CS 369P: Polyhedral techniques in combinatorial optimization

Instructor: Jan Vondrák

Lecture date: October 28, 2010 Scribe: Stephen Oakley

1 Matroid Union

Definition 1 Given matroids $\mathcal{M}_1 = (E_1, \mathcal{I}_1), \dots, \mathcal{M}_k = (E_k, \mathcal{I}_k)$ then $\mathcal{M}_1 \vee \mathcal{M}_2 \vee \dots \vee \mathcal{M}_k$ is defined on ground set $E_1 \cup E_2 \cup \dots \cup E_k$ so that $\mathcal{I} = \{I_1 \cup \dots \cup I_k : I_j \in \mathcal{I}_j\}$.

Remarks:

- Unlike matroid intersection, matroid union generates a matroid.
- Union applies to the independent sets and not the matroids as a whole, i.e. it is an operation on a different level than matroid intersection.
- E_1, E_2, \ldots, E_k need not be disjoint; however, it is interesting even for disjoint sets.
- Despite the differences, matroid intersection and matroid union are closely related.

The proof that this operations generates a matroid relies on the following basic lemma.

Lemma 2 Given a matroid $\mathcal{M}' = (E', \mathcal{I}')$ with a rank function r', and a function $f: E' \to E$,

$$\mathcal{I} = \{ f(I') \colon I' \in \mathcal{I}' \}$$

defines a matroid with rank function

$$r(S) = \min_{T \subseteq S} (|S \setminus T| + r'(f^{-1}(T))).$$

Figure 1: Extension axiom under mapping.

Proof: \mathcal{I} is closed under subsets. We will prove the extension axiom by induction. Let $I, J \in \mathcal{I}$, where |I| < |J|. Choose $I', J' \in \mathcal{I}'$, f(I') = I, f(J') = J, |I'| = |I|, |J'| = |J|, and $|I' \cap J'|$ as large as possible. Since \mathcal{M}' is a matroid, $\exists j' \in J' \setminus I'$ such that $I' + j' \in \mathcal{I}'$. If $f(j') = j \in I = f(I')$, then j has another pre-image i in I' (since f(I') = I). Note that $i \notin J'$ because f is a bijection on J'. However, then we could take I'' = I - i + j' instead of I', thus increasing $|I' \cap J'|$. Hence, $j \in J \setminus I$ proves the extension axiom.

For the rank formula, consider \mathcal{P} = partition matroid with parts $f^{-1}(s)$, $s \in S$. $I \subseteq S$ is independent in $\mathcal{M} \iff \exists I' \in \mathcal{I}'$, f(I') = I. Wlog, |I'| = |I|, i.e. I' is also independent in \mathcal{P} . By the matroid intersection formula,

$$\max_{I\subseteq S,I\in\mathcal{I}}|I|=\max_{I'\in\mathcal{I'}\cap\mathcal{P}}|I'|=\min_{T'\subseteq f^{-1}(S)}(r'(f^{-1}(S)\setminus T')+r_{\mathcal{P}}(T'))=\min_{T\subseteq S}(r'(f^{-1}(S\setminus T))+|T|).$$

Note that we replaced the minimization over $T' \subseteq f^{-1}(S)$ by minimization over pre-images of $T \subseteq S$; this does not change the minimum, because if T' contains some element of $f^{-1}(s)$, we might as well include all of $f^{-1}(s)$ in T' which does not increase the rank $r_{\mathcal{P}}(T')$ but might decrease the rank $r'(f^{-1}(S) \setminus T')$.

Theorem 3 The result of matroid union is a matroid.

Proof: Assume E'_1, E'_2, \ldots, E'_k disjoint, then $\mathcal{I}' = \{I'_1 \cup I'_2 \cup \ldots \cup I'_k : I'_j \text{ independent in } \mathcal{M}'_i\}$. This is clearly a matroid. (Check the axioms; each part E'_i works independently here.)

If E_1, E_2, \ldots, E_k are not disjoint, we can define formally disjoint copies E'_1, E'_2, \ldots, E'_k and a mapping $f: \bigcup E'_i \to \bigcup E_i$ which takes each copy E'_i to E_i by a natural bijection. Thus by the previous lemma, $\mathcal{I} = \{f(I'): I' \in \mathcal{I}'\}$ is a matroid and this is equivalent to $\mathcal{I} = \{I_1 \cup \ldots \cup I_k: I_j \in \mathcal{I}_j\}$.

Figure 2: Matroid union from the mapping lemma.

Corollary 4 The rank function of $\mathcal{M}_1 \vee \mathcal{M}_2 \vee ... \vee \mathcal{M}_k$ is

$$r(S) = \min_{T \subseteq S} (|S \setminus T| + r_1(T \cap E_1) + \ldots + r_k(T \cap E_k).$$

Proof: For disjoint ground sets E_1, \ldots, E_k , the rank function is clearly $r(S) = \sum_{i=1}^k r_i(S \cap E_i)$. In the general case, by the construction from disjoint ground sets and Lemma 2, we obtain

$$r(S) = \min_{T \subseteq S} (|S \setminus T| + r'(f^{-1}(T))) = \min_{T \subseteq S} (|S \setminus T| + \sum_{i=1}^{k} r_i(T \cap E_i)).$$

Algorithms for checking independence in $\mathcal{M}_1 \vee \mathcal{M}_2 \vee \ldots \vee \mathcal{M}_k$ and optimizing over it can be derived from matroid intersection.

2 Applications of matroid union

Theorem 5 The maximum size of a union of k independent sets in M is

$$\min_{S \subseteq E} [|E \setminus S| + k \cdot r(S)].$$

Proof: Directly from matroid union with $\mathcal{M}_1 = \mathcal{M}_2 = \ldots = \mathcal{M}_k$.

Theorem 6 The ground set of a matroid \mathcal{M} can be partitioned into k independent sets iff

$$\forall S \subseteq E; r(S) \ge \frac{1}{k}|S|.$$

Proof: E is independent in $\mathcal{M} \vee \mathcal{M} \vee \ldots \vee \mathcal{M}$ iff $\min_{S \subseteq E} [|E \setminus S| + kr(S)] \ge |E|$.

Theorem 7 \mathcal{M} contains k disjoint bases iff

$$\forall S \subseteq E; k(r(E) - r(S)) \le |E \setminus S|.$$

Proof: E contains k disjoint bases if its rank in $\mathcal{M} \vee \mathcal{M} \vee \ldots \vee \mathcal{M}$ is at least kr(E) i.e. if $\min_{S \subseteq E}[|E \setminus S| + kr(S)] \ge kr(E)$.