
Submodular Optimization in the MapReduce
Model
Paul Liu and Jan Vondrak
Stanford University, USA
{paulliu, jvondrak}@stanford.edu

Abstract
Submodular optimization has received significant attention in both practice and theory, as a
wide array of problems in machine learning, auction theory, and combinatorial optimization have
submodular structure. In practice, these problems often involve large amounts of data, and must
be solved in a distributed way. One popular framework for running such distributed algorithms
is MapReduce. In this paper, we present two simple algorithms for cardinality constrained
submodular optimization in the MapReduce model: the first is a (1/2− o(1))-approximation in
2 MapReduce rounds, and the second is a (1 − 1/e − ε)-approximation in 1+o(1)

ε MapReduce
rounds.

2012 ACM Subject Classification Theory of computation → MapReduce algorithms; Dis-
tributed computing models; Algorithm design techniques; Submodular optimization and poly-
matroids

Keywords and phrases mapreduce, submodular, optimization, approximation algorithms

Digital Object Identifier 10.4230/OASIcs.SOSA.2019.18

1 Introduction

Let f : 2V → R+ be a function satisfying f(A ∪ {e}) − f(A) ≥ f(B ∪ {e}) − f(B) for all
A ⊆ B and e /∈ B. Such a function is called submodular. When f satisfies the additional
property f(A ∪ {e})− f(A) ≥ 0 for all A and e /∈ A, we say f is monotone.

Many combinatorial optimization problems can be cast as submodular optimization
problems. Such problems include classics such as max cut, min cut, maximum coverage,
and minimum spanning tree [6]. Although submodular optimization encompasses several
NP-Hard problems, well-known greedy approximation algorithms are known [11]. We focus
on the special case of monotone submodular maximization under a cardinality constraint k,
i.e.

OPT := max
S⊆V,|S|≤k

f(S), f is monotone.

In particular, it is known that one can approximate a cardinality constrained monotone
submodular maximization problem to a factor of 1− 1/e of optimal.

Due to rapidly growing datasets, recent focus has been on submodular optimization in
distributed models [1, 3, 4, 5, 8, 10]. In this work, we focus on the MapReduce model, where
complexity is measured as the number of synchronous communication rounds between the
machines involved. The current state of the art for cardinality constrained submodular
maximization is the algorithm of Barbosa et al. [5], which achieves a 1/2− ε approximation
in 2 rounds and was the first to achieve a 1− 1/e− ε approximation in O

(1
ε

)
rounds. Both

algorithms actually require significant duplication of the ground set (each element being
sent to Ω(1

ε) machines). Since this might be an issue in practice, [5] mentions that without
duplication, the two algorithms could be implemented in O(1

ε log 1
ε) and O(1

ε2) rounds,
© Paul Liu and Jan Vondrak;
licensed under Creative Commons License CC-BY

2nd Symposium on Simplicity in Algorithms (SOSA 2019).
Editors: Jeremy Fineman and Michael Mitzenmacher; Article No. 18; pp. 18:1–18:10

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:\protect \T1\textbraceleft paulliu, jvondrak\protect \T1\textbraceright @stanford.edu
http://dx.doi.org/10.4230/OASIcs.SOSA.2019.18
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

18:2 Submodular Optimization in the MapReduce Model

respectively. Earlier, Mirrokni and Zadimoghaddam [10] gave a 0.27-approximation in 2
rounds without duplication and a 0.545-approximation with Θ(1

ε log 1
ε) duplication.

Our contribution. We focus on the most practical regime of MapReduce algorithms for
cardinality constrained submodular maximization, which is a small constant number of
rounds and no duplication of the dataset. To our knowledge, the 0.27-approximation of [10]
has been the best result in this regime so far.

We describe a simple thresholding algorithm which achieves the following: In 2 rounds
of MapReduce, with one random partitioning of the dataset (no duplication), we obtain a
(1/2− ε)-approximation. In 4 rounds, we obtain a 5/9-approximation. More generally, in 2t
rounds, we obtain a (1− (1− 1

t+1)t − ε)-approximation, which we show to be optimal for
this type of algorithm. Crucially, the parameter ε does not affect the number of rounds, and
only mildly affects the memory (in that ε can be taken to Õ(

√
k/n) without asymptotically

increasing the memory).
Our algorithm is inspired by the work of Kumar et al. [8] and McGregor-Vu [9] in the

streaming setting. It is also similar to a recent algorithm of Assadi-Khanna [2], who study
the communication complexity of the maximum coverage problem. As such, our algorithm is
not particularly novel, but we believe that our analysis of its performance in the MapReduce
model is, thus simplifying and improving the previous work of [5] and [10].
Open question. The most intriguing remaining question in our opinion (for the cardinality
constrained submodular problem) is whether Θ(1/ε) rounds are necessary to achieve a
(1− 1/e− ε)-approximation. So far there is no evidence that a (1− 1/e)-approximation in a
constant number of rounds is impossible.

1.1 The MapReduce Model

There are many variants of MapReduce models, and algorithms between the different models
are largely transferable. We use a variant of theMRC model of Karloff et al. [7]. In this
model, an input of size N is distributed across O(Nδ) machines, each with O(N1−δ) memory.
We relax the model slightly, and allow one central machine to have memory slightly expanded
to Õ(N1−δ).

Computation then proceeds in a sequence of synchronous communication rounds. In
each round, each machine receives an input of size O(N1−δ). Each machine then performs
computations on that input, and produces output messages which are delivered to other
machines (specified in the message) as input at the start of the next round. The total size of
these output messages must also be O(N1−δ) per machine. We refer the reader to the work
of Karloff et al. [7] for additional details.

In our applications, we assume the input is a set of elements V and a cardinality parameter
k. Each machine has an oracle that allows it to evaluate f . Under these constraints, we
assume that each machine has memory O(

√
nk) (except for a single ‘central’ machine with

O(
√
nk log k) memory) and that there are

√
n/k machines in total.

2 A thresholding algorithm for submodular maximization

In the following algorithms, let f : 2V → R+ be a monotone submodular function, n = |V |,
and fS(e) = f(S ∪{e})− f(S). We refer to fS(e) as the marginal of e with respect to S. Let
k be the maximum cardinality of the solution, and m =

√
n/k be the number of machines.

P. Liu and J. Vondrak 18:3

Algorithm 1: ThresholdGreedy(S,G, τ)
Input: An input set S, a partial greedy solution G with |G| ≤ k, and a threshold τ .
Output: A set G′ ⊇ G such that fG′(e) < τ for all e ∈ S if |G| < k or f(G) ≥ τk.
G′ ← G

for e ∈ S do
if fG′(e) ≥ τ and |G′| < k then G′ ← G′ ∪ {e}

return G′

Algorithm 2: ThresholdFilter(S,G, τ)
Input: An input set S, a partial greedy solution G, and a threshold τ .
Output: A set S′ ⊆ S such that fG(e) ≥ τ for all e ∈ S′.
S′ ← S

for e ∈ S do
if fG(e) < τ then S′ ← S′ \ {e}

return S′

2.1 A 1/2− o(1) approximation in 2 rounds
First, we present a simple 1/2-approximation in 2 rounds, assuming we know the exact value
of OPT . We will relax this assumption later. The algorithm requires two helper functions
ThresholdGreedy and ThresholdFilter, which forms the basis of all of our algorithms.
Roughly speaking, ThresholdGreedy greedily adds to a set of elements while there exists
an element of high marginal in the input set. ThresholdFilter filters elements of low
marginal out of the input set.

We define an additional function PartitionAndSample which simply initializes all of
our algorithms by partitioning the input set randomly and drawing a random sample from it.

Algorithm 3: PartitionAndSample(V)
S ← sample each e ∈ V with probability p = 4

√
k/n

partition V randomly into sets V1, V2, . . . Vm to the m machines (one set per machine)
send S to each machine and a central machine C

Using these three helper algorithms, our approximation algorithm is quite easy to
implement, and can be found in Algorithm 4.

I Lemma 1. The approximation ratio of Algorithm 4 is at least 1/2.

Proof. The following lemma is folklore, but we present it for completeness.
First, we note that G0 is the same on each machine so long as the loop iterating through

S is done in a fixed order. We assume that this is the case. From this, it is clear that
Algorithm 4 returns a set G for which fG(e) < OPT

2k for any e ∈ V .
Let G be the set returned at the end of the algorithm. Either |G| = k, or there is no

e ∈ V for which the marginal with respect to G is greater than OPT/2. In the former case,

1 Note that S and the Vi are not stored on one machine by PartitionAndSample. We simply use the
assignment to denote that the variables have been initialized and sent to their respective machines.

SOSA 2019

18:4 Submodular Optimization in the MapReduce Model

Algorithm 4: A simple 2-round 1/2 approximation, assuming OPT is known.
round 1:
S, V1, . . . , Vm ← PartitionAndSample(V)1
on each machine Mi (in parallel) do

τ ← OPT
2k

G0 ← ThresholdGreedy (S, ∅, τ)
if |G0| < k then Ri ← ThresholdFilter (Vi, G0, τ)
else Ri ← ∅
send Ri to a central machine C

round 2 (only on C):
compute G0 from S as in first round
G← ThresholdGreedy (∪iRi, G0, τ)
return G

we have k elements of value at least OPT
2k so we are done. In the latter case, let O be the

optimal solution. By monotonicity and submodularity,

OPT = f(O) ≤ f(O ∪G) ≤ f(G) +
∑

e∈O\G

fG(e) ≤ f(G) + k · OPT2k . J

Lemma 1 shows that the algorithm is correct. Each machine in round 1 clearly uses
O(
√
nk) memory. It remains to bound the memory of the central machine in round 2.

I Lemma 2. With probability 1− e−Ω(k), the number of elements sent to the central machine
C has cardinality at most

√
nk.

Proof. The expected number of elements in S is 4
√
nk. By a Chernoff bound (Theorem 9)

the probability that |S| < 3
√
nk is at most e−Ω(

√
nk) ≤ e−Ω(k). So we can assume that

|S| ≥ 3
√
nk. Let NS denote the number of elements of marginal at least OPT/(2k) with

respect to G0. The number of elements sent to C in round two is exactly NS + |S|.
Consider breaking the sample set S into 3k blocks of size

√
n/k and processing each block

sequentially. If before each block, there are at least
√
nk remaining elements of marginal

value at least OPT/(2k), we have probability at least 1−
(

1−
√

k
n

)√n
k

> 1/2 of adding an

additional element to G0. This happens conditioned on any prior history of the algorithm,
since we can imagine that the blocks are sampled independently one at a time. Therefore, we
can use a martingale argument to bound the number of elements selected in S. If Xi is the
indicator random variable for the event that at least one element is selected from the i-th
block, then we have E[Xi | X1, . . . , Xi−1] ≥ 1/2. Hence we can define Yi =

∑i
j=1(Xi − 1/2)

and the sequence Y1, Y2, . . . is a submartingale, which means E[Yi | Y1, . . . , Yi−1] ≥ Yi−1.
Moreover, |Yi − Yi−1| ≤ 1. By Azuma’s inequality (Theorem 10), Pr[Y3k < − 1

2k] < e−Ω(k).
This means that with probability 1− e−Ω(k),

∑3k
j=1Xj = Y3k + 3

2k ≥ k, and we include at
least k elements overall. In that case, we are done and do not send anything to the central
machine. Otherwise, the number of remaining elements of marginal value at least OPT/(2k)
drops below

√
nk. J

Remaining issues. Since we do not know the exact value of OPT , we will need to guess
the value within a factor of ε without increasing the number of rounds. This will increase
memory usage on the central machine by a factor of 1

ε log k. To do this, we classify the inputs

P. Liu and J. Vondrak 18:5

into two classes: when the input contains more than
√
nk elements of value at least OPT

2k ,
and when there are less than

√
nk such elements. We call the former class of inputs “dense”

and the latter class “sparse”. For each input class, we design a 1/2-approximation in 2 rounds.
Given the input, we can run both in parallel and return the better of the two solutions: each
machine simply runs both algorithms at the same time, keeping the number of machines the
same. The full analysis is given in the Appendix, but we outline the algorithms below.

A 2-round algorithm for “dense” inputs

Let v be the maximum value of a single element of the random sample S in Algorithm 4.
When the input is dense, v is likely to be at least OPT

2k and at most OPT . A straightforward
analysis shows that τj := v(1 + ε)j is within a (1 + ε) multiplicative factor of OPT/2 for
some j ∈ {1, . . . , 1

ε log k}. Running Algorithm 4 with τj instead of OPT/2 produces an
approximation of value at least OPT

2(1+ε) >
OPT

2 (1 − ε). Thus if each machine runs 1
ε log k

copies of Algorithm 4, the best solution must have value at least OPT
2 (1− ε).

A 2-round algorithm for “sparse” inputs

Call an element e “large” if f(e) ≥ OPT
2k . The algorithm simply sends all the large elements

of the input onto one machine and then runs a sequential algorithm in the second round. To
get all the large elements onto one machine, we randomly partition the input set onto the m
machines, and then send the O(k) largest elements on each machine to the central machine.
On the central machine, we can run the same thresholding procedure as in the “dense” case
to find a threshold close to OPT/(2k). We then run a sequential version of Algorithm 4.

In both the algorithms, ε can be taken to Õ(
√
k/n) without asymptotically increasing

the memory, so we have a (1/2− o(1)-approximation.

2.2 A 1−
(
1− 1

t+1

)t
approximation in 2t rounds

Here we show how our algorithm extends to t thresholds. The number of MapReduce rounds
becomes 2t+2. This can be reduced to 2t using tricks similar to Section 2.1, but we omit this
here. The approximation factor with t thresholds is 1− (1− 1

t+1)t, which converges to 1−1/e.
We note that we need Θ(1/ε) rounds to obtain a (1 − 1/e − ε)-approximation, similar to
Barbosa et al. [5], but in contrast we do not need any duplication of the ground set. Barbosa
et al. does not specify the constant factor in Θ(1/ε) but it seems that our dependence is better;
a calculation yields that we need (1 + o(1))/ε rounds to get a (1− 1/e− ε)-approximation.

For now, we assume (as in Algorithm 4) that we know the exact value of OPT . We deal
with this assumption later. In a nutshell our algorithm works just like Algorithm 1 but with
multiple thresholds used in a sequence. We set the threshold values as follows:

α` =
(

1− 1
t+ 1

)`
OPT

k

for 1 ≤ ` ≤ t. (Note that for t = 1, we get α1 = OPT
2k as in Algorithm 1.) For each threshold,

we first select elements above the threshold from a random sample set, and then use this
partial solution to prune the remaining elements. Finally, the solution at this threshold is
completed on a central machine, and we proceed to the next threshold. The full description
of the algorithm is presented in Algorithm 5. The analysis is as follows.

I Lemma 3. The approximation ratio of Algorithm 5 is at least 1−
(

1− 1
t+1

)t
.

SOSA 2019

18:6 Submodular Optimization in the MapReduce Model

Proof. By induction, we prove the following statement: The value of the first `
tk elements

selected by the algorithm is at least (1− (1− 1
t+1)`)OPT . (If `tk is not an integer, we count

the marginal value of the d `kke-th selected element weighted by its respective fraction.)
Clearly this is true for ` = 0. Assume that the claim is true for `− 1. We consider two

cases.
Either all the elements among the first d `tke are selected above the α` threshold. This

means that since the value of the first `−1
t k elements was at least (1− (1− 1

t+1)`−1)OPT ,
and the marginal value of each additional element is at least α`, the total value of the first
`
kOPT (with fractional elements counted appropriately) is at least(

1−
(

1− 1
t+ 1

)`−1
)
OPT + 1

t
·
(

1− 1
t+ 1

)`
OPT =

(
1−

(
1− 1

t+ 1

)`)
OPT.

The other case is that not all these elements are selected above the α` threshold, which
means that if we denote by S` the set of the first b `tkc selected elements, then there are no
elements with marginal value more than α` with respect to S`. But then for the optimal
solution O, we get

OPT − f(S`) ≤ fS`
(O) ≤ kα` =

(
1− 1

t+ 1

)`
OPT

which means that f(S`) ≥ (1− (1− 1
t+1)`)OPT.

For ` = t, we obtain the statement of the lemma. J

The probabilistic analysis of the number of pruned elements that need to be sent to the
central machine is exactly the same as in Section 2.1. The requirement of knowing OPT
can be also handled in the same way — we can use an extra initial round to determine the
maximum-value element on the input, which gives us an estimate of the optimum within
a factor of k. Then we can try O(1

ε log k) different estimates of OPT to ensure that one
of them is within a relative error of 1 + ε of the correct value. Finally, we use an extra
final round to choose the best of the solutions that we found for different estimates of OPT .
Alternatively, we can use additional tricks as in Section 2.1 to eliminate these 2 extra rounds,
but we omit the details here.

Algorithm 5: A 2t-round 1−
(

t
t+1

)t
approximation, assuming OPT is known.

G← ∅
for ` = 1, . . . t do

round 2`− 1:
S, V1, . . . , Vm ← PartitionAndSample(V)
on each machine Mi (in parallel) do

G0 ← ThresholdGreedy (S,G, α`)
if |G0| < k then Ri ← ThresholdFilter (Vi, G0, α`)
else Ri ← ∅
send Ri to a central machine C

round 2` (only on C):
compute G0 from S as in first round
G← ThresholdGreedy (∪iRi, G0, α`)

return G

P. Liu and J. Vondrak 18:7

3 Optimality of our choice of thresholds

Here we present a proof that there is no way to modify the thresholding algorithm and
achieve a better approximation factor with a different choice of thresholds.

I Theorem 4. The thresholding algorithm with t thresholds cannot achieve a factor better
than 1−

(
1− 1

t+1

)t
.

Proof. Assume that the optimum O consists of k elements of total value kv∗. Since we
are proving a hardness result, we can assume that the algorithm has this information and
we can even let it choose v∗; in the following, we denote this choice v∗ = α0. In addition,
the algorithm chooses thresholds α1 ≥ α2 ≥ . . . ≥ αt. It might be the case that α0 < α1,
but then we can ignore all the thresholds above α0 and design our hard instance based on
the thresholds below α0, which would reduce to a case with fewer thresholds. Thus we can
assume α0 ≥ α1 ≥ . . . ≥ αt.

We design an adversarial instance as follows. In addition to the k elements of value v∗,
we have a set S of other elements where element i has value vi, such that

∑
i∈S vi ≤ kv∗.

The objective function is defined as follows: for O′ ⊆ O and S′ ⊆ S,

f(S′ ∪O′) =
∑
i∈S′

vi +
(

1−
∑
i∈S′ vi

kv∗

)
|O′|v∗.

It is easy to verify that this is a monotone submodular function. (It can be realized as a
coverage function, which we leave as an exercise.)

Now we specify more precisely the values of elements in S. We will have n` elements
of value α`, for each 1 ≤ ` ≤ t. The idea is that the algorithm will pick these n` elements
at threshold value α`, at which point the marginal value of the optimal elements drops
below α`, so we have to move on to the next threshold. A computation yields that we
should have n` = (α`−1

α`
− 1)k.2 The total value of these elements is

∑
i∈S vi =

∑t
`=1 n`α` =∑t

`=1(α` − α`−1)k = (α0 − αt)k ≤ v∗k as required above.
Then, assuming that the marginal value of the optimum after processing `− 1 thresholds

was α`−1k, the marginal value after processing the `-th threshold will be α`−1k−n`α` = α`k.
By induction, the algorithm selects exactly n` elements of value α`, unless the constraint of k
selected elements is reached. Let us denote by n′` the actual number of elements selected by
the algorithm at threshold level α`. We have n′` ≤ n`, and

∑t
`=1 n

′
` ≤ k, as discussed above.

The total value collected by the algorithm is
∑t
`=1 n

′
`α`. Since we have n′` ≤ n` =

(α`−1
α`
− 1)k, and α` ≤ α`−1, we can define inductively α′0 = α0 and α′` ≥ α` such that

n′` = (α
′
`−1
α′

`
− 1)k. Then the total value collected by the algorithm is

t∑
`=1

n′`α` ≤
t∑
`=1

n′`α
′
` =

t∑
`=1

(α′`−1 − α′`)k = (α′0 − α′t)k.

Let us denote β′` = α′`−1
α′

`
. We have

∑t
`=1(β′` − 1) = 1

k

∑t
`=1 n

′
` ≤ 1, hence

∑t
`=1 β

′
` ≤

t + 1. Recall that the value achieved by the algorithm is
∑t
`=1 n

′
`α` ≤ (α′0 − α′t)k =

(1− 1/
∏t
`=1 β

′
`)v∗k. By the AMGM inequality,

∏t
`=1 β

′
` is maximized subject to

∑t
`=1 β

′
` ≤

t + 1 when all the β′` are equal, β′` = t+1
t . Then, the value achieved by the algorithm is

(1− 1/
∏t
`=1 β

′
`)v∗k = (1− (t

t+1)t)OPT . J

2 We ignore the issue that n` might not be an integer. For large k, it is easy to see that the rounding
errors are negligible.

SOSA 2019

18:8 Submodular Optimization in the MapReduce Model

References

1 Sepehr Assadi and Sanjeev Khanna. Randomized composable coresets for matching and
vertex cover. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
2017.

2 Sepehr Assadi and Sanjeev Khanna. Tight bounds on the round complexity of the distrib-
uted maximum coverage problem. In Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10,
2018, pages 2412–2431, 2018. URL: https://doi.org/10.1137/1.9781611975031.155,
doi:10.1137/1.9781611975031.155.

3 Eric Balkanski, Adam Breuer, and Yaron Singer. Non-monotone submodular maximization
in exponentially fewer iterations. CoRR, abs/1807.11462, 2018. URL: http://arxiv.org/
abs/1807.11462, arXiv:1807.11462.

4 Eric Balkanski, Aviad Rubinstein, and Yaron Singer. An exponential speedup in par-
allel running time for submodular maximization without loss in approximation. CoRR,
abs/1804.06355, 2018. URL: http://arxiv.org/abs/1804.06355, arXiv:1804.06355.

5 Rafael da Ponte Barbosa, Alina Ene, Huy L. Nguyen, and Justin Ward. A new frame-
work for distributed submodular maximization. In Proceedings of the IEEE 57th Annual
Symposium on Foundations of Computer Science, 2016.

6 Satoru Fujishige. Submodular functions and optimization, volume 58. Elsevier, 2005.

7 Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for
MapReduce. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pages 938–948, 2010. doi:10.1137/1.9781611973075.76.

8 Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskii, and Andrea Vattani. Fast greedy
algorithms in MapReduce and streaming. TOPC, 2(3):14:1–14:22, 2015. doi:10.1145/
2809814.

9 Andrew McGregor and Hoa T. Vu. Better streaming algorithms for the maximum coverage
problem. In 20th International Conference on Database Theory, ICDT 2017, March 21-
24, 2017, Venice, Italy, pages 22:1–22:18, 2017. URL: https://doi.org/10.4230/LIPIcs.
ICDT.2017.22, doi:10.4230/LIPIcs.ICDT.2017.22.

10 Vahab S. Mirrokni and Morteza Zadimoghaddam. Randomized composable core-sets for dis-
tributed submodular maximization. In ACM Symposium on Theory of Computing (STOC),
pages 153–162, 2015.

11 George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An analysis of ap-
proximations for maximizing submodular set functions - I. Math. Program., 14(1):265–294,
1978. URL: https://doi.org/10.1007/BF01588971, doi:10.1007/BF01588971.

12 Martin Raab and Angelika Steger. “balls into bins” — a simple and tight analysis. In Mi-
chael Luby, José D. P. Rolim, and Maria Serna, editors, Randomization and Approximation
Techniques in Computer Science, pages 159–170, Berlin, Heidelberg, 1998. Springer Berlin
Heidelberg.

https://doi.org/10.1137/1.9781611975031.155
http://dx.doi.org/10.1137/1.9781611975031.155
http://arxiv.org/abs/1807.11462
http://arxiv.org/abs/1807.11462
http://arxiv.org/abs/1807.11462
http://arxiv.org/abs/1804.06355
http://arxiv.org/abs/1804.06355
http://dx.doi.org/10.1137/1.9781611973075.76
http://dx.doi.org/10.1145/2809814
http://dx.doi.org/10.1145/2809814
https://doi.org/10.4230/LIPIcs.ICDT.2017.22
https://doi.org/10.4230/LIPIcs.ICDT.2017.22
http://dx.doi.org/10.4230/LIPIcs.ICDT.2017.22
https://doi.org/10.1007/BF01588971
http://dx.doi.org/10.1007/BF01588971

P. Liu and J. Vondrak 18:9

Algorithm 6: A 1/2− ε approximation in 2 rounds for “dense” inputs.
round 1:
S, V1, . . . , Vm ← PartitionAndSample(V)
on each machine Mi (in parallel) do

v ← maxe on Mi
f({e})

for j = 1, . . . , 1
ε log k do

τj ← v(1 + ε)j/k
G0,j ← ThresholdGreedy (S, ∅, τj)
if |G0,j | < k then Ri,j ← ThresholdFilter (Vi, G0,j , τj)
else Ri,j ← ∅

send all Ri,j to a central machine C
round 2 (only on C):
compute v, τj , and G0,j from S as in first round
for j = 1, . . . , 1

ε log k do
Gj ← ThresholdGreedy (∪iRi,j , G0,j , τj)

G? = argmaxGj
f(Gj)

return G?

A Appendix

In Algorithm 6, we design a 2-round 1/2− ε approximation for “dense” inputs.

I Lemma 5. Algorithm 6 returns a 1/2− ε approximation.

Proof. Note that Algorithm 6 essentially runs Algorithm 4 with O(1
ε log k) guesses for OPT/2.

To get a 1/2− ε approximation, one of these guesses needs to be within a multiplicative factor
of 1+ε from OPT

2k . By the denseness assumption on the input, we know OPT
2k ≤ v ≤ OPT with

high probability. Suppose we try j = 1, . . . , ` for some number of thresholds `. For one of the
τj ’s to be within a multiplicative factor of 1+ ε from OPT

2k , we require v(1+ ε)`/k < OPT
2k < v.

The upper bound is already satisfied by the denseness assumption, and the lower bound is
achieved by taking ` for which ` ≥ log

(
OPT

2kv log(1+ε)

)
≥ 1

ε . J

I Lemma 6. The number of elements sent to the central machine is O
(

1
ε

√
nk log k

)
.

Proof. This follows from Lemma 2 and the fact that there are only log k
ε thresholds. J

Next, we design a 2-round 1/2− ε approximation for “sparse” inputs (Algorithm 7).

I Lemma 7. Algorithm 7 gives a 1/2− ε approximation.

Proof. There are two things to check: that one of the τj ’s is close to OPT/2, and that the
machine C is not missing any of the elements that it needs.

For the former, its clear that by similar reasoning to Lemma 5, one of the τj ’s will be
within a 1 + ε multiplicative factor to OPT/2.

For the latter, note that the “sparseness” assumption implies that with high probability,
the
√
nk large elements will be equally distributed among the machines, and each machine

will get k elements in expectation. Since we send O(k) elements to the central machine, C
will have all the large elements in V with high probability. This can be shown by a standard
balls-and-bins analysis [12]. J

SOSA 2019

18:10 Submodular Optimization in the MapReduce Model

Algorithm 7: A 1/2− ε approximation in 2 rounds for “sparse” inputs.
round 1:
partition V uniformly at random to the m machines
on each machine Mi do

send its O(k) largest elements to a central machine C
round 2 (only on C):
S ← all elements sent to C
v ← maxe∈S f({e})
for j = 1, . . . , 1

ε log k do
τj ← v(1 + ε)j/k
Gj ← ThresholdGreedy (S, ∅, τj)

G? = argmaxGj
f(Gj)

return G?

Finally, we note that the total memory use on C is O(
√
nk) since each machine sends

O(k) elements and there are O(
√

n
k) machines in total.

I Theorem 8. By running Algorithms 6 and 7 in parallel, we have a 2-round 1/2 − ε

approximation.

B Auxiliary Results

I Theorem 9 (Chernoff bound). Let X1, . . . , Xn be independent random variables such that
Xi ∈ [0, 1] with probability 1. Define X =

∑n
i=1Xi and let µ = EX. Then, for any ε > 0,

we have

Pr[X ≥ (1 + ε)µ] ≤ exp
(
−min{ε, ε2}µ

3

)
.

I Theorem 10 (Azuma’s inequality). Suppose X1, . . . , Xn is a submartingale and |Xi −
Xi+1| ≤ ci. Then, we have

Pr[Xn −X0 ≤ −t] ≤ exp
(
−t2

2
∑
i c

2
i

)
.

	Introduction
	The MapReduce Model

	A thresholding algorithm for submodular maximization
	A 1/2-o(1) approximation in 2 rounds
	A 1-(1-1t+1)t approximation in 2t rounds

	Optimality of our choice of thresholds
	Appendix
	Auxiliary Results

