The Lovász Local Lemma: constructive aspects, stronger variants and the hard core model

Jan Vondrák ${ }^{1}$
${ }^{1}$ Dept. of Mathematics
Stanford University

joint work with Nick Harvey (UBC)

The Lovász Local Lemma

Theorem (Symmetric LLL, Lovász ~ 1975)
If E_{1}, \ldots, E_{n} are events on a probability space Ω such that

- Each event is independent of all but d other events
- The probability of each event is at most $\frac{1}{e(d+1)}(e=2.718 .$. then

$$
\operatorname{Pr}\left[\bigcap_{i=1}^{n} \overline{E_{i}}\right]>0 .
$$

"Needle in a haystack" problem:

1. LLL implies that it is possible to avoid all events E_{1}, \ldots, E_{n}
2. but the probability of $\bigcap_{i=1}^{n} \bar{E}_{i}$ could be exponentially small

Example: the r-partite Turán problem

Consider an r-partite graph, at least $\rho\left|V_{i}\right|\left|V_{j}\right|$ edges between every pair $\left(V_{i}, V_{j}\right)$.

Question: at what density ρ must G contain K_{r} ?

Application of the LLL

$X_{i}=$ random vertex in V_{i}
$E_{i j}=$ the event that $\left(X_{i}, X_{j}\right) \notin E$

We want: $\left(X_{1}, \ldots, X_{r}\right)$ such that no event $E_{i j}$ occurs.

Application of the LLL

$X_{i}=$ random vertex in V_{i} $E_{i j}=$ the event that $\left(X_{i}, X_{j}\right) \notin E$

We want: $\left(X_{1}, \ldots, X_{r}\right)$ such that no event $E_{i j}$ occurs.

Parameters: $\quad \operatorname{Pr}\left[E_{i j}\right]=1-\rho, \quad d=2(r-1)$
(dependencies only between $E_{i j}, E_{i^{\prime} j}$ sharing an index).

Application of the LLL

$X_{i}=$ random vertex in V_{i} $E_{i j}=$ the event that $\left(X_{i}, X_{j}\right) \notin E$

We want: $\left(X_{1}, \ldots, X_{r}\right)$ such that no event $E_{i j}$ occurs.

Parameters: $\quad \operatorname{Pr}\left[E_{i j}\right]=1-\rho, \quad d=2(r-1)$
(dependencies only between $E_{i j}, E_{i^{\prime} j}$ sharing an index).
LLL implies: If $\rho \geq 1-\frac{1}{e(2 r-1)}$ then G contains a K_{r}.

Application of the LLL

$X_{i}=$ random vertex in V_{i} $E_{i j}=$ the event that $\left(X_{i}, X_{j}\right) \notin E$

We want: $\left(X_{1}, \ldots, X_{r}\right)$ such that no event $E_{i j}$ occurs.

Parameters: $\quad \operatorname{Pr}\left[E_{i j}\right]=1-\rho, \quad d=2(r-1)$ (dependencies only between $E_{i j}, E_{i^{\prime} j}$ sharing an index).

LLL implies: If $\rho \geq 1-\frac{1}{e(2 r-1)}$ then G contains a K_{r}.
(Roughly correct: There is a graph with $\rho=1-\frac{1}{r-1}$ without a K_{r}.)

The General (asymmetric) Lovász Local Lemma

Theorem (General LLL)
If E_{1}, \ldots, E_{n} are events with a "dependency graph", $\Gamma(i)=$ neighborhood of i, so that

- Each event E_{i} is independent of all the events $E_{j}, j \notin \Gamma(i) \cup\{i\}$
- There are $x_{i} \in(0,1)$ such that

$$
\operatorname{Pr}\left[E_{i}\right] \leq x_{i} \prod_{j \in \Gamma(i)}\left(1-x_{j}\right)
$$

Then

$$
\operatorname{Pr}\left[\bigcap_{i=1}^{n} \overline{E_{i}}\right] \geq \prod_{i=1}^{n}\left(1-x_{i}\right)
$$

(Symmetric variant can be obtained by setting $x_{i}=e \cdot \operatorname{Pr}\left[E_{i}\right]$.)

Shearer's Lemma

("optimal form of the local lemma")
For events E_{1}, \ldots, E_{n} with probabilities p_{1}, \ldots, p_{n} and a dependency graph G, define

$$
q_{S}\left(p_{1}, \ldots, p_{n}\right)=\sum_{\text {indep. } I \subseteq S}(-1)^{|/|} \prod_{i \in I} p_{i}
$$

(alternating-sign independence polynomial of the dependency graph).
Lemma (Shearer 1985)
If $\forall S \subseteq[n], q_{s}\left(p_{1}, \ldots, p_{n}\right)>0$, then

$$
\operatorname{Pr}\left[\bigcap_{i=1}^{n} \overline{E_{i}}\right] \geq q_{[n]}\left(p_{1}, \ldots, p_{n}\right)
$$

(If not, then $\operatorname{Pr}\left[\bigcap_{i=1}^{n} \overline{E_{i}}\right]$ could be 0 .)

Connection with statistical physics

Shearer's Lemma is closely related to the hard core model of repulsive gas in statistical physics.

Model:

particles on a graph G, two particles never adjacent; activity parameters w_{i}.
$\operatorname{Pr}[/] \sim \prod_{i \in I} w_{i}$ if $/$ independent.
Partition function:
$Z(\mathbf{w})=\sum_{\text {indep. }} I \subseteq V \prod_{i \in I} w_{i}$.

Fact: $\log Z(\mathbf{w})$ has an alternating-sign Taylor series around 0 ("Mayer expansion").

Hard core model vs. Shearer's Lemma

[Scott-Sokal 2005] The following are equivalent:

1. Mayer expansion of $\log Z(\mathbf{w})$ is convergent for $\left|w_{i}\right| \leq R_{i}$.
2. $Z(-\lambda \mathbf{R})>0$ for all $0 \leq \lambda \leq 1$.
3. $Z_{S}(-\mathbf{R})>0$ for all subsets of vertices S, where

$$
Z_{S}(\mathbf{w})=\sum_{\text {indep. } I \subseteq S} \prod_{i \in I} w_{i}
$$

Hard core model vs. Shearer's Lemma

[Scott-Sokal 2005] The following are equivalent:

1. Mayer expansion of $\log Z(\mathbf{w})$ is convergent for $\left|w_{i}\right| \leq R_{i}$.
2. $Z(-\lambda \mathbf{R})>0$ for all $0 \leq \lambda \leq 1$.
3. $Z_{S}(-\mathbf{R})>0$ for all subsets of vertices S, where

$$
Z_{S}(\mathbf{w})=\sum_{\text {indep. } I \subseteq S} \prod_{i \in I} w_{i}
$$

Note: $Z_{S}(-\mathbf{p})=q_{S}(\mathbf{p})$ are the quantities in Shearer's Lemma (whose positivity implies that all events can be avoided).

Hard core model vs. Lovász Local Lemma

Let $\Gamma(i)=$ neighborhood of i, and $\Gamma^{+}(i)=\{i\} \cup \Gamma(i)$.
Various sufficient conditions for the convergence of $\log Z(\mathbf{w})$ have been investigated.

- [Dobrushin 1996] If $w_{i} \leq y_{i} / \prod_{j \in \Gamma^{+}(i)}\left(1+y_{j}\right)$ for some $y_{i}>0$, then the Mayer expansion for $\log Z(\mathbf{w})$ converges. Corresponds exactly to the LLL (substitute $y_{i}=\frac{x_{i}}{1-x_{i}}$).

Hard core model vs. Lovász Local Lemma

Let $\Gamma(i)=$ neighborhood of i, and $\Gamma^{+}(i)=\{i\} \cup \Gamma(i)$.
Various sufficient conditions for the convergence of $\log Z(\mathbf{w})$ have been investigated.

- [Dobrushin 1996]

If $w_{i} \leq y_{i} / \prod_{j \in \Gamma^{+}(i)}\left(1+y_{j}\right)$ for some $y_{i}>0$, then the Mayer expansion for $\log Z(\mathbf{w})$ converges.
Corresponds exactly to the LLL (substitute $y_{i}=\frac{x_{i}}{1-x_{i}}$).

- [Fernandez-Procacci 2007]

If $w_{i} \leq y_{i} / \sum_{\text {indep. } I \subseteq \Gamma^{+}(i)} \prod_{i \in I} y_{i}$ for some $y_{i}>0$, then the Mayer expansion for $\log Z(\mathbf{w})$ converges. New criterion - previously unknown to combinatorialists.

The Cluster Expansion Lemma

Theorem (Bissacot-Fernandez-Procacci-Scoppola 2011)
If E_{1}, \ldots, E_{n} are events with a dependency graph G,

- Each event E_{i} is independent of its non-neighbor events.
- There are $y_{i}>0$ such that

$$
\operatorname{Pr}\left[E_{i}\right] \leq \frac{y_{i}}{\sum_{\text {indep. } I \subseteq \Gamma^{+}(i)} \prod_{i \in I} y_{i}}
$$

(To compare: in LLL, we sum up over all subsets $\left.I \subseteq \Gamma^{+}(i).\right)$
Then

$$
\operatorname{Pr}\left[\bigcap_{i=1}^{n} \overline{E_{i}}\right]>0 .
$$

(Analytic Proof.)

Combinatorial proof of Cluster Expansion

[Harvey-V. '15]

Define: $\bar{P}_{S}=\operatorname{Pr}\left[\bigcap_{i \in S} \overline{E_{i}}\right], Y_{S}=\sum_{\text {indep. } I \subseteq S} \prod_{i \in I} y_{i}$. We assume: $\operatorname{Pr}\left[E_{i}\right] \leq y_{i} / Y_{\Gamma^{+}(i)}$.

Combinatorial proof of Cluster Expansion

[Harvey-V. '15]
Define: $\bar{P}_{S}=\operatorname{Pr}\left[\bigcap_{i \in S} \bar{E}_{i}\right], Y_{S}=\sum_{\text {indep. } I \subseteq S} \prod_{i \in I} y_{i}$.
We assume: $\operatorname{Pr}\left[E_{i}\right] \leq y_{i} / Y_{\Gamma+(i)}$.
Recursive bounds:
$\bar{P}_{S}=\operatorname{Pr}\left[\bigcap_{i \in S-a} \bar{E}_{i}\right]-\operatorname{Pr}\left[E_{a} \wedge \bigcap_{i \in S-a} \bar{E}_{i}\right] \geq \bar{P}_{S-a}-p_{a} \bar{P}_{S \backslash \Gamma^{+}(a)}$,
$Y_{T+a}=Y_{T+y_{a}} Y_{T \backslash \Gamma^{+}(a)} \geq Y_{T}+p_{a} Y_{T \cup \Gamma^{+}(a)}$.

Combinatorial proof of Cluster Expansion

[Harvey-V. '15]
Define: $\bar{P}_{S}=\operatorname{Pr}\left[\bigcap_{i \in S} \overline{E_{i}}\right], Y_{S}=\sum_{\text {indep. } I \subseteq S} \prod_{i \in I} y_{i}$.
We assume: $\operatorname{Pr}\left[E_{i}\right] \leq y_{i} / Y_{\Gamma+(i)}$.
Recursive bounds:
$\bar{P}_{S}=\operatorname{Pr}\left[\bigcap_{i \in S-a} \overline{E_{i}}\right]-\operatorname{Pr}\left[E_{a} \wedge \bigcap_{i \in S-a} \overline{E_{i}}\right] \geq \bar{P}_{S-a}-p_{a} \bar{P}_{S \backslash \Gamma^{+}(a)}$,
$Y_{T+a}=Y_{T+y_{a}} Y_{T \backslash \Gamma^{+}(a)} \geq Y_{T}+p_{a} Y_{T \cup \Gamma^{+}(a)}$.
We claim, by induction,

$$
\frac{\bar{P}_{S}}{\bar{P}_{S-a}} \geq \frac{Y_{\bar{S}}}{Y_{\overline{S-a}}}>0
$$

Combinatorial proof of Cluster Expansion

[Harvey-V. '15]
Define: $\bar{P}_{S}=\operatorname{Pr}\left[\bigcap_{i \in S} \bar{E}_{i}\right], Y_{S}=\sum_{\text {indep } . ~}$. $S \prod_{i \in I} y_{i}$.
We assume: $\operatorname{Pr}\left[E_{i}\right] \leq y_{i} / Y_{\Gamma+(i)}$.
Recursive bounds:
$\bar{P}_{S}=\operatorname{Pr}\left[\bigcap_{i \in S-a} \bar{E}_{i}\right]-\operatorname{Pr}\left[E_{a} \wedge \bigcap_{i \in S-a} \bar{E}_{i}\right] \geq \bar{P}_{S-a}-p_{a} \bar{P}_{S \backslash \Gamma^{+}(a)}$,
$Y_{T+a}=Y_{T+Y_{a}} Y_{T \backslash \Gamma^{+}(a)} \geq Y_{T}+p_{a} Y_{T \cup \Gamma^{+}(a)}$.
We claim, by induction,

$$
\frac{\bar{P}_{S}}{\bar{P}_{S-a}} \geq \frac{Y_{\bar{S}}}{Y_{\overline{S-a}}}>0 .
$$

Proof:

$$
\frac{\bar{P}_{S}}{\bar{P}_{S-a}} \geq 1-p_{a} \frac{\bar{P}_{S \backslash \Gamma^{+}(a)}}{\bar{P}_{S-a}} \geq 1-p_{a} \frac{Y_{\bar{S} u \Gamma^{+}(a)}}{Y_{\bar{S}+a}} \geq \frac{Y_{\bar{S}}}{Y_{\overline{S-a}}} .
$$

Hierarchy of the Local Lemmas

Application of Cluster Expansion to r-partite Turán

$X_{i}=$ random vertex in V_{i} $E_{i j}=$ the event that $\left(X_{i}, X_{j}\right) \notin E$

$$
p_{i j}=\operatorname{Pr}\left[E_{i j}\right]=1-\rho .
$$

Dependency graph $G=$ line graph of K_{r}. Neighborhood of $E_{i j}$: two cliques, events incident to i and events incident to j.

$$
\sum_{\text {indep } . ~}^{I \subseteq \Gamma+\left(j_{j}\right)} \prod_{\left(i^{\prime} j^{\prime}\right) \in I} y_{i^{\prime} j^{\prime}} \leq\left(1+\sum_{j^{\prime}=1}^{r} y_{i^{\prime}}\right)\left(1+\sum_{i^{\prime}=1}^{r} y_{i^{\prime} j^{\prime}}\right)=(1+r y)^{2}
$$

Set $y=\frac{1}{r}: \quad \frac{y}{(1+r y)^{2}}=\frac{1}{4 r}$.
(when all $y_{i j}$ equal)
$\Rightarrow G$ always contains a K_{r} for $\rho \geq 1-\frac{1}{4 r}$.

Application of Shearer's Lemma

[Csikváry-Nagy 2012]
$X_{i}=$ random vertex in V_{i}
$E_{i j}=$ the event that $\left(X_{i}, X_{j}\right) \notin E$
$p_{i j}=\operatorname{Pr}\left[E_{i j}\right]=1-\rho$.

Dependency graph $G=$ line graph of K_{r} (events $E_{i j}, E_{i^{\prime} j^{\prime}}$ dependent if they share an index).

Independence polynomial $q(p)$ of G
= matching polynomial of $K_{r}=$ the Hermite polynomial.

Application of Shearer's Lemma

[Csikváry-Nagy 2012]

$$
\begin{array}{r}
X_{i}=\text { random vertex in } V_{i} \\
E_{i j}=\text { the event that }\left(X_{i}, X_{j} \notin E\right. \\
p_{i j}=\operatorname{Pr}\left[E_{i j}\right]=1-\rho .
\end{array}
$$

Dependency graph $G=$ line graph of K_{r} (events $E_{i j}, E_{i^{\prime} j^{\prime}}$ dependent if they share an index).

Independence polynomial $q(p)$ of G
= matching polynomial of $K_{r}=$ the Hermite polynomial.
Roots of $q(p)$ well understood: minimum positive root $\geq \frac{1}{4(r-2)}$.
$\Rightarrow G$ always contains a K_{r} for $\rho \geq 1-\frac{1}{4(r-2)}$.

Tight bound for the r-partite Turán problem?

For K_{3}, the matching polynomial is

$$
q_{3}(p)=1-3 p
$$

Minimum root $p_{0}=1 / 3$.
This implies a K_{3} subgraph for density $\rho \geq 2 / 3$.

Tight bound for the r-partite Turán problem?

For K_{3}, the matching polynomial is

$$
q_{3}(p)=1-3 p .
$$

Minimum root $p_{0}=1 / 3$.
This implies a K_{3} subgraph for density $\rho \geq 2 / 3$.

But this is not tight: [Bondy-Shen-Thomassé-Thomassen 2006]
The optimal density for K_{3} is $\rho^{*}=\frac{-1+\sqrt{5}}{2}$.

Open question: What is the optimal density that guarantees the appearance of K_{r} in an r-partite graph, for $r \geq 4$?
(roughly between $1-\frac{1}{4 r}$ and $1-\frac{1}{2 r}$)

The non-constructive aspect of the LLL

The proof of LLL is essentially non-constructive: $\operatorname{Pr}\left[\bigcap_{i=1}^{n} \overline{E_{i}}\right]$ is proved to be positive, but it could be exponentially small.

How do we find a state $\omega \in \bigcap_{i=1}^{n} \overline{E_{i}}$ efficiently, given an instance where the LLL applies?

The non-constructive aspect of the LLL

The proof of LLL is essentially non-constructive: $\operatorname{Pr}\left[\bigcap_{i=1}^{n} \overline{E_{i}}\right]$ is proved to be positive, but it could be exponentially small.

How do we find a state $\omega \in \bigcap_{i=1}^{n} \bar{E}_{i}$ efficiently, given an instance where the LLL applies?

Example:

Given an r-partite graph on n vertices, density of each pair $\rho \geq 1-\frac{1}{4 r}$. Can you find a K_{r} subgraph in poly (n, r) time?

The Moser-Tardos framework

- Independent random variables X_{1}, \ldots, X_{m}.
- "Bad events" E_{1}, \ldots, E_{n}.
- Event E_{i} depends on variables $\operatorname{var}\left(E_{i}\right)$.
- A dependency graph G :
$i-j$ iff $\operatorname{var}\left(E_{i}\right) \cap \operatorname{var}\left(E_{j}\right) \neq \emptyset$.
- There are $x_{1}, \ldots, x_{n} \in(0,1)$ s.t.
$\forall i ; \operatorname{Pr}\left[E_{i}\right] \leq x_{i} \prod_{j \in \Gamma(i)}\left(1-x_{j}\right)$.
(asymmetric LLL condition)

Moser-Tardos Algorithm:

Start with random variables X_{1}, \ldots, X_{m}. As long as some event E_{i} occurs, resample the variables in $\operatorname{var}\left(E_{i}\right)$.

The Moser-Tardos framework

- Independent random variables X_{1}, \ldots, X_{m}.
- "Bad events" E_{1}, \ldots, E_{n}.
- Event E_{i} depends on variables $\operatorname{var}\left(E_{i}\right)$.
- A dependency graph G :
$i-j$ iff $\operatorname{var}\left(E_{i}\right) \cap \operatorname{var}\left(E_{j}\right) \neq \emptyset$.
- There are $x_{1}, \ldots, x_{n} \in(0,1)$ s.t.
$\forall i ; \operatorname{Pr}\left[E_{i}\right] \leq x_{i} \prod_{j \in \Gamma(i)}\left(1-x_{j}\right)$.
(asymmetric LLL condition)

Moser-Tardos Algorithm:
Start with random variables X_{1}, \ldots, X_{m}. As long as some event E_{i} occurs, resample the variables in $\operatorname{var}\left(E_{i}\right)$.

Theorem (Moser-Tardos '08)
This algorithm finds $\omega \in \bigcap_{i=1}^{n} \overline{E_{i}}$ after $\sum_{i=1}^{n} \frac{x_{i}}{1-x_{i}}$ resampling operations (in expectation).

Beyond independent random variables

The LLL gives interesting applications also in spaces with more structure:

- permutations
- Hamiltonian cycles
- matchings
- trees

Beyond independent random variables

The LLL gives interesting applications also in spaces with more structure:

- permutations
- Hamiltonian cycles
- matchings
- trees

Follow-up work:

- [Kolipaka-Szegedy '11] extension of Moser-Tardos to Shearer's setting.
- [Haris-Srinivasan '14] handle applications with random permutations.
- [Achlioptas-lliopoulos ' ${ }^{14}$] general approach based on random walks; handle Hamiltonian cycles, matchings.

"Algorithmic proof" of the LLL?

We would like to have:

- given a probability space with events satisfying the LLL conditions, a (randomized) procedure that quickly finds $\omega \in \bigcap_{i=1}^{n} \overline{E_{i}}$.

Our Main Result

"Algorithmic proof" of Shearer's Lemma:

- Arbitrary probability space Ω.
- Events E_{1}, \ldots, E_{n} with a dependency graph G.
- Each E_{i} independent of non-neighbors (or more generally, "positively associated" with non-neighbors)
- $p_{i}=(1+\epsilon) \operatorname{Pr}\left[E_{i}\right]$ satisfy Shearer's conditions.

Our Main Result

"Algorithmic proof" of Shearer's Lemma:

- Arbitrary probability space Ω.
- Events E_{1}, \ldots, E_{n} with a dependency graph G.
- Each E_{i} independent of non-neighbors (or more generally, "positively associated" with non-neighbors)
- $p_{i}=(1+\epsilon) \operatorname{Pr}\left[E_{i}\right]$ satisfy Shearer's conditions.

Theorem (Harvey-V. '15)

There is a randomized procedure which finds $\omega \in \bigcap_{i=1}^{n} \overline{E_{i}}$ under these assumptions after $O\left(\frac{n}{\epsilon} \log \frac{1}{\epsilon}\right)$ "resampling operations" w.h.p.

Resampling operations

Assume a space Ω with a probability measure μ, and events E_{1}, \ldots, E_{n} with a neighborhood structure denoted $\Gamma(i)$.

Definition: A resampling operation r_{i} for event E_{i} is a random $r_{i}(\omega) \in \Omega$ for each $\omega \in \Omega$, such that

1. If ω has distribution μ conditioned on $E_{i} \Rightarrow r_{i}(\omega)$ has distribution μ. (removes conditioning on E_{i})
2. If $k \notin \Gamma^{+}(i)$ and $\omega \notin E_{k} \Rightarrow r_{i}(\omega) \notin E_{k}$.
(does not cause non-neighbor events)

Why should resampling operations exist?

Lemma (Harvey-V. '15)
Resampling operations for events E_{1}, \ldots, E_{n} w.r.t. G exist whenever each E_{i} is independent of its non-neighbor events.

Why should resampling operations exist?

Lemma (Harvey-V. '15)
Resampling operations for events E_{1}, \ldots, E_{n} w.r.t. G exist whenever each E_{i} is independent of its non-neighbor events.

More generally: Resampling operations exist if and only if each E_{i} is "positively associated" with its non-neighbor events:

$$
\mathbb{E}\left[Z \mid E_{i}\right] \geq \mathbb{E}[Z]
$$

for every monotonic function Z of $\left(E_{j}: j \notin \Gamma^{+}(i)\right)$.
Remark:
necessary to handle permutations and matchings; not for trees.

The algorithm

Our algorithm:

Sample ω from μ.
While any violated events exist, repeat:

- $J \leftarrow \emptyset$
- As long as $\exists j \notin \Gamma^{+}(J), E_{j}$ occurs
$\omega \leftarrow r_{j}(\omega), \quad$ (resample E_{i})
$J \leftarrow J \cup\{j\}$
\}

Note: In each iteration we resample an independent set of events J. In the next iteration, all violated events are in $\Gamma^{+}(J)=J \cup \Gamma(J)$. $(\Gamma(J)=$ neighbors of J in the dependency graph G)

Analysis of our algorithm

Def.: $\operatorname{Stab}=\left\{\left(I_{1}, I_{2}, \ldots, I_{t}\right): I_{i} \in \operatorname{Ind}(G) \backslash\{\emptyset\}, I_{i+1} \subseteq \Gamma^{+}\left(I_{i}\right)\right\}$.
Coupling lemma: The probability that the algorithm resamples a sequence of independent sets $\left(l_{1}, l_{2}, \ldots, l_{t}\right) \in S t a b$ is at most

$$
\begin{aligned}
& p\left(l_{1}, \ldots, l_{t}\right)=\prod_{s=1}^{t} \prod_{i \in I_{s}} p_{i} \quad\left(p_{i}=\operatorname{Pr}_{\mu}\left[E_{i}\right]\right), \\
& \mathbb{E}[\# \text { iterations }] \leq \sum_{t=0}^{\infty} \sum_{\left(l_{1}, \ldots, l_{t}\right) \in S \operatorname{Stab}} p\left(l_{1}, \ldots, l_{t}\right) .
\end{aligned}
$$

Analysis of our algorithm

Def.: $\operatorname{Stab}=\left\{\left(I_{1}, I_{2}, \ldots, I_{t}\right): I_{i} \in \operatorname{Ind}(\mathrm{G}) \backslash\{\emptyset\}, I_{i+1} \subseteq \Gamma^{+}\left(I_{i}\right)\right\}$.
Coupling lemma: The probability that the algorithm resamples a sequence of independent sets $\left(l_{1}, l_{2}, \ldots, l_{t}\right) \in S t a b$ is at most

$$
\begin{aligned}
& p\left(l_{1}, \ldots, I_{t}\right)=\prod_{s=1}^{t} \prod_{i \in I_{s}} p_{i} \quad\left(p_{i}=\operatorname{Pr}_{\mu}\left[E_{i}\right]\right), \\
& \mathbb{E}[\# \text { iterations }] \leq \sum_{t=0}^{\infty} \sum_{\left(l_{1}, \ldots, l_{t}\right) \in S t a b} p\left(l_{1}, \ldots, I_{t}\right) .
\end{aligned}
$$

Summation identity: [Kolipaka-Szegedy '11] If Shearer's conditions are satisfied, then

$$
\sum_{t=0}^{\infty} \sum_{\left(l_{1}, \ldots, l_{t}\right) \in S \operatorname{Stab}} p\left(l_{1}, \ldots, l_{t}\right)=\frac{1}{q\left(p_{1}, \ldots, p_{n}\right)}
$$

where $q\left(p_{1}, \ldots, p_{n}\right)=\sum_{l \in \operatorname{lnd}}(-1)^{|/|} \prod_{i \in I} p_{i}$.

Analysis with slack

Conditions with slack: Suppose $p_{i}^{\prime}=(1+\epsilon) p_{i}$ and $q_{s}\left(p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{n}^{\prime}\right)>0 \forall S \subseteq[n]$. Then
$\operatorname{Pr}[\#$ iterations $\geq t] \leq \sum_{\left(I_{1}, l_{2}, \ldots, l_{t}\right) \in S t a b} p\left(I_{1}, \ldots, I_{t}\right) \leq \frac{e^{-\epsilon t}}{q\left(p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right)}$.
We also prove: under an ϵ slack, $q\left(p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right) \geq \epsilon^{n}$.

Analysis with slack

Conditions with slack: Suppose $p_{i}^{\prime}=(1+\epsilon) p_{i}$ and $q_{s}\left(p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{n}^{\prime}\right)>0 \forall S \subseteq[n]$. Then
$\operatorname{Pr}[\#$ iterations $\geq t] \leq \sum_{\left(I_{1}, l_{2}, \ldots, l_{t}\right) \in S t a b} p\left(I_{1}, \ldots, I_{t}\right) \leq \frac{e^{-\epsilon t}}{q\left(p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right)}$.
We also prove: under an ϵ slack, $q\left(p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right) \geq \epsilon^{n}$.

Corollary:

With high prob., the algorithm stops within $O\left(\frac{n}{\epsilon} \log \frac{1}{\epsilon}\right)$ iterations.

Automatic slack for LLL conditions

Lemma (Harvey-V. '15)
If $p_{i} \leq x_{i} \prod_{j \in \Gamma^{+}(i)}\left(1-x_{j}\right)$ then for $p_{i}^{\prime}=\left(1+\frac{1}{2 \sum_{i=1}^{n} \frac{x_{i}}{1-x_{i}}}\right) p_{i}$,

$$
q_{S}\left(p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right) \geq \frac{1}{2} \prod_{i \in S}\left(1-x_{i}\right) .
$$

I.e., when the LLL conditions are tight, there is still a slack of

$$
\epsilon=\frac{1}{2 \sum_{i=1}^{n} \frac{x_{1}}{1-x_{i}}}
$$

w.r.t. Shearer's conditions.

Corollary:
$\mathbb{E}[\#$ iterations $]=O\left(\left(\sum_{i=1}^{n} \frac{x_{i}}{1-x_{i}}\right)^{2}\right)$ under LLL conditions.

The latest news

[Achlioptas-lliopoulos '14]:

- do not draw a formal connection with LLL;
- on the other hand claim to go beyond the LLL in some ways (orthogonal to Shearer's extension);
- neither framework subsumes the other.

Update: [Achlioptas-Iliopoulos '16], [Kolmogorov '16]

- extended their framework to incorporate resampling operations

Meanwhile, we extended our framework as well...

- both frameworks are becoming one
- unifying concept - approximate resampling operations
- this captures exactly the following form of Shearer's Lemma...

Shearer's Lemma with lopsided conditioning

Lemma
Let E_{1}, \ldots, E_{n} be events with a graph G such that for every E_{i} and every event F monotonically depending on ($E_{j}: j \notin \Gamma^{+}(i)$),

$$
\operatorname{Pr}\left[E_{i} \mid F\right] \leq p_{i} .
$$

Let $q_{s}\left(p_{1}, \ldots, p_{n}\right)=\sum_{\text {indep. } I \subseteq s(-1)^{|l|}} \prod_{i \in I} p_{i}$.
If $\forall S \subseteq[n], q_{S}\left(p_{1}, \ldots, p_{n}\right)>0$, then

$$
\operatorname{Pr}\left[\bigcap_{i=1}^{n} \overline{E_{i}}\right]>0 .
$$

Open questions

- Is there a deterministic algorithm to find $\omega \in \bigcap_{i=1}^{n} \bar{E}_{i}$?
- Can we generate a random sample from $\left.\mu\right|_{\bigcap_{i=1}^{n}} \bar{E}_{i}$?

