MATH 233A: Concentration of Measure, Autumn 2018
 HOMEWORK 2

Due Monday, November 26

Please try to solve the homework on your own. Discussions are okay but make your own effort.
Problem 1. Suppose that $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ is such that for every $x \in\{0,1\}^{n}$,

$$
\sum_{i=1}^{n}\left(f\left(x \oplus e_{i}\right)-f(x)\right)^{2} \leq v
$$

(where $x \oplus e_{i}$ means flipping the i-th coordinate). Then prove that for X uniform in $\{0,1\}^{n}$,

$$
\mathrm{P}[f(X) \geq \mathbb{E}[f(X)]+t] \leq e^{-2 t^{2} / v}
$$

Hint: $\left(e^{z / 2}-e^{y / 2}\right)^{2} \leq \frac{1}{8}(z-y)^{2}\left(e^{z}+e^{y}\right)$.
Problem 2. Suppose that $X \in \mathbb{R}^{n}$ has a multivariate Gaussian distribution with covariance matrix Γ. Prove that for any continuously differentiable $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
\begin{gathered}
\operatorname{Var}[f(X)] \leq \mathbb{E}\left[(\nabla f(X))^{T} \Gamma \nabla f(X)\right], \\
\operatorname{Ent}\left((f(X))^{2}\right) \leq 2 \mathbb{E}\left[(\nabla f(X))^{T} \Gamma \nabla f(X)\right] .
\end{gathered}
$$

Problem 3. Show that non-convex 1-Lipschitz functions (w.r.t. the Euclidean metric) do not satisfy exponential tail bounds with variance $O(1)$ for product distributions on $[0,1]^{n}$.

Problem 4. Prove that if $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is differentiable and X is exponentially distributed ($\mathrm{P}[X \geq t]=e^{-t}$ for $t \geq 0$), then

$$
\operatorname{Ent}\left((f(X))^{2}\right) \leq 4 \mathbb{E}\left[X\left(f^{\prime}(X)\right)^{2}\right]
$$

Hint: Reduce to the Gaussian case by considering $\frac{1}{2}\left(X_{1}^{2}+X_{2}^{2}\right)$ where X_{1}, X_{2} are independent standard Gaussians.

Problem 5. Let Z denote the number of triangles in a random graph $G_{n, p}, p=p(n) \geq 1 / n$, $\lim _{n \rightarrow \infty} p(n)=0$. Show that for every $a>0$ there is $c>0$ such that for n large enough,

$$
\mathrm{P}\left[Z \geq \mathbb{E}[Z]+a n^{3} p^{3}\right] \geq p^{c p^{2} n^{2}}
$$

Hint: the right-hand side is the probability that a clique of size $\Theta(p n)$ appears in $G_{n, p}$.
Bonus Problem. Can you derive some form of an exponential tail bound for self-bounding functions from Talagrand's inequality?

