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The Lovasz Local Lemma
Theorem (Symmetric LLL, Lovasz ~ 1975)
IfEq, ..., E, are events on a probability space Q) such that
e Each event is independent of all but d other events
e The probability of each event is at most ——— d = (e=2718..)

then

n
Pr[()E]>0
i=1

“Needle in a haystack" problem:
1. LLL implies that it is possible
to avoid all events Eq, ..., E,
2. but the probability of N, E;
could be exponentially small




Example: the r-partite Turan problem

Consider an r-partite graph, at least p|Vj||V;| edges between
every pair (V;, V).

Question: at what density p must G contain K;?



Application of the LLL

X; = random vertex in V;
Ej = the event that (X, Xj) ¢ E

We want: (Xj,...,X;)
such that no event E; occurs.
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Application of the LLL

X; = random vertex in V;
Ej = the event that (X, Xj) ¢ E

We want: (Xj,...,X;)
such that no event E; occurs.

Parameters:  PrlEj]=1—-p, d=2(r—1)
(dependencies only between Ej;, Ey; sharing an index).

LLL implies: 1fp>1— m then G contains a K;.

(Roughly correct: There is a graph with p = 1 — - without a K;.)

r—1



The General (asymmetric) Lovasz Local Lemma
Theorem (General LLL)

E,
IfEq, ..., E, are events with a “dependency graph”, ]
(i) = neighborhood of i, so that Es
e Each event E; is independent of
all the events Ej,j ¢ T'(i) U {i}
e There are x; € (0,1) such that E
PriE] < x [ (1-x). ¥

Jjer)

Then

WD:

n
H1—x,

(Symmetric variant can be obtained by setting x; = e - Pr[Ej].)

=3

Es



Shearer’s Lemma
(“optimal form of the local lemma")

For events Eq, ..., E, with probabilities py, ..., ppand a
dependency graph G, define

as(pr, )= Y. O] pi

indep. ICS i€l

(alternating-sign independence polynomial of the dependency graph).

Lemma (Shearer 1985)
IfvS C [n],qs(p1,-..,pn) > 0, then

n
Pr[ﬂ E] Z q[n] (p17 e ,pn)-

i=1

(If not, then Pr[N_, Ej] could be 0.)



Connection with statistical physics
[Scott-Sokal 2005]

Shearer's Lemma is closely related to the hard core model of
repulsive gas in statistical physics.

Model:
particles on a graph G,
two particles never adjacent;

activity parameters w;.

Pr[/] ~ I1;c; w; if | independent.

Partition function:
Z(W) =3 iep 1cv LLic Wi

Fact: log Z(w) has an alternating-sign Taylor series around 0
("Mayer expansion”).



Hard core model vs. Shearer’s Lemma

[Scott-Sokal 2005] The following are equivalent:
1. Mayer expansion of log Z(w) is convergent for |w;| < R;.
2. Z(-AR) >0forall0 < X <1.
3. Zs(—R) > 0 for all subsets of vertices S, where

Zs(W): Z HW,‘.

indep. ICS i€l



Hard core model vs. Shearer’s Lemma

[Scott-Sokal 2005] The following are equivalent:
1. Mayer expansion of log Z(w) is convergent for |w;| < R;.
2. Z(-AR) >0forall0 < X <1.
3. Zs(—R) > 0 for all subsets of vertices S, where

Zs(W): Z HW,‘.

indep. ICS i€l

Note: Zs(—p) = qs(p) are the quantities in Shearer’'s Lemma
(whose positivity implies that all events can be avoided).



Hard core model vs. Lovasz Local Lemma

Let I'(i) = neighborhood of i, and ' (i) = {i} U ().

Various sufficient conditions for the convergence of log Z(w)
have been investigated.
e [Dobrushin 1996]
It w; < i/ Iljer+i(1 + y;) for some y; > 0,
then the Mayer expansion for log Z(w) converges.
Corresponds exactly to the LLL (substitute y; = 1iix,- ).




Hard core model vs. Lovasz Local Lemma

Let I'(i) = neighborhood of i, and ' (i) = {i} U ().

Various sufficient conditions for the convergence of log Z(w)
have been investigated.

e [Dobrushin 1996]
It w; < i/ Iljer+i(1 + y;) for some y; > 0,
then the Mayer expansion for log Z(w) converges.
Corresponds exactly to the LLL (substitute y; = 1iix,- ).
e [Fernandez-Procacci 2007]
f W; < ¥i/ > e, 1cr+(iy LLic ¥i for some y; > 0,
then the Mayer expansion for log Z(w) converges.
New criterion — previously unknown to combinatorialists.




The Cluster Expansion Lemma

Theorem (Bissacot-Fernandez-Procacci-Scoppola 2011)
IfEq,..., E, are events with a dependency graph G,
e Each event E; is independent of its non-neighbor events.
e There are y; > 0 such that

Yi
PriEj] < .
: Zindep. ICT+(i) HIGI Yi

(To compare: in LLL, we sum up over all subsets | C I *(i).)
Then

Pr[(n] Ej] > 0.

i=1

(Analytic Proof.)
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Combinatorial proof of Cluster Expansion

[Harvey-V. 15]

Define: Ps = Pr[Nics Eil, Ys = > gen ics LLict Vi
We assume: Pr[E]] < yi/ Yr+(-

Recursive bounds: o _
Ps=PrNies_a Eil = PrlEa A Nics_a Eil = Ps-a=PaPs\r+(a);
Yrra= Yr+YaYT\r+(a) = Y7+ PaY1Ur+(a)-

We claim, by induction,

Proof:




Hierarchy of the Local Lemmas




Application of Cluster Expansion to r-partite Turan

X; = random vertex in V;
Ej = the event that (X;, Xj) ¢ E
,D,'j = PF[E,I] =1- p-

Dependency graph G = line graph of K;. Neighborhood of Ej:
two cliques, events incident to i and events incident to j.

o I v <O+D )+ yi) = +ry)?
ji=1

indep. ICT+(if) ("' )€l i"=1

Sety = 17: (1+J/ry)2 _ %_ (when all y; equal)

=G alwayS contains a Kr for p > 1- % (improvement from 1 — 1)

2er



Application of Shearer's Lemma

[Csikvary-Nagy 2012]

Vy

X; = random vertex in V;
Ej = the event that (X;, Xj) ¢ E

,D,'j = PF[E,I] =1- p-
Vo

Dependency graph G = line graph of K;
(events Ej;, Ejy dependent if they share an index).

Independence polynomial q(p) of G
= matching polynomial of K, = the Hermite polynomial.



Application of Shearer's Lemma

[Csikvary-Nagy 2012]

Vy

X; = random vertex in V;
Ej = the event that (X;, Xj) ¢ E

Pij = PF[E,I] =1 p-
Vo

Dependency graph G = line graph of K;
(events Ej;, Ejy dependent if they share an index).

Independence polynomial q(p) of G
= matching polynomial of K, = the Hermite polynomial.

Roots of g(p) well understood: minimum positive root > ﬁ.

= G always contains a K, for p > 1 — ﬁ.



Tight bound for the r-partite Turan problem?

Va Vs Shearer’'s Lemma:

For K3, the matching polynomial is
a(p) =1-3p.

Vi Minimum root pg = 1/3.

This implies a K3 subgraph for density p > 2/3.



Tight bound for the r-partite Turan problem?

Vo Vs Shearer’'s Lemma:
For K3, the matching polynomial is
a(p) =1-3p.
Vi Minimum root pg = 1/3.
This implies a K3 subgraph for density p > 2/3.

But this is not t|ght [Bondy-Shen-Thomassé-Thomassen 2006]
The optimal density for K3 is p* = ‘1%@

Open question: What is the optimal density that guarantees the
appearance of K; in an r-partite graph, for r > 47
(roughly between 1 — L and 1 — )



The non-constructive aspect of the LLL

The proof of LLL is essentially non-constructive: Pr[N_, Ej] is
proved to be positive, but it could be exponentially small.

How do we find a state w € N, E; efficiently,
given an instance where the LLL applies?



The non-constructive aspect of the LLL

The proof of LLL is essentially non-constructive: Pr[N_, Ej] is
proved to be positive, but it could be exponentially small.

How do we find a state w € N, E; efficiently,
given an instance where the LLL applies?

Example:
Given an r-partite graph on n vertices, density of each pair
p>1— %. Can you find a K; subgraph in poly(n,r) time?



The Moser-Tardos framework
Independent random variables Xi, ..., Xn.

e "Bad events" E4, ..., E,.

e Event E; depends on variables var(E;).

e A dependency graph G:
i—j iff var(E;) N var(Ej) # 0.

e There are xq,...,x, € (0,1) s.t.
vi; PriE] < Xi [Liery (1 — X))
(asymmetric LLL condition)

Moser-Tardos Algorithm:
Start with random variables X1, ..., Xn. As long as some event
E; occurs, resample the variables in var(E;).



The Moser-Tardos framework
Independent random variables Xi, ..., Xn.

e "Bad events" E4, ..., E,.

e Event E; depends on variables var(E;).

e A dependency graph G:
i—j iff var(E;) N var(Ej) # 0.

e There are xq,...,x, € (0,1) s.t.
Vi; PF[E,] < Xi Hjer(i)(1 — X/)
(asymmetric LLL condition)

Moser-Tardos Algorithm:
Start with random variables X1, ..., Xn. As long as some event
E; occurs, resample the variables in var(E;).

Theorem (Moser-Tardos ’08)
This algorithm finds w € N_, E; after >_1_, T2 resampling
operations (in expectation).



Beyond independent random variables

The LLL gives interesting applications also in spaces with more
structure:

e permutations

e Hamiltonian cycles

e matchings

o trees



Beyond independent random variables

The LLL gives interesting applications also in spaces with more
structure:

e permutations
e Hamiltonian cycles
e matchings
o trees
Follow-up work:
® [Kolipaka-Szegedy '11] €XtENsion of Moser-Tardos to Shearer’s setting.
® [Harris-Srinivasan '14] handle applications with random permutations.

® [Achlioptas-liopoulos '14] general approach based on random walks;
handle Hamiltonian cycles, matchings.



"Algorithmic proof" of the LLL?

We would like to have:

e given a probability space with events satisfying the LLL
conditions, a (randomized) procedure that quickly finds




Our Main Result

"Algorithmic proof" of Shearer’s Lemma:
o Arbitrary probability space €. Es

e Events Ey, ..., E, with a dependency graph G.

e Each E; independent of non-neighbors
(or more generally, "positively 2
associated" with non-neighbors)

e p; = (1 + €) Pr[E|] satisfy Shearer’s conditions.

E4

Es

Eg



Our Main Result

"Algorithmic proof" of Shearer’s Lemma:
e Arbitrary probability space . Es Es
e Events Ey, ..., E, with a dependency graph G.

e Each E; independent of non-neighbors
(or more generally, "positively 2 E
associated" with non-neighbors)

e p; = (1 + €) Pr[E|] satisfy Shearer’s conditions. E

Theorem (Harvey-V. '15)

There is a randomized procedure which finds w € /L, E; under
these assumptions after O(Z log %) "resampling operations”
w.h.p.



Resampling operations

Assume a space 2 with a probability measure ., and events
Ei, ..., E, with a neighborhood structure denoted (/).

Ei
Q

Definition: A resampling operation r; for event E; is
a random ri(w) € Q for each w € Q, such that

1. If w has distribution x conditioned on E; = ri(w) has distribution p.
(removes conditioning on E;)
2. Ifk¢rt(i)andw ¢ Ex = ri(w) ¢ Ex.
(does not cause non-neighbor events)



Why should resampling operations exist?

Lemma (Harvey-V. ’15)

Resampling operations for events Eq, ..., E, w.r.t. G exist
whenever each E; is independent of its non-neighbor events.



Why should resampling operations exist?

Lemma (Harvey-V. '15)

Resampling operations for events Eq, ..., E, w.r.t. G exist
whenever each E; is independent of its non-neighbor events.

More generally: Resampling operations exist if and only if each E; is
"positively associated” with its non-neighbor events:
E[Z | E] > E[Z]

for every monotonic function Z of (E; : j ¢ T (i)).

Remark:
necessary to handle permutations and matchings; not for trees.



The algorithm

Our algorithm:
Sample w from p.
While any violated events exist, repeat:
o J— 10
 Aslong as 3j ¢ I'"(J), E;j occurs
i; — ri(w), (resample E))
J+— Ju{j}
}

Note: In each iteration we resample an independent set of events J.
In the next iteration, all violated events are in It (J) = JUT(J).

(F(J) = neighbors of J in the dependency graph G)



Analysis of our algorithm
Def.: Stab = {(I1, lz, ..., k) : [y € Ind(G) \ {0}, fi 4 € TH(})}.

Coupling lemma: The probability that the algorithm resamples
a sequence of independent sets (I, b, ..., ;) € Stab is at most

I17 < H le (p/ = F;r[Ei])v

s=1ieclg

E[#lteratlons]<z Z p(l,.... k).



Analysis of our algorithm
Def.: Stab = {(I1, lz, ..., k) : [y € Ind(G) \ {0}, fi 4 € TH(})}.

Coupling lemma: The probability that the algorithm resamples
a sequence of independent sets (I, b, ..., ;) € Stab is at most

p(h,. .., H I~ (pi = PrE}),
s=1ieclg /
E[#¢iterations] < Z > plh,. k).
1 ..... I[ €Stab

Summation identity: [Kolipaka-Szegedy "11]
If Shearer’s conditions are satisfied, then

1

Z Z P(/1,---;/t):m

t=0 (I,...,l;)Stab

where q(p1,...,pn) = Z/elnd(_1)|ll [Lic/Pi-



Analysis with slack

Conditions with slack: Suppose p; = (1 + ¢)p; and
qs(pi, 5, ..., pp) > 0VS C [n]. Then

—et
Pr[#iterations > ] < Z p(l,....I) < %'
(k... Ir)€ Stab C](,O1 N )]

We also prove: under an e slack, g(p,...,p,) > €.



Analysis with slack

Conditions with slack: Suppose p; = (1 + ¢)p; and
qs(pi, 5, ..., pp) > 0VS C [n]. Then

—et
Pr[#titerations > ] < > plh )< (/e/)'
(I lp,....ly)€ Stab APt +2Pn

We also prove: under an e slack, g(p,...,p,) > €.

Corollary:
With high prob., the algorithm stops within O(2 log 1;) iterations.



Automatic slack for LLL conditions

Lemma (Harvey-V. ’15)
Ifpi < X; Hjer+(i)(1 — X;) then for p; = ( 257 11 > Pi,

1x,

1
qS(p{Ia 7p;7) > 5[[(1 7XI')'
ieS

l.e., when the LLL conditions
are tight, there is still a slack of

€= =5 %
XL

w.r.t. Shearer’s conditions.

Corollary:
E[#iterations] = O((3_iL4 125)?) under LLL conditions.




The latest news
[Achlioptas-lliopoulos ’14]:
e do not draw a formal connection with LLL;

e on the other hand claim to go beyond the LLL in some ways
(orthogonal to Shearer’s extension);

e neither framework subsumes the other.

Update: [Achlioptas-lliopoulos '16], [Kolmogorov '16]

e extended their framework to incorporate resampling operations

Meanwhile, we extended our framework as well...
e both frameworks are becoming one
e unifying concept — approximate resampling operations

e this captures exactly the following form of Shearer’s Lemma...



Shearer’s Lemma with lopsided conditioning

Lemma
Let E4,..., E, be events with a graph G such that for every E;
and every event F monotonically depending on (E; : j ¢ T (i)),

PF[E,' | F] < Pi.

Let QS(Ph S non) = Zindep IQS(_1 )|I| Hielpi'
IfvS C [n],qs(pi,-..,pn) > 0, then

Pr[ﬁ Ej] > 0.

i=1



Open questions

o Is there a deterministic algorithm to find w € N, E;?
e Can we generate a random sample from “‘ﬂ‘h E?



