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Lecture 20. The Kadison-Singer problem, part II

Our goal in this lecture is to prove the following theorem, which will complete the solution of the
Kadison-Singer problem.

Theorem 1. For Ai � 0, Tr (Ai) ≤ α,
∑m

i=1Ai = I, the maximum root of the (real-rooted)
polynomial

χ (x) =

(
1− ∂

∂zm

)
. . .

(
1− ∂

∂z1

)(
det

(
m∑
i=1

ziAi

))∣∣∣∣∣
zi=x,∀i

is at most (1 +
√
α)

2
.

Let’s first introduce some notation. For a stable polynomial Q (z1, . . . , zm), the barrier function in
direction j is

φjQ (z) =
∂

∂zj
[log (Q (z))] .

For i, j ∈ [n], freeze zk for k 6= i, j and regard φjQ (z) as a polynomial in zi, for which we denote
λ1, . . . , λn the roots in zi. Then we can write

φjQ (z) =

n∑
l=1

1

zj − λl
.

We first show the following lemma. Recall that z being above the roots of Q means that Q(z+t) > 0
for any t ≥ 0. We follow a simplified proof from Terrence Tao’s blog.

Lemma 2. For any stable polynomial Q, if z is above the roots of Q, then ∀i, j ∈ [n], φjQ (z) is
monotone decreasing and convex in zi.

Proof. We can assume that Q is a monic polynomial. (The leading coefficient must be positive and
hence we can do this by scaling.) Denote φjQ (xi, xj) to be the polynomial on R2 where the other
variables (z` : ` /∈ {i, j}) are frozen in R. We claim that for any positive integer k,

(−1)k
∂k

∂xkj
φiQ (xi, xj) ≥ 0.

To see this, (1) when i = j, it is directly from the expression φiQ (xi) =
∑n

l=1
1

xi−λl . (2) when i 6= j,
for any fixed xi, regarding Q as a polynomial in xj , we have real roots λl(xi) for l ∈ [n]. We can
write

Q(xi, xj) =

n∏
l=1

(xj − λl (xi)) .
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Since φiQ (xi, xj) = ∂
∂xi

log (Q(xi, xj)), we have that

(−1)k
∂k

∂xkj
φiQ (xi, xj) = (−1)k

∂

∂xi

∂k

∂xkj
log (Q(xi, xj)) = (−1)k−1

1

(k − 1)!

n∑
l=1

1

(xj − λl (xi))k
.

Note that λl (xi) is continuous in xi. It is known that it is also differentiable as a complex function
in xi, except for points of measure 0 (we will accept this claim without proof). We next claim that
λl(xi) is non-increasing. To see this, if it is increasing, at some point the derivative is positive,
let’s say at x′i. Then for a complex zi close to x′i with Im (zi) > 0, we have Im (λl(zi)) > 0, and
Q(zi, λl(zi)) = 0. It is impossible since zi, λl(zi) are both on the upper half plane, contradicting
the fact that Q is stable. Therefore, λl(xi) is non-increasing, and

(−1)k
∂

∂xi

∂k

∂xkj
log (Q(xi, xj)) ≥ 0.

Next we show the following lemma.

Lemma 3. If Q is stable and z ∈ Rn is above its roots, with φiQ (z) < 1, then z is above the roots

of (1− ∂
∂zi

)Q.

Proof. For any t ≥ 0, we have φiQ (t+ z) < 1 by monotonicity. φiQ (z) < 1 implies thatQ′zi(z)/Q(z) <
1. Since Q(z) > 0, we have that Q′zi(z) < Q (z), which means that

(1− ∂

∂zi
)Q(z) > 0.

Lemma 4. If Q is stable, z is above its roots, with φiQ (z) ≤ 1− 1
δ for δ > 1. Then

φi
(1− ∂

∂zj
)Q

(z + δej) ≤ φiQ (z) .

Proof. We have that

φi
(1− ∂

∂zj
)Q

=
∂
∂zi

(Q−Q′zj )
Q−Q′zj

=
∂iQ

Q
+
∂i

(
1− φjQ

)
1− φjQ

= φiQ −
∂jφ

i
Q

1− φjQ
, (1)

where we write ∂i for ∂
∂zi

for short. Note that

∂jφ
i
Q (z + δ) ≥ ∂jφiQ (zj) ≥

φiQ (zj + δ)− φiQ (zj)

δ
.

By (1) we have that

φi
(1− ∂

∂zj
)Q

(zj + δ) = φiQ (zj + δ)−
∂jφ

i
Q (zj + δ)

1− φjQ (zj + δ)
. (2)
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By our condition we have that

1− φjQ (zj + δ) ≥ 1− φjQ (zj) ≥
1

δ
,

and thus
∂jφ

i
Q (zj + δ)

1− φjQ (zj + δ)
≥ δ∂jφiQ (zj + δ) ≥ φiQ (zj + δ)− φiQ (zj) . (3)

Substituting (3) into (2) we see that

φi
(1− ∂

∂zj
)Q

(zj + δ) ≤ φiQ (zj) .

Now we are ready to prove Theorem 1.

Proof of Theorem 1 Let

Qk(z1, . . . , zm) =

(
1− ∂

∂zk

)
...

(
1− ∂

∂z1

)[
det

(
m∑
i=1

ziAi

)]
.

We claim that barrier functions are bounded by 1 − 1
δ for δ = 1 +

√
α, if with each

(
1− ∂

∂zk

)
operation, we increase t in the respective coordinate by δ. We use induction to show this. In the
base case we have that

Q0 (z1, . . . , zm) = det

(
m∑
i=1

ziAi

)
,

and thus

Q0 (t, . . . , t) = det

(
m∑
i=1

tAi

)
= tn > 0.

Recall that
d

dt
(det (A+ tB)) |t=0 = det (A)Tr

(
A−1B

)
.

Using the above identity we see that

φiQ0
(z1, . . . , zm) = Tr

( m∑
i=1

ziAi

)−1
Ai

 ,

which implies that

φiQ0
(t, . . . , t) =

1

t
T r (Ai) ≤ α/t,

since we assumed that Tr (Ai) < α. Letting t = α+
√
α, we further see that

φiQ0
(t, . . . , t) ≤ 1− 1

1 +
√
α

= 1− 1

δ
.
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Now assume that the claim holds for k. We have that

φiQk+1

t+ δ, . . . , t+ δ︸ ︷︷ ︸
k+1

, t, . . . , t


= φi(1−∂k+1)Qk

t+ δ, . . . , t+ δ︸ ︷︷ ︸
k+1

, t, . . . , t


≤ φiQk

t+ δ, . . . , t+ δ︸ ︷︷ ︸
k

, t, . . . , t


≤ 1− 1

δ
.

Therefore we see that χ (x) = Qm(x, . . . , x) has maximum root at most t+ δ = (1 +
√
α)

2
.

4


