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Lecture 2. The Lovász Local Lemma

2.1 Introduction and motivation

We start with the Lovász Local Lemma, a fundamental tool of the “probabilistic method” and a
prototypical non-constructive argument in combinatorics — proving that a certain object exists
without showing what it looks like. Often in applying the probabilistic method, one is trying to
show that it is possible to avoid “bad events” E1, . . . , En with positive probability, or in other words,

P

[
n⋂

i=1

E i

]
> 0.

Here Ei are subsets of a probability space Ω (typically a finite set), and E i = Ω \ Ei denotes the
complementary event for each i.

If
∑

i P[Ei] < 1, then the above inequality clearly follows, by the “union bound”. However, this
is often not a strong enough tool, since the sum

∑
i P[Ei] may be much larger than 1 even if the

events can be avoided.
A weaker constraint on the individual probabilities P[Ei] is sufficient if the events Ei are also

independent. In that case if P[Ei] < 1 for all i, then P[∩iE i] is clearly positive. The Lovász Local
Lemma is an effective refinement of this phenomenon, for events that do not have “too much
(inter)dependency” – a notion that will be made precise presently. An additional attractive feature
of the Local Lemma is that it does not place any restriction on the (finite) number of events Ei.

2.2 Symmetric Local Lemma and application to hypergraph colorability

Before we state and prove the Local Lemma, we first present a prototypical application of the
result, which serves to motivate it.

Example 2.1 (Hypergraph 2-coloring) Given an integer k ≥ 2, a k-uniform hypergraph G =
(V (G), E(G)) consists of a finite set of nodes V (G) and a collection of subsets e1, . . . , en ⊂ V (G),
each of size k, which are termed “edges” (or “hyper-edges”). We want to color each node in
V (G) either red or blue. Under what conditions can we guarantee that there is a coloring with no
monochromatic edge, i.e., every edge contains both red and blue nodes? Such hypergraphs are said
to be 2-colorable.

Notice, if we color each node red or blue uniformly at random, then the event Ei that the
ith edge is monochromatic has probability 21−k. Thus if the hypergraph G has less than 2k−1

edges, then by the union bound, the probability that there is at least one monochromatic edge is
< 2k−1 · 21−k = 1. It follows that G is 2-colorable.

However, this argument fails when G has ≥ 2k−1 edges. In this case, under what assumptions
can we prove 2-colorability? One such assumption is that every edge intersects at most d other



edges, for some d. Under such an assumption, we will show 2-colorability using the Lovász Local
Lemma. (Interestingly, d will be comparable to 2k−1.)

We now define the following notion of mutual independence.

Definition 2.2 For all integers n > 0, define [n] := {1, . . . , n}. Given events E1, . . . , En ⊂ Ω and
a subset J ⊂ [n], the event Ei is said to be mutually independent of {Ej : j ∈ J} if for all choices
of disjoint subsets J1, J2 ⊂ J ,

P
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⋂
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 = P[Ei] · P

 ⋂
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⋂
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 .

Equipped with this notion, we can state the first form of the Lovász Local Lemma, which will
help answer the above question of 2-colorability for k-uniform hypergraphs.

Theorem 2.3 (Symmetric Lovász Local Lemma) Suppose p ∈ (0, 1), d ≥ 1, and E1, . . . , En
are events such that P[Ei] ≤ p for all i. If each Ei is mutually independent of all but d other events
Ej, and ep(d + 1) ≤ 1, where e = 2.71828 . . . is Euler’s number, then P

[
∩ni=1E i

]
> 0.

Remark 2.4 In the above result, d is sometimes called the “dependence degree”. The “local”-ness
of the result has to do with the fact that assumptions depend only on d rather than n, the number
of events.

Before we prove the Local Lemma (in a more general form), let us see how it can be used to
study 2-colorability for hypergraphs. In the setting of Example 2.1, suppose the hypergraph G
has n edges, denoted by e1, . . . , en. Let Ei denote the event that the edge ei is monochromatic; as
computed above, p = 21−k.

We now claim that “d = d”, that is, the d in Example 2.1 is precisely the d in Theorem 2.3.
Indeed, fix an edge ei; now any conditioning (i.e., node-coloring) on the edges disjoint from ei is
independent of Ei, since the node colors are i.i.d. Bernoulli random variables. Thus, the assumptions
of the Symmetric Lovász Local Lemma are indeed satisfied, as long as

d + 1 ≤ 1

ep
=

2k−1

e
.

We stress again that this condition is independent of the number of edges in the hypergraph G.

2.3 (Asymmetric) Lovász Local Lemma: statement and proof

We now prove the Symmetric Lovász Local Lemma, i.e., Theorem 2.3. In fact we show a stronger,
“asymmetric” version, and use it to prove the symmetric version. This will require the following
useful concept.

Definition 2.5 A (directed) graph G = (V (G), E(G)) is a dependency (di)graph on events E1, . . . , En
if V (G) = [n] and each event Ei is mutually independent of its non-neighbors {Ej : j 6= i, (i, j) 6∈
E(G)}.



Remark 2.6 Most applications in the literature use the undirected version of the dependency graph;
however, there are some applications that use the digraph structure. In such cases, given a directed
edge (i, j), i is the source and j the target.

We can now state the Lovász Local Lemma in its more general form.

Theorem 2.7 ((Asymmetric) Lovász Local Lemma) Suppose G is a dependency (di)graph
for events E1, . . . , En, and there exist x1, . . . , xn ∈ (0, 1) such that

P[Ei] ≤ xi
∏

(i,j)∈E(G)

(1− xj), ∀i ∈ [n]. (2.1)

Then,

P

[
n⋂

i=1

E i

]
≥

n∏
i=1

(1− xi) > 0. (2.2)

Remark 2.8 Given a set of events Ei, the choice of a dependency digraph G is not unique, nor
is the choice of the parameters xi. Rather, the “user” decides which dependency digraph G and
parameters xi to work with, in a given application. The dependency graph is often clear from the
context (e.g. in the hypergraph colorability application above), although the choice of xi might not
be.

Remark 2.9 Theorem 2.7 is sharp when the Ei are independent, G is empty, and xi = P[Ei] ∀i.

Before we show the Asymmetric Local Lemma, let us quickly see why it implies the Symmetric
version. Indeed, if the hypotheses of Theorem 2.3 hold, set xi = 1

d+1 ∀i. Now the hypotheses
imply that there is an undirected dependency graph G in which each node has degree at most d.
Therefore,

xi
∏

(i,j)∈E(G)

(1− xj) =
1

d + 1

(
1− 1

d + 1

)deg(i)

≥ 1

d + 1

(
1− 1

d + 1

)d

≥ 1

d + 1
· 1

e
≥ P[Ei].

It follows by the Asymmetric Lovász Local Lemma that P[∩iE i] > 0.

Finally, we prove the Asymmetric Lovász Local Lemma.

Proof of Theorem 2.7. Given S ⊂ [n], define

PS := P

[⋂
i∈S
E i

]
, P ∅ := 1.

The result follows once we show, by induction on |S|, that for all S ⊂ [n] and a ∈ S,

PS

PS\{a}
≥ 1− xa. (2.3)



More precisely, we will show by induction on |S| that

PS ≥ (1− xa)PS\{a} > 0.

Indeed, this yields the result, because applying the inequality to S = [n], then [n − 1], and so on,
yields:

P

[
n⋂

i=1

E i

]
= P [n] ≥ (1− xn)P [n−1] = (1− xn)(1− xn−1)P [n−2] ≥ · · · ≥

n∏
i=1

(1− xi) > 0,

as desired.
Thus it remains to prove (2.3). The base case is when S = {a} is a singleton. In this case,

P {a}

P ∅
= P[Ea] ≥ 1− xa

∏
(a,j)∈E(G)

(1− xj) ≥ 1− xa,

proving the assertion. Now suppose (2.3) holds for all subsets S′ ⊂ [n] with size at most k, and say
S ⊂ [n] has size k + 1. To proceed further, let us define the neighborhood of a ∈ S, as well as its
“closure”, via:

Γ(a) := {j ∈ V (G) : (a, j) ∈ E(G)}, Γ+(a) := {a} ∪ Γ(a). (2.4)

Now fix a ∈ S, and compute:

PS = P

[⋂
i∈S
E i

]
= P

 ⋂
i∈S\{a}

E i

− P

Ea ∩ ⋂
i∈S\{a}

E i

 ≥ P

 ⋂
i∈S\{a}

E i

− P

Ea ∩ ⋂
i∈S\Γ+(a)

E i


= PS\{a} − P[Ea]PS\Γ+(a),

where the first equality and the inequality are straightforward, and the final equality follows from
the mutual independence of Ea and {Ei : i 6∈ Γ+(a)}. From this computation it follows that

PS

PS\{a}
≥ 1− P[Ea]

PS\Γ+(a)

PS\{a}
,

where PS\{a} > 0 by the induction hypothesis. Now say Γ(a) ∩ S = {b1, . . . , bd} for some d ≥ 0,
and write the fraction on the right-hand side as a telescoping product:

PS\Γ+(a)

PS\{a}
=

PS\{a,b1}

PS\{a}

PS\{a,b1,b2}

PS\{a,b1}
· · ·

PS\{a,b1,...,bd}

PS\{a,b1,...,bd−1}
,

where all terms on the right-hand side are strictly positive by the induction hypothesis. By the

same hypothesis, each ratio on the right-hand side is bounded above by
1

1− xbi
. Therefore,

PS\Γ+(a)

PS\{a}
≤ 1

1− xb1
· · · 1

1− xbd
.

Recalling that by assumption P[Ea] ≤ xa
∏

b∈Γ(a)(1− xb), it follows that

PS

PS\{a}
≥ 1− xa

∏
b∈Γ(a)

(1− xb)
∏

c∈Γ(a)∩S

1

1− xc
≥ 1− xa > 0.

This shows (2.3), and with it, the Lovász Local Lemma. 2
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