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Lecture 20. The Kadison-Singer problem, part 11

Our goal in this lecture is to prove the following theorem, which will complete the solution of the
Kadison-Singer problem.

Theorem 1. For A; = 0, Tr(A;) < o, Y.;°1 A; = I, the mazimum root of the (real-rooted)

polynomial i
X (z) = (1 — 8fm> (1 - ;;) (det (;ZA>>

is at most (1+ /a)®.

zi=x,Vi

Let’s first introduce some notation. For a stable polynomial @ (21, ..., zm), the barrier function in
direction j is

9 (=) = (f log (@ (2))].

For i,j € [n], freeze z;, for k # i,j and regard gbé? (z) as a polynomial in z;, for which we denote
A1, ..., Ap the roots in z;. Then we can write

n

; 1
%(z):;Zj_Al-

We first show the following lemma. Recall that z being above the roots of @) means that Q(z+t) > 0
for any t > 0. We follow a simplified proof from Terrence Tao’s blog.

Lemma 2. For any stable polynomial Q, if z is above the roots of @, then Vi,j € [n], (Z)JQ (z) is
monotone decreasing and convex in z;.

Proof. We can assume that @ is a monic polynomial. (The leading coefficient must be positive and
hence we can do this by scaling.) Denote gb]Q (z;,7;) to be the polynomial on R? where the other
variables (z¢: £ ¢ {i,7}) are frozen in R. We claim that for any positive integer k,
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(1) ¢ (zi,25) > 0.

To see this, (1) when ¢ = j, it is directly from the expression (;522 (i) = >, ﬁ (2) when i # 7,

for any fixed z;, regarding @ as a polynomial in x;, we have real roots X\;(xz;) for [ € [n]. We can
write

Qi j) = [ (&) — N (22) .

=1



Since d)ég (xi,25) = 81_ log (Q(xi,x;)), we have that

n
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Note that A; (z;) is continuous in x;. It is known that it is also differentiable as a complex function
in x;, except for points of measure 0 (we will accept this claim without proof). We next claim that
Ai(x;) is non-increasing. To see this, if it is increasing, at some point the derivative is positive,
let’s say at xf. Then for a complex z; close to  with Im (z;) > 0, we have Im (\;(z;)) > 0, and
Q(zi, \i(zi)) = 0. Tt is impossible since z;, \;(z;) are both on the upper half plane, contradicting
the fact that @ is stable. Therefore, \;(x;) is non-increasing, and
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Next we show the following lemma.

Lemma 3. If Q is stable and z € R™ is above its roots, with qﬁlé (z) < 1, then z is above the roots

of (1 - 821)62

Proof. For any t > 0, we have (bé? (t + z) < 1 by monotonicity. 4% (2) < 1implies that Q' (2)/Q(z) <
1. Since Q(z) > 0, we have that Q' (z) < Q (), which means that

0
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)Q(2) > 0.

Lemma 4. If Q) is stable, z is above its roots, with (bé? (2) <1-— % for 6 > 1. Then

¢21*%)Q (z 4 dej) < (;522 (2).

Proof. We have that

i (Q—Q’zj):aiQJrai(l%)
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where we write 0; for % for short. Note that

‘ - b (2 +0) — o (2
0jog (2 +0) > 0500 (2j) > ¢q (2 + ; Pg (z])‘

By (1) we have that

dj¢y (2 +9)



By our condition we have that

1

L= (5 +0) 2 1= 95 (%) 2 5.

and thus ,

9j¢q (2 +9)

1 — ¢g, (2 +9)
Substituting (3) into (2) we see that

> 6056 (2 +0) > ¢ (27 +6) — ¢ (2) -
Z('li%)Q (zj+6) < ¢ZQ (25) -

Now we are ready to prove Theorem 1.

Proof of Theorem 1 Let

ez = (122 ) (1 2) [det (z A)] |

We claim that barrier functions are bounded by 1 — % for § = 1+ y/a, if with each (1 — %)

operation, we increase t in the respective coordinate by §. We use induction to show this

base case we have that
Q() (2’1, ey Zm) = det (Z ZZAZ> N
i=1

and thus
Qo (t,...,t) =det (ZtAZ) =t">0.

Recall that

2 (et (A4 1B)) =0 = det (4) Tr (A™'B).

Using the above identity we see that
m -1
bQy (215 -+ 2m) =TT (Z ziAZ-> A ],
i=1

which implies that
b, (ts - 1) = ;TT (4;) < aft,

since we assumed that Tr (A4;) < a. Letting t = a + y/a, we further see that

Do (t-- ) <1—
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Now assume that the claim holds for k. We have that
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Therefore we see that x (z) = Qm(x,...,z) has maximum root at most ¢t +J = (1 + \/6)2.



