The Lovász Local Lemma: constructive aspects, stronger variants and the hard core model

Jan Vondrák¹

¹Dept. of Mathematics Stanford University

joint work with Nick Harvey (UBC)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

The Lovász Local Lemma

Theorem (Symmetric LLL, Lovász \sim 1975)

If E_1, \ldots, E_n are events on a probability space Ω such that

Each event is independent of all but d other events

• The probability of each event is at most $\frac{1}{e(d+1)}$ (e = 2.718..) then

$$\Pr[\bigcap_{i=1}^{n} \overline{E_i}] > 0.$$

"Needle in a haystack" problem:

1. LLL implies that it is possible

to avoid all events E_1, \ldots, E_n

2. but the probability of $\bigcap_{i=1}^{n} \overline{E_i}$ could be exponentially small

Example: the *r*-partite Turán problem

Consider an *r*-partite graph, at least $\rho |V_i| |V_j|$ edges between every pair (V_i , V_j).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Question: at what density ρ must *G* contain K_r ?

 X_i = random vertex in V_i E_{ij} = the event that $(X_i, X_j) \notin E$

We want: (X_1, \ldots, X_r) such that no event E_{ij} occurs.

イロト 不得 トイヨト イヨト

3

 X_i = random vertex in V_i E_{ij} = the event that $(X_i, X_j) \notin E$

We want: (X_1, \ldots, X_r) such that no event E_{ij} occurs.

・ コット (雪) (小田) (コット 日)

Parameters: $\Pr[E_{ij}] = 1 - \rho$, d = 2(r - 1)(dependencies only between E_{ij} , $E_{i'j}$ sharing an index).

 X_i = random vertex in V_i E_{ij} = the event that $(X_i, X_j) \notin E$

We want: (X_1, \ldots, X_r) such that no event E_{ij} occurs.

(日) (日) (日) (日) (日) (日) (日)

Parameters: $\Pr[E_{ij}] = 1 - \rho$, d = 2(r - 1)(dependencies only between E_{ij} , $E_{i'j}$ sharing an index).

LLL implies: If $\rho \ge 1 - \frac{1}{e(2r-1)}$ then *G* contains a *K*_r.

 X_i = random vertex in V_i E_{ij} = the event that $(X_i, X_j) \notin E$

We want: (X_1, \ldots, X_r) such that no event E_{ij} occurs.

Parameters: $\Pr[E_{ij}] = 1 - \rho$, d = 2(r - 1)(dependencies only between E_{ij} , $E_{i'j}$ sharing an index).

LLL implies: If $\rho \ge 1 - \frac{1}{e(2r-1)}$ then *G* contains a *K*_{*r*}.

(Roughly correct: There is a graph with $\rho = 1 - \frac{1}{r-1}$ without a K_r .)

The General (asymmetric) Lovász Local Lemma

Theorem (General LLL)

If E_1, \ldots, E_n are events with a "dependency graph", $\Gamma(i) = neighborhood of i$, so that

- Each event E_i is independent of all the events E_j, j ∉ Γ(i) ∪ {i}
- There are $x_i \in (0, 1)$ such that

$$\Pr[E_i] \le x_i \prod_{j \in \Gamma(i)} (1 - x_j)$$

Then

$$\Pr[\bigcap_{i=1}^{n} \overline{E_i}] \ge \prod_{i=1}^{n} (1-x_i).$$

(Symmetric variant can be obtained by setting $x_i = e \cdot Pr[E_i]$.)

E4

 E_5

Ea

Shearer's Lemma ("optimal form of the local lemma")

For events E_1, \ldots, E_n with probabilities p_1, \ldots, p_n and a dependency graph *G*, define

$$q_{\mathcal{S}}(p_1,\ldots,p_n) = \sum_{\text{indep. } I \subseteq \mathcal{S}} (-1)^{|I|} \prod_{i \in I} p_i$$

(alternating-sign independence polynomial of the dependency graph).

Lemma (Shearer 1985)
If
$$\forall S \subseteq [n], q_S(p_1, \dots, p_n) > 0$$
, then
 $\Pr[\bigcap_{i=1}^n \overline{E_i}] \ge q_{[n]}(p_1, \dots, p_n).$

(If not, then $\Pr[\bigcap_{i=1}^{n} \overline{E_i}]$ could be 0.)

Connection with statistical physics

[Scott-Sokal 2005]

Shearer's Lemma is closely related to the *hard core model of repulsive gas* in statistical physics.

Model:

particles on a graph G, two particles never adjacent; activity parameters w_i .

 $\Pr[I] \sim \prod_{i \in I} w_i$ if I independent.

Partition function: $Z(\mathbf{w}) = \sum_{i \in V} \prod_{i \in I} w_i.$

Fact: log *Z*(**w**) has an alternating-sign Taylor series around 0 ("Mayer expansion").

Hard core model vs. Shearer's Lemma

[Scott-Sokal 2005] The following are equivalent:

1. Mayer expansion of log $Z(\mathbf{w})$ is convergent for $|w_i| \leq R_i$.

2.
$$Z(-\lambda \mathbf{R}) > 0$$
 for all $0 \le \lambda \le 1$.

3. $Z_S(-\mathbf{R}) > 0$ for all subsets of vertices *S*, where

$$Z_{\mathcal{S}}(\mathbf{w}) = \sum_{ ext{indep. } I \subseteq \mathcal{S}} \prod_{i \in I} w_i.$$

(日) (日) (日) (日) (日) (日) (日)

Hard core model vs. Shearer's Lemma

[Scott-Sokal 2005] The following are equivalent:

1. Mayer expansion of log $Z(\mathbf{w})$ is convergent for $|w_i| \le R_i$.

2.
$$Z(-\lambda \mathbf{R}) > 0$$
 for all $0 \le \lambda \le 1$.

3. $Z_S(-\mathbf{R}) > 0$ for all subsets of vertices *S*, where

$$Z_{\mathcal{S}}(\mathbf{w}) = \sum_{ ext{indep. } I \subseteq \mathcal{S}} \prod_{i \in I} w_i.$$

(日) (日) (日) (日) (日) (日) (日)

Note: $Z_S(-\mathbf{p}) = q_S(\mathbf{p})$ are the quantities in Shearer's Lemma (whose positivity implies that all events can be avoided).

Hard core model vs. Lovász Local Lemma

Let $\Gamma(i)$ = neighborhood of *i*, and $\Gamma^+(i) = \{i\} \cup \Gamma(i)$.

Various sufficient conditions for the convergence of $\log Z(\mathbf{w})$ have been investigated.

• [Dobrushin 1996] If $w_i \le y_i / \prod_{j \in \Gamma^+(i)} (1 + y_j)$ for some $y_i > 0$, then the Mayer expansion for log $Z(\mathbf{w})$ converges. *Corresponds exactly to the LLL (substitute* $y_i = \frac{x_i}{1-x_i}$).

(日) (日) (日) (日) (日) (日) (日)

Hard core model vs. Lovász Local Lemma

Let $\Gamma(i)$ = neighborhood of *i*, and $\Gamma^+(i) = \{i\} \cup \Gamma(i)$.

Various sufficient conditions for the convergence of $\log Z(\mathbf{w})$ have been investigated.

- [Dobrushin 1996] If $w_i \leq y_i / \prod_{j \in \Gamma^+(i)} (1 + y_j)$ for some $y_i > 0$, then the Mayer expansion for log $Z(\mathbf{w})$ converges. *Corresponds exactly to the LLL (substitute* $y_i = \frac{x_i}{1 - x_i}$).
- [Fernandez-Procacci 2007] If $w_i \leq y_i / \sum_{i \in \Gamma^+(i)} \prod_{i \in I} y_i$ for some $y_i > 0$, then the Mayer expansion for $\log Z(\mathbf{w})$ converges. New criterion — previously unknown to combinatorialists.

The Cluster Expansion Lemma

Theorem (Bissacot-Fernandez-Procacci-Scoppola 2011) If E_1, \ldots, E_n are events with a dependency graph G,

- Each event E_i is independent of its non-neighbor events.
- There are $y_i > 0$ such that

$$\Pr[E_i] \leq \frac{y_i}{\sum_{indep.} I \subseteq \Gamma^+(i) \prod_{i \in I} y_i}.$$

(To compare: in LLL, we sum up over all subsets $I \subseteq \Gamma^+(i)$.)

n

$$\Pr[\bigcap_{i=1}^{''}\overline{E_i}] > 0.$$

(日) (日) (日) (日) (日) (日) (日)

(Analytic Proof.)

[Harvey-V. '15]

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Define: $\overline{P}_{S} = \Pr[\bigcap_{i \in S} \overline{E_{i}}], Y_{S} = \sum_{indep. I \subseteq S} \prod_{i \in I} y_{i}$. We assume: $\Pr[E_{i}] \leq y_{i} / Y_{\Gamma^{+}(i)}$.

[Harvey-V. '15]

Define: $\overline{P}_{S} = \Pr[\bigcap_{i \in S} \overline{E}_{i}], Y_{S} = \sum_{indep. I \subseteq S} \prod_{i \in I} y_{i}$. We assume: $\Pr[E_{i}] \leq y_{i} / Y_{\Gamma^{+}(i)}$.

Recursive bounds: $\overline{P}_{S} = \Pr[\bigcap_{i \in S-a} \overline{E_{i}}] - \Pr[E_{a} \land \bigcap_{i \in S-a} \overline{E_{i}}] \ge \overline{P}_{S-a} - p_{a} \overline{P}_{S \setminus \Gamma^{+}(a)},$ $Y_{T+a} = Y_{T} + y_{a} Y_{T \setminus \Gamma^{+}(a)} \ge Y_{T} + p_{a} Y_{T \cup \Gamma^{+}(a)}.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

[Harvey-V. '15]

Define: $\overline{P}_{S} = \Pr[\bigcap_{i \in S} \overline{E_{i}}], Y_{S} = \sum_{indep. I \subseteq S} \prod_{i \in I} y_{i}$. We assume: $\Pr[E_{i}] \leq y_{i} / Y_{\Gamma^{+}(i)}$.

Recursive bounds: $\overline{P}_{S} = \Pr[\bigcap_{i \in S-a} \overline{E_{i}}] - \Pr[E_{a} \land \bigcap_{i \in S-a} \overline{E_{i}}] \ge \overline{P}_{S-a} - p_{a} \overline{P}_{S \setminus \Gamma^{+}(a)},$ $Y_{T+a} = Y_{T} + y_{a} Y_{T \setminus \Gamma^{+}(a)} \ge Y_{T} + p_{a} Y_{T \cup \Gamma^{+}(a)}.$

We claim, by induction,

$$rac{\overline{P}_{S}}{\overline{P}_{S-a}} \geq rac{Y_{\overline{S}}}{Y_{\overline{S-a}}} > 0.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

[Harvey-V. '15]

Define: $\overline{P}_{S} = \Pr[\bigcap_{i \in S} \overline{E_{i}}], Y_{S} = \sum_{indep. I \subseteq S} \prod_{i \in I} y_{i}$. We assume: $\Pr[E_{i}] \leq y_{i} / Y_{\Gamma^{+}(i)}$.

Recursive bounds: $\overline{P}_{S} = \Pr[\bigcap_{i \in S-a} \overline{E_{i}}] - \Pr[E_{a} \land \bigcap_{i \in S-a} \overline{E_{i}}] \ge \overline{P}_{S-a} - p_{a} \overline{P}_{S \setminus \Gamma^{+}(a)},$ $Y_{T+a} = Y_{T} + y_{a} Y_{T \setminus \Gamma^{+}(a)} \ge Y_{T} + p_{a} Y_{T \cup \Gamma^{+}(a)}.$

We claim, by induction,

$$\frac{\overline{P}_{S}}{\overline{P}_{S-a}} \geq \frac{Y_{\overline{S}}}{Y_{\overline{S-a}}} > 0.$$

Proof:

$$\frac{\overline{P}_{S}}{\overline{P}_{S-a}} \geq 1 - p_{a} \frac{\overline{P}_{S \setminus \Gamma^{+}(a)}}{\overline{P}_{S-a}} \geq 1 - p_{a} \frac{Y_{\overline{S} \cup \Gamma^{+}(a)}}{Y_{\overline{S}+a}} \geq \frac{Y_{\overline{S}}}{Y_{\overline{S}-a}}.$$

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Hierarchy of the Local Lemmas

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Application of Cluster Expansion to r-partite Turán

 X_i = random vertex in V_i E_{ij} = the event that $(X_i, X_j) \notin E$ $p_{ij} = \Pr[E_{ij}] = 1 - \rho.$

Dependency graph G = line graph of K_r . Neighborhood of E_{ij} : *two cliques*, events incident to *i* and events incident to *j*.

$$\sum_{\text{indep. } I \subseteq \Gamma^+(ij)} \prod_{(i'j') \in I} y_{i'j'} \leq (1 + \sum_{j'=1}^r y_{ij'})(1 + \sum_{i'=1}^r y_{i'j}) = (1 + ry)^2$$

Set $y = \frac{1}{r}$: $\frac{y}{(1+ry)^2} = \frac{1}{4r}$. (when all y_{ij} equal) $\Rightarrow G$ always contains a K_r for $\rho \ge 1 - \frac{1}{4r}$. (improvement from $1 - \frac{1}{2er}$)

Application of Shearer's Lemma

 X_i = random vertex in V_i E_{ij} = the event that $(X_i, X_j) \notin E$ $p_{ij} = \Pr[E_{ij}] = 1 - \rho.$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Dependency graph G = line graph of K_r (events E_{ij} , $E_{i'j'}$ dependent if they share an index).

Independence polynomial q(p) of G= matching polynomial of K_r = the Hermite polynomial.

Application of Shearer's Lemma

 X_i = random vertex in V_i E_{ij} = the event that $(X_i, X_j) \notin E$ $p_{ij} = \Pr[E_{ij}] = 1 - \rho.$

Dependency graph G = line graph of K_r (events E_{ij} , $E_{i'j'}$ dependent if they share an index).

Independence polynomial q(p) of G= matching polynomial of K_r = the Hermite polynomial.

Roots of q(p) well understood: minimum positive root $\geq \frac{1}{4(r-2)}$. $\Rightarrow G$ always contains a K_r for $\rho \geq 1 - \frac{1}{4(r-2)}$.

Tight bound for the *r*-partite Turán problem?

 V_3

Shearer's Lemma: For K_3 , the matching polynomial is $q_3(p) = 1 - 3p$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 $\begin{array}{l} \mbox{Minimum root } p_0 = 1/3. \\ \mbox{This implies a K_3 subgraph for density $\rho \geq 2/3$.} \end{array}$

Tight bound for the *r*-partite Turán problem?

 V_3

Shearer's Lemma: For K_3 , the matching polynomial is $q_3(p) = 1 - 3p$.

Minimum root $p_0 = 1/3$. This implies a K_3 subgraph for density $\rho \ge 2/3$.

But this is not tight: [Bondy-Shen-Thomassé-Thomasse 2006] The optimal density for K_3 is $\rho^* = \frac{-1+\sqrt{5}}{2}$.

Open question: What is the optimal density that guarantees the appearance of K_r in an *r*-partite graph, for $r \ge 4$? (roughly between $1 - \frac{1}{4r}$ and $1 - \frac{1}{2r}$)

The non-constructive aspect of the LLL

The proof of LLL is essentially non-constructive: $Pr[\bigcap_{i=1}^{n} \overline{E_i}]$ is proved to be positive, but it could be exponentially small.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

How do we find a state $\omega \in \bigcap_{i=1}^{n} \overline{E_i}$ efficiently, given an instance where the LLL applies?

The non-constructive aspect of the LLL

The proof of LLL is essentially non-constructive: $Pr[\bigcap_{i=1}^{n} \overline{E_i}]$ is proved to be positive, but it could be exponentially small.

How do we find a state $\omega \in \bigcap_{i=1}^{n} \overline{E_i}$ efficiently, given an instance where the LLL applies?

Example:

Given an *r*-partite graph on *n* vertices, density of each pair $\rho \ge 1 - \frac{1}{4r}$. Can you find a K_r subgraph in poly(n, r) time?

The Moser-Tardos framework

- Independent random variables *X*₁,..., *X_m*.
- "Bad events" E_1, \ldots, E_n .
- Event E_i depends on variables $var(E_i)$.
- A dependency graph G:
 i—*j* iff var(E_i) ∩ var(E_j) ≠ Ø.
- There are $x_1, \ldots, x_n \in (0, 1)$ s.t. $\forall i; \Pr[E_i] \leq x_i \prod_{j \in \Gamma(i)} (1 - x_j).$ (asymmetric LLL condition)

Moser-Tardos Algorithm:

Start with random variables X_1, \ldots, X_m . As long as some event E_i occurs, resample the variables in $var(E_i)$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

The Moser-Tardos framework

- Independent random variables X₁,..., X_m.
- "Bad events" E_1, \ldots, E_n .
- Event E_i depends on variables $var(E_i)$.
- A dependency graph G:
 i—*j* iff var(E_i) ∩ var(E_j) ≠ Ø.
- There are $x_1, \ldots, x_n \in (0, 1)$ s.t. $\forall i; \Pr[E_i] \leq x_i \prod_{j \in \Gamma(i)} (1 - x_j).$ (asymmetric LLL condition)

Start with random variables X_1, \ldots, X_m . As long as some event E_i occurs, resample the variables in var (E_i) .

Theorem (Moser-Tardos '08)

This algorithm finds $\omega \in \bigcap_{i=1}^{n} \overline{E_i}$ after $\sum_{i=1}^{n} \frac{x_i}{1-x_i}$ resampling operations (in expectation).

Beyond independent random variables

The LLL gives interesting applications also in spaces with more structure:

(ロ) (同) (三) (三) (三) (○) (○)

- permutations
- Hamiltonian cycles
- matchings
- trees

Beyond independent random variables

The LLL gives interesting applications also in spaces with more structure:

- permutations
- Hamiltonian cycles
- matchings
- trees

Follow-up work:

- [Kolipaka-Szegedy '11] extension of Moser-Tardos to Shearer's setting.
- [Harris-Srinivasan '14] handle applications with random permutations.
- [Achlioptas-Iliopoulos '14] general approach based on random walks; handle Hamiltonian cycles, matchings.

"Algorithmic proof" of the LLL?

We would like to have:

• given a probability space with events satisfying the LLL conditions, a (randomized) procedure that quickly finds $\omega \in \bigcap_{i=1}^{n} \overline{E_i}$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Our Main Result

"Algorithmic proof" of Shearer's Lemma:

- Arbitrary probability space Ω.
- Events E_1, \ldots, E_n with a dependency graph G.
- Each *E_i* independent of non-neighbors (or more generally, "positively associated" with non-neighbors)
- $p_i = (1 + \epsilon) \Pr[E_i]$ satisfy Shearer's conditions.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Our Main Result

'Algorithmic proof'' of Shearer's Lemma: Arbitrary probability space Ω.

- Events E_1, \ldots, E_n with a dependency graph G.
- Each *E_i* independent of non-neighbors (or more generally, "positively associated" with non-neighbors)
- $p_i = (1 + \epsilon) \Pr[E_i]$ satisfy Shearer's conditions.

Theorem (Harvey-V. '15)

There is a randomized procedure which finds $\omega \in \bigcap_{i=1}^{n} \overline{E_i}$ under these assumptions after $O(\frac{n}{\epsilon} \log \frac{1}{\epsilon})$ "resampling operations" w.h.p.

E₄

 E_2

 E_5

Resampling operations

Assume a space Ω with a probability measure μ , and events E_1, \ldots, E_n with a neighborhood structure denoted $\Gamma(i)$.

Definition: A **resampling operation** r_i for event E_i is a random $r_i(\omega) \in \Omega$ for each $\omega \in \Omega$, such that

 If ω has distribution μ conditioned on E_i ⇒ r_i(ω) has distribution μ. (removes conditioning on E_i)
 If k ∉ Γ⁺(i) and ω ∉ E_k ⇒ r_i(ω) ∉ E_k. (does not cause non-neighbor events)

Why should resampling operations exist?

Lemma (Harvey-V. '15)

Resampling operations for events E_1, \ldots, E_n w.r.t. G exist whenever each E_i is independent of its non-neighbor events.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Why should resampling operations exist?

Lemma (Harvey-V. '15)

Resampling operations for events E_1, \ldots, E_n w.r.t. G exist whenever each E_i is independent of its non-neighbor events.

More generally: Resampling operations exist if and only if each E_i is "positively associated" with its non-neighbor events:

 $\mathbb{E}[Z \mid E_i] \geq \mathbb{E}[Z]$

(ロ) (同) (三) (三) (三) (○) (○)

for every monotonic function Z of $(E_j : j \notin \Gamma^+(i))$.

Remark:

necessary to handle permutations and matchings; not for trees.

The algorithm

Our algorithm:

Sample ω from μ .

While any violated events exist, repeat:

•
$$J \leftarrow \emptyset$$

• As long as
$$\exists j \notin \Gamma^+(J), E_j$$
 occurs

$$egin{array}{l} & \overset{ ext{`}}{\omega} \leftarrow \textit{r}_{j}(\omega), \quad ext{(resample E_i)} \ & J \leftarrow J \cup \{j\} \ & \} \end{array}$$

Note: In each iteration we resample an independent set of events *J*. In the next iteration, all violated events are in $\Gamma^+(J) = J \cup \Gamma(J)$. ($\Gamma(J)$ = neighbors of *J* in the dependency graph *G*)

Analysis of our algorithm Def.: $Stab = \{(I_1, I_2, ..., I_t) : I_i \in Ind(G) \setminus \{\emptyset\}, I_{i+1} \subseteq \Gamma^+(I_i)\}.$

Coupling lemma: The probability that the algorithm resamples a sequence of independent sets $(I_1, I_2, ..., I_t) \in Stab$ is at most

$$p(I_1, \dots, I_t) = \prod_{s=1}^t \prod_{i \in I_s} p_i \qquad (p_i = \Pr_{\mu}[E_i]),$$
$$\mathbb{E}[\#\text{iterations}] \le \sum_{t=0}^\infty \sum_{(I_1, \dots, I_t) \in Stab} p(I_1, \dots, I_t).$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Analysis of our algorithm Def.: $Stab = \{(I_1, I_2, ..., I_t) : I_i \in Ind(G) \setminus \{\emptyset\}, I_{i+1} \subseteq \Gamma^+(I_i)\}.$

Coupling lemma: The probability that the algorithm resamples a sequence of independent sets $(I_1, I_2, ..., I_t) \in Stab$ is at most

$$p(l_1, \dots, l_t) = \prod_{s=1}^t \prod_{i \in I_s} p_i \qquad (p_i = \Pr_{\mu}[E_i])$$
$$\mathbb{E}[\#\text{iterations}] \le \sum_{t=0}^\infty \sum_{(l_1, \dots, l_t) \in Stab} p(l_1, \dots, l_t).$$

,

Summation identity: [Kolipaka-Szegedy '11] If Shearer's conditions are satisfied, then

$$\sum_{t=0}^{\infty} \sum_{(I_1,...,I_t) \in Stab} p(I_1,...,I_t) = \frac{1}{q(p_1,...,p_n)}$$

where $q(p_1,...,p_n) = \sum_{l \in Ind} (-1)^{|l|} \prod_{i \in I} p_i.$

Analysis with slack

Conditions with slack: Suppose $p'_i = (1 + \epsilon)p_i$ and $q_S(p'_1, p'_2, ..., p'_n) > 0 \ \forall S \subseteq [n]$. Then

$$\mathsf{Pr}[\# \text{iterations } \geq t] \leq \sum_{(l_1, l_2, \dots, l_t) \in Stab} p(l_1, \dots, l_t) \leq \frac{e^{-\epsilon t}}{q(p'_1, \dots, p'_n)}.$$

We also prove: under an ϵ slack, $q(p'_1, \ldots, p'_n) \ge \epsilon^n$.

Analysis with slack

Conditions with slack: Suppose $p'_i = (1 + \epsilon)p_i$ and $q_S(p'_1, p'_2, ..., p'_n) > 0 \ \forall S \subseteq [n]$. Then

$$\Pr[\# \text{iterations } \geq t] \leq \sum_{(l_1, l_2, \dots, l_t) \in Stab} p(l_1, \dots, l_t) \leq \frac{e^{-\epsilon t}}{q(p'_1, \dots, p'_n)}.$$

We also prove: under an ϵ slack, $q(p'_1, \ldots, p'_n) \ge \epsilon^n$.

Corollary:

With high prob., the algorithm stops within $O(\frac{n}{\epsilon} \log \frac{1}{\epsilon})$ iterations.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Automatic slack for LLL conditions

Lemma (Harvey-V. '15) If $p_i \le x_i \prod_{j \in \Gamma^+(i)} (1 - x_j)$ then for $p'_i = \left(1 + \frac{1}{2\sum_{i=1}^n \frac{x_i}{1 - x_i}}\right) p_i$,

$$q_{\mathcal{S}}(p'_1,\ldots,p'_n)\geq \frac{1}{2}\prod_{i\in \mathcal{S}}(1-x_i).$$

I.e., when the LLL conditions are tight, there is still a slack of $\epsilon = \frac{1}{2\sum_{i=1}^{n} \frac{x_i}{1-x_i}}$ w.r.t. Shearer's conditions.

(日) (日) (日) (日) (日) (日) (日)

Corollary: $\mathbb{E}[\#iterations] = O((\sum_{i=1}^{n} \frac{x_i}{1-x_i})^2)$ under LLL conditions.

The latest news

[Achlioptas-Iliopoulos '14]:

- do not draw a formal connection with LLL;
- on the other hand claim to go *beyond* the LLL in some ways (orthogonal to Shearer's extension);
- neither framework subsumes the other.

Update: [Achlioptas-Iliopoulos '16], [Kolmogorov '16]

extended their framework to incorporate resampling operations

Meanwhile, we extended our framework as well...

- both frameworks are becoming one
- unifying concept approximate resampling operations
- this captures exactly the following form of Shearer's Lemma...

(ロ) (同) (三) (三) (三) (○) (○)

Shearer's Lemma with lopsided conditioning

Lemma

Let E_1, \ldots, E_n be events with a graph G such that for every E_i and every event F monotonically depending on $(E_i : j \notin \Gamma^+(i))$,

 $\Pr[E_i \mid F] \leq p_i.$

Let $q_{\mathcal{S}}(p_1, \dots, p_n) = \sum_{indep. I \subseteq \mathcal{S}} (-1)^{|I|} \prod_{i \in I} p_i$. If $\forall \mathcal{S} \subseteq [n], q_{\mathcal{S}}(p_1, \dots, p_n) > 0$, then

$$\Pr[\bigcap_{i=1}^{n}\overline{E_{i}}] > 0.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Open questions

• Is there a deterministic algorithm to find $\omega \in \bigcap_{i=1}^{n} \overline{E_i}$?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Can we generate a random sample from $\mu|_{\bigcap_{i=1}^{n} \overline{E_i}}$?