) is precisely
the probability that F(1¥, e) generates the message pair 1. We can then create an
attack A that distinguishes between encryptions of messages picked by F as follows.
We compute A(1%, e,m = F(1¥,e),c = E(e,my)) where my € 7 by constructing
the expression P(e,m, c) and then evaluating A[P(e,m, c)] under the scheduler S
and with security parameter n set to k. If the observable o is generated we return
a ‘1’ and if the observable o is not generated we return a ‘0’. Let us denote
the encryption of the ith message in the message-pair (i € {0,1}) by enc;. The
expression P(e, m, enc;) is defined as:

v(internal).out(internal, pkey(G(1"))) | in(internal, key).out(pub, (key, 11)).

in(msg, (mg, my)).out(challenge, (e, 7, ency))
Clearly, the function A will successfully distinguish between encryptions of messages
in 7t with the same probability that, using the scheduler S, Al -] distinguishes
between P(e,m, ency) and P(e,m ency). Hence (G, E, D) is not indistinguishably
secure. Since (G, E, D) is indistinguishably secure iff £L88§ = R8S, we conclude that
(G, E, D) is semantically secure iff £L88§ = RSS. O

7.4. The Decision Diffie-Hellman Assumption. We start by defining the Deci-
sion Diffie-Hellman assumption [24]. Our presentation is drawn from Boneh [12] and

A PROCESS CALCULUS FOR THE SECURITY ANALYSIS OF PROTOCOLS 49

Tsiounis and Yung [64]. Goldreich [32] offers helpful discussions, as does Cramer
and Shoup [20].

A group family G is a set of finite cyclic groups {Gp} where the index p ranges
over an infinite set. An instance generator IG(n) takes security parameter n, runs
in time polynomial in n and returns a random index p as well as a generator g of
the group Gp.

Definition 48. A Decision Diffie-Hellman algorithm A for G is a probabilistic
polynomial time algorithm such that:

(1) Given (p,g,9%,g?,g¢) the algorithm A reliably decides if c = ab; and,
(2) There exists a non-constant positive polynomial q(x) such that IG(n) =
(p,g) implies that |(p, g)| = Q(q(n)).
The probability is taken over the probability that the instance generator IG(1M)
returns (p, g) given 1, over the random choice of a, b, ¢ in [1..ord G,], and over the
random bits used by A. The Decision Diffie-Hellman assumption for G is that no
Decision Diffie-Hellman algorithm exists.

The condition on the instance generator that the size of the outputs of the
instance generator grow faster than some non-constant positive polynomial ensures
that the groups returned by the instance generator become larger as the security
parameter increases. Since the instance generator runs in polynomial time, the
outputs of the generator cannot become too large i.e., there exists another non-
constant positive polynomial r(x) such that |{(p, g)| = O(r(n)).

Example 49. We give some examples of groups in which the DDHA is believed to
be intractable. These examples are drawn from Boneh [12].

(1) Let p = 2q + 1 where both p and q are prime. Let Q,, be the subgroup of
quadratic residues in Z3. It is a cyclic group of prime order. This group is
parameterised by the choice of prime p.

(2) Let N = pq where p, q, %_1, qT_l are prime. Let T be the cyclic subgroup
of order (p—1)(q—1). The DDHA is believed to be intractable for T. The
group T is parameterised by choice of N.

(3) Let p be a prime and Eq p/F, be an elliptic curve where |Eq | is prime.
This group is parameterised by choice of p, a,b.

(4) Let p be a prime and J be a Jacobian of a hyper elliptic curve over F,, with
a prime number of reduced divisors. The group is parameterised by p and
the coefficients of the defining equation.

The index p encodes the group parameters. The instance generator selects a random
member of the group family G by picking the group parameters according to some
suitable distribution. In general we might not wish to use a uniform distribution; for
instance, one might wish to avoid primes of the form 2% 4 1 in the case that we are
working with a subgroup of quadratic residues in Z;,. Thus, the DDHA challenge
{p,g9,9%, g%, g¢) is completely general over the type of group we are working in:
p selects a member of the group family, g is a generator of that group, a,b,c are
integers chosen from [1..ord G,], g® is the a-fold application of the group operation,
and = is group identity.

We can express the DDHA as an observational equivalence in PPC. Let us define
two expressions using the convention that (p, g, g%, g®, g¢) is shorthand for the term
T(a,b,c) defined by the program:

50 J. C. MITCHELL, A. RAMANATHAN, A. SCEDROV, AND V. TEAGUE

L (p,g)=1G(1")
2. return (p,g,g% g°,g°)

where 1 is the security parameter. With this notation in place, we define what it
means for the group family G to be observationally DDHA-secure.

Definition 50. The group family G is observationally DDHA-secure if

out(challenge, (p, g, g*, g, g*")|a,b €g [1..ord Gpl)
= out(challenge, (p, g, g, g", g% a, b, c € [1..ord Gpl)

where the term (p, g,9%,g%,¢g%?)|a,b €g [1..ord G;,] denotes the term T(a, b, ab)
with a,b chosen uniformly at random from [1.. ord G,].

We note the DDHA is known to be easy for certain groups (such as Gz). Thus, in
order for the above equivalence to hold, it is necessary that the instance generator
does not select groups for which the DDHA is easy. However, as we have previously
noted, the instance generator can select groups within the group family according
to arbitrary distributions and, thereby, avoid easy cases.

The following theorem validates our attempt to express the DDHA in PPC by
asserting that the assumption of being observationally DDHA-secure is precisely
the DDHA.

Theorem 51. The DDHA holds for the group family G iff G is observationally
DDHA-secure.

Proof. A special case of Thm. 40. O

7.5. The Semantic Security of El Gamal Encryption. We now proceed to give
an example of the use of PPC to establish properties of protocols. In particular,
we will show that the semantic security of El Gamal encryption is equivalent to
the Decision Diffie-Hellman assumption. We start by describing the El Gamal
encryption scheme [28].

Definition 52. Let - denote the group operation and = denote group equality.
An El Gamal encryption scheme is a triple (G, E, D) of probabilistic poly-time
algorithms such that:

(1) The key generating algorithm G, on input 1* outputs a public key e =
(p,g,9%) and a private key d = a where (g,p) € IG(1¥), a €g [1..ord G,].

(2) An encryption algorithm E that, on input, e = (p,g,g?) and m outputs
(g®,m - g%® mod p) as the ciphertext (where b €g [1..ord G,]).

(3) A decryption algorithm D that, given ciphertext ¢ = (k,c’) and decryption
key d computes ¢’/k%. To see why this works, we note that k = g°,
¢/’ =m-g® modp, and d = a for some a,b, m. Then

c’_m-g“b_m-gab_
kd T ged T T gav

In order to show that El Gamal is semantically secure given the Decision Diffie-
Hellman assumption, we will derive the assertion that El Gamal is an observation-
ally indistinguishable encryption scheme from an assertion expressing the DDHA.

A PROCESS CALCULUS FOR THE SECURITY ANALYSIS OF PROTOCOLS 51

In particular, we will derive the observational equivalence of

v(internal).out(internal, pkey(G(1"))) | in(internal, (p, g,g")).
out(pub, {(p,g,9%),1")).in(msg, (Mo, m1)).
out(challenge, ((p,9,9%), (mo, m1), (g°, mg - g*°))|b €g [1..ord Gp]) (LEY)

and

v(internal).out(internal, pkey(G(1"))) | in(internal, (p, g,9)).
Out(pUba <<p7 g, ga>7 1n>)ln(m5.qa <m07 m1>)
out(challenge, ((p, 9, 9%), (mo, m1), (g%, M1 - g%°))|b €r [1..0ord Gp]) (REY)

from the assertion that

out(challenge, (p, g, g%, g", g*")|a,b €g [1..ord Gl)
= out(challenge, (p, g, g*, g", g% a,b,c €g [1..ord Gpl) (DDHA)
(From Sec. 7.4 we know that this second assertion is an expression of the DDHA).

Main Theorem 53. If the Decision Diffie-Hellman assumption holds for a group
family G, then El Gamal encryption using G is semantically secure against adaptive
chosen plaintext attacks. Furthermore, we can derive, using just the proof rules for
PPC given in Fig. 3, the assertion in PPC that El Gamal encryption using G is
semantically secure (i.e., the equivalence LEG = RESG) from the assertion in PPC
that the DDHA holds for G (i.e., the equivalence DDHA).

The proof is fairly straightforward. We will start with the equivalence DDHA
and build up the equivalence between LEG and RESG by systematically transforming
the term that outputs a challenge instance of the DDHA. In particular, we note
that, with the exception of the message-pair, the challenge instance (p, g, g%, g%, g¢)
looks almost like a challenge instance of El Gamal’s semantic security (which is a
tuple ({(p,g,9%), 7, (g%, g¢))) where the message being encrypted is g¢ divided by
g%?. Thus, it seems reasonable to assume that we can systematically transform
the DDHA challenge instance into a challenge instance for El Gamal’s semantic
security (where the messages are provided by the adversary).

Before we give the formal proof, we will give an informal mathematical proof
showing that DDHA implies the semantic security of El Gamal encryption. This
mathematical argument will be formalised in PPC and constitute the first half of the
formal proof. We start by assuming that the (p,g, g%, g?, g¢) is computationally
indistinguishable from the (p, g, g%, g, g®®) (where p, g are given by the instance
generator and a, b, ¢ are chosen uniformly at random from [1.. ord G,,]). We will use
= to denote computational indistinguishability. We recall to the reader’s attention
that computational indistinguishability is transitive. So we have that

(p,9,9%9%9%) = (p,9,9%9" %)
Since the two tuples are computationally indistinguishable, it follows that
vmg, m; € Gp: (p, g, 9% mo, m1,9°%,9%%) = (p,g,9% mo, m1,9°,9%)

i.e., if no algorithm can distinguish between (p, g, g%, g®, g*®) and (p, g, g%, g*, g¢),
then no algorithm can do so given two arbitrary elements of the group. Furthermore,
since g is a generator of the group it follows that mg - g*® = g™ P, Since a,b

52 J. C. MITCHELL, A. RAMANATHAN, A. SCEDROV, AND V. TEAGUE

are chosen uniformly at random from [1..ord G,], it follows that g™+ ¢° = g¢ for
randomly chosen ¢’ € [1..ord Gp]. Thus we get that for all mg, m; € [1..0rd G,]

(p,9,9% Mo, m1,9%, 9°%) < (p,g,9% Mo, M1, 9", Mo - g°°)

In other words, since g is a generator we can view g¢ as g*® multiplied by some
arbitrary message. Similarly, we can show that for all message mgy, m;
(p,g,9% mo, m1, ", g%%) = (p,g, 9% Mo, M1, " My - g°°)
whence the transitivity of < yields
(p,9.9% Mo, M1, g%, Mo - g°°) = (p, g, g% Mg, my, g% My - g°°)

for all message mg, my. This claim is (almost) the assertion that El Gamal encryp-
tion is semantically secure since the tuple contains the public key (p, g, g?), the
message pair (g, m;) and the encryption of one of the messages (g, m;-g®). In
the formal proof, we will continue from this point using various structural rules in
PPC to convert this assertion to an assertion of the right form.

Proof. We start by assuming that DDHA is true i.e., that
out(challenge, (p, g, g%, g,) a,b €g [1..ord G,]) =
out(challenge, (p, g, g*, g, g% a,b,c €gr [1..ord Gpl)
holds. For each my € G, we can use (EQ2) to obtain that
out(challenge, (p, g, g%, mg, g”, mg - g*")|a,b €g [1..ord Gpl)
= out(challenge, (p, g, g*, mg, g”, mg - g°)|a,b,c €g [1..ord Gpl)

Furthermore, since my = g¢ for some choice of d, it follows that the term mg - g¢
and the term g¢ (with ¢ chosen uniformly at random in [1..ord G,]) both induce
the same distribution on elements of the group. Thus

VYmg € Gy : out(challenge, (p, g, g%, mo, g® mg - g°a,b,c eg [1..ord Gpl)
= out(challenge, (p, g, g*, mg, g, g%)| a,b,c €g [1..ord Gpl)
Then, (TRN) (transitivity) gives us
VYmy € Gy : out(challenge, (p, g, g*, mo, g® mg - g®")a,b €g [1..ord Gpl)
= out(challenge, (p, g, g*, mg, g”, g% a,b,c €g [1..ord Gpl)
Another application of (EQ2) gives us
VYmg, my € Gp: out(challenge, (p, g, g*, mp, my, g mg - g*")a,b €g [1..ord Gpl)
= out(challenge, (p, g, g*, my, my,g", g% a,b,c €g [1..ord G,]) (1)
Using a similar argument to the one used to establish (1) we can show

Vmg, my € Gp: out(challenge, (p, g, g® mg,my, g°, my ~gab>|a7b €r [1..ord Gpl)
= out(challenge, <p7g7 ga7m07ml7gb7gc>‘ a,b7c €R [1..OI'd Gp]) (i)

A PROCESS CALCULUS FOR THE SECURITY ANALYSIS OF PROTOCOLS 53

Then, using (SYM) (symmetry) and (TRN), we can combine (1) and (f) to obtain

Ymgy, my € Gp: out(challenge, (p, g, g®, mg, my,g” mp - g®°)a,b € [1..ord Gpl)
= out(challenge, (p, g, g*, my, my, g, m; - g**)|a,b €x [1..ord Gpl) (F)

Until this point, we have taken advantage of various mathematical facts that follow
from working with G,. In particular, being in G,, allows us to show that g¢ is
just g®® times some random string R. We can then multiply the g¢ and g@®
terms by some message since the distribution induced by g€ is the same as that
induced by g®. Multiplying this message into g¢ and g°? is effectively the same
as multiplying g®® by one of two random messages. Thus far, we have formalised
in PPC the informal mathematical arguments given just prior to the formal proof.

We have obtained an observational equivalence that looks almost like the ob-
servational equivalence stating the semantic security of El Gamal encryption. In
particular, we have an observational equivalence that states the tuple consisting of
the elements of an El Gamal public key, the elements of a message-pair, and the
elements of the encryption of the first message, is computationally indistinguish-
able from a tuple consisting of the elements of the same El Gamal public key, the
elements of the same message-pair, but the elements of an encryption of the second
message. This is almost precisely the definition of the semantic security of El Gamal
(in terms of indistinguishability of encryptions) except that the challenge needs to
consist of three tuples encoding respectively the public key, the message-pair, and
the ciphertext. We also need those elements of the expression that allow an ad-
versary to provide the message-pair after seeing the public key. We can finish the
proof by repeatedly using (PUL) to ‘pull out’ arguments that we want to provide
via channels. In particular, we will pull out the message pair and provide it on
an input that waits for a suitable output by an adversary. We will also make use
of (PREN) to ensure that the channel-names in the derived expression match the
channel-names used in our statement of semantic security (see Thm. 47).

We now complete the derivation. First, we get the challenge into the right form
using (EQ2) on (X):

Vmo, mp € Gp :
out(challenge, ((p, g, g*), (mg,my), (g”, mg - g**))|a, b €g [1..ord G,]) =
Out(Cha'llengev <<p7 g, ga>, <m0a Hl1>, <gba my - gab>>| a, b €R [1 ord Gp])
Using proof rule (PUL) and (PREN) we can obtain the message-pair from a context:
in(msg, (Mo, m1)).

out(challenge, {{p, g, g*), (mg, my), (gb, my - gab>>\ a,b eg [1..ord G,])

in(msg, (Mo, m1)).
OUt(Challengev <<p7 g, ga>ﬂ <In0, Hl1>, <gba my - gab>>| a, b €Rr [1 ord Gp])

The context out(pub, ({p,g,g*),1M)).[] where, the term (p, g, g®) is shorthand for
the term U(a) defined as

L (p,g) =1G(1")
2. return {p,g,g%)

54 J. C. MITCHELL, A. RAMANATHAN, A. SCEDROV, AND V. TEAGUE

and an application of (CON) allow us to publish the security parameter and public
key:

out(pU'ba <<p7 g, ga>, 1">)1n(msg, <m0a TTL1>)
out(challenge, {{p, g, g*), (mg, my), (gb, my - gab>>\ a,b eg [1..ord G,])

~

out(pUba <<p7 g, ga>, 1”)).in(msg, <TT10, TT'L1>)
OU.t(ChCL”BTlgC, <<p7 g, ga>’ <mOa Hl1>, <gba my - gab>>| a, b €Rr [1 ord Gp])

Finally, another application of (PUL), followed by an application of (CON) allows
us to ‘pull’ out the p,g,a from the term, and then (via (CON)) provide p, g, a
by making use of the key generator—which will generate the pair consisting of
(p,9g,9%) (the public key) and a (the private key). Since the challenge transmitted
requires only the value g¢ and does not require a, we do not have to transmit the
private key. To ensure security, we also use (CON) to wrap up this communication
in a private channel.

v(internal).out(internal, pkey(G(1M))) | in(internal, (p, g,g)).
out(pub, {(p,g,9%),1")).in(msg, (Mo, m1)).
out(challenge, ((p, g,8"), (mo,my), (8", mg - g*))|b € [1..ord Gp))

v(internal).out(internal, pkey(G(1"))) | in(internal, (p, g,g")).
Out(pUba <<p7 g, ga>, 1n>)ln(m59v <m0, ml))
out(challenge, ((p, g,8), (mo,my), (g”,m; - g**))|b €g [1..0rd Gy])

But this equivalence is precisely the statement that El Gamal encryption is se-
mantically secure (see Theorem 47). Hence, given the DDHA we can show that
El Gamal encryption is semantically secure. O

We draw the reader’s attention to the fact that the proof, in PPC, of the semantic
security of El Gamal encryption from the Decision Diffie-Hellman assumption can
be split into two distinct parts. In the first part, we used mathematical facts
about the group operation - in the group G, to transform the DDHA challenge
{p,g,9% g",g¢) into a tuple (p, g, g%, mo, my, g%, m; - g¢*) that almost looked like
a challenge to the semantic security of El Gamal encryption. Furthermore, the key
fact about G, used was that g was a generator of G, whence for some c it followed
that m-g%? = g°. The other facts used were trivial facts about the group product
(i.e., its associativity) and pairing (i.e., 7ty ({my, ms) = my)). The remainder of the
proof consisted of purely structural transformations on the expressions. We suggest
that proofs in PPC, in general, can be separated into a large sequence of structural
transformations required to achieve the right shape of the protocol, coupled with
a few transformations whose soundness are grounded in mathematical facts about
the special nature of the problem. These special facts can be represented with
special hypotheses (like DDHA) and special rules (such as the equation m - g¢®
with g¢). This proof could be rendered entirely mechanical by axiomatising in PPC
important mathematical properties about groups that are relevant for this proof
and using these rules directly rather than invoking (EQ2). For example, we could

A PROCESS CALCULUS FOR THE SECURITY ANALYSIS OF PROTOCOLS 55

formalise the mathematical fact that (g¢) < (g -m) (where g is a group generator,
a €r Gy, m is some constant in the group, and g* and - are group operations) as
the axiom:

vm € Gp: out(c,g% a er Gp) = out(c,g® - mla er Gy) (GRP)

Taken with the structural rules of Fig. 3 this would allow us to derive El Gamal’s
semantic security from the DDHA in an entirely mechanical manner. This obser-
vation also draws up the intriguing possibility that we can work ‘backward’ from a
statement of a desired property to some conditions that must hold. In particular,
we could have started with the statement of ElGamal encryption’s semantic security
and reversed the proof’s structural transformations to obtain the DDHA—in fact,
we will do something analogous to this in proving the next theorem. In general, we
hope to be able to precisely state the security conditions that need to hold of the
primitives for a given protocol to satisfy a desired security property.

Main Theorem 54. If El Gamal encryption using the group family G is seman-
tically secure against adaptive chosen plaintext attacks, then the Decision Diffie-
Hellman assumption holds for G. Furthermore, we can derive, using just the proof
rules for PPC given in Fig. 3, the assertion in PPC that the DDHA (i.e., the equiv-
alence DDHA) holds for G from the assertion in PPC that El Gamal encryption
using G is semantically secure (i.e., the equivalence LEG = REG).

Proof. Since we assume that El Gamal encryption using the group family G is
semantically secure, it follows that

v(internal).out(internal, pkey(G(1"))) | in(internal, (p, g, 9)).
Out(pUba <<pa g, ga>, 1n>)1n(m5.gv <m07 ml))
out(challenge, <<p7 g, ga>) <m0a m1>7 <gb7 mg - gab>>| b €R [1 ord Gp]) (’589)

is observationally equivalent to

v(internal).out(internal, pkey(G(1"))) | in(internal, (p, g,g)).
out(pub, ((p,g,9%), 1")).in(msg, (mo, m1)).
out(challenge, ((p, g, g*), (mg,my), (g°, m; - g**))|b €g [1..ord G,]) (RES)
But then, using the rule (CON) we obtain that

v(pub).v(msg).v(challenge) LESG | in(pud, (p,g,g?)).
out(msg, (1,8")|r €r [1..ord Gpl).in(challenge, ((p, g,9%), (mo, m1), (g, g°))).
out(ddh, (p, g, g% g",g°))

v(pub).v(msg).v(challenge).RESG | in(pubd, (p, g,g")).
out(msg, <]-7 gr>| r €R [1 ord Gp])~in(6hallenge’ <<p7 g, ga>’ <m07 m1>7 <gba gc>>)

out(ddh, (p,g,g" ", &) (1)

It is here that we make use of the fact that all the channel names of LEG and RESG
are bindable. By making them private, we create expressions with only one public
action. We then use the fact that the only observables of the left-hand side and
right-hand side expressions in () can generate are on the output on the channel

56 J. C. MITCHELL, A. RAMANATHAN, A. SCEDROV, AND V. TEAGUE

named ddh and look like DDHA-challenge tuples. The final output of the left-
hand side expression is the tuple (p,g,g%, g% 1 - g®®) where p,g are chosen by
the El Gamal instance generator and a,b are chosen at random from [1..ord Gp].
For the right-hand side we get the tuple (p, g,g%, g®, g"*?) where T is chosen at
random from [1..ord G,]. Since g is a generator of G, g"t2? is a random element
of Gp. Finally, both the right-hand side and the left-hand side are scheduler-
insensitive processes since, at each stage of evaluation, only one possible action can
occur. As a consequence, we can use use proof rule (NU) to ‘fold-in’ the private
portions into the outputs on the channel ddh and construct an expression that only
outputs a DDHA-challenge tuple. That is to say, we can obtain the equivalence:

out(d, (p,9.9% 9", 9%°)(p,g) € IG(1"),a,b € [1..ord G,]) =
out(d, (p,9,9% 9% 9%/ (p,g) € IG(1"),a,b,c € [1..ord G])
which is precisely the statement of the DDHA. O

This proof is interesting in two respects. The first is that we use a context to
create a semantic security challenge of a particular form. We then use the fact that
private channels are invisible to ‘collapse’ the entire process into a term. In general,
this technique will be useful in going from long expressions to shorter expressions.

8. CONCLUSION AND FUTURE DIRECTIONS

The language presented in this paper allows us to define probabilistic processes
which communicate over a network that gives an adversary access to those commu-
nications. Our process language uses a separate term language to actually perform
computations (the expression in(c,x).out(d,x + 2), roughly speaking, computes
the function x 4+ 2 but all the computation is done by the term x + 2). One might
argue that such a distinction is not particularly necessary since the presence of
polynomially-bounded iteration in our process language should make it expressive
enough for probabilistic poly-time functions even without a dedicated term lan-
guage. This is certainly possible and we leave it to the interested reader to formalise
the necessary constructions and establish properties equivalent to the ones shown
here. One major advantage of our approach is that we simplify the proof of the time
bound on process evaluation since we do not have to establish that computation
be bounded by poly-time; rather we can stipulate that the term language we use
has the desired poly-time property. Additionally, we more accurately model the
situation from the point of view of an adversary since the sources of computation
(terms) are invisible to an adversary; only the information flows can be accessed
by an attacker.

One significant result is to show that expressions written in our language are all
bounded by polynomial time. We also proposed a definition of observational equiv-
alence for probabilistic programs that is based on the view that large differences
in probability are easier to observe than small differences. When we distinguish
between “large” and “small” using asymptotic behaviour, we arrive at a definition
of observational equivalence that coincides with a standard concept from cryptog-
raphy, namely, indistinguishability by polynomial-time statistical tests. While we
have not fully explored the consequences of this definition, we believe it may shed
new light on other basic concepts in cryptography, such as the distinction between
semantically secure and non-malleable cryptosystems.

A PROCESS CALCULUS FOR THE SECURITY ANALYSIS OF PROTOCOLS 57

The steps taken in this paper form the beginning of a larger program that we
hope to carry out over the next few years. In part following the program established
in the study of spi-calculus [3], we hope to develop methods for reasoning about
observational equivalence and use these methods to establish security properties of
various protocols. In this paper we also presented a reasoning mechanism inspired
by the standard notion of a bisimulation between processes due to Milner [49].
While this mechanism has proved sufficient to establish some preliminary equiva-
lences, much work needs to be done in developing a range of techniques sufficiently
expressive to deal with the non-trivial problems this approach was intended to han-
dle. In particular, our bisimilarity relation is only one of an assortment of tools that
we hope to use to demonstrate equivalences. While bisimilarity is useful for showing
that the distributions induced on observables is identical (i.e., that two expressions
are information-theoretically indistinguishable), there are many cryptographically
interesting constructs that are only computationally indistinguishable. It stands to
reason that we will need a proof technique capable of showing such equivalences
directly.

Finally, we applied our calculus to some simple and well-known cryptographic
facts. First, we showed that a fundamental cryptographic notion, that of a pseudo-
random number generator, is expressible in our language in a fairly natural way. In
future, we hope to demonstrate that a range of other foundational cryptographic
primitives, such as pseudorandom function families, are all similarly expressible
in our language. By capturing a variety of essential cryptographic notions in our
framework, we hope to lay the groundwork for a methodology by which we reason
“backwards” from a desired property of a particular protocol to the properties that
the various primitives in the protocol must possess in order to establish the desired
protocol property. We expect some interesting foundational questions to arise in
the formulation of security properties such as authentication and secrecy.

Second, we provided a formal proof of the equivalence of the semantic security of
ElGamal encryption and the Decision Diffie-Hellman assumption. While this fact is
well-known to the cryptographic community, it is tremendously encouraging that we
can offer a simple and entirely mechanical proof of a non-trivial cryptographic fact
in our calculus. In future, we hope to extend our toolkit of equivalences so that we
may offer similarly mechanical formal proofs of properties of more complex security
protocols. It may also be possible to develop model-checking procedures along the
lines of these already explored for probabilistic temporal logics [21, 35, 36,38]. In
fact, we hope to be able to develop automated reasoning procedures for use in a
network security setting using techniques developed in our study of the properties
of our process calculus.

Acknowledgements: We wish to thank M. Abadi, R. Amadio, D. Boneh, R. Canetti,
A. Datta, C. Dwork, R. van Glabbeek, M. Hofmann, A. Jeffrey, S. Kannan, B. Ka-
pron, P. Lincoln, A. Martin, R. Milner, I. Mironov, M. Mitchell, M. Naor, P. Panan-
gaden, D. Sarenac, and P. Selinger for their helpful discussions and advice on rel-
evant literature. We are also indebted to the anonymous referees for their careful
and thorough reading of drafts of this monograph.

REFERENCES

[1] ABADI, M., AND FOURNET, C. Mobile values, new names, and secure communication. In 28th
ACM Symposium on Principles of Programming Languages (2001), pp. 104-115.

58

2]
(3]

[4]

5

6

[7

(8]

(9]

(10]

(11]

(12]

(13]

[14]

[15]

[16]
(17)

(18]

(19]

[20]
21]

22]

J. C. MITCHELL, A. RAMANATHAN, A. SCEDROV, AND V. TEAGUE

ABADI, M., AND GORDON, A. D. A bisimulation method for cryptographic protocol. In Proc.
ESOP 98 (1998), Lecture Notes in Computer Science, Springer.

ABADI, M., AND GORDON, A. D. A calculus for cryptographic protocols: the spi calculus.
Information and Computation 143 (1999), 1-70. Expanded version available as SRC Research
Report 149 (January 1998).

ABADI, M., AND JURJENS, J. Formal eavesdropping and its computational interpretation.
In Proc. Fourth International Symposium on Theoretical Aspects of Computer Software
(TACS2001) (Tohoku University, Sendai, Japan, 2001), Lecture Notes in Computer Science,
Springer.

ABADI, M., AND ROGAWAY, P. Reconciling two views of cryptography (the computational
soundness of formal encryption). In Proc. First IFIP International Conference on Theoretical
Computer Science (Sendai, Japan, 2000), no. 1872 in Lecture Notes in Computer Science,
Springer-Verlag, pp. 3-22.

AtALLAH, M. J., Ed. Algorithms and Theory of Computation Handbook. CRC Press LLC,
1999, ch. 24, pp. 19-28.

BAckEes, M., PrITZMANN, B., AND WAIDNER, M. Reactively secure signature schemes. In
Proceedings of 6th Information Security Conference (2003), vol. 2851 of Lecture Notes in
Computer Science, Springer, pp. 84-95.

BACKES, M., PFITZMANN, B., AND WAIDNER, M. A general composition theorem for secure
reactive systems. In Proceedings of 1st Theory of Cryptography Conference (2004), vol. 2951
of Lecture Notes in Computer Science, Springer.

BELLANTONI, S. Predicative Recursion and Computational Complexity. PhD thesis, Univer-
sity of Toronto, 1992.

BELLARE, M., DEsAl, A., POINTCHEVAL, D., AND RoGAwAY, P. Relations among notions
of security for public-key encrytion schemes. In Proc. CRYPTO 1998 (Santa Barbara, Cali-
fornia, 1998), H. Krawczyk, Ed., vol. 1462 of Lecture Notes in Computer Science, Springer-
Verlag, pp. 26-45.

BERNARDO, M., AND GORRIERI, R. A tutorial on EMPA: A theory of concurrent processes
with nondeterminism, priorities, probabilities and time. Theoretical Computer Science 202
(1998), 1-54.

BonNEH, D. The decision Diffie-Hellman problem. Proceedings of the Third Algorithmic Num-
ber Theory Symposium 1423 (1998), 48-63.

BURROWS, M., ABADI, M., AND NEEDHAM, R. A logic of authentication. Proceedings of the
Royal Society, Series A 426, 1871 (1989), 233-271. Also appeared as SRC Research Report
39 and, in a shortened form, in ACM Transactions on Computer Systems 8, 1 (February
1990), 18-36.

CANETTI, R. Security and composition of multiparty cryptographic protocols. Journal of
Cryptology 13, 1 (2000), 143-202.

CANETTI, R. Universally composable security: A new paradigm for cryptographic protocols.
In Proc. 42nd IEEE Symp. on the Foundations of Computer Science (2001), IEEE. Full
version available at http://eprint.iacr.org/2000/067/.

CANETTI, R., AND KrRAWCZYK, H. Universally composable notions of key exchange and secure
channels. Cryptology ePrint Archive, Report 2002/059, 2002. http://eprint.iacr.org/.
CANETTI, R., AND RABIN, T. Universal composition with joint state. Cryptology ePrint
Archive, Report 2002/047, 2002. http://eprint.iacr.org/.

CANETTI, R.,; AND RABIN, T. Universal composition with joint state. In Proc. CRYPTO 2003
(Santa Barbara, California, 2003), D. Boneh, Ed., vol. 2729 of Lecture Notes in Computer
Science, Springer, pp. 265-281.

CERVESATO, I., DURGIN, N. A., LincoLN, P. D., MiTcHELL, J. C., AND SCEDROV, A. A
meta-notation for protocol analysis. In 12th IEEE Computer Security Foundations Workshop
(1999), IEEE Computer Society Press.

CRAMER, R., AND SHOUP, V. A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. Lecture Notes in Computer Science 1462 (1998), 13—-25.
DE ALFARO, L. Temporal logics for the specification of performance and reliability. In STACS
’97 (1997), vol. 1200 of Lecture Notes in Computer Science, Springer-Verlag, pp. 165-176.
DESHARNAIS, J., EDALAT, A., AND PANANGADEN, P. Bisimulation for labelled Markov
processes. Information and Computation 179, 2 (2002), 163-193.

23]
24]
(25]
[26]

27]

28]

29]

(30]
(31]

32]

(33]

(34]
(35]
(36]
(37)
(38]
(39]
[40]

[41]

[42]

[43]

[44]

A PROCESS CALCULUS FOR THE SECURITY ANALYSIS OF PROTOCOLS 59

DESHARNAIS, J., GUPTA, V., JAGADEESAN, R., AND PANANGADEN, P. Approximating labeled
Markov processes. In Logic in Computer Science (2000), pp. 95-106.

DirrFiE, W., AND HELLMAN, M. E. New directions in cryptography. IEEE Transactions on
Information Theory 22 (November 1976), 644—654.

DoLEv, D., DWORK, C., AND NAOR, M. Non-malleable cryptography (extended abstract). In
Proc. 23rd Annual ACM Symposium on the Theory of Computing (1991), pp. 542-552.
DoLEv, D., AND YAO, A. C.-C. On the security of public-key protocols. In Proc. 22nd Annual
IEEE Symp. Foundations of Computer Science (1981), pp. 350-357.

DurciN, N. A., MiTcHELL, J. C., AND PavLovic, D. A compositional logic for protocol
correctness. In 14th IEEE Computer Security Foundations Workshop (Cape Breton, Nova
Scotia, Canada, June 2001).

EL GaMmAL, T. A public key cryptosystem and a signature scheme based on discrete loga-
rithms. IEEE Transactions on Information Theory 31 (1985), 469-472.

GENNARO, R. An improved pseudo-random generator based on discrete log. In
Proc. CRYPTO 2000 (Santa Barbara, California, 2000), vol. 1880 of Lecture
Notes in Computer Science, Springer, pp. 469—481. Revised version available at
http://www.research.ibm.com/people/r/rosario/.

GOLDREICH, O. Modern Cryptography, Probabilistic Proofs and Pseudorandomness. Springer-
Verlag, 1999.

GOLDREICH, O. The Foundations of Cryptography, vol. 1. Cambridge University Press, June
2001.

GOLDREICH, O. The Foundations of Cryptography, vol. 2. June
2003. Manuscript under preparation; latest version available at
http://www.wisdom.weizmann.ac.il/~oded/foc-vol2.html.

GOLDWASSER, S., AND BELLARE, M. Lecture Notes on Cryptography. 2003. Lecture
notes for a class taught by the authors at the MIT (1996-2001); available online at
http://www.cs.nyu.edu/courses/fall01/G22.3033-003/.

GOLDWASSER, S., AND MICALI, S. Probabilistic encryption. Journal of Computer and System
Sciences 28, 2 (1984), 270-299. Previous version in STOC 1982.

HaNssoN, H. Time and Probabilities in Formal Design of Distributed Systems. Real-Time
Safety Critical Systems. Elsevier, 1994.

HaNssoN, H., AND JONSSON, B. A framework for reasoning about time and reliability. In
Proc. of Real Time Systems Symposium (1989), IEEE, pp. 102-111.

HorMANN, M. Type Systems for Polynomial-Time Computation. Habilitation Thesis, Darm-
stadt; see http://www.dcs.ed.ac.uk/home/mxh/papers.html, 1999.

HutH, M., AND KWIATKOWSKA, M. Z. Quantitative analysis and model checking. In LICS
97 (1997), pp. 111-122.

KEMMERER, R. A., MEADOWS, C., AND MILLEN, J. K. Three systems for cryptographic
protocol analysis. Journal of Cryptology 7, 2 (1994), 79-130.

LARseN, K. G., AND SKoOU, A. Bisimulation through probabilistic testing. Information and
Computation 94, 1 (1991), 1-28.

LincoLN, P. D., MITCHELL, J. C., MITCHELL, M., AND SCEDROV, A. A probabilistic poly-
time framework for protocol analysis. In Proc. 5th ACM Conference on Computer and Com-
munications Security (San Francisco, California, 1998), M. K. Reiter, Ed., ACM Press,
pp. 112-121.

LincoLN, P. D., MircueLL, J. C., MITCHELL, M., AND SCEDROV, A. Probabilistic
polynomial-time equivalence and security protocols. In Formal Methods World Congress,
vol. I (Toulouse, France, 1999), J. M. Wing, J. Woodcock, and J. Davies, Eds., no. 1708 in
Lecture Notes in Computer Science, Springer, pp. 776—793.

Lowe, G. Breaking and fixing the Needham-Schroeder public-key protocol using CSP and
FDR. In 2nd International Workshop on Tools and Algorithms for the Construction and
Analysis of Systems (1996), T. Margaria and B. Steffen, Eds., vol. 1055 of Lecture Notes in
Computer Science, Springer-Verlag, pp. 147-166.

LuBy, M. Pseudorandomness and Cryptographic Applications. Princeton Computer Science
Notes. Princeton University Press, 1996.

60

[45]

[46]

(47]
(48]
[49]

[50]

[51]

[52]

(53]
[54]
[55]
[56]

[57)

58]

[59]

[60]

[61]
(62]
[63]
[64]

[65]

J. C. MITCHELL, A. RAMANATHAN, A. SCEDROV, AND V. TEAGUE

MaTEUS, P., MITCHELL, J. C., AND SCEDROV, A. Composition of cryptographic protocols in
a probabilistic polynomial-time process calculus. In 14th International Conference on Con-
currency Theory (Marseille, France, 2003), R. M. Amadio and D. Lugiez, Eds., vol. 2761 of
Lecture Notes in Computer Science, Springer-Verlag, pp. 327-349.

MeAaDOWS, C. Analyzing the Needham-Schroeder public-key protocol: A comparison of
two approaches. In Proc. European Symposium On Research In Computer Security (1996),
Springer Verlag, pp. 351-364.

MENEZES, A. J., VAN OORsCHOT, P. C., AND VANSTONE, S. A. Handbook of Applied Cryp-
tography. CRC Press, 2001.

MicALl, S., RACKOFF, C., AND SLOAN, B. The notion of security for probabilistic cryptosys-
tems. STAM Journal of Computing 17 (1988), 412-426.

MILNER, R. Communication and Concurrency. International Series in Computer Science.
Prentice Hall, 1989.

MITCHELL, J. C., MITCHELL, M., AND SCEDROV, A. A linguistic characterization of bounded
oracle computation and probabilistic polynomial time. In Proc. 39th Annual IEEE Sympo-
stum on the Foundations of Computer Science (Palo Alto, California, 1998), IEEE, pp. 725—
733.

MITCHELL, J. C., MITCHELL, M., AND STERN, U. Automated analysis of cryptographic pro-
tocols using Mur . In Proc. IEEE Symposium on Security and Privacy (1997), pp. 141-151.
MitcHELL, J. C., RAMANATHAN, A., SCEDROV, A., AND TEAGUE, V. A probabilistic
polynomial-time calculus for the analysis of cryptographic protocols (preliminary report).
In 17th Annual Conference on the Mathematical Foundations of Programming Semantics,
Arhus, Denmark (May 2001), S. Brookes and M. Mislove, Eds., vol. 45, Electronic notes in
Theoretical Computer Science.

NEEDHAM, R., AND SCHROEDER, M. Using encryption for authentication in large networks of
computers. Communications of the ACM 21, 12 (1978), 993-999.

PapapmviTriou, C. H. Computational Complezity. Addison-Wesley Publishing Company,
1994.

PauLson, L. C. Mechanized proofs for a recursive authentication protocol. In 10th IEEE
Computer Security Foundations Workshop (1997), pp. 84-95.

PauLson, L. C. Proving properties of security protocols by induction. In 10th IEEE Computer
Security Foundations Workshop (1997), pp. 70-83.

PriTzMANN, B., AND WAIDNER, M. Composition and integrity preservation of secure reac-
tive systems. In 7th ACM Conference on Computer and Communications Security (Athens,
November 2000), ACM Press, pp. 245-254. Preliminary version: IBM Research Report RZ
3234 (# 93280) 06/12/00, IBM Research Division, Ziirich, June 2000.

PriTzZMANN, B., AND WAIDNER, M. A model for asynchronous reactive systems and its appli-
cation to secure message transmission. In IEEE Symposium on Security and Privacy (Wash-
ington, 2001), pp. 184-200.

RAMANATHAN, A., MITCHELL, J. C., SCEDROV, A., AND TEAGUE, V. Probabilistic bisim-
ulation and equivalence for security analysis of network protocols. In Foundations of Soft-
ware Science and Computation Structures, 7th International Conference, FOSSACS 200/
(Barcelona, Spain, 2004), I. Walukiewicz, Ed., vol. 2987 of Lecture Notes in Computer Sci-
ence, Springer, pp. 468-483. Summarizes results of [60].

RAMANATHAN, A., MITCHELL, J. C., SCEDROV, A., AND TEAGUE, V. Probabilistic bisim-
ulation and equivalence for security analysis of network protocols. Technical Report; see
http://www-cs-students.stanford.edu/~ajith/, 2004.

RoscoEe, A. W. Modeling and verifying key-exchange protocols using CSP and FDR. In
CSFW 8 (1995), IEEE Computer Society Press, p. 98.

RyAN, P. Y. A., AND SCHNEIDER, S. A. An attack on a recursive authentication protocol—A
cautionary tale. Information Processing Letters 65, 1 (1998), 7-10.

SCHNEIDER, S. Security properties and CSP. In IEEE Symposium on Security and Privacy
(Oakland, California, 1996).

Ts1ouNis, Y., AND YUNG, M. On the security of El Gamal-based encryption. Lecture Notes
in Computer Science 1431 (1998), 117-134.

VAN GLABBEEK, R. J., SMOLKA, S. A., AND STEFFEN, B. Reactive, generative, and stratified
models of probabilistic processes. International Journal on Information and Computation
121, 1 (August 1995).

A PROCESS CALCULUS FOR THE SECURITY ANALYSIS OF PROTOCOLS 61

[66] YAaO, A. C.-C. Protocols for secure computations. In Proc. 23rd IEEE Symp. on the Foun-
dations of Computer Science (1982), IEEE, pp. 160-164.
[67] Ya0, A. C.-C. Theory and applications of trapdoor functions. In IEEE Foundations of Com-

puter Science (1982), pp. 80-91.

DEPARTMENT OF COMPUTER SCIENCE, STANFORD UNIVERSITY, 353 SERRA MALL, STANFORD,
CA 94305-9025, USA
E-mail address: mitchell@.stanford.edu

DEPARTMENT OF COMPUTER SCIENCE, STANFORD UNIVERSITY, 353 SERRA MALL, STANFORD,
CA 94305-9025, USA
E-mail address: ajithr@stanford.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PENNSYLVANIA, 209 SOUTH 33RD STREET,
PHILADELPHIA, PA 19104-6395, USA
E-mail address: scedrov@cis.upenn.edu

DEPARTMENT OF COMPUTER SCIENCE, STANFORD UNIVERSITY, 353 SERRA MALL, STANFORD,
CA 94305-9025, USA
E-mail address: vteague@cs.stanford.edu

