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Abstract
A classic result in probability theory known as de Finetti’s theorem states that exchangeable ran-
dom variables are equivalent to a mixture of distributions where each distribution is determined
by an i.i.d. sequence of random variables (an “i.i.d. mix”). Motivated by a recent application in
[18] and more generally by the relationship of local vs. global correlation in randomized round-
ing, we study weaker notions of exchangeability that still imply the conclusion of de Finetti’s
theorem. We say that a bivariate distribution ρ is G-realizable for a graph G if there exists a
joint distribution of random variables on the vertices such that the marginal distribution on each
edge equals ρ.

We first characterize completely the G-realizable distributions for all symmetric/arc-transitive
graphs G. Our main results are forms of de Finetti’s theorem for general graphs, based on spectral
properties. Let λ1(G) ≥ . . . ≥ λn(G) denote the eigenvalues of the adjacency matrix of G.

(1) We prove that if ρ is Gn-realizable for a sequence of graphs such that limn→∞
λn(Gn)
λ1(Gn) = 0,

then ρ is described by a probability matrix that is positive-semidefinite. For random variables
on domains of size |D| ≤ 4, this implies that ρ must be an i.i.d. mix.

(2) If ρ is Gn-realizable for a sequence of (n, d, λ)-graphs Gn (d-regular with all eigenvalues
except for one bounded by λ in absolute value) such that limn→∞

λ(Gn)
d(Gn) = 0, then ρ is an

i.i.d. mix.
(3) If ρ is ~Gn-realizable for a sequence of directed graphs such that each of them is an arbitrary

orientation of an (n, d, λ)-graph Gn, and limn→∞
λ(Gn)
d(Gn) = 0, then ρ is an i.i.d. mix.
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1 Introduction

De Finetti’s theorem [3] is a classic result in probability theory and statistics which states
that exchangeable observations are equivalent to independent observations conditioned on
a latent variable. Formally, a finite sequence of random variables X1, X2, . . . , Xn (or their
joint distribution) is said to be exchangeable if their joint distribution is the same as that
of the sequence Xπ(1), Xπ(2), . . . , Xπ(n), for all permutations π on [n]. Note that every
i.i.d. sequence satisfies this property and so does every convex combination of distributions
determined by i.i.d. sequences (over the same domain). Following [21], we call such a
distribution an i.i.d. mix. An infinite sequence of random variables is said to be exchangeable
if every finite prefix is itself exchangeable. De Finetti’s theorem states that every infinite
exchangeable sequence is equivalent to an i.i.d. mix (of infinite sequences). Originally shown
for Bernoulli random variables [4], it is now part of a broad theory of exchangeability;
Kallenberg’s book [8] is an excellent reference.

© T.S. Jayram and Jan Vondrák;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2 De Finetti theorems on graphs

Diaconis [5] was the first one to study exchangeability for finite sequences, and observe
that de Finetti’s theorem fails, e.g. for length two.1 Diaconis and Freedman [6] considered
a stronger form of exchangeability. Say that an exchangeable sequence X1, X2, . . . , Xk is
n-extendable, for n ≥ k, if it can be extended to an exchangeable sequence X1, X2, . . . , Xn.
Diaconis and Freedman [6] showed that every k-variate n-extendable distribution ρ is at
variation distance at most k(k−1)

2n from an i.i.d. mix, independent of the size of the domain of
each Xi. For finite domains of size d, they showed a bound of 2dk/n. This can be improved
to O(k

√
d/n) [19]. Here, we mostly deal with finite domains unless stated otherwise.

In recent work [18], a related question arose in the design of randomized rounding schemes
for the Multiway Cut problem. A bivariate distribution ρ was defined in [18] to be pairwise
realizable, if for each n there exist X1, X2, . . . , Xn such that the marginal distribution of
(Xi, Xj) for every distinct i, j ∈ [n] equals ρ. The authors showed that a distribution ρ

is pairwise realizable if and only if ρ is an i.i.d. mix. Although this statement does not
appear to have been formulated explicitly before, it is implicit in several works in the area of
exchangeability (e.g. [21]). We observe here that it can be actually derived directly from the
Diaconis-Freedman theorem (more generally for k-variate distributions and with the same
quantitative bounds; see the last part of this section for details).

Since pairwise realizability is sufficient to derive the conclusion of the Diaconis-Freedman
theorem (that such a bivariate distribution must be close to an i.i.d. mix), it is natural to
ask whether the assumption could be weakened even further. In particular, is it necessary to
assume that all pairs have the same distribution to conclude that this distribution is close to
an i.i.d. mix? More precisely, we investigate the following concept.

G-realizable distributions. We say that a bivariate distribution ρ is G-realizable for an
undirected graph G if there exists a joint distribution of variables {Xv : v ∈ V (G)} such that
the distribution of (Xu, Xv) is ρ for each edge {u, v} ∈ E(G). Similarly, ρ is ~G-realizable for
a directed graph ~G if the marginal distribution of (Xu, Xv) for each directed edge (u, v) is
ρ. Note that the condition of being pairwise realizable is equivalent to being Kn-realizable
for every n. The question we ask is, what distributions are G-realizable for a given graph
G, and how does this depend on the structure of G? In particular, what kinds of graphs
admit non-trivial G-realizable distributions and what kinds of graphs admit only i.i.d. mixes
similar to de Finetti’s theorem?

Motivation. Apart from pure mathematical curiosity, we are motivated by the question
of local vs. global correlation in algorithm design [2, 1]. Generally speaking, mathematical
relaxations of combinatorial optimization problems assign fractional values to elements or
small subsets of the ground set, which can be interpreted as probabilities of certain local
configurations. Hence a fractional solution can be viewed as a collection of local distributions.
The question is whether these distributions can be realized globally, on the entire ground set.
Usually this is possible only with some loss in the objective function, which leads to the design
of approximation algorithms. In this paper, we study the basic question of characterizing
the local distributions that can be realized globally for all pairs given by a certain graph.

Our results. First, we establish some basic properties of G-realizability. We show that
it suffices to consider the core of G, that is, a minimal induced subgraph H of G such
that H and G are homomorphically equivalent, whence being G-realizable is equivalent to

1 Take the distribution (X,Y ) ∼ ρ on {0, 1}2 given by Pr[X = 1, Y = 0] = Pr[X = 0, Y = 1] = 1/2. In
particular, Pr[X = Y ] = 0. However, for any pair (U, V ) of i.i.d. Bernoulli variables, Pr[U = V ] ≥ 1

2 .
Therefore, ρ cannot be a mix of i.i.d. distributions.
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being H-realizable. In particular, G-realizability for a bipartite graph G does not impose
any restrictions at all. For arc-transitive directed graphs and for the analogous property of
symmetric undirected graphs, we completely characterize the class of distributions that are
G-realizable.

Our main results can be viewed as variants of the Diaconis-Freedman theorem (for
k = 2), under weaker assumptions. For example, if ρ is Kn-realizable, the Diaconis-Freedman
theorem shows that the distribution tends to an i.i.d. mix as n→∞. We show that even
realizability on much sparser graphs leads to the same conclusion.

Realizability on graphs with spectral properties. In the following, λ1 ≥ . . . ≥ λn
denote the eigenvalues of the adjacency matrix of G. For comparison with the Diaconis-
Freedman theorem, recall that the eigenvalues of Kn are λ1 = n− 1 and λ2 = . . . = λn = −1.

(1) We prove that if ρ is Gn-realizable for a sequence of graphs such that limn→∞
λn(Gn)
λ1(Gn) = 0,

then ρ is described by a probability matrix that is positive-semidefinite. For random
variables on domains of size |D| ≤ 4, this implies that ρ must be an i.i.d. mix.

(2) If ρ is Gn-realizable for a sequence of (n, d, λ)-graphs Gn (d-regular with all eigenvalues
except for one bounded by λ in absolute value) such that limn→∞

λ(Gn)
d(Gn) = 0, then ρ is

an i.i.d. mix.
(3) If ρ is ~Gn-realizable for a sequence of directed graphs such that each of them is an

arbitrary orientation of an (n, d, λ)-graph Gn, and limn→∞
λ(Gn)
d(Gn) = 0, then ρ is an

i.i.d. mix.

Let us discuss some aspects of the above results. It is easy to see that being realizable on a
bipartite graph G does not impose any restrictions at all and hence some condition forbidding
bipartiteness is necessary to derive any non-trivial result. Result (1) applies to graphs that
are “far from bipartite” in the sense that the normalized minimum eigenvalue is close to 0.
(See [20] for an explicit connection.) More precisely (see Section 3.1), our result states that
every G-realizable distribution is within a |λn(G)

λ1(G) |-distance of a distribution whose probability
matrix is positive semidefinite. For domains of size up to 4, this imples that ρ must be close
to an i.i.d. mix (due to a connection between doubly nonnegative and completely positive
matrices which we discuss in Section 3.2). It is an interesting question whether there is a
distribution on a domain larger than 4 that is not an i.i.d. mix and realizable on a sequence
of graphs such that limn→∞

λn(Gn)
λ1(Gn) = 0.

Result (2) applies to all finite domains, by making a stronger assumption: Here, the
distribution should be realizable on a family of pseudorandom graphs, defined in terms of
normalized eigenvalues (see Section 3.3). The quantitative bound that we prove here is
that a distribution on domain D realizable on an (n, d, λ)-graph must be λ

d |D|-close to an
i.i.d. mix. In contrast to the Diaconis-Freedman theorem, we have a dependence on |D|
here which seems to be necessary. We show that for any (fixed) symmetric and triangle-free
pseudorandom graph Gn, there is a canonical Gn-realizable distribution on a domain of size
n which is at distance 1/2 from any i.i.d. mix. However, if a distribution on a fixed domain D
is realizable on a family of pseudorandom graphs with λ

d → 0, then it must be an i.i.d. mix.
Finally, (3) is our most technically involved result (which in the limit form subsumes

result (2); however, the quantitative bounds here are much weaker). It shows that if the
second normalized eigenvalue for a sequence {Gn} tends to zero, then it is sufficient to
assume just that ρ is ~Gn-realizable for some arbitrary orientation of each Gn. In other words,
(Xi, Xj) ∼ ρ for some arbitrary direction of each edge (i, j) ∈ E, and this already implies
that ρ is an i.i.d. mix. This is motivated by a version of de Finetti’s theorem which holds
under the weaker hypothesis that for every n, the marginal distributions induced by all
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strictly increasing sequences (i1, i2, . . . , in) are identical. (See [12] for a short proof using
ergodic theory, or [21] for a finite version of this statement.) In particular, [21] proves that if
(Xi, Xj) ∼ ρ for every i < j for sufficiently many random variables, then ρ must be close to
an i.i.d. mix. Our result implies that if (Xi, Xj) ∼ ρ for at least one (arbitrary) ordering
of each pair i, j ∈ [n], i.e. ρ is ~T -realizable for some tournament ~T , then ρ must be close
to an i.i.d. mix. More generally, we prove this for orientations of pseudorandom graphs.
Apart from properties of pseudorandom graphs, the proof of this result relies on the sparse
regularity lemma, together with a counting argument adapted from [21].

1.1 Characterization of realizable k-variate distributions
We state the following (formal) strengthening of the Diaconis-Freedman theorem that
illustrates the relationship between the notions of realizability and exchangeability, which
are formally different but in some contexts closely related.

I Proposition 1. Fix a k-variate distribution ρ. Suppose there are random variables
X1, X2, . . . , Xn such that the marginal distribution of (Xi1 , Xi2 . . . , Xik ) equals ρ for ev-
ery k-tuple (i1, i2, . . . , ik) of distinct indices in [n]. Then ρ is k(k−1)

2n -close in variation
distance to an i.i.d. mix. Therefore, if this property holds for all n, then ρ is an i.i.d. mix.

Note that we assume only that every k distinct indices realizes the same distribution,
rather than a full exchangeability of the sequence. Nonetheless, the result follows easily
from the Diaconis-Freedman theorem as follows: Take a random permutation π of [n] and
consider the sequence V1, V2, . . . , Vn, where Vi = Xπ(i) for i ∈ [n]. Then V1, V2, . . . , Vn is
an exchangeable sequence that also realizes ρ on all k distinct indices. Therefore, ρ is
k(k−1)

2n -close to an i.i.d. mix by the Diaconis-Freedman theorem. In the following, we give a
short self-contained proof to illustrate the techniques that will be useful in the sequel. We
will use the following standard fact from information theory.

I Proposition 2 (Data-processing inequality for total variation distance). Let A,B,X be random
variables such that X is independent of (A,B). Then for all functions h:

dTV (h(A,X), h(B,X)) ≤ max
x

dTV (h(A, x), h(B, x)) ≤ dTV (A,B)

Proof of Proposition 1. Pick uniformly a random k-tuple of distinct indices (i1, . . . , ik), and
let (Y1, . . . , Yk) = (Xi1 , . . . , Xik ). By the realizability property, (Y1, . . . , Yk) ∼ ρ. Define
another distribution as follows: pick uniformly random and independent indices j1, . . . , jk ∈
[n] and define (Z1, . . . , Zk) = (Xj1 , . . . , Xjk

). Let (Z1, . . . , Zk) ∼ µ.
We show that the two distributions are close to each other in variation distance. Note

that the two distributions are obtained by choosing k indices by sampling with or without
replacement, respectively, and then followed by applying the same (random) function f(`) =
X` to each selected index `. Since the sampling process was chosen independently of
X1, X2, . . . , Xn, the data-processing inequality implies that the variation distance between µ
and ρ is at most that between sampling k times from [n] with and without replacement. It
is easy to see that this variation distance is upper-bounded by the probability that there are
at least two equal indices among k independent samples from [n]; by the union bound, this
probability is at most

(
k
2
) 1
n = k(k−1)

2n . J

2 Realizability on graphs: basic properties

A distribution ρ over D×D is ~G-realizable for a directed graph ~G = (V,A), if there is a joint
distribution of random variables (Xv : v ∈ V ) such that (Xi, Xj) ∼ ρ, for all arcs (i, j) ∈ A.
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Extend this definition to undirected graphs G by requiring that ρ is symmetric and that
(Xi, Xj) ∼ ρ, for all edges {i, j} ∈ E. We develop a few basic properties of G-realizability.

2.1 Realizability and homomorphisms
A homomorphism from G to H is a mapping f : V (G)→ V (H) such that {i, j} ∈ E(G)⇒
{f(i), f(j)} ∈ E(H) (for undirected graphs); and (i, j) ∈ A(G)⇒ (f(i), f(j)) ∈ A(H) (for
directed graphs), for all i, j. We write G→ H if such a homomorphism exists. We observe
the following simple connection between realizability and homomorphisms.

I Lemma 3. If ρ is H-realizable and G→ H (directed or undirected), then ρ is G-realizable.

Proof. Let (Yv : v ∈ V (H)) be a collection of random variables such that for each edge
(i, j) ∈ E(H), (Yi, Yj) is distributed according to ρ. Let f : G → H be a homomorphism.
Then we define a collection of random variables (Xu : u ∈ V (G)) such that Xu = Yf(u). For
each edge (i, j) ∈ E(G), we have (f(i), f(j) ∈ E(H) and hence (Xi, Xj) = (Yf(i), Yf(j)) is
distributed according to ρ. This proves that ρ is G-realizable. J

It is well known (e.g., Proposition 3.5 in [17]) that for every graph G (directed or
undirected), there is a unique minimal graph H such that G→ H and H → G. We call H
the core of G and denote it as C(G).

I Corollary 4. A distribution ρ is G-realizable if and only if ρ is C(G)-realizable.

In other words, it is only the core C(G) that determines what distributions are G-realizable.
For example, core of each bipartite graph is K2 (a single edge), where every symmetric distri-
bution is realizable. Containing a clique Kq is equivalent to the existence of a homomorphism
Kq → G. In particular, having a clique number ω(G) = q means that every G-realizable
distribution satisfies the assumptions of Proposition 1 with k = 2, n = q, and is at distance
at most 1/q from an i.i.d. mix. Conversely, having chromatic number χ(G) = k is equivalent
to G → Kk. This implies that any distribution realizable on Kk is also realizable on G.
In particular, sampling twice without replacement from [k] is realizable on G, which is at
distance 1/k from an i.i.d. mix.

2.2 Symmetric (edge/arc-transitive) graphs
Next, we consider the class of symmetric graphs, which possess a canonical realizable
distribution — one corresponding to the adjacency matrix of the graph itself. We prove that
in some sense all distributions realizable on symmetric graphs arise in this fashion.

I Definition 5. A directed graph G = (V,E) is arc-transitive, if for each pair of directed edges
(u, v), (w, z) ∈ E, there is an automorphism π : V → V such that π(u) = w and π(v) = z.
An undirected graph G = (V,E) is symmetric, if for each pair of edges {u, v}, {w, z} ∈ E
and each pairing u− w, v − z of their endpoints, there is an automorphism φ : V → V such
that π(u) = w and π(v) = z.

We now characterize all G-realizable distributions for symmetric graphs. In short, the
distributions are obtained by labeling the vertices of G arbitrarily with values in D and
taking the labeling of a uniformly random edge. We need a preliminary fact.

I Lemma 6. For an arc-transitive directed graph ~G = (V,A) and any arc (u, v) ∈ A, if π is
a uniformly random automorphism of ~G then (π(u), π(v)) is a uniformly random arc in E.
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Proof. Let A denote the set of automorphisms of ~G. Fix (u, v) ∈ A. For every arc (w, z) ∈ A
(possibly equal to (u, v)), define Awz = {π ∈ A : π(u) = w, π(v) = z}. Fix an automorphism
π1 ∈ Awz (which exists by arc-transitivity) and define φ : A → A by φ(π) = π1 ◦π. We claim
that φ is a bijection between Auv and Awz: For each π0 ∈ Auv, (φ(π0))(u) = π1(π0(u)) =
π1(u) = w and (φ(π0))(v) = π1(π0(v)) = z. Similarly, φ−1(π) = π−1

1 ◦ π is the inverse of φ
and maps Awz to Auv. Therefore, |Auv| = |Awz| and this holds for every (w, z) ∈ A. Thus a
random automorphism is equally likely to map (u, v) to any other arc. J

I Theorem 7. Let G = (V,E) be a symmetric (undirected) or arc-transitive (directed) graph.
Then ρ is a G-realizable distribution on D ×D if and only if ρ is a convex combination of
distributions ρf , where ρf for f : V → D is defined as follows: (X,Y ) is distributed according
to ρf , if (X,Y ) = (f(u), f(v)) where (u, v) is a uniformly random arc/edge of E (randomly
ordered in the undirected case).

Proof. First, if G is undirected, let us replace it by its bidirected version ~G. Observe that a
uniformly random arc (u, v) in ~G corresponds to a random ordering of a uniformly random
edge in G, therefore our definition of ρf for directed/undirected graphs is consistent with
this reduction to the directed case.

We prove that the distribution ρf is ~G-realizable for every f : V → D. We define a
random variable Xv for each vertex v ∈ V : Xv = f(π(v)) where π is a uniformly random
automorphism of G. By Lemma 6, (π(u), π(v)) for any fixed edge (u, v) ∈ E is uniformly
distributed over all edges in E (uniformly over both orderings in the undirected case).
Therefore, (Xu, Xv) = (f(π(u)), f(π(v))) is distributed according to ρf .

Conversely, assume that ρ is ~G-realizable and let {Xv : v ∈ V } be a collection of random
variables realizing ρ on each edge (u, v) ∈ E. Consider a pair of random variables (Y,Z)
generated by (Y,Z) = (Xu, Xv) where (u, v) is a uniformly random edge in E (randomly
ordered in the undirected case). Since conditioned on (u, v), the distribution of (Xu, Xv) is
ρ, the distribution of (Y, Z) is also ρ. We claim that the distribution of (Y,Z) is a convex
combination of distributions ρf as in the statement above. To see this, consider some
assignment of values Xv = f(v) of nonzero probability. Conditioned on Xv = f(v) ∀v ∈ V ,
we have (Y,Z) = (f(u), f(v)) where (u, v) is a random edge — i.e., (Y,Z) is distributed
according to ρf . Therefore, ρ is a convex combination of such distributions. J

In particular, the distribution ρId on D = V , obtained by taking (X,Y ) = uniformly
random edge of G is G-realizable for any symmetric graph. We call ρId the canonical G-
realizable distribution. Using a classical theorem of Motzkin and Straus [16], we can show
that the exact distance of ρId from an i.i.d. mix is determined by the clique number of G.

I Theorem 8. For an undirected symmetric graph G, the canonical G-realizable distribution
ρId is at variation distance exactly 1/ω(G) from an i.i.d. mix, where ω(G) is the maximum
size of a clique in G. This is the maximum distance from an i.i.d. mix among all G-realizable
distributions.

Proof. Let A be the adjacency matrix of G. The Motzkin-Straus theorem [16] states that

max
‖p‖1,p≥0

pTAp = 1− 1
ω(G) .

Therefore, for any probability distribution p on V , we have
∑
a,b∈V papbAab ≤ 1− 1

ω(G) . By
taking convex combinations, for any i.i.d. mix µab =

∑
αip

i
ap
i
b, we still have

∑
a,b∈V µabAab ≤

1 − 1
ω(G) . In other words, µab has at most 1 − 1

ω(G) probability mass on the edges of G.
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However, the canonical G-realizable distribution ρId is supported on the edges of G. Therefore,
it is at distance at least 1

ω(G) from µ. As we discussed above, every G-realizable distribution
ρ must be at distance at most 1

ω(G) from an i.i.d. mix, due to Proposition 1. Therefore, ρId
has distance exactly 1

ω(G) from an i.i.d. mix. J

I Example 9. For a cycle Cn, the canonical Cn-realizable distribution ρ is defined as follows:
ρ(i, i+ 1 mod n) = ρ(i, i− 1 mod n) = 1

2n ; this is at variation distance 1/2 from an i.i.d. mix.

3 Realizability based on spectral properties

In this section we consider undirected graphs. We showed in Theorem 7 that each fixed
symmetric graph G possesses a rather rich collection of G-realizable distributions, similar
to the structure of the graph itself. However, perhaps a more interesting question is: What
fixed distributions are Gn-realizable for a family of graphs {Gn} of growing size? Here we
do not have many non-trivial examples, other than those where all the graphs Gn map
homomorphically to a fixed symmetric graph H, and then we can realize all the H-realizable
distributions. Similar to de Finetti’s theorem, one can ask — what are the families of graphs
that admit only i.i.d. mix distributions to be realized?

I Example 10. Consider any family of d-regular graphs {Gn}, for example d-regular ex-
panders (even Ramanujan graphs). These graphs are (d + 1)-colorable, therefore any
Kd+1-realizable distribution is also realizable on each Gn. In particular, sampling from
[d+ 1] without replacement is realizable and at a fixed distance 1

d+1 from an i.i.d. mix; i.e
this family does not force a realizable distribution to be an i.i.d. mix.

On the other hand, even though this family may not contain any clique Kd+1, even any
triangles, it seems to force realizable distributions to be quite close to an i.i.d. mix. This
motivates us to investigate the relationship of realizability and spectral properties of graphs.

I Definition 11. The eigenvalues of a graph G are the eigenvalues of its adjacency matrix
A(G), (A(G))ij = 1 if {i, j} ∈ E(G) and 0 otherwise.

It is known that the eigenvalues are all real and contained in [−∆,∆] where ∆ is the
maximum degree in G. We order the eigenvalues in a descending order and label them
λ1 ≥ λ2 ≥ . . . ≥ λn. By the trace formula, we have

∑n
i=1 λi = 0. The gap between λ1 and

λ2 is related to expansion properties of G, while the minimum (most negative) eigenvalue λn
is related to how close G is to a bipartite graph. For a bipartite graph, we have λn = −λ1.
Graphs where λn/λ1 is close to zero are those where “MaxCutGain” is small: for any two
disjoint sets A,B ⊂ V , the number of edges between A and B is not significantly larger than
the number of edges inside A and B (see [20]). Thus these graphs can be considered “far
from bipartite”. In the following, we prove that this property imposes a natural condition on
what distributions are G-realizable.

3.1 Graphs without large negative eigenvalues
We begin with a result that is proved using a standard spectral argument.

I Lemma 12. Let ρ be a G-realizable distribution on D×D for a graph G = (V,E), and let
µ be the marginal distribution of X in (X,Y ) ∼ ρ. Then for any function φ : D → R,

E
(X,Y )∼ρ

[φ(X)φ(Y )] ≥ λn(G)
λ1(G) E

X∼µ
[φ2(X)].
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Proof. We can assume that G has no isolated vertices (which add only zero eigenvalues to
the spectrum). Let (Xv : v ∈ V ) be a collection of random variables realizing ρ on G. Since
the distribution of (Xi, Xj) is ρ for each edge (i, j) ∈ E, we have

E
(X,Y )∼ρ

[φ(X)φ(Y )] = 1
|E|

∑
{i,j}∈E

E
(Xv:v∈V )

[φ(Xi)φ(Xj)] = 1
|E|

E
(Xv:v∈V )

[
∑
{i,j}∈E

φ(Xi)φ(Xj)].

Let A be the adjacency matrix of G. The sum inside the expectation is a quadratic form
which can be lower-bounded using the minimum eigenvalue of A:∑

{i,j}∈E

φ(Xi)φ(Xj) = 1
2
∑
i,j∈V

φ(Xi)Aijφ(Xj) ≥
1
2λn

∑
i∈V

φ2(Xi).

Let us take the expectation over the distribution of (Xv : v ∈ V ). Using the fact that each
v ∈ V is in some edge and hence the marginal distribution of Xv is µ, we obtain

E
(X,Y )∼ρ

[φ(X)φ(Y )] ≥ λn
2|E| E

(Xv :v∈V )
[
∑
i∈V

φ2(Xi)] = |V |λn2|E| E
X∼µ

[φ2(X)] ≤ λn
λ1

E
X∼µ

[φ2(X)],

since 2|E| = 1TA1 ≤ λ1‖1‖2 = λ1|V |. This proves the lemma. J

Using the above lemma, we can perturb the distribution ρ and obtain a probability matrix
which is positive semidefinite.

I Theorem 13. If ρ is a G-realizable distribution, then ρ is at distance at most |λn(G)
λ1(G) |

from a distribution ρ′ whose probability matrix ρ′ab = Pr(X,Y )∼ρ′ [X = a, Y = b] is positive
semidefinite.

Proof. Let ρ be a G-realizable distribution on D ×D and let µ be its marginal on the first
variable, as in Theorem 12. Let δab = 1 if a = b and 0 otherwise. We define

ρ′ab =
ρab + |λn

λ1
|µaδab

1 + |λn

λ1
|

.

It can be checked easily that ρ′ab ≥ 0 and
∑
a,b∈D ρ

′
ab = 1, so this is a probability distribution.

The total variantion distance between ρ and ρ′ is
1
2‖ρ− ρ

′‖1 = 1
2
∑
a,b∈D

|ρab − ρ′ab| =
1

2(1 + |λn

λ1
|)

∑
a,b∈D

|(1 +
∣∣∣λn
λ1

∣∣∣)ρab − (ρab +
∣∣∣λn
λ1

∣∣∣µaδab)|
=

|λn

λ1
|

2(1 + |λn

λ1
|)

∑
a,b∈D

|ρab − µaδab| ≤
|λn

λ1
|

1 + |λn

λ1
|
.

We claim that ρ′ is a positive-semidefinite matrix: For any φ : D → R, we have

∑
a,b∈D

ρ′abφ(a)φ(b) = 1
1 + |λn

λ1
|

 ∑
a,b∈D

ρabφ(a)φ(b) +
∣∣∣∣λnλ1

∣∣∣∣∑
a∈D

µaφ
2(a)

 .

By Theorem 12,
∑
a,b∈D ρabφ(a)φ(b) ≥ λn

λ1

∑
a∈D µaφ

2(a) (which is a negative number), so
we obtain

∑
a,b∈D ρ

′
abφ(a)φ(b) ≥ 0. J

This has the following corollary which is one of the results claimed in the introduction.
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I Corollary 14. Let ρ be a distribution over D ×D such that for an arbitrarily large n, ρ is
Gn-realizable for a graph Gn such that |V (Gn)| = n and

lim
n→∞

λn(Gn)
λ1(Gn) = 0,

then ρab = Pr(X,Y )∼ρ[X = a, Y = b] is a positive-semidefinite matrix.

Therefore, distributions ρ realizable on a sequence of graphs with normalized minimum
eigenvalue tending to 0 must be positive semidefinite. Since

∑
a,b∈D ρab = 1 and ρab ≥ 0, this

seems close to the condition of being an i.i.d. mix: ρab =
∑
i qipi(a)pi(b) for distributions∑

i qi = 1 and
∑
a∈D pi(a) = 1. However, these two conditions have been extensively studied

and they are not equivalent.

3.2 Completely positive and doubly nonnegative matrices
I Definition 15. A matrix A ∈ Rn×n is completely positive if ∀i, j;Aij = vi · vj for
nonnegative vectors v1, . . . ,vn ∈ Rn+. A matrix A ∈ Rn×n is doubly nonnegative if A is
positive semidefinite and ∀i, j;Aij ≥ 0.

In our setting, completely positive matrices correspond to i.i.d. mixes (up to normalization),
while doubly nonnegative matrices correspond to the distributions arising in Corollary 14.
Clearly, every completely positive matrix is doubly nonnegative, but the opposite is not true.
Nonetheless, the smallest known counterexamples are 5× 5 matrices, and in fact for matrices
up to 4× 4 the two conditions are equivalent.

I Theorem 16 ([15]). A matrix in R4×4 is completely positive if and only if it is doubly
nonnegative.

Therefore, we obtain the following corollary for domains of size up to 4 (in particular,
Boolean random variables).

I Corollary 17. If ρ is a distribution on D × D, |D| ≤ 4, and ρ is Gn-realizable for an
arbitrarily large n on graphs Gn such that |V (Gn)| = n and

lim
n→∞

λn(Gn)
λ1(Gn) = 0,

then ρ is an i.i.d. mix.

Proof. By Corollary 14, ρab ∈ RD×D is a doubly nonnegative matrix, and hence for |D| ≤ 4
it is completely positive: ρab = va · vb for vectors va ≥ 0. For each coordinate i, let
qi =

∑
a∈D vai and define pi(a) = vai/qi (we can assume qi > 0, otherwise we remove that

coordinate). We have pi(a) ≥ 0 and
∑
a∈D pi(a) =

∑
a∈D vai/qi = 1, so each pi(a) is a

distribution on D and we have ρab =
∑
i qipi(a)pi(b). Since

∑
a,b∈D ρab = 1, it is easy to

verify that
∑
qi = 1 as well. J

3.3 Realizability on pseudorandom graphs
Next, we show that if we assume that all eigenvalues except for one are close to 0, then
G-realizable distributions must be close to an i.i.d. mix. We follow the exposition on
pseudorandom graphs in [13].

I Definition 18. G is an (n, d, λ)-graph if G is a d-regular graph on n vertices such that all
eigenvalues except for the largest one are bounded by λ in absolute value.
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Note that the largest eigenvalue itself equals d. The definition above implies pseudorandom
properties whenever λ/d is small. This is a rather strong definition of pseudorandomness;
however, most of the known constructions of pseudorandom graphs fall in this category.

I Definition 19. For an undirected graph G and two sets of vertices S, T ⊆ V (G) (not
necessarily disjoint), we define e(S, T ) = |{u ∈ S, v ∈ T : {u, v} ∈ E(G)}| to denote the
number of edges between S and T . For a directed graph ~G, we define ~e(S, T ) = |{u ∈ S, v ∈
T : (u, v) ∈ E(G)}| to denote the number of arcs from S to T .

Note that in the undirected case, each edge inside S ∩ T is counted twice in e(S, T ). In
the directed case, each arc inside S ∩ T is counted once in ~e(S, T ). (This is consistent with
the view that an undirected graph can be viewed as a directed graph by replacing each
undirected edge with the two arcs representing possible orientations of that edge.)

Next, we formulate the well-known expander mixing lemma (for undirected graphs).

I Proposition 20 (Expander Mixing Lemma [13]). Let G be an (n, d, λ)-graph. Then for any
S, T ⊆ V (G),∣∣∣e(S, T )− d

n
|S| · |T |

∣∣∣ ≤ λ

n

√
|S|(n− |S|)|T |(n− |T |) ≤ λ

√
|S||T |

In particular, this implies that (n, d, λ)-graphs for small values of λd are good expanders
(by taking T = V \ S).

I Theorem 21. Let G be an (n, d, λ)-graph. If a distribution ρ is G-realizable, then ρ is
(λd ·

√
|D|)-close in variation distance to an i.i.d. mix.

Proof. Let ρ be a G-realizable distribution and let X = (X1, X2, . . . , Xn) certify the G-
realizability of ρ. Let ~G denote the directed graph obtained by replacing each undirected
edge by two arcs in opposite directions. Choose an edge ~e = (i, j) uniformly from E(~G)
which consists of nd arcs. By G-realizability, it follows that the distribution of (Xi, Xj) also
equals ρ. As before, conditioned on X = x, for a uniformly chosen vertex i ∈ V (G) the
distribution of Xi is the empirical distribution px. So the distribution µ of (Xi, Xj) when
(i, j) is chosen uniformly from [n]2 is an i.i.d. mix, a convex combination of products of such
empirical distributions.

We now show that dTV (µ, ρ) is small. By the data-processing inequality, it suffices to
show that this holds when conditioned on X = x, for every x. Let φ = (φab) (respectively,
ψ) be the probability distribution of (xi, xj) when when (i, j) is uniformly random in [n]2
(respectively, (i, j) is uniformly random in E(~G)). Let Va denote the set of vertices labeled a,
for each a ∈ D. Note that the label sets partition V . Then φab = |Va| · |Vb|/n2. On the other
hand, it can be checked for both the cases a = b and a 6= b that ψab = e(Va, Vb)/(nd).

Let Q = {(a, b) ∈ D : φ(a, b) < ψ(a, b)} so that dTV (φ, ψ) ≤
∑

(a,b)∈Q(ψab − φab). Fix
a ∈ D and let Wa =

⋃
b:(a,b)∈Q Vb. Observe that

∑
b:(a,b)∈Q e(Va, Vb) = e(Va,Wa), since the

Va’s are pairwise disjoint. Similarly
∑
b:(a,b)∈Q |Vb| = |Wa|. By the Expander Mixing Lemma:

∑
b:(a,b)∈Q

(ψab − φab) = 1
nd

(
e(Va,Wa)− d

n
|Va| · |Wa|

)
≤ λ

nd

√
|Va| · |Wa| ≤

λ

d

√
|Va|
n

(1)

By the Cauchy-Schwarz inequality,
∑
a∈D

√
|Va|/n ≤

√
|D|·

√∑
a∈D |Va|/n =

√
|D|, because

the label sets partition V . Using this bound, we conclude the proof using eq. (1) as follows:

dTV (φ, ψ) ≤
∑
a∈D

∑
b:(a,b)∈Q

(ψab − φab) ≤
λ

d

∑
a∈D

√
|Va|
n
≤ λ

d
·
√
|D| J
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I Corollary 22. If for arbitrarily large n, ρ is Gn-realizable on an (n, d(n), λ(n))-graph Gn
such that

lim
n→∞

λ(n)
d(n) = 0

then ρ is an i.i.d. mix.

In other words, the only distributions realizable on a family of pseudorandom graphs
with λ

d → 0 are i.i.d. mixes. However, it is not true that a distribution realizable on a single
pseudorandom graph with very good parameters must be close to an i.i.d. mix. In contrast to
the Diaconis-Freeman theorem, some dependence on |D| seem to be necessary in Theorem 21.

I Example 23. Consider a symmetric (n, d, λ)-graph G. It is known that there are such
graphs with arbitrarily small λ/d (see e.g. [11, 9]; these graphs are described as edge-transitive
but in fact can be seen to be symmetric in the stronger sense of Theorem 5 as well). In
addition, these graphs have high girth [14, 10]; for us it is sufficient that they are triangle-free.
Consider the canonical distribution (X,Y ) ∼ ρ where (X,Y ) = (u, v) is a (randomly ordered)
uniformly random edge of G. This is G-realizable by Theorem 7. By Theorem 8, this
distribution has variation distance 1/ω(G) = 1/2 from any i.i.d. mix.

4 Orientations of pseudorandom graphs

Since we know that realizability on pseudorandom graphs implies being an i.i.d. mix, one can
ask whether it is really necessary to require the distribution ρ to be symmetric to start with.
Perhaps being realizable on a suitable directed graph already implies being an i.i.d. mix and
in particular being symmetric?

First, we have the following simple lemma which shows that in non-trivial cases the
marginals of ρ must be symmetric.

I Lemma 24. Let ρ be ~G-realizable for a non-bipartite directed graph ~G. Then ∀a ∈ D:

Pr
(X,Y )∼ρ

[X = a] = Pr
(X,Y )∼ρ

[Y = a].

Proof. We claim that there is a vertex v that is a head and also a tail of some edge:
∃u,w ∈ V ; (u, v) ∈ A(~G) and (v, w) ∈ A(~G). If not, the orientation of ~G is such that vertices
can be divided into head-only and tail-only; but this means that ~G is bipartite.

Thus, we have random variables Xu, Xv, Xw such that (Xu, Xv) ∼ ρ and also (Xv, Xw) ∼
ρ. So, Pr(X,Y )∼ρ[X = a] = Pr(X,Y )∼ρ[Y = a] = Pr[Xv = a]. J

However, this does not mean that ρ must be symmetric. An example is a directed cycle
~Cn with vertices identified with Zn, where we can have the following distribution: Xi = Z+ i

(mod n), where Z is uniformly random in Zn. Then the distribution on each directed edge is
given by (Xi, Xi+1) = (j, j + 1) for each j ∈ Zn with probability 1/n. This distribution has
symmetric marginals but it is not symmetric.

Nevertheless, if ρ is ~Gn-realizable on a sufficiently dense directed graph ~Gn, it seems
to force ρ to be symmetric. One example of this is the transitive tournament A = {(i, j) :
i, j ∈ [n], i < j}: If (Xi, Xj) has the same distribution for each i < j, then the distribution
must be close to an i.i.d. mix. (This was proved implicitly by Trotter and Winkler [21].) Is
being realizable on an arbitrary tournament sufficient to conclude that ρ must be close to an
i.i.d. mix? In this section, we consider an even more general question: If ρ is realizable on
some arbitrary orientation of a pseudorandom graph, does ρ have to be close to an i.i.d. mix?
We prove that the answer is yes.
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I Theorem 25. Let ρ be a distribution such that for an arbitrarily large n, ρ is ~Gn-realizable
for some orientation ~Gn of an (n, d(n), λ(n))-graph and

lim
n→∞

λ(n)
d(n) = 0.

Then ρ is an i.i.d. mix.

4.1 Directed sparse regularity lemma
The main tool that we use here is a directed version of the sparse regularity lemma. The
sparse regularity lemma of Kohayakawa and Rödl says roughly that any subgraph of a
“well-behaved graph” of a certain density p, for example a pseudorandom graph, can be
partitioned in such a way that most pairs of parts are regular with an error proportional to
p. In addition, we need a directed version of this lemma. We follow the exposition in [7],
Section 2.1.

I Definition 26. For a directed graph ~G = (V,A) and a parameter p > 0, we define the
oriented p-density for a pair of sets U,W ⊆ V as

dp(U,W ) = 2~e(U,W )
p|U ||W |

.

I Definition 27. A directed graph ~G = (V,A) is (η,D, p)-bounded if, for any pair of disjoint
sets U,W ⊆ V with |U |, |W | ≥ η|V |, we have dp(U,W ) ≤ D.

I Definition 28. A pair of disjoint sets U,W ⊆ V is (ε, p)-regular if for all U ′ ⊆ U, |U ′| ≥ ε|U |
and W ′ ⊆W, |W ′| ≥ ε|W |, we have

|dp(U ′,W ′)− dp(U,W )| < ε.

A partition P = {V0, V1, . . . , Vk} of V is (ε, k, p)-regular if |V0| ≤ ε|V |, |V1| = |V2| = . . . = |Vk|
and for more than (1− ε)

(
k
2
)
pairs {i, j} ⊆ [k], i 6= j, we have that (Vi, Vj) and (Vj , Vi) are

both (ε, p)-regular.

I Lemma 29 (directed sparse regularity lemma, [7]). For any real ε > 0, D > 1 and integer
k0 ≥ 1 there exists η > 0 and K ≥ k0 such that for every 0 < p ≤ 1, every (η,D, p)-bounded
directed graph ~G admits an (ε, k, p)-regular partition for some k0 ≤ k ≤ K.

4.2 Application of the sparse regularity lemma
Starting with an arbitrary orientation of a pseudorandom graph ~G, we use the regularity
lemma to identify a certain bipartite subgraph (A,B) of ~G where the orientation behaves
also in a pseudorandom way, with a significant density β in one direction.

I Lemma 30. For every ε ∈ (0, 1
2 ), there is K ≥ 2 and γ > 0 such that given any orientation

of an (n, d, λ)-graph ~G with λ ≤ γd, there are disjoint sets A,B ⊆ V , |A| = |B| ≥ n
2K and

β = ~e(A,B)
|A||B| ≥

d
4n such that

∀A′ ⊆ A,B′ ⊆ B;
∣∣∣~e(A′, B′)− β|A′||B′|∣∣∣ < 8εβ|A||B|.
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Proof. Fix D = 4 and k0 = 1. Given ε ∈ (0, 1), let η > 0 and K ≥ 1 be the parameters given
by Lemma 29. We set γ = min{η, ε

4K }. Then consider any orientation ~G of an (n, d, λ)-graph
such that λ ≤ γd. We set p = d

n .
First we verify the condition of (η,D, p)-boundedness. Applying Proposition 20 to the

undirected version of ~G, we have∣∣∣∣e(S, T )− d

n
|S||T |

∣∣∣∣ ≤ λ√|S||T | ≤ ηd√|S||T |
where e(S, T ) = ~e(S, T ) + ~e(T, S) denotes the number of all edges between S and T (both
directions). Our goal is to bound the normalized density dp(S, T ) = 2~e(S,T )

p|S||T | . We have

~e(S, T ) ≤ d

n
|S||T |+ ηd

√
|S||T | = p|S||T |+ ηpn

√
|S||T |.

For |S|, |T | ≥ η|V | = ηn, we obtain ηn ≤
√
|S||T |, ~e(S, T ) ≤ 2p|S||T | and dp(S, T ) =

2~e(S,T )
p|S||T | ≤ 4. This verifies that ~G is (η,D, p)-bounded for D = 4. Consequently, Lemma 29
states that ~G admits an (ε, k, p)-regular partition P = {V0, V1, . . . , Vk} where k ≤ K.

Pick any (ε, p)-regular pair (Vi, Vj), 1 ≤ i < j. We have |Vi| = |Vj | ≥ 1−ε
K n ≥ n

2K . By
Proposition 20 and the condition λ ≤ γd ≤ d

4K , the number of undirected edges between Vi
and Vj satisfies∣∣∣∣e(Vi, Vj)− d

n
|Vi||Vj |

∣∣∣∣ ≤ λ√|Vi||Vj | ≤ d

4K

√
|Vi||Vj | ≤

d

2n |Vi||Vj |.

This implies that the number of undirected edges between Vi and Vj is e(Vi, Vj) ≥ d
2n |Vi||Vj |.

In at least one direction, assume from Vi to Vj , we get ~e(Vi, Vj) ≥ d
4n |Vi||Vj |. Then set

A = Vi, B = Vj and β = ~e(A,B)
|A||B| . By the above we have β ≥ d

4n . We claim that the conclusion
of the lemma holds with these parameters.

We know that (A,B) is an (ε, p)-regular pair. This means that for any A′ ⊆ A, B′ ⊆ B
with |A′| ≥ ε|A|, |B′| ≥ ε|B|, we have

|dp(A′, B′)− dp(A,B)| < ε.

Here, dp(A′, B′) = 2~e(A′,B′)
p|A′||B′| . So we can rewrite this bound as∣∣∣∣2~e(A′, B′)p|A′||B′|

− 2~e(A,B)
p|A||B|

∣∣∣∣ = 2
p

∣∣∣∣~e(A′, B′)|A′||B′|
− β

∣∣∣∣ < ε.

Recalling that p = d
n ≤ 4β,∣∣∣~e(A′, B′)− β|A′||B′|∣∣∣ < p

2ε|A
′||B′| ≤ 2βε|A||B|.

We still have to handle the case where |A′| < ε|A| or |B′| < ε|B|. Then applying Proposition 20
again (ignoring the regularity property of (A,B)), we obtain∣∣∣∣e(A′, B′)− d

n
|A′||B′|

∣∣∣∣ ≤ γd√|A′||B′|
and since γ ≤ ε

4K , |A′||B′| ≤ ε|A||B| and |A| = |B| ≥ n
2K , we get

~e(A′, B′) ≤ d

n
|A′||B′|+ γd

√
|A′||B′| ≤ εd

n
|A||B|+ εd

4K
√
|A||B| ≤ 2εd

n
|A||B|.

We have β ≥ d
4n , thus we conclude that ~e(A′, B′) ≤ 8εβ|A||B|. J
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4.3 The second moment argument
Once we have identified the regular pair (A,B), our goal is to prove that the realizability
of ρ on this regular pair implies that ρ must be close to a symmetric distribution. We
adapt an approach of Trotter and Winkler [21] for the case of a transitive tournament
{(i, j) : i, j ∈ [n], i < j}. Roughly speaking, their argument is that if (Xi, Xj) has the
same distribution for each i < j, then any particular value in D has a similar number of
occurrences among {X1, X2, . . . , Xn/2} and in {Xn/2+1, . . . , Xn}. Then, counting the pairs
across the two blocks, the number of (a, b) pairs is similar to the number of (b, a) pairs for
any a, b ∈ D, which means that the distribution is close to symmetric. Technically, the proof
involves a second moment computation and the Cauchy-Schwarz inequality. We show here
that a similar argument still goes through in the setting of an (arbitrary) orientation of a
pseudorandom graph.

The first part of the proof does not depend on the regularity of the directed pair (A,B).
It uses only properties of the undirected pseudorandom graph G.

I Lemma 31. Let ξ ∈ (0, 1
2 ) and let ρ be a ~G-realizable distribution for some orientation

~G of an (n, d, λ)-graph G (non-bipartite, without isolated vertices). Let {Xv : v ∈ V } the
random variables realizing ρ on ~G. For every a ∈ D and S ⊆ V , define a random set

Sa = {v ∈ S : Xv = a}.

Let A,B ⊆ V be two disjoint sets such that |A| = |B| ≥ λn
ξ2d . Then for every a, b ∈ D,∣∣∣E[|Aa||Bb| − |Ab||Ba|]

∣∣∣ ≤ 4ξ√µaµb|A|2

where µa = Pr(X,Y )∼ρ[X = a].

Proof. We write the target quantity as follows:

E[|Aa||Bb| − |Ab||Ba|] = E[|Aa|(|Bb| − |Ab|) + (|Aa| − |Ba|)|Ab|].

By Cauchy-Schwarz,∣∣∣E[|Aa||Bb|−|Ab||Ba|]
∣∣∣ ≤√E[|Aa|2]

√
E[(|Bb| − |Ab|)2]+

√
E[|Ab|2]

√
E[(|Aa| − |Ba|)2]. (2)

We estimate the second moments of |Aa|, |Ab|, etc. by relating |Aa|2 to the number of edges
inside A labeled (a, a), etc. This is possible, since G is pseudorandom and hence its edges
are in some sense a good representation of all possible pairs.

Recall that Aa denotes the random subset of A whose random variables attain value a.
Each vertex in G in contained in some directed edge; hence ∀v ∈ V ; Pr[Xv = a] = µa and
E[|Aa|] = µa|A| (see Lemma 24). Further, let us consider

e(Sa, Ta) = |{u ∈ S, v ∈ T : {u, v} ∈ E(G), Xu = Xv = a}|.

Since the distribution on each directed edge of ~G is ρ, the probability that Xu = Xv = a

for {u, v} ∈ E(G) is ρaa. Note that the orientation does not matter here, because we are
looking at the event of each endpoint having the same value. We obtain

E[e(Sa, Ta)] = ρaae(S, T ).

On the other hand, e(Sa, Ta) is equal to the number of edges between Sa and Ta. Since G is
an (n, d, λ)-graph, Proposition 20 gives∣∣∣∣e(Sa, Ta)− d

n
|Sa||Ta|

∣∣∣∣ ≤ λ√|Sa||Ta|.
We use this bound for the following choices of S and T :
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e(Aa, Aa) ≥ d
n |Aa|

2 − λ|Aa|
e(Ba, Ba) ≥ d

n |Ba|
2 − λ|Ba|

e(Aa, Ba) ≤ d
n |Aa||Ba|+ λ

√
|Aa||Ba| ≤ d

n |Aa||Ba|+
1
2λ(|Aa|+ |Ba|)

using the arithmetic-geometric inequality in the last bullet. From here, we get

d

n
E[|Aa|2] ≤ E[e(Aa, Aa)] + λ|Aa|]

= ρaae(A,A) + λµa|A|.

Using Proposition 20 again, we have e(A,A) ≤ d
n |A|

2 + λ|A|. Therefore,

E[|Aa|2] ≤ ρaa|A|2 + nλ

d
(ρaa + µa)|A|. (3)

A similar bound holds for E[|Ba|2]. Next, we estimate

d

n
E[|Aa||Ba|] ≥ E[e(Aa, Ba)− 1

2λ(|Aa|+ |Ba|)]

= ρaae(A,B)− 1
2λµa(|A|+ |B|)

≥ ρaa( d
n
|A||B| − λ

√
|A||B|)− 1

2λµa(|A|+ |B|)

≥ ρaa
d

n
|A||B| − 1

2λ(ρaa + µa)(|A|+ |B|).

From here,

E[(|Aa| − |Ba|)2] = E[|Aa|2 − 2|Aa||Ba|+ |Ba|2]

≤ ρaa|A|2 − 2ρaa|A||B|+ ρaa|B|2 + 2nλ
d

(ρaa + µa)(|A|+ |B|).

Since |A| = |B|, this simplifies to

E[(|Aa| − |Ba|)2] ≤ 4λn
d

(ρaa + µa)|A|. (4)

An analogous bound holds for E[(|Ab| − |Bb|)2]. Combining equations (2), (3) and (4), we
conclude that∣∣∣E[|Aa||Bb| − |Ab||Ba|]

∣∣∣ ≤ √
E[|Aa|2]

√
E[(|Bb| − |Ab|)2] +

√
E[|Ab|2]

√
E[(|Aa| − |Ba|)2]

≤
√
ρaa|A|2 + λn

d
(ρaa + µa)|A|

√
4λn
d

(ρbb + µb)|A|

+
√
ρbb|A|2 + λn

d
(ρbb + µb)|A|

√
4λn
d

(ρaa + µa)|A|.

We assumed |A| ≥ λn
ξ2d , and also we have ρaa ≤ µa, ρbb ≤ µb, ξ ≤ 1

2 , so we can simplify this
bound:∣∣∣E[|Aa||Bb| − |Ab||Ba|]

∣∣∣ ≤ 4√µaµb
√
|A|2 + 2ξ2|A|2

√
2ξ2|A|2

≤ 4ξ√µaµb|A|2.

J

Now we employ the properties of the regular pair (A,B).
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I Lemma 32. Let ε ∈ (0, 1
2 ), let ρ be a ~G-realizable distribution for an orientation of an

(n, d, λ)-graph G (non-bipartite, without isolated vertices) and let A,B ⊆ V (G) be disjoint
sets such that β = ~e(A,B)

|A||B| ≥
d

4n , |A| = |B| ≥
λn
ε2d , and

∀A′ ⊆ A,B′ ⊆ B;
∣∣∣~e(A′, B′)− β|A′||B′|∣∣∣ < 8εβ|A|2.

Then
|ρab − ρba| < 20ε.

Proof. Using the notation as above, let us define Sa = {v ∈ S : Xv = a} and let us estimate
~e(Aa, Bb), the number of directed edges from A to B labeled (a, b). On the one hand, each
directed edge gets labeled (a, b) with probability ρab, so E[~e(Aa, Bb)] = ρab~e(A,B). Similarly,
E[~e(Ab, Ba)] = ρba~e(A,B). On the other hand, by assumption we have∣∣∣~e(Aa, Bb)− β|Aa||Bb|∣∣∣ < 8εβ|A|2 and

∣∣∣~e(Ab, Ba)− β|Ab||Ba|
∣∣∣ < 8εβ|A|2

for every particular choice of Aa ⊆ A,Ab ⊆ A,Ba ⊆ B,Bb ⊆ B. From here,

|ρab − ρba|~e(A,B) =
∣∣∣E[~e(Aa, Bb)− ~e(Ab, Ba)]

∣∣∣ ≤ β∣∣∣E[|Aa||Bb| − |Ab||Ba|]
∣∣∣+ 16εβ|A|2

Since |A| = |B| ≥ λn
ε2d , we can apply Lemma 31 with ξ = ε, and we get∣∣∣E[

∣∣|Aa||Bb| − |Ab||Ba|]∣∣∣ ≤ 4ε√µaµb|A|2.

Combining these two bounds, we get

|ρab − ρba|~e(A,B) ≤ 4βε√µaµb|A|2 + 16βε|A|2 ≤ 20βε|A|2.

We also have ~e(A,B) = β|A||B| = β|A|2, so we conclude that |ρab − ρba| ≤ 20ε. J

Now we can finish the proof of Theorem 25.

Proof of Theorem 25. We assume that ρ is ~Gn-realizable for arbitrarily large n, where ~Gn
is an orientation of an (n, d(n), λ(n))-graph and

lim
n→∞

λ(n)
d(n) = 0.

Clearly, such graphs cannot have isolated vertices and cannot be bipartite. We prove that
|ρab − ρba| ≤ 20ε for every ε > 0, which implies that ρ is symmetric.

For a given ε > 0, let K ≥ 1, γ > 0 be the constants given by Lemma 30. Then we
choose n large enough so that λ(n)

d(n) < min{γ, ε
2

2K }, and ρ is ~Gn-realizable on some orientation
of an (n, d(n), λ(n))-graph. Lemma 30 gives a pair of disjoint sets A,B ⊆ V such that
β = ~e(A,B)

|A||B| ≥
d

4n and

∀A′ ⊆ A,B′ ⊆ B;
∣∣∣~e(A′, B′)− β|A′||B′|∣∣∣ < 8εβ|A|2.

Moreover, the parameters are chosen so that |A| = |B| ≥ n
2K ≥

λ(n)n
ε2d(n) . Therefore, Lemma 32

applies and we conclude that |ρab − ρba| ≤ 20ε.
Since this holds for every ε > 0, ρ is in fact a symmetric distribution (ρab = ρba) and we

obtain that ρ is Gn-realizable for each Gn as an undirected graph. Therefore, Theorem 22
implies that ρ is an i.i.d. mix. J
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