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1 Totally Unimodular Matrices

Definition 1 (Totally Unimodular Matrix) A matrix A is totally unimodular if every square
submatrix has determinant 0, +1, or −1. In particular, this implies that all entries are 0 or ±1.

Totally unimodular matrices are very well behaved, because they always define polytopes with
integer vertices, as long as the right-hand side is integer-valued.

Theorem 2 If A is totally unimodular and b is an integer vector, then P = {x : Ax ≤ b} has
integer vertices.

Proof: Let v be a vertex of P . As we discussed, there exists a non-singular square submatrix A′ of
A such that A′v = b′. We have det A′ = ±1 since A′ is nonsingular. By Cramer’s Rule, we have

vi =
det(A′

i|b)
detA′ where A′i|b is A′ with the i-th column replaced by b. Therefore, vi is an integer. 2

Lemma 3 For all bipartite graphs G, the incidence matrix A is totally unimodular.

Proof: Recall that A is a 0-1 matrix, where columns are indexed by edges and each column has
exactly two 1’s, corresponding to the two vertices of the edge. We proceed by induction. The claim
is certainly true for a 1× 1 matrix.

Assume the claim holds true for all (k− 1)× (k− 1) submatrices. Let A′ be a k× k submatrix
of A. Each column in A′ has at most two 1’s. If any column has no 1’s, it must have all 0’s, and
the matrix is singular. If any column has exactly one nonzero entry, then det A′ = ±det A′′, where
A′′ is obtained by deleting the respective row and column; we have det A′′ ∈ {0,±1} by induction.
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Otherwise, every column has exactly two 1’s. In particular, since G is bipartite, the rows can be
partitioned into V1, V2 such that for each column, there is exactly one 1 in V1 and in V2. Then by
summing up all the rows corresponding to V1 and subtracting the rows corresponding to V2, we get
0. Therefore, A′ is singular and det A′ = 0.
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Lemma 4 If A is totally unimodular, then

[
A

I

]
is totally unimodular.

Proof: By the determinant expansion formula, the determinant of any square submatrix A′ is
equal to 0 or ±det A′′ where A′′ is a square submatrix of A (see the figure). By definition,
det A′′ ∈ {0,±1}. 
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2 Generalized König’s Theorem

Definition 5 (b-matching) A b-matching is an assignment x : E → Z+ such that for all v ∈
V, x(δ(v)) ≤ bv.

Definition 6 (c-vertex cover) A c-vertex cover is an assignment y : V → Z+ such that for all
edges e = (u, v), yu + yv ≥ ce.

Let b ∈ ZV+ and c ∈ ZE+. We have

max{cTx : Ax ≤ b,x ≥ 0} = min{bTy : ATy ≥ c,y ≥ 0}.

By the total unimodularity of A, vertices of these polyhedra are integer vectors, so optimal solutions
can be taken as integer. (The polyhedron in the dual is unbounded, but the optimum does not
change if we constrain the polyhedron for example by yv ≤ max ce for all v ∈ V . Then we get a
bounded integer polytope and hence there is an integer optimum.) The primal can be interpreted
as a maximum b-matching and the dual as a minimum c-vertex cover.

Theorem 7 (Generalized König’s Theorem) For all bipartite graphs with b ∈ ZV+, c ∈ ZE+,
the Max c-weighted b-matching is equal to the Min b-weighted c-vertex covers.

3 Maximum flow

Another important class of problems for which the relevant matrices are totally unimodular are
flow problems. While we are not going to cover flows in the detail that they deserve, we want to
mention how total unimodularity plays a role here.

Definition 8 For a directed graph G and a vertex v, we denote δout(v) = {(v, w) : (v, w) ∈ E} and
δin(v) = {(u, v) : (u, v) ∈ E}. Similarly, for a set of vertices U , δout(U) = {(u, v) ∈ E : u ∈ U, v /∈
V } and δin(W ) = {(v, w) ∈ E : v /∈W,w ∈W}.



Definition 9 For a directed graph G with two special vertices s, t, and edge capacities ce, an s-t
flow is an assignment x : E → R such that

• For each edge e, 0 ≤ xe ≤ ce.

• For each vertex v 6= s, t,
∑

e∈δin(v) xe =
∑

e∈δout(v).

The Maximum Flow problem is the problem of finding an s-t flow maximizing
∑

e∈δout(v) xe.

We can write down this problem in matrix notation as follows. Let A be the signed incidence
matrix of G, where Av,e = 1, Au,e = −1 for e = (u, v), and Aw,e = 0 for w /∈ e.

Lemma 10 The signed adjacency matrix of a directed graph is totally unimodular.

(Note that there is no assumption of bipartiteness here.)

Proof: Exactly the same as for bipartite graphs. In the last case, when every column of A′ contains
two nonzero entries, we observe that the rows sum to 0, so det(A′) = 0. 2

Let us formulate the Max Flow problem in matrix notation. Let A′ denote A with the rows
corresponding to s, t removed. The flow conservation condition can be written as A′x = 0. Let w
denote the row corresponding to t. Then we get the following LP:

max{wTx : 0 ≤ x ≤ c, A′x = 0}.

From the total unimodularity of A, we obtain the following.

Corollary 11 For c ∈ ZE, there is an optimal flow with integer values.

We can also easily derive the classical Max-flow Min-cut Theorem.

Definition 12 An s-t cut is any set of edges C such that there is no directed s-t path in E \ C.
The capacity of C is

∑
e∈C ce.

Theorem 13 The maximum flow of an s-t cut is equal to the minimum capacity of an s-t cut.

Proof: From LP duality, we get

max{wTx : A′x = 0, 0 ≤ x ≤ c} = min{cTy : A′T z + y ≥ w, z ∈ RV \{s,t},y ∈ RE+}.

Since A′ is TUM, we get integral optimal solutions x∗ and (y∗, z∗) for the primal and dual LP.
Let us simplify the description a little bit by extending z∗ to a vector in RV , where z∗s = 0 and
z∗t = −1. We get AT z∗+ y∗ = A′T z∗−w + y∗ ≥ 0. Observe that y∗ should be as small as possible,
which considering this constraint for e = (u, v) means y∗uv = max{z∗u − z∗v , 0}.

Define U = {u ∈ V : z∗u ≥ 0}. We have s ∈ U, t /∈ U , so δout(U) is an s-t cut. Since z∗u are
integers, we have y∗uv ≥ z∗u − z∗v ≥ 1 for each (u, v) ∈ δout(U). Hence, OPT = cTy ≥

∑
e∈δout(U) ce.

Clearly,
∑

e∈δout(U) ce ≥
∑

e∈δout(s) xe = OPT , so all the inequalities are equalities. 2


