MATH 108: Introduction to Combinatorics, Winter 2016 HOMEWORK 4
 Due Monday, February 8

You should solve the homework on your own. Don't use any books or the internet.
Problem 1. [Knuth p. 308, problem 6]
Prove $a_{j}=b_{j} \oplus b_{j+1}$, the basic formula for the Gray code. Then, using this show that if $g(k)=$ $\left(\ldots, a_{2}, a_{1}, a_{0}\right)$ in base 2 then $b_{j}=a_{j}+a_{j+1}+\ldots$ where all addition is mod 2 and the sum is actually finite.

Problem 2. [Knuth p. 315, problem 67]
Explain how to traverse all binary n-tuples in such a way that each step changes n or $n-1$ bits, alternately.

Problem 3. Find a sequence of 52 zeros and ones such that if a window of length 6 is run along (including around the corner) all the binary six-tuples that appear are distinct. Show how to arrange an ordinary deck of 52 cards so that the red/black pattern matches your order.

Problem 4. Consider the following "greedy rule" for constructing a binary de Bruijn sequence of length 2^{k} : start with k zeros, and then always add a 1 if this doesn't duplicate a previous pattern, or else add a 0 . Try this rule out when $k=5$ and check that it works. Prove that it works for all k.

