# CS 369P: Polyhedral techniques in combinatorial optimization Instructor: Jan Vondrák <br> Lecture date: October 28, 2010 <br> Scribe: Stephen Oakley 

## 1 Matroid Union

Definition 1 Given matroids $\mathcal{M}_{1}=\left(E_{1}, \mathcal{I}_{1}\right), \ldots, \mathcal{M}_{k}=\left(E_{k}, \mathcal{I}_{k}\right)$ then $\mathcal{M}_{1} \vee \mathcal{M}_{2} \vee \ldots \vee \mathcal{M}_{k}$ is defined on ground set $E_{1} \cup E_{2} \cup \ldots \cup E_{k}$ so that $\mathcal{I}=\left\{I_{1} \cup \ldots \cup I_{k}: I_{j} \in \mathcal{I}_{j}\right\}$.

## Remarks:

- Unlike matroid intersection, matroid union generates a matroid.
- Union applies to the independent sets and not the matroids as a whole, i.e. it is an operation on a different level than matroid intersection.
- $E_{1}, E_{2}, \ldots, E_{k}$ need not be disjoint; however, it is interesting even for disjoint sets.
- Despite the differences, matroid intersection and matroid union are closely related.

The proof that this operations generates a matroid relies on the following basic lemma.
Lemma 2 Given a matroid $\mathcal{M}^{\prime}=\left(E^{\prime}, \mathcal{I}^{\prime}\right)$ with a rank function $r^{\prime}$, and a function $f: E^{\prime} \rightarrow E$,

$$
\mathcal{I}=\left\{f\left(I^{\prime}\right): I^{\prime} \in \mathcal{I}^{\prime}\right\}
$$

defines a matroid with rank function

$$
r(S)=\min _{T \subseteq S}\left(|S \backslash T|+r^{\prime}\left(f^{-1}(T)\right)\right)
$$



Figure 1: Extension axiom under mapping.

Proof: $\mathcal{I}$ is closed under subsets. We will prove the extension axiom by induction. Let $I, J \in \mathcal{I}$, where $|I|<|J|$. Choose $I^{\prime}, J^{\prime} \in \mathcal{I}^{\prime}, f\left(I^{\prime}\right)=I, f\left(J^{\prime}\right)=J,\left|I^{\prime}\right|=|I|,\left|J^{\prime}\right|=|J|$, and $\left|I^{\prime} \cap J^{\prime}\right|$ as large as possible. Since $\mathcal{M}^{\prime}$ is a matroid, $\exists j^{\prime} \in J^{\prime} \backslash I^{\prime}$ such that $I^{\prime}+j^{\prime} \in \mathcal{I}^{\prime}$. If $f\left(j^{\prime}\right)=j \in I=f\left(I^{\prime}\right)$, then $j$ has another pre-image $i$ in $I^{\prime}$ (since $f\left(I^{\prime}\right)=I$ ). Note that $i \notin J^{\prime}$ because $f$ is a bijection on $J^{\prime}$. However, then we could take $I^{\prime \prime}=I-i+j^{\prime}$ instead of $I^{\prime}$, thus increasing $\left|I^{\prime} \cap J^{\prime}\right|$. Hence, $j \in J \backslash I$ proves the extension axiom.

For the rank formula, consider $\mathcal{P}=$ partition matroid with parts $f^{-1}(s), s \in S . I \subseteq S$ is independent in $\mathcal{M} \Longleftrightarrow \exists I^{\prime} \in \mathcal{I}^{\prime}, f\left(I^{\prime}\right)=I$. Wlog, $\left|I^{\prime}\right|=|I|$, i.e. $I^{\prime}$ is also independent in $\mathcal{P}$. By the matroid intersection formula,

$$
\max _{I \subseteq S, I \in \mathcal{I}}|I|=\max _{I^{\prime} \in \mathcal{I}^{\prime} \cap \mathcal{P}}\left|I^{\prime}\right|=\min _{T^{\prime} \subseteq f^{-1}(S)}\left(r^{\prime}\left(f^{-1}(S) \backslash T^{\prime}\right)+r_{\mathcal{P}}\left(T^{\prime}\right)\right)=\min _{T \subseteq S}\left(r^{\prime}\left(f^{-1}(S \backslash T)\right)+|T|\right)
$$

Note that we replaced the minimization over $T^{\prime} \subseteq f^{-1}(S)$ by minimization over pre-images of $T \subseteq S$; this does not change the minimum, because if $T^{\prime}$ contains some element of $f^{-1}(s)$, we might as well include all of $f^{-1}(s)$ in $T^{\prime}$ which does not increase the rank $r_{\mathcal{P}}\left(T^{\prime}\right)$ but might decrease the rank $r^{\prime}\left(f^{-1}(S) \backslash T^{\prime}\right)$.

Theorem 3 The result of matroid union is a matroid.
Proof: Assume $E_{1}^{\prime}, E_{2}^{\prime}, \ldots, E_{k}^{\prime}$ disjoint, then $\mathcal{I}^{\prime}=\left\{I_{1}^{\prime} \cup I_{2}^{\prime} \cup \ldots \cup I_{k}^{\prime}: I_{j}^{\prime}\right.$ independent in $\left.\mathcal{M}_{i}^{\prime}\right\}$. This is clearly a matroid. (Check the axioms; each part $E_{i}^{\prime}$ works independently here.)

If $E_{1}, E_{2}, \ldots, E_{k}$ are not disjoint, we can define formally disjoint copies $E_{1}^{\prime}, E_{2}^{\prime}, \ldots, E_{k}^{\prime}$ and a mapping $f: \bigcup E_{i}^{\prime} \rightarrow \bigcup E_{i}$ which takes each copy $E_{i}^{\prime}$ to $E_{i}$ by a natural bijection. Thus by the previous lemma, $\mathcal{I}=\left\{f\left(I^{\prime}\right): I^{\prime} \in \mathcal{I}^{\prime}\right\}$ is a matroid and this is equivalent to $\mathcal{I}=\left\{I_{1} \cup \ldots \cup I_{k}: I_{j} \in \mathcal{I}_{j}\right\}$.


Figure 2: Matroid union from the mapping lemma.

Corollary 4 The rank function of $\mathcal{M}_{1} \vee \mathcal{M}_{2} \vee \ldots \vee \mathcal{M}_{k}$ is

$$
r(S)=\min _{T \subseteq S}\left(|S \backslash T|+r_{1}\left(T \cap E_{1}\right)+\ldots+r_{k}\left(T \cap E_{k}\right)\right.
$$

Proof: For disjoint ground sets $E_{1}, \ldots, E_{k}$, the rank function is clearly $r(S)=\sum_{i=1}^{k} r_{i}\left(S \cap E_{i}\right)$. In the general case, by the construction from disjoint ground sets and Lemma 2, we obtain

$$
r(S)=\min _{T \subseteq S}\left(|S \backslash T|+r^{\prime}\left(f^{-1}(T)\right)\right)=\min _{T \subseteq S}\left(|S \backslash T|+\sum_{i=1}^{k} r_{i}\left(T \cap E_{i}\right)\right)
$$

Algorithms for checking independence in $\mathcal{M}_{1} \vee \mathcal{M}_{2} \vee \ldots \vee \mathcal{M}_{k}$ and optimizing over it can be derived from matroid intersection.

## 2 Applications of matroid union

Theorem 5 The maximum size of a union of $k$ independent sets in $\mathcal{M}$ is

$$
\min _{S \subseteq E}[|E \backslash S|+k \cdot r(S)] .
$$

Proof: Directly from matroid union with $\mathcal{M}_{1}=\mathcal{M}_{2}=\ldots=\mathcal{M}_{k}$.
Theorem 6 The ground set of a matroid $\mathcal{M}$ can be partitioned into $k$ independent sets iff

$$
\forall S \subseteq E ; r(S) \geq \frac{1}{k}|S|
$$

Proof: $E$ is independent in $\mathcal{M} \vee \mathcal{M} \vee \ldots \vee \mathcal{M}$ iff $\min _{S \subseteq E}[|E \backslash S|+k r(S)] \geq|E|$.
Theorem $7 \mathcal{M}$ contains $k$ disjoint bases iff

$$
\forall S \subseteq E ; k(r(E)-r(S)) \leq|E \backslash S|
$$

Proof: $E$ contains k disjoint bases if its rank in $\mathcal{M} \vee \mathcal{M} \vee \ldots \vee \mathcal{M}$ is at least $k r(E)$ i.e. if $\min _{S \subseteq E}[|E \backslash S|+k r(S)] \geq k r(E)$.

