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The Lovász Local Lemma
Theorem (Symmetric LLL, Lovász ∼ 1975)
If E1, . . . ,En are events on a probability space Ω such that
• Each event is independent of all but d other events
• The probability of each event is at most 1

e(d+1) (e = 2.718..)

then

Pr[
n⋂

i=1

Ei ] > 0.

“Needle in a haystack" problem:
1. LLL implies that it is possible

to avoid all events E1, . . . ,En
2. but the probability of

⋂n
i=1 Ei

could be exponentially small



Example: the r -partite Turán problem

Consider an r -partite graph, at least ρ|Vi ||Vj | edges between
every pair (Vi ,Vj).

V1 V2

V3 V4

Question: at what density ρ must G contain Kr ?



Application of the LLL

Xi = random vertex in Vi
Eij = the event that (Xi ,Xj) /∈ E

We want: (X1, . . . ,Xr )
such that no event Eij occurs.

V1 V2

V3 V4

X1 X2

X3 X4

Parameters: Pr[Eij ] = 1− ρ, d = 2(r − 1)
(dependencies only between Eij ,Ei ′j sharing an index).

LLL implies: If ρ ≥ 1− 1
e(2r−1) then G contains a Kr .

(Roughly correct: There is a graph with ρ = 1− 1
r−1 without a Kr .)
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The General (asymmetric) Lovász Local Lemma

E1

E2

E3

E4

E5

E6

Theorem (General LLL)
If E1, . . . ,En are events with a “dependency graph",
Γ(i) = neighborhood of i, so that
• Each event Ei is independent of

all the events Ej , j /∈ Γ(i) ∪ {i}
• There are xi ∈ (0,1) such that

Pr[Ei ] ≤ xi
∏

j∈Γ(i)

(1− xj).

Then

Pr[
n⋂

i=1

Ei ] ≥
n∏

i=1

(1− xi).

(Symmetric variant can be obtained by setting xi = e · Pr [Ei ].)



Shearer’s Lemma
(“optimal form of the local lemma")

For events E1, . . . ,En with probabilities p1, . . . ,pn and a
dependency graph G, define

qS(p1, . . . ,pn) =
∑

indep. I⊆S

(−1)|I|
∏
i∈I

pi

(alternating-sign independence polynomial of the dependency graph).

Lemma (Shearer 1985)
If ∀S ⊆ [n],qS(p1, . . . ,pn) > 0, then

Pr[
n⋂

i=1

Ei ] ≥ q[n](p1, . . . ,pn).

(If not, then Pr[
⋂n

i=1 Ei ] could be 0.)



Connection with statistical physics
[Scott-Sokal 2005]

Shearer’s Lemma is closely related to the hard core model of
repulsive gas in statistical physics.

Model:
particles on a graph G,
two particles never adjacent;
activity parameters wi .

Pr[I] ∼
∏

i∈I wi if I independent.

Partition function:
Z (w) =

∑
indep. I⊆V

∏
i∈I wi .

Fact: log Z (w) has an alternating-sign Taylor series around 0
("Mayer expansion").



Hard core model vs. Shearer’s Lemma

[Scott-Sokal 2005] The following are equivalent:
1. Mayer expansion of log Z (w) is convergent for |wi | ≤ Ri .
2. Z (−λR) > 0 for all 0 ≤ λ ≤ 1.
3. ZS(−R) > 0 for all subsets of vertices S, where

ZS(w) =
∑

indep. I⊆S

∏
i∈I

wi .

Note: ZS(−p) = qS(p) are the quantities in Shearer’s Lemma
(whose positivity implies that all events can be avoided).
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Hard core model vs. Lovász Local Lemma

Let Γ(i) = neighborhood of i , and Γ+(i) = {i} ∪ Γ(i).

Various sufficient conditions for the convergence of log Z (w)
have been investigated.
• [Dobrushin 1996]

If wi ≤ yi/
∏

j∈Γ+(i)(1 + yj) for some yi > 0,
then the Mayer expansion for log Z (w) converges.
Corresponds exactly to the LLL (substitute yi = xi

1−xi
).

• [Fernandez-Procacci 2007]
If wi ≤ yi/

∑
indep. I⊆Γ+(i)

∏
i∈I yi for some yi > 0,

then the Mayer expansion for log Z (w) converges.
New criterion — previously unknown to combinatorialists.
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The Cluster Expansion Lemma

Theorem (Bissacot-Fernandez-Procacci-Scoppola 2011)

If E1, . . . ,En are events with a dependency graph G,
• Each event Ei is independent of its non-neighbor events.
• There are yi > 0 such that

Pr[Ei ] ≤
yi∑

indep. I⊆Γ+(i)
∏

i∈I yi
.

(To compare: in LLL, we sum up over all subsets I ⊆ Γ+(i).)

Then

Pr[
n⋂

i=1

Ei ] > 0.

(Analytic Proof.)



Combinatorial proof of Cluster Expansion
[Harvey-V. ’15]

Define: PS = Pr[
⋂

i∈S Ei ], YS =
∑

indep. I⊆S
∏

i∈I yi .
We assume: Pr[Ei ] ≤ yi/YΓ+(i).

Recursive bounds:
PS = Pr[

⋂
i∈S−a Ei ]− Pr[Ea ∧

⋂
i∈S−a Ei ] ≥ PS−a−paPS\Γ+(a),

YT +a = YT +yaYT\Γ+(a) ≥ YT + paYT∪Γ+(a).

We claim, by induction,

PS

PS−a
≥

YS
YS−a

> 0.

Proof:

PS

PS−a
≥ 1− pa

PS\Γ+(a)

PS−a
≥ 1− pa

YS∪Γ+(a)

YS+a
≥

YS
YS−a

.
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Hierarchy of the Local Lemmas

Symmetric
LLL

General
LLL

Cluster
Expansion

Shearer’s
Lemma



Application of Cluster Expansion to r -partite Turán

Xi = random vertex in Vi
Eij = the event that (Xi ,Xj) /∈ E

pij = Pr[Eij ] = 1− ρ.
V1 V2

V3 V4

X1 X2

X3 X4

Dependency graph G = line graph of Kr . Neighborhood of Eij :
two cliques, events incident to i and events incident to j .

∑
indep. I⊆Γ+(ij)

∏
(i ′j ′)∈I

yi ′j ′ ≤ (1 +
r∑

j ′=1

yij ′)(1 +
r∑

i ′=1

yi ′j) = (1 + ry)2

(when all yij equal)Set y = 1
r : y

(1+ry)2 = 1
4r .

⇒ G always contains a Kr for ρ ≥ 1− 1
4r . (improvement from 1− 1

2er )



Application of Shearer’s Lemma
[Csikváry-Nagy 2012]

Xi = random vertex in Vi
Eij = the event that (Xi ,Xj) /∈ E

pij = Pr[Eij ] = 1− ρ.
V1 V2

V3 V4

X1 X2

X3 X4

Dependency graph G = line graph of Kr
(events Eij ,Ei ′j ′ dependent if they share an index).

Independence polynomial q(p) of G
= matching polynomial of Kr = the Hermite polynomial.

Roots of q(p) well understood: minimum positive root ≥ 1
4(r−2) .

⇒ G always contains a Kr for ρ ≥ 1− 1
4(r−2) .
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Tight bound for the r -partite Turán problem?

V1

V2 V3 Shearer’s Lemma:
For K3, the matching polynomial is

q3(p) = 1− 3p.

Minimum root p0 = 1/3.
This implies a K3 subgraph for density ρ ≥ 2/3.

But this is not tight: [Bondy-Shen-Thomassé-Thomassen 2006]

The optimal density for K3 is ρ∗ = −1+
√

5
2 .

Open question: What is the optimal density that guarantees the
appearance of Kr in an r -partite graph, for r ≥ 4?
(roughly between 1− 1

4r and 1− 1
2r )
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The non-constructive aspect of the LLL

The proof of LLL is essentially non-constructive: Pr[
⋂n

i=1 Ei ] is
proved to be positive, but it could be exponentially small.

How do we find a state ω ∈
⋂n

i=1 Ei efficiently,
given an instance where the LLL applies?

Example:
Given an r -partite graph on n vertices, density of each pair
ρ ≥ 1− 1

4r . Can you find a Kr subgraph in poly(n, r) time?
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The Moser-Tardos framework

E1 E2 E3 E4

E8

E7

E6

E5
X0 X1 X2 X3

X4 X5 X6 X7

X8 X9 Xa Xb

Xc Xd Xe Xf

• Independent random variables X1, . . . ,Xm.

• "Bad events" E1, . . . ,En.

• Event Ei depends on variables var(Ei ).

• A dependency graph G:
i—j iff var(Ei ) ∩ var(Ej ) 6= ∅.

• There are x1, . . . , xn ∈ (0,1) s.t.
∀i ; Pr[Ei ] ≤ xi

∏
j∈Γ(i)(1− xj ).

(asymmetric LLL condition)

Moser-Tardos Algorithm:
Start with random variables X1, . . . ,Xm. As long as some event
Ei occurs, resample the variables in var(Ei).

Theorem (Moser-Tardos ’08)
This algorithm finds ω ∈

⋂n
i=1 Ei after

∑n
i=1

xi
1−xi

resampling
operations (in expectation).
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Beyond independent random variables

The LLL gives interesting applications also in spaces with more
structure:

• permutations
• Hamiltonian cycles
• matchings
• trees

Follow-up work:
• [Kolipaka-Szegedy ’11] extension of Moser-Tardos to Shearer’s setting.

• [Harris-Srinivasan ’14] handle applications with random permutations.

• [Achlioptas-Iliopoulos ’14] general approach based on random walks;
handle Hamiltonian cycles, matchings.
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"Algorithmic proof" of the LLL?

We would like to have:
• given a probability space with events satisfying the LLL

conditions, a (randomized) procedure that quickly finds
ω ∈

⋂n
i=1 Ei .

Ω



Our Main Result

"Algorithmic proof" of Shearer’s Lemma:

E1

E2

E3

E4

E5

E6

• Arbitrary probability space Ω.

• Events E1, . . . ,En with a dependency graph G.

• Each Ei independent of non-neighbors
(or more generally, "positively
associated" with non-neighbors)

• pi = (1 + ε) Pr[Ei ] satisfy Shearer’s conditions.

Theorem (Harvey-V. ’15)
There is a randomized procedure which finds ω ∈

⋂n
i=1 Ei under

these assumptions after O(n
ε log 1

ε ) "resampling operations"
w.h.p.
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Resampling operations
Assume a space Ω with a probability measure µ, and events
E1, . . . ,En with a neighborhood structure denoted Γ(i).

Ω
Ei

ri(ω)ω

Definition: A resampling operation ri for event Ei is
a random ri(ω) ∈ Ω for each ω ∈ Ω, such that

1. If ω has distribution µ conditioned on Ei ⇒ ri (ω) has distribution µ.
(removes conditioning on Ei )

2. If k /∈ Γ+(i) and ω /∈ Ek ⇒ ri (ω) /∈ Ek .
(does not cause non-neighbor events)



Why should resampling operations exist?

Lemma (Harvey-V. ’15)
Resampling operations for events E1, . . . ,En w.r.t. G exist
whenever each Ei is independent of its non-neighbor events.

More generally: Resampling operations exist if and only if each Ei is
"positively associated" with its non-neighbor events:

E[Z | Ei ] ≥ E[Z ]

for every monotonic function Z of (Ej : j /∈ Γ+(i)).

Remark:
necessary to handle permutations and matchings; not for trees.
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The algorithm

Our algorithm:
Sample ω from µ.
While any violated events exist, repeat:
• J ← ∅
• As long as ∃j /∈ Γ+(J), Ej occurs

{
ω ← rj(ω), (resample Ei )
J ← J ∪ {j}
}

Note: In each iteration we resample an independent set of events J.
In the next iteration, all violated events are in Γ+(J) = J ∪ Γ(J).
(Γ(J) = neighbors of J in the dependency graph G)



Analysis of our algorithm
Def.: Stab = {(I1, I2, . . . , It ) : Ii ∈ Ind(G) \ {∅}, Ii+1 ⊆ Γ+(Ii)}.

Coupling lemma: The probability that the algorithm resamples
a sequence of independent sets (I1, I2, . . . , It ) ∈ Stab is at most

p(I1, . . . , It ) =
t∏

s=1

∏
i∈Is

pi (pi = Pr
µ

[Ei ]),

E[#iterations] ≤
∞∑

t=0

∑
(I1,...,It )∈Stab

p(I1, . . . , It ).

Summation identity: [Kolipaka-Szegedy ’11]
If Shearer’s conditions are satisfied, then

∞∑
t=0

∑
(I1,...,It )∈Stab

p(I1, . . . , It ) =
1

q(p1, . . . ,pn)

where q(p1, . . . ,pn) =
∑

I∈Ind(−1)|I|
∏

i∈I pi .

However, q(p1, . . . ,pn) could be exponentially small
⇒ back to the same problem!



Analysis of our algorithm
Def.: Stab = {(I1, I2, . . . , It ) : Ii ∈ Ind(G) \ {∅}, Ii+1 ⊆ Γ+(Ii)}.

Coupling lemma: The probability that the algorithm resamples
a sequence of independent sets (I1, I2, . . . , It ) ∈ Stab is at most

p(I1, . . . , It ) =
t∏

s=1

∏
i∈Is

pi (pi = Pr
µ

[Ei ]),

E[#iterations] ≤
∞∑

t=0

∑
(I1,...,It )∈Stab

p(I1, . . . , It ).

Summation identity: [Kolipaka-Szegedy ’11]
If Shearer’s conditions are satisfied, then

∞∑
t=0

∑
(I1,...,It )∈Stab

p(I1, . . . , It ) =
1

q(p1, . . . ,pn)

where q(p1, . . . ,pn) =
∑

I∈Ind(−1)|I|
∏

i∈I pi .

However, q(p1, . . . ,pn) could be exponentially small
⇒ back to the same problem!



Analysis with slack

Conditions with slack: Suppose p′i = (1 + ε)pi and
qS(p′1,p

′
2, . . . ,p

′
n) > 0 ∀S ⊆ [n]. Then

Pr[#iterations ≥ t ] ≤
∑

(I1,I2,...,It )∈Stab

p(I1, . . . , It ) ≤
e−εt

q(p′1, . . . ,p
′
n)
.

We also prove: under an ε slack, q(p′1, . . . ,p
′
n) ≥ εn.

Corollary:
With high prob., the algorithm stops within O( n

ε log 1
ε ) iterations.



Analysis with slack

Conditions with slack: Suppose p′i = (1 + ε)pi and
qS(p′1,p

′
2, . . . ,p

′
n) > 0 ∀S ⊆ [n]. Then

Pr[#iterations ≥ t ] ≤
∑

(I1,I2,...,It )∈Stab

p(I1, . . . , It ) ≤
e−εt

q(p′1, . . . ,p
′
n)
.

We also prove: under an ε slack, q(p′1, . . . ,p
′
n) ≥ εn.

Corollary:
With high prob., the algorithm stops within O( n

ε log 1
ε ) iterations.



Automatic slack for LLL conditions

Lemma (Harvey-V. ’15)

If pi ≤ xi
∏

j∈Γ+(i)(1− xj) then for p′i =

(
1 + 1

2
∑n

i=1
xi

1−xi

)
pi ,

qS(p′1, . . . ,p
′
n) ≥ 1

2

∏
i∈S

(1− xi).

I.e., when the LLL conditions
are tight, there is still a slack of

ε = 1
2
∑n

i=1
xi

1−xi
w.r.t. Shearer’s conditions. LLL

cluster expansion

Shearer

Corollary:
E[#iterations] = O((

∑n
i=1

xi
1−xi

)2) under LLL conditions.



The latest news
[Achlioptas-Iliopoulos ’14]:

• do not draw a formal connection with LLL;

• on the other hand claim to go beyond the LLL in some ways
(orthogonal to Shearer’s extension);

• neither framework subsumes the other.

Update: [Achlioptas-Iliopoulos ’16], [Kolmogorov ’16]

• extended their framework to incorporate resampling operations

Meanwhile, we extended our framework as well...

• both frameworks are becoming one

• unifying concept — approximate resampling operations

• this captures exactly the following form of Shearer’s Lemma...



Shearer’s Lemma with lopsided conditioning

Lemma
Let E1, . . . ,En be events with a graph G such that for every Ei
and every event F monotonically depending on (Ej : j /∈ Γ+(i)),

Pr[Ei | F ] ≤ pi .

Let qS(p1, . . . ,pn) =
∑

indep. I⊆S(−1)|I|
∏

i∈I pi .
If ∀S ⊆ [n],qS(p1, . . . ,pn) > 0, then

Pr[
n⋂

i=1

Ei ] > 0.



Open questions

• Is there a deterministic algorithm to find ω ∈
⋂n

i=1 Ei?
• Can we generate a random sample from µ|⋂n

i=1 Ei
?


