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Lecture 2. The Lovasz Local Lemma

2.1 Introduction and motivation

We start with the Lovdsz Local Lemma, a fundamental tool of the “probabilistic method” and a
prototypical non-constructive argument in combinatorics — proving that a certain object exists
without showing what it looks like. Often in applying the probabilistic method, one is trying to
show that it is possible to avoid “bad events” &1, ..., &, with positive probability, or in other words,

P Lé&] > 0.

Here &; are subsets of a probability space 2 (typically a finite set), and & = Q \ & denotes the
complementary event for each i.

If >, P[&] < 1, then the above inequality clearly follows, by the “union bound”. However, this
is often not a strong enough tool, since the sum ), P[£;] may be much larger than 1 even if the
events can be avoided.

A weaker constraint on the individual probabilities P[&;] is sufficient if the events &; are also
independent. In that case if P[&;] < 1 for all 4, then P[N;&;] is clearly positive. The Lovdsz Local
Lemma is an effective refinement of this phenomenon, for events that do not have “too much
(inter)dependency” — a notion that will be made precise presently. An additional attractive feature
of the Local Lemma is that it does not place any restriction on the (finite) number of events &;.

2.2 Symmetric Local Lemma and application to hypergraph colorability

Before we state and prove the Local Lemma, we first present a prototypical application of the
result, which serves to motivate it.

Example 2.1 (Hypergraph 2-coloring) Given an integer k > 2, a k-uniform hypergraph G =
(V(GQ), E(G)) consists of a finite set of nodes V(G) and a collection of subsets ey, ...,e, C V(G),
each of size k, which are termed “edges” (or “hyper-edges”). We want to color each node in
V(QG) either red or blue. Under what conditions can we guarantee that there is a coloring with no
monochromatic edge, i.e., every edge contains both red and blue nodes? Such hypergraphs are said
to be 2-colorable.

Notice, if we color each node red or blue uniformly at random, then the event &; that the
ith edge is monochromatic has probability 2!=*. Thus if the hypergraph G has less than 2F~1!
edges, then by the union bound, the probability that there is at least one monochromatic edge is
< 2k=1.91=k — 1 Tt follows that G is 2-colorable.

However, this argument fails when G has > 2¥~! edges. In this case, under what assumptions
can we prove 2-colorability? One such assumption is that every edge intersects at most d other



edges, for some d. Under such an assumption, we will show 2-colorability using the Lovasz Local
Lemma. (Interestingly, d will be comparable to 2¢71.)
We now define the following notion of mutual independence.

Definition 2.2 For all integers n > 0, define [n] := {1,...,n}. Given events &1,...,&E, C Q and
a subset J C [n], the event & is said to be mutually independent of {&; : j € J} if for all choices
of disjoint subsets Jy,Js C J,

P{&N ﬂ i N m EjQ =P&]-P ﬂ & N ﬂ gjz

J1€J1 J2€J2 J1€J1 J2€J2

Equipped with this notion, we can state the first form of the Lovédsz Local Lemma, which will
help answer the above question of 2-colorability for k-uniform hypergraphs.

Theorem 2.3 (Symmetric Lovasz Local Lemma) Suppose p € (0,1), d > 1, and &1,...,&,
are events such that P[&;] < p for all i. If each &; is mutually independent of all but d other events
Ej, and ep(d+ 1) < 1, where e = 2.71828 ... is Euler’s number, then IP [ﬁ?zl&-] > 0.

Remark 2.4 In the above result, d is sometimes called the “dependence degree”. The “local”-ness
of the result has to do with the fact that assumptions depend only on d rather than n, the number
of events.

Before we prove the Local Lemma (in a more general form), let us see how it can be used to
study 2-colorability for hypergraphs. In the setting of Example suppose the hypergraph G
has n edges, denoted by eq,...,e,. Let & denote the event that the edge e; is monochromatic; as
computed above, p = 217F,

We now claim that “d = d”, that is, the d in Example is precisely the d in Theorem [2.3
Indeed, fix an edge e;; now any conditioning (i.e., node-coloring) on the edges disjoint from e; is
independent of &;, since the node colors are i.i.d. Bernoulli random variables. Thus, the assumptions
of the Symmetric Lovasz Local Lemma are indeed satisfied, as long as

1 2k—1

d+1< — =
ep e

We stress again that this condition is independent of the number of edges in the hypergraph G.

2.3 (Asymmetric) Lovasz Local Lemma: statement and proof

We now prove the Symmetric Lovasz Local Lemma, i.e., Theorem In fact we show a stronger,
“asymmetric” version, and use it to prove the symmetric version. This will require the following
useful concept.

Definition 2.5 A (directed) graph G = (V(G), E(G)) is a dependency (di)graph on events &1, ...,&,
if V(G) = [n] and each event &; is mutually independent of its non-neighbors {&; : j # i, (i,7) ¢
E(G)}.



Remark 2.6 Most applications in the literature use the undirected version of the dependency graph;
however, there are some applications that use the digraph structure. In such cases, given a directed
edge (i,7), i is the source and j the target.

We can now state the Lovasz Local Lemma in its more general form.

Theorem 2.7 ((Asymmetric) Lovasz Local Lemma) Suppose G is a dependency (di)graph

for events &1,...,&,, and there exist x1,...,z, € (0,1) such that
P&l <z [ (-2, Vieln] (2.1)
(1,7)€E(G)
Then,

=1 i=1

Remark 2.8 Given a set of events &;, the choice of a dependency digraph G is not unique, nor
is the choice of the parameters x;. Rather, the “user” decides which dependency digraph G and
parameters x; to work with, in a given application. The dependency graph is often clear from the
context (e.g. in the hypergraph colorability application above), although the choice of x; might not
be.

Remark 2.9 Theorem is sharp when the &; are independent, G is empty, and x; = P[E;] Vi.

Before we show the Asymmetric Local Lemma, let us quickly see why it implies the Symmetric
version. Indeed, if the hypotheses of Theorem hold, set x; = ﬁ Vi. Now the hypotheses
imply that there is an undirected dependency graph G in which each node has degree at most d.

Therefore,
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It follows by the Asymmetric Lovész Local Lemma that P[N;E;] > 0.

Finally, we prove the Asymmetric Lovasz Local Lemma.
Proof of Theorem Given S C [n], define

Pg:=P [ﬂ Ei] , Py:=1.

The result follows once we show, by induction on |S|, that for all S C [n] and a € S,

Pg
Ps\{a}

>1— 2, (2.3)



More precisely, we will show by induction on |S| that
Pg > (1 —24)Pg\{a) > 0.

Indeed, this yields the result, because applying the inequality to S = [n], then [n — 1], and so on,
yields:

b [ﬁ ‘.
i=1

as desired.
Thus it remains to prove (2.3). The base case is when S = {a} is a singleton. In this case,

=Ppy > (1= 2n) Py =1 —20)(1 = 2n1)Ppg = - = [J(1 —2) >0,
=1

?f“} =PE)>1-2, [[ (-a)>1-uz,
0 (aj)EE(G)

proving the assertion. Now suppose (2.3)) holds for all subsets S’ C [n] with size at most k, and say
S C [n] has size k 4+ 1. To proceed further, let us define the neighborhood of a € S, as well as its
“closure”, via:

I'(a):={j € V(G) : (a,j) € E(G)}, 't (a) ;= {a} UT(a). (2.4)

Now fix a € S, and compute:

PS:P[mgi]:P ﬂ gz —-P (&N ﬂ EZ >P ﬂ g@ —-Pl&,N ﬂ EZ

€S 1€S\{a} 1€S\{a} i€S\{a} 1€S\I't (a)
= Pg\{a} — PlElPs\1+(a)>

where the first equality and the inequality are straightforward, and the final equality follows from
the mutual independence of &, and {&; : i € ' (a)}. From this computation it follows that
P Po\r+(a)

P
F g >1- ]P)[ga] F )
S\{a} S\{a}

where Pg\ t,3 > 0 by the induction hypothesis. Now say I'(a) NS = {b1,...,bq} for some d > 0,
and write the fraction on the right-hand side as a telescoping product:

Porta)  Ps\{abi) Ps\{abr b2} Ps\{a....ba)
Ps\ap  Ps\fap Psvfasy  Ps\fapibai}
where all terms on the right-hand side are strictly positive by the induction hypothesis. By the

same hypothesis, each ratio on the right-hand side is bounded above by 1 . Therefore,

Powt@w 1 1
PS\{(I} - 1—33[)1 l_xbd

Recalling that by assumption P[€q] < za [[pep(q) (1 — @), it follows that
Pg 1
— >1-z, [[ Q=) ][] >1—2,>0.
Ps\{a} bel (a) cel(a)nS 1 -
This shows (2.3), and with it, the Lovédsz Local Lemma. O
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