KDD 2017 Applied Data Science Paper

KDD’17, August 13-17, 2017, Halifax, NS, Canada

LiJAR: A System for Job Application Redistribution
towards Efficient Career Marketplace

Fedor Borisyuk Liang Zhang Krishnaram Kenthapadi

LinkedIn Corporation, USA LinkedIn Corporation, USA LinkedIn Corporation, USA

fborisyuk@linkedin.com lizhang@linkedin.com kkenthapadi@linkedin.com
ABSTRACT KEYWORDS

Online professional social networks such as LinkedIn serve as a
marketplace, wherein job seekers can find right career opportunities
and job providers can reach out to potential candidates. LinkedIn’s
job recommendations product is a key vehicle for efficient matching
between potential candidates and job postings. However, we have
observed in practice that a subset of job postings receive too many
applications (due to several reasons such as the popularity of the
company, nature of the job, etc.), while some other job postings
receive too few applications. Both cases can result in job poster
dissatisfaction and may lead to discontinuation of the associated job
posting contracts. At the same time, if too many job seekers compete
for the same job posting, each job seeker’s chance of getting this
job will be reduced. In the long term, this reduces the chance of
users finding jobs that they really like on the site. Therefore, it
becomes beneficial for the job recommendation system to consider
values provided to both job seekers as well as job posters in the
marketplace.

In this paper, we propose the job application redistribution prob-
lem, with the goal of ensuring that job postings do not receive
too many or too few applications, while still providing job recom-
mendations to users with the same level of relevance. We present
a dynamic forecasting model to estimate the expected number of
applications at the job expiration date, and algorithms to either
promote or penalize jobs based on the output of the forecasting
model. We also describe the system design and architecture for
LiJAR, LinkedIn’s Job Applications Forecasting and Redistribution
system, which we have implemented and deployed in production.
We perform extensive evaluation of LiJAR through both offline
and online A/B testing experiments. Our production deployment
of this system as part of LinkedIn’s job recommendation engine
has resulted in significant increase in the engagement of users for
underserved jobs (6.5%) without affecting the user engagement in
terms of the total number of job applications, thereby addressing
the needs of job seekers as well as job providers simultaneously.

CCS CONCEPTS

« Information systems — Recommender systems; « Applied
computing — Forecasting;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD °17, August 13-17, 2017, Halifax, NS, Canada

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4887-4/17/08....$15.00
https://doi.org/10.1145/3097983.3098028

1397

Job application forecasting; Job application redistribution; Person-
alized search and recommendation systems

ACM Reference format:

Fedor Borisyuk, Liang Zhang, and Krishnaram Kenthapadi. 2017. LiJAR: A
System for Job Application Redistribution towards Efficient Career Market-
place. In Proceedings of KDD 17, Halifax, NS, Canada, August 13-17, 2017,
10 pages.

https://doi.org/10.1145/3097983.3098028

1 INTRODUCTION

Online professional social networks such as LinkedIn play a key
role in helping job seekers find right career opportunities and job
providers reach out to potential candidates. LinkedIn’s job ecosys-
tem has been designed to serve as a marketplace for efficient match-
ing between potential candidates and job postings, and to provide
tools to connect job seekers and job providers. LinkedIn’s job rec-
ommendations product is a crucial mechanism to help achieve these
goals.

The problem of recommending jobs to users is fundamentally
different from traditional recommendation system problems such
as recommending books, products, or movies to users. While all of
the above have a common objective to maximize the engagement
rate of the users, one key difference is that a job posting is typically
meant to hire one or a few employees only, whereas the same book,
product, or movie could be potentially recommended to hundreds
of thousands of users for consumption. As LinkedIn’s job posters
pay to post jobs on the site, on the one hand it is critical to deliver
sufficient number of applications from qualified candidates for each
job, so that the job poster can interview the top candidates and
finally hire one or a few of them. On the other hand, it is not
desirable for the system to deliver too many applications for any
posted job with one or a few openings, as the amount of effort for the
job poster to interview would become much greater than expected.
Also, if too many job seekers compete for the same job posting, each
job seeker’s chances of getting that job will be dramatically reduced.
Historically, since our job recommendation system at LinkedIn used
to only optimize for user engagement, we have noticed that there
are jobs that receive too few applications at expiration, and ones
with too many applications as well. As these often lead to job poster
complaints and the discontinuation of the job posting contracts, it
hurts the liquidity of the jobs in the marketplace, and in the long
term in turn reduces the chances that a user can find the jobs that
she really likes on the site.

Therefore, we note that an ideal job recommendation system
would need to achieve three goals simultaneously: (1) Recommend
the most relevant jobs to users. (2) Ensure that each job posting
receives sufficient number of applications from qualified candidates.

https://doi.org/10.1145/3097983.3098028
https://doi.org/10.1145/3097983.3098028

KDD 2017 Applied Data Science Paper

(3) Ensure that each job posting does not receive too many applica-
tions. All the three goals above are meant to link users with the best
career opportunities that excite them, with the first goal mostly
focusing on the short term user engagement optimization, and the
other two trying to address the health of the marketplace for the
site’s long-term growth.

Intuitively, these goals can be achieved by assigning jobs to users
so as to maximize the likelihood that the user will apply for the
job, pass the interview, and also take the job offer. Maximizing such
objective is desirable from the perspective of job seekers as well
as job providers, since it takes into account both the competition
from all the applicants for a job as well as the interest of the users,
and is likely to lead to better assignment of jobs to users for a
healthy ecosystem. However, this approach is usually infeasible to
take, since the data of whether a job applicant passed the interview
is often highly confidential, and understanding why a user takes
one job offer over another would need a lot of confidential data
and study as well. Hence, we instead adopt a pragmatic approach
towards achieving the three goals above.

In this paper, we propose the job application redistribution prob-
lem, with the goal of ensuring that job postings do not receive too
many or too few applications, while providing job recommenda-
tions to users with the same level of relevance as the system that
purely optimizes for user engagement (§2). We present a dynamic
forecasting model to estimate the expected number of applications
at the job expiration date (§3), and algorithms to either promote
or penalize jobs based on the output of the forecasting model in
real time (§4). We then describe the design and architecture for
LiJAR, LinkedIn’s Job Applications Forecasting and Redistribution
system, which we have implemented and deployed in production
(§5). We perform extensive evaluation of the proposed job forecast-
ing and boosting models (§6). Our online A/B testing experiments
demonstrate the effectiveness of our approach in increasing the en-
gagement of users for underserved jobs by 6.5%, while keeping the
user engagement in terms of the total number of job applications
the same. We finally discuss related work (§7) and future work (§8).

2 PROBLEM SETTING

As the world’s largest professional social network, LinkedIn pro-
vides plenty of great opportunities for professionals to find new
career opportunities, and also sends good candidates to companies
who paid LinkedIn for hiring for their jobs. One of LinkedIn’s most
important products is the Jobs Homepage (see Figure 1), which
serves as a one-stop shop for our users who are interested in find-
ing jobs to apply for. On the homepage, a key module is called “Jobs
you may be interested in”, where we show relevant jobs to users
according to the match between user profile and job descriptions,
and user’s past activities as well. Every time a user visits the jobs
homepage, the job recommendation system picks the “best” set of
jobs from the candidate pool [5], and displays them for the user
to apply for. The jobs shown are mostly posted by LinkedIn’s cus-
tomers who paid a fixed price ahead of time in return for their job
postings to be eligible for inclusion in the job recommendations.
Thus, this module is responsible for both ensuring a good user
experience and distributing applications from users to jobs such
that LinkedIn’s customers can be satisfied as well.

Historically, the job recommendation problem has been mostly
solved by considering it as a traditional recommendation system

1398

KDD’17, August 13-17, 2017, Halifax, NS, Canada

ﬂ JODS | Jobititle, keywords, or company name

Jobs you may be interested in

San Jose, CA

==
TS

= Are you hiring?
Preferences: @ i Bl &= v o

Reach the right candidates with Linkedin Jobs

Your job activity is private. Sponsored

O]

Senior Technical Recruiter

Posta job

Senior i08 Developer
San Francisco

Longtecty Saved jobs (0)
Save jobs you're interested in and get back to
Senior Level Support Engineer iMomloter;

See all saved jobs »
San Francisco

San Francisco Bay Area
Job alerts (0)

Create job alerts and wefl let you know when
new results match your criteria.

*
Soursora macys Inc
Applied jobs

Review your past job applications here.
Data Scientist, IS&S Data Scientist, Search and

Discovery

Data Scientist (macys.com)

See all applied jobs »
San Francisco, CA

Santa Clara Valley -
Mountain View

Figure 1: A snapshot of the LinkedIn jobs homepage.

problem, where the objective is to rank the jobs corresponding
to the probability of clicks or applications for each user visit. An
example of such models is called GLMix [22], where a generalized
linear mixed model is used to predict the binary response of apply
or no apply given an impression from a user to a job. The model
not only contains global features such as interactions between
member features (e.g., title, industry, work history, skills) and job
features (e.g., title, company, qualifications), but also includes a per-
member model component for member-specific preferences to job
features, and a per-job model component to model what types of
members like to apply for a given job. The success of the model was
measured by A/B testing using metrics such as the total number of
applications, which corresponds to one of our three goals outlined
in §1: recommend the most relevant jobs to users. However, it does not
consider at all the other two objectives that require each job posting
to not receive either too many or too few applications at expiration.

To justify why the number of applications per job at expiration
is a good measure for our customer satisfaction, we studied the
relationship between the probability of at least one hire from the
pool of job applicants versus the total number of applications a job
receives, and found that this probability increases with the number
of applications, but with a non-linear relationship (see Figure 2): the
incremental value an additional application provides to the hiring
probability diminishes exponentially as the job receives more and
more applications. In the meantime, it is clear that the amount
of effort to review the applications and interview the candidates
grows linearly with the number of applications. Therefore, on the
one hand, if a job receives very few applications, most likely the
job posting company cannot find anyone to hire; hence they may
become dissatisfied and not renew the job posting contract. On the
other hand, if a job receives too many applications (say, 1000 for
one position), it becomes very difficult for the job posting company
to interview all the candidates; hence the job posters may also
complain. It decreases the value that we are providing to our users
as well, since too many applications essentially make the job offer
to become too competitive to obtain from the perspective of job
seekers.

Our idea to solve the problem is motivated by the concept of
“early intervention”. At any time, assuming that an oracle could tell
us which jobs are likely to receive too few or too many applications
at expiration, we can then intervene early to boost or penalize the
scores from the GLMix ranking model for such jobs to achieve
a good trade-off between short-term user engagement and our
customer satisfaction for the long-term marketplace health. For
the jobs that are expected to receive a reasonable range of the

KDD 2017 Applied Data Science Paper

Probability of a hiring from the
pool of candidates

Applications per Job

Figure 2: Probability of finding a hire among the set of can-
didates who applied for the job. The data for figure was esti-
mated using LinkedIn’s marketplace statistics.

number of applications, it is better not to intervene at all and the
ranking of these jobs would be purely driven by relevance. Hence,
the success of this approach would heavily depend on whether we
can accurately forecast the number of applications a job would
receive at expiration. Our problem can thus be stated as follows:
How do we forecast the number of applications that a job is likely to
receive at expiration (along with a confidence interval), given the data
about this job observed so far? How do we either promote or penalize
the job based on the forecast? We describe our solutions in §3 and
§4 respectively.

3 JOB APPLICATIONS FORECASTING
MODEL

We next describe the forecasting model for the number of applica-
tions a job would receive at its expiration time. We consider three
types of signals: (1) Seasonality. Since a job usually takes 30 days to
expire, the number of impressions and applications depends heavily
on the time of the day and the day of week. We also noticed that
new jobs tend to receive more impressions and applications than
old jobs (See Figure 4). (2) Job attributes, including title, company,
industry, qualifications, and so forth. (3) The number of impressions
and applications the job has received so far. In the following text,
we describe the details of our forecasting model.

Without loss of generality, assume that the timestamp is 0 when a
job gets posted and ticks to T when the job expires. We describe our
model to forecast the number of applications a job would receive
when it expires at time T, based on the data we collected for the
job from time 0 to ¢ (¢ < T), seasonality features and job attributes.
The objective is to provide the confidence interval of the number
of applications at time T, so that we can penalize or boost the job
score in ranking when we “strongly believe” that a job is going to
be under-delivered or over-delivered without intervention.

For any job j, let cj; be the number of applications received at
time t, and v;; be the number of impressions at time ¢. Let ¢j 1.t =
zt] cji,and vj 14 = Zt', vj; be the total number of applications and
i=1 i=1
impressions job j has received up to time t respectively. Also denote
the feature vector for job j at time t as xj; which includes both
the seasonality features as well as all the attributes of this job (e.g.,
job title, company, industry). Although x;j; depends on time ¢, in

1399

KDD’17, August 13-17, 2017, Halifax, NS, Canada

this paper we assume x;; is always known, since the seasonality
features are mostly day of the week, time of the day and so forth;
and the attributes of the job are static, i.e. not dependent on time.

At time ¢, our main task is to obtain the distribution of ¢; (;11).7,
based on the observed cj 1.; and vj, 1.7, along with the feature vector
Xjt.Since ¢j 1.7 = €j,1:£+Cj (¢+1).T> the distribution of ¢; 1.7 is simply
a mean shift of the distribution of ¢; (;1).7 With the observed c;, 1.,
i.e., treating the observed cj 1.; as a constant,

(1)

Var[cj 1.rlej1:¢] = Var[e; (r+1).1]- (2)
Assume that the CTR estimate of job j at time ¢ is pj;. Our
idea is to forecast ¢; (;41).7 by pjtvj (s+1).7> Where both pj; and
Vj,(¢+1):T have a statistical model. Once the distributions of yj; and
v} (¢+1):T are available, the distribution of ¢; (;,1).7 can be estimated
accordingly.
Gamma Distribution. We denote a Gamma distribution as x ~
Ga(m, s) with the associated density function
sms

P(x) = r(ms) > (3)

where m is the mean of the distribution, and s is called sample size.
The variance of x is hence m/s.

Elcj 11lej 1] = ¢j1e + Elej r1y:1]s

ms—1_-sx

3.1 Per-job CTR Estimate y;,

We consider a dynamic Gamma-Poisson model following [2] for the
estimated CTR pij; for job j at time ¢. Specifically, given a Gamma
prior of yj; as Ga(ajt, sjt), where a;j; is the prior mean and sj; is
the prior sample size, we assume

¢jtlvje, pjr ~ Poisson(vjzpijt), (4)
The posterior distribution of y;; is then
Cjt *+ Sjt&jt
Hjtlvje, cjr ~ Ga(———,vjt + sj¢). ©)

'th + Sjt

At time t + 1, the prior of yij r41 becomes Ga(j, t+1, Sj,¢+1), Where
(6)

sj,t+1 = 6(vjt + Sjt), (7)
where § € (0, 1] is called the variance discounting parameter which
controls how much the CTR changes over time, as the prior variance
of p1j,¢+1 is proportional to 1/6. When 6 = 1, the applications and
impressions observed from time 1 to ¢ are equally weighted to
obtain the CTR estimate at time t. When 6 < 1, the data observed
closer to time t gets exponentially bigger weight than the data
observed earlier.

At time 0, i.e., when there is no data observed for job j, we
can start with letting aj; be the global CTR and sj; be a tuning
parameter (e.g., 5 or 10).

) _ Cjt +Sjt0!jt
Ajt+1 = —
'th+Sjt

3.2 Forecasting Model of v; (;.1).7

For any job j, given its number of impressions we observed up to
time t, i.e., v, 1.z, we would like to predict its number of impressions
from time ¢ + 1 to T. Note that the number of impressions usually
has a strong pattern of seasonality, and the job attributes such as
title, job function, company, and industry can impact the expected
number of impressions significantly. At time ¢, we hence use the
feature set x;j; which includes both the seasonality features as well

KDD 2017 Applied Data Science Paper

as the job-specific attributes to first build a baseline Poisson model
as

®)

where B is the coefficient vector to be learned. Let /§ be the Maxi-

mum log-likelihood estimate. Then, exp(x]’. tﬁ) essentially provides

Vjr ~ Poisson(exp(x]/'t B)):

the expected number of impressions job j will receive at time ¢,
without considering the job’s past history of impressions from
time 0 to t — 1. To be able to incorporate such past data into consid-
eration, we thus introduce an additional adjustment parameter A;
for each job j, i.e.,

©

vjt ~ Poisson(A; exp(x]'-tﬂ)),

where A; has a prior

Aj ~ Ga(1,r), (10)
with r being the prior sample size that can be a tuning parameter.
Given the observed number of impressions for job j from time 1 to

t,ie. vj,1.¢, and also the fitted coefficient vector ﬁ, the posterior of
A;j at time ¢t then becomes

+)1 4]
IO S e B). ()
r+ '21 exp(x/;) i=1

Ajlvj 1t ~ Ga(

Intuitively, A; can be thought of as a multiplicative factor, following
Gamma distribution with prior mean of 1. By taking into account the
observed number of impressions for job j till time ¢, we obtain the
posterior Gamma distribution for A;, wherein the posterior mean
“corrects” for the observed number of impressions compared to the
expected number of impressions: the posterior mean increases with
the ratio of the observed number of impressions to the expected
number of impressions, with the prior sample size r acting as a
smoothing parameter. In this manner, we obtain the forecasting
model for v; (;.1).7 that takes into account both the baseline feature
set based prediction model and the past history of impressions.
Since
T A
j (¢+1)T|Aj ~ Poisson(A; Z exp(x]{iﬂ)),

i=t+1

(12)

by integrating out Aj, the marginal distribution of v; (;,1).7 given
vj,1:+ becomes

P;, (r41):T1Vj,1:2) = IP(U]‘,(M):T|/1j)P(/1j|vj,1:z)d/1j (13)

T ~

S expx);h)

PJB(. + i=t+1 Jt
Uj,1:¢ 1, T

> exp(x’..ﬁ) +r
i=1 Jt

)

where NB(y, p) is a negative binomial distribution with density

I'(x+7y)

p) = ———(1-p)¥p~. 14
PElY-P) = s PP (14)
To give some intuition, we note that
T , 5
3 el f)
i=t+
E[vj,(t+1y7lvj1:0] = — ()1t +7), (15)
_21 exp(x]fiﬂ) +r
i=

1400

KDD’17, August 13-17, 2017, Halifax, NS, Canada

T T
(2 eXp(x]’-iﬂ))(gl1 exp(x};) +r)

i=t+1

Var[vj, (s+1).71v),1:] = 7 "
(Zl exp(x/;) +1)*
iz

(V) 124 + 7).

(16)

Suppose that the prior sample size, r = 0. Then, E[v; (;+1).7|vj,1:¢]
becomes a simple projection of the number of impressions observed
up to time ¢, with a ratio of the expected number of impressions
from t + 1 to T and that from time 1 to t with the baseline model.

3.3 Forecasting Model of c; (;.1).7

Since we predict ¢; (;41).7 by f£j¢v;, (z41).7 With p1j; having a Gamma
distribution from (5), and v} (;,1).7 having a Negative Binomial
distribution from (13), the distribution of ¢; (;.1).7 does not have a
closed form based on our knowledge.

Ideally the distribution of ¢; (;.1).7 can be obtained empirically
through Monte-Carlo sampling, i.e., we obtain K random samples
from posteriors of pj; and vj (;41).7, and multiply each pair of
such samples to obtain a sample of c¢; (;,1).7. However, since the
forecasting needs to happen online and Monte-Carlo sampling
might be too expensive, we instead take some approximations to
obtain E[c; (1+1).7] and Var[c; (;+1).7] as follows, assuming ;¢ and
v} (¢+1):T are independent random variables:

Elcj (¢+1):1] = ElWje v (e41):7) = EWjtJE[V;, (r41):7]5 (17)

Var[ej (r+1):1] = Var(itvj r41).7] (18)
= E[f B[] (1 p) = Elje)EL0 141):7)°

= (Var[pje] + E[js)(Var[vj oy r]+

E[v} (t+1)7)%) — EljeE[0; (pa1).7])

The confidence intervals (CI) of ¢; (;41).7 can thus be approxi-
mately obtained as

CI(cj,(¢+1).1) = [Elcj (r+1).7] — 1y Varlej s)1]s
E[Cj,(t+1):T] + Uylvar[cj,(t-v-l):T]],

where n = 1.96 for 95% confidence interval. Using Equations 1 and
2, we obtain the corresponding confidence interval of ¢; 1.7 given
¢j,1:¢ as

Cl(cj,1:1lej1:e) = [cj,1:e + Elcj rany1] — n4fVarlej 1)1l (20)
cj1:t + Elcj (reyr] + nyfVarlej o1yl

3.4 Discussions

Feature-based CTR model for ;ij;. We note that the CTR model
for p1j; can be extended to a feature-based model as well if necessary.
In this case we let

(19)

(21)
where exp(xj'. ,¥) forms the baseline model to predict the CTR based

¢je|vje, pje ~ Poisson(vjepijr exp(x},y)),

on the seasonality and job attribute features. yij; still has the prior
as Ga(ajt, sjt) that comes from the posterior of yj; at time t — 1,
and at time 0, aj; = 1 instead of the global CTR. Similar to how we
learned f in Section 3.2, y can be estimated first from a baseline

KDD 2017 Applied Data Science Paper

Poisson model assuming all the pj; = 1. Once y is learned, we learn
the posterior of yj; by plugging in the estimates of p.

Negative binomial model for c; (;,1).7 directly. It might be
tempting to consider using the model presented in §3.2 to model
¢j (¢+1):7 directly, instead of breaking c; (;41).7 into the CTR pj;
and number of impressions vj (;,1).7 and modeling the two sepa-
rately. We note that this idea sacrifices the predictive accuracy by
not being able to distinguish jobs with high CTR but low number
of impressions versus those with high number of impressions but
low CTR; having both number of applications as well as impres-
sions considered in the model is always better than just number of
applications alone, as the two are highly correlated.

4]JOB BOOSTING AND PENALIZATION

Attime t, assume that the predicted confidence interval, CI(cj, 1.7 |cj, 1:¢)

of the number of applications a job would receive at expiration time
T is [lt,us], where I; and u; can be estimated via the job appli-
cations forecasting model specified in §3. As we would like a job
to receive not too few or too many number of applications and
simultaneously try to serve the most relevant jobs to users, we
adopt a pragmatic and effective approach to intervene the ranking
of jobs when either u; is below the targeted minimum number
of applications (denoted as minApps), or I; is above the targeted
maximum number of applications (denoted as maxApps).

As discussed in §2, we make use of a model to predict the prob-
ability of a user applying for a job given an impression [22], and
use this probability score (in the range [0, 1]) to rank the candidate
set of jobs to maximize the user engagement. Our idea is to boost
the job’s score when u; < minApps, and penalize the score when
I; > maxApps, so that we can achieve a good trade-off between
user engagement and the desired range of [minApps, maxApps] for
the number of applications at the expiration time for as many jobs
as possible.

4.1 Penalization of the Job Score

At time ¢, if the lower bound of CI for the number of applications of
ajob,ie., I}, is projected to be more than targeted maximum number
of applications, i.e., maxApps, we would like to stop showing the job
to users unless it is really necessary (e.g., no other jobs are available
with better or similar quality). Our approach is to multiply the score
with an exponential decay penalization factor, based on the number
of applications the job has received up to the current moment, i.e.,
when I; > maxApps, we let

#applications
softness

newScore = originalScore - e (22)

where originalScore is computed by the model to predict the proba-
bility of the user applying for the job, #applications is the number of
applications a job has received up to now, and softness is a tuning
parameter of the exponential decay upon the number of applica-
tions. In §6, we show how the choice of the softness parameter
influences our metrics (e.g., the total number of job applications
received) through online experiments.

Our choice of the exponential decay function upon the number
of applications a job has received is based on an intuition obtained
from Figure 2, where the incremental value of probability of hiring
given an additional application decreases exponentially upon the
number of applications that a job has received.

1401

KDD’17, August 13-17, 2017, Halifax, NS, Canada

4.2 Boosting of the Job Score

Similarly, at time ¢, if the upper bound of CI for the number of
applications of a job, i.e., u;, is projected to be less than the targeted
minimum number of applications, i.e., minApps, we would like to
boost the job score so that it can obtain more impressions from
users, without significant degradation of the relevance of the job
recommendations. Our approach is to boost the original model
score by a multiplicative constant, which is a tuning parameter
named boostFactor, provided the original score is greater than
a certain threshold h. In other words, when u; < minApps and
originalScore > h, we let

newScore = min{originalScore - boostFactor, 1.0} (23)

We show how the choices of boostFactor and h impact our met-
rics such as the total number of applications through online ex-
periments in §6. We also note that having the threshold h > 0 is
critical as boosting a non-relevant job to a user would hurt the user
engagement and even the reputation of the site heavily.

We chose a small constant multiplicative factor function (at most
%) for boosting since excessive boosting can affect the relevance
of jobs shown to users, and further we used the same factor across
jobs for simplicity.

5 SYSTEM ARCHITECTURE

We now describe the overall architecture of LiJAR, the job appli-
cation redistribution system at LinkedIn, focusing on the details
of the job applications forecasting and job boosting modules that
we implemented and deployed in production as part of LinkedIn’s
job recommendation engine. Our system can be subdivided into an
online system for serving job recommendations and an offline work-
flow for updating the forecasting model regularly (see Figure 3). For
the offline workflow, every day we take the most recent user-job
interaction log data, and retrain our job applications forecasting
model on Hadoop. The learned model parameters are then pushed
to the forecasting model store implemented using Voldemort [20],
which are accessed online by the job recommendation service tier.

We now provide a description of the overall flow for how a client
request (query) is processed in our online job serving system. It
makes use of a multi-tier service architecture, wherein the rec-
ommendation request queries are handled in a distributed fashion
across hundreds of production servers. The online query processing
proceeds as follows:

o Whenever a job recommendation needs to be shown to a
user, the client application issues a query containing the
userld and other metadata to the backend distributed job
recommendation application service tier (step 1).

e The job recommendation application service then retrieves
relevant structured user data from the user fields store (step
2), determines the appropriate A/B testing experimental
treatment that the user falls under (step 3), and fetches the
necessary ranking models based on the experimental treat-
ment (step 4). Then, it creates a request object containing the
user data and the models, which is issued to the distributed
search service tier (step 5).

e Our search based retrieval system is built on top of LinkedIn’s
Galene search platform [19]. This system is responsible for
applying the candidate selection model [5] to the user data

KDD 2017 Applied Data Science Paper

KDD’17, August 13-17, 2017, Halifax, NS, Canada

Offline workflow

Figure 3: Architecture of LiJAR, LinkedIn’s Job Applications Forecasting and Redistribution system.

to generate a corresponding Galene query, issuing this query
to the distributed search index service, scoring the resulting
jobs using the second-pass GLMix ranking model [22], and
returning back the top ranked job recommendation results
(step 6).

The job recommendation application service then performs
post-processing (such as applying filters and certain busi-
ness rules), and in particular, invokes the job boosting and
penalization module (step 7; shown separately for clarity).
For each specified jobld, the module needs to first obtain
the (as-of-the-current-moment) expected number of appli-
cations by the job expiration date, and hence queries the
job applications forecasting module (step 8), which in turn
obtains the real-time job statistics (#impressions, #applica-
tions so far for the jobld) from the job statistics server (step
9). Based on the obtained statistics and the features of the
associated job posting (e.g., job title, company, industry), the
forecasting module computes and sends back the expected
number of applications by the expiration date, along with
the confidence interval as well as the current job statistics
(step 10). The job boosting module uses this information to
determine whether to intervene, if yes, either penalize or
boost the score as the case may be, and returns back the
modified score (step 11). The job recommendation service
then returns the final ranked list of recommended joblds to
the requesting client application.

6 EXPERIMENTS

We present an extensive evaluation of our methodology for job
application redistribution, through both offline and online A/B
testing experiments on the job recommendation module (“Jobs You
May Be Interested In”) on LinkedIn jobs homepage. We first provide
data insights on how the number of impressions and the number
of applications correlate with the time after a job gets posted (§6.1).
Then, we present an offline evaluation of the performance of our job
application forecasting model as well as boosting and penalization
strategy (§6.2). Finally, we demonstrate the performance of our

1402

job redistribution methodology in the production system through
online A/B testing experiments (§6.3).

6.1 Data analysis

To help us better understand how the number of impressions and
the number of applications correlate with the time after a job gets
posted, we performed data analysis using the entire 2015 year’s data
collected from the job recommendation module. Figure 4 shows a
normalized view of the number of impressions and applications a
job receives on average for each day after a job gets posted, until
30 days which is usually when most of the jobs expire. Since users
like to apply for new jobs, our job recommendation system tends
to always show new jobs more often than old jobs. Hence, we
observe that both the number of impressions and the number of
applications a job receives decay exponentially over time after it
gets posted. It is also very interesting to observe a weekly pattern
in the graph as well, which is due to the fact that most of the jobs
are posted on weekdays instead of weekends; hence even if we
align the daily job impressions with the number of days elapsed
after posting, the weekly pattern of impressions and applications
can still be observed.

6.2 Offline Experiments

We next show the performance of our job application forecasting
model (§3), using the entire year of 2015’s data as training, and Sep-
Dec 2016’s data as test. We consider three different models with
several variations of the feature set x;; for the forecasting model
of v} (4+1):7 and pjz, where the feature set x; is used to construct
the baseline model for vj; and yj; (See Equations (9) and (21)). The
three models we consider are:

e IMP-WEEKLY: The forecasting model of v;; with only the
day of week features in x;;. No features are used for pj;, i.e.,
the model for yj; follows precisely as in §3.1.

e IMP-FULL: The forecasting model of v;; with a full set of
features in xj¢, including the day of week, time elapsed after
job posting, and job attributes such as title, industry, job
function and so forth. No features are used for yij;.

KDD 2017 Applied Data Science Paper

[}
c
S
°
©
n Q|
5 A o
»]'\ —— Applications
S .
. . = = Impressions
S
[
€
0
2 o
[0]
)]
o
@
>
@
T o |
N o T T T T T T
g051015202530
2 Days

Figure 4: Normalized average number of applications a job
receives daily after it gets posted (normalized by maximum
number of actions). The dashed red line represents the av-
erage number of impressions a job receives daily after the
posting. This data is obtained by averaging over all the jobs
posted within the year 2015.

e IMP-CTR-FULL: The forecasting models of v;; and of yj;
use full set of features as used in IMP-FULL. The model for
Uj¢ is as described in §3.4.

In Figure 5(a), we show the RMSE performance of the above three
models over 30 days. The experiment was performed as follows:
For each job and each of the 30 days of the job’s lifetime, we used
the historical impressions and applications observed up to this day,
and the feature set xj; to obtain a forecasted expectation of the
number of applications the job would receive at expiration (i.e., day
30), following Equation (17). The RMSE for each day was obtained
by computing the square of the difference between the forecasted
and the observed value (at expiration) of the number of applica-
tions for each job, averaging over all jobs, and taking the square
root. Agreeing with our intuition, the prediction becomes more
accurate as we get closer to the job expiration time. We note that
compared to IMP-WEEKLY, IMP-FULL reduces the overall RMSE
(the average RMSE across all days) by 6.3%, while IMP-CTR-FULL
reduces the overall RMSE by 7.5%. Hence adding more features
to the baseline forecasting model does help improve prediction
accuracy significantly.

We now evaluate the estimation of the forecasted confidence
interval for cj 1.7 (Equation (20)) with model IMP-CTR-FULL, with
the consideration of how it will be used in our problem setting of job
application redistribution. At time ¢, let the estimated confidence
interval for job j be [Ij;, uj;]. We evaluate the performance in terms
of a binary classification problem as follows:

e Boosting a job correctly: For each job j, the true label is
positive if ¢j 1.7 < minApp, and negative otherwise. The
predicted label is positive if uj; < minApp, and negative
otherwise. Here we use minApp = 8.

e Penalizing a job correctly: For each job j, the true label is
positive if ¢j 1.7 > maxApp, and negative otherwise. The
predicted label is positive if [j; > maxApp, and negative
otherwise. Here we use maxApp = 100.

1403

KDD’17, August 13-17, 2017, Halifax, NS, Canada

As the confidence interval is defined as [E[cj, 1T]-1 Var[cj, 1.7],s
E[cj 1.7]+n+/Var[c;j 1.7]], we can pick different values of 77, and gen-
erate precision and recall values for both boosting and penalization
strategies. The resulting ROC curves, which reflect the trade-off
between precision and recall, corresponding to different values
of t (the number of days after the job gets posted) are shown in
Figures 5(b) and 5(c). As expected, the closer the current time to
the expiration date, the better the trade-off curves are.

It is also worth noting that if we average across all the values of
t (day 1, 2, ..., 30) , with n = 1.96 (i.e., the 95% confidence interval),
we can achieve ~ 90% recall for the boosting strategy with false
positive rate of only ~3%, and ~86% recall for the penalization
strategy with false positive rate being only ~ 0.4%. This shows that
our model is pretty accurate.

6.3 Online A/B Testing Experiments

We next present the results from online A/B testing of our job ap-
plication redistribution methodology, for several variations and
parameter choices. Our experiment was performed using the fore-
casting model IMP-CTR-FULL during the period of Sep-Dec 2016,
with the control being no job application redistribution at all (i.e.,
pure relevance driven model). Since we would like to drive more ap-
plications to the jobs that receive very few applications, and avoid
sending extra applications to the jobs that have already received too
many applications, every day we split the jobs in our system into
the following three buckets and report the number of applications
for each bucket individually:

e Bucket 1: The number of applications for this job at this
moment is less than minApps.

e Bucket 2: The number of applications for this job at this
moment is in the range, [minApps, maxApps].

e Bucket 3: The number of applications for this job at this
moment is greater than maxApps.

Table 1 shows the performance of three strategies, namely, boost-
ing only, penalization only, and boosting plus penalization, in terms
of the gain in the number of application for the three buckets and
overall, compared to the control. We used the following parameter
choices in this experiment: minApps = 8; maxApps = 100; the boost-
ing factor, boostFactor = 1.05; the GLMix model score threshold,
h = 0.8; the softness parameter for job penalization exponential
decay function, softness = 300. Since the loss of applications in
Bucket 3 is considered as a positive signal, we note that boosting and
penalization together provide the best trade-off between the overall
number of applications and the application distribution among the
three buckets. We also note that we are able to redistribute signifi-
cant number of applications in Bucket 3 to Bucket 1, while keeping
the total applications to be flat or slightly positive. The fact that
there is no decline in the total number of applications is due to
the behavior of our ranking system, where user’s attention was
redistributed from relevant jobs with high number of applications
to relevant jobs with lower number of applications.

As we rolled out the job redistribution methodology to the online
production system, we also wanted to measure its impact on the
distribution of applications among all the jobs. One appropriate
measure is the entropy of the job application distribution, defined as
follows: Let the number of applications at expiration time T for job
Jj be ¢j, 1.7. The probability of a given job receiving an application

KDD 2017 Applied Data Science Paper KDD’17, August 13-17, 2017, Halifax, NS, Canada

-
5 1 — B c H
£ \ — = IMP-WEEKLY o] - =
o @\ -— IMP-FULL £ 2 % o |3%Y oxrgt
5 © \ — IMP-CTR-FULL 2 N c _+ a—b4
- [] &+
g 3 g g
@ =~ 2 e A &
5 ¥ L S o ™~ +/
T — o o
7] © _ e A
e O + Day 3 Day 15 = B Day 3 Day 15
aé b & 0 —&-Day 5 —O-Day 20 [$) —&~Day 5 =0-Day 20
S o S —+-Day 10 —w-Day 25 & 0 | —+Day 10 ~v-Day 25
o T T T T T T T T T T k=] T T T T T
0 5 10 15 20 25 30 0.00 0.02 004 006 0.08 0.000 0.005 0.010 0.015 0.020
Days False positive rate for boosting False positive rate for penalization

(a) RMSE of the forecasting model prediction for (b) ROC curves for job boosting strategy corre-(c) ROC curves for job penalization strategy cor-
the number of job applications over time. sponding to different number of days used in responding to different number of days used in
training. training.
Figure 5: Offline evaluation for our job application forecasting model.

Table 1: Online A/B testing performance of the job boosting and penalization strategies, compared to the control.

Method Applications % Applications % Applications % Total applications %
change in Bucket 1 change in Bucket 2 change in Bucket 3 change
Boosting only +4.4% +3.8% +2.7% +3.8%
(non-significant; p-val=0.22)
Penalization only +4.0% +1.9% -13.2% -1.1%
(non-significant; p-val=0.24) (non-significant; p-val=0.4)
Boosting + Penalization +6.5% +3% -8.7% +2.3%
(non-significant; p-val=0.05) (non-significant; p-val=0.1)

% —e—Bucket 1 =+ Bucket 3 % —e—Bucket 1 = +4=Bucket 3 % —e—Bucket 1 -+ Bucket 3

£ Bucket 2 Total applications = Bucket 2 Total applications £ Bucket 2 Total applications

S o—0° S °, S| O—W ——

S <+ \—-—_o £ © . / \ =2 o

g g / \o ° e .

§eoq ¢ S os 5

8 8 8 -

s S 1 | =

o a o | o+

@© | D + + [DI L

8 - 8 o |+ WA B

% < 7.\:".+"T""'\'h+"\' """ T "\- % I T T T T ¥ T 'a% I T ¥ T T T T T

E 1.00 102 1.04 1.06 108 1.10 E 0.0 0.2 0.4 0.6 0.8 E 0 200 400 600 800 1000

Boosting parameter Relevance threshold Softness parameter for exponential decay

(a) The impact of the boosting factor on the num-(b) The impact of the relevance model score (c) The impact of the softness parameter for job
ber of job applications (with relevance threshold threshold for boosting on the number of job ap- penalization exponential decay function on the
0.8 for boosting). plications. number of job applications.

Figure 6: Performance of the boosting / penalization methodology with different parameters in online A/B testing experiments.

from the pool of all applications is thus p; = cj 1.7/Xj ¢j 1.1, 50 Tf‘ble' 2 Belative change in the entropy 0fj°lf ap‘plicati(?n

that the entropy could then be computed as 3 p; log(1/p)). distribution after the deployment of our application redis-
Since the entropy is maximized when each job receives exactly tribution methodology.

the same number of applications, the higher the entropy is, the

more evenly the applications are distributed across jobs. Table 2 Deployment % change in the entropy of job

shows the change of entropy after deploying our job application application distribution

redistribution methodology to LinkedIn’s jobs recommendation Control 0%

system. The 12% increase in the entropy demonstrates the effective- Application Redistribution | +12%

ness of our methodology towards distributing the job applications
more evenly across the entire job marketplace.

1404

KDD 2017 Applied Data Science Paper

6.4 Effect of the Boosting and Penalization
Parameters

To understand how the choice of the job boosting parameters (the
boosting factor and the GLMix model score threshold, /) and the
job penalization parameters (softness for the exponential decay
function) impacts the online performance, we experimented with a
set of different values for these three parameters. Figure 6 shows
the performance of the overall number of applications as well as
that of the three buckets. It is clear that with a careful tuning of
these parameters, our methodology can achieve significantly better
performance.

One lesson learned from our online experimentation is that
the existence of the relevance model score threshold, A is critical,
as shown in Figure 6(b). Initially, our boosting strategy did not
have the threshold set up (i.e., h = 0), and the A/B testing results
for the boosting showed a very significant loss of the job applica-
tions overall with little gain of applications in Bucket 1. By further
analysis, we found that the loss of user engagement was mostly
due to boosting of jobs with very low relevance scores. Therefore,
the threshold was introduced to mitigate this problem and after
selecting a good value of h, the performance of boosting becomes
much better as shown in Table 1.

7 RELATED WORK

Our work resides in the domain of online recommender systems,
which are widely adopted across many web applications, e.g., movie
recommendations [9], e-commence item recommendations [17], job
recommendations [5] and so forth, where authors mainly concen-
trate on the relevance retrieval and ranking aspects of the recom-
mendation system.

There is insightful research and modeling of the hiring processes
within job marketplaces. Such research includes work related to
estimation of employee reputation for optimal hiring decisions [8],
as well as work related to ranking and relevance aspects of job
matching in labor marketplaces [10, 12, 16]. There has been work
related to the theory of optimal hiring process, e.g., on the problem
of finding the right hire for a job (the hiring problem), as well as
on the classical secretary problem, where a growing company con-
tinuously interviews and decides whether to hire applicants [6, 13].
Authors of [4] investigated job marketplace as a two-sided match-
ing market using locally stable matching algorithms for solving the
problem of finding a new job using social contacts. In this paper,
we treat mechanisms for retrieval and ranking of jobs for users as
given (following [5, 22]), and instead focus on the problem of redis-
tributing users’ attention from overly popular jobs to jobs that do
not have enough applications. The probability of hire given an ap-
plication is not considered in this paper due to high confidentiality
of such data.

The early intervention idea that motivates this work has also
been adopted in the problem of ads pacing [3, 14, 21]; the objective
there is to help advertisers reach as many targeted users as pos-
sible and ensure smooth budget spending over time. The pacing
algorithm throttles the ad delivery in real time if it believes that
the ad would run out of budget sooner than expected, based on
the current forecast of the total number of impressions the ad is
expected to receive. Although the idea seems similar, there are a
few major differences. The forecasting models for the number of
impressions an ad would receive are usually based on the targeting

1405

KDD’17, August 13-17, 2017, Halifax, NS, Canada

information the advertisers provide when posting an ad, while the
matching of user profile and job profile is purely driven by our job
recommendation system; no targeting is currently in place for job
postings at LinkedIn. Also, unlike the hard daily budget constraints
for ads, the constraints of the minimum and maximum number
of applications a job can receive are soft. For example, consider a
job that has received too many applications, but happens to be the
only job matching a user’s profile; we would still show the job to
the user so that the user can have a good experience when visiting
LinkedIn jobs homepage.

The Gamma-Poisson model to estimate the CTR dynamically
originates from [2], which shows that this model can provide similar
or even better performance than time series models [11] in terms of
accuracy. The Negative Binomial model for estimating the number
of impressions is similar to [1]; however the application setting
is entirely different, namely, estimating rates of rare events in the
domain of computational advertising.

Our idea of penalizing the job score for over-delivered num-
ber of applications is similar to impression discounting which is
widely adopted in recommender systems [15]. However, impres-
sion discounting is designed to avoid over-exposure of the same
items to the same user, which is a different objective than ours. The
idea of boosting the relevance scores in the case of jobs with very
few applications is similar to the explore-exploit methodology for
discovering new relevant content to users [7, 18]. However, the
context and the problem are entirely different, as the objective of
the exploration is to reduce the variance of the parameters for new
items so that we can find good and relevant items and show them
to users (exploitation).

8 CONCLUSION

We presented the problem of distributing job applications in the
job recommendation system to optimize for customer satisfaction
while keeping the recommendations to be relevant. We developed a
statistical job application forecasting model to provide confidence
intervals of job applications at expiration time, and used the con-
fidence intervals to boost or penalize the jobs which we believe
are likely to receive too few or too many applications respectively.
We demonstrated the efficacy of our approach through both offline
evaluation and online A/B testing experiments.

One promising future work is to incorporate several other im-
portant customer satisfaction and member engagement metrics
into the consideration of our jobs ranking model. We note that our
customers not only care about the number of applications they
receive; it is also critical to make sure that these applicants are
well qualified so that some of them can be finally hired. Building
models to predict who would qualify for interviews / hiring for
the job posting and ensuring that we can distribute the qualified
applicants across jobs to better optimize customer satisfaction is
a challenge we would like to address in the future. Also, besides
the total number of applications from members, other long-term
user engagement metrics such as retention rates can potentially be
incorporated into our ranking model.

9 ACKNOWLEDGMENTS

The authors would like to thank Deepak Agarwal, Rahim Daya,
Monica Lewis, Jason Phan, Kaushik Rangadurai, Chris Walker and
Jesse Ward for insightful feedback during development, deployment

KDD 2017 Applied Data Science Paper

and integration of our system as part of LinkedIn’s job recommen-
dation engine.

REFERENCES

[1] Deepak Agarwal, Rahul Agrawal, Rajiv Khanna, and Nagaraj Kota. 2010. Esti-
mating rates of rare events with multiple hierarchies through scalable log-linear
models. In KDD. https://doi.org/10.1145/1835804.1835834

[2] Deepak Agarwal, Bee-Chung Chen, and Pradheep Elango. 2009. Spatio-temporal
Models for Estimating Click-through Rate. In WWW. https://doi.org/10.1145/
1526709.1526713

[3] Deepak Agarwal, Souvik Ghosh, Kai Wei, and Siyu You. 2014. Budget Pacing for
Targeted Online Advertisements at LinkedIn. In KDD. https://doi.org/10.1145/
2623330.2623366

[4] Esteban Arcaute and Sergei Vassilvitskii. 2009. Social Networks and Stable Match-
ings in the Job Market. In WINE. https://doi.org/10.1007/978-3-642-10841-9_21

[5] Fedor Borisyuk, Krishnaram Kenthapadi, David Stein, and Bo Zhao. 2016. CaS-
MoS: A Framework for Learning Candidate Selection Models over Structured
Queries and Documents. In KDD. https://doi.org/10.1145/2939672.2939718

[6] Andrei Z. Broder, Adam Kirsch, Ravi Kumar, Michael Mitzenmacher, Eli Upfal,
and Sergei Vassilvitskii. 2008. The Hiring Problem and Lake Wobegon Strategies.
In SODA. https://doi.org/10.1137/07070629X

[7] Olivier Chapelle and Lihong Li. 2011. An Empirical Evaluation of Thompson
Sampling. In NIPS. http://dl.acm.org/citation.cfm?id=2986459.2986710

[8] Maria Daltayanni, Luca de Alfaro, and Panagiotis Papadimitriou. 2015. Work-
erRank: Using Employer Implicit Judgements to Infer Worker Reputation. In
WSDM. https://doi.org/10.1145/2684822.2685286

[9] Carlos A. Gomez-Uribe and Neil Hunt. 2015. The Netflix Recommender System:
Algorithms, Business Value, and Innovation. ACM Trans. Manage. Inf. Syst. (2015).
https://doi.org/10.1145/2843948

[10] Viet Ha-Thuc, Ye Xu, Satya Pradeep Kanduri, Xianren Wu, Vijay Dialani, Yan
Yan, Abhishek Gupta, and Shakti Sinha. 2016. Search by Ideal Candidates: Next
Generation of Talent Search at LinkedIn. In WWW. https://doi.org/10.1145/

KDD’17, August 13-17, 2017, Halifax, NS, Canada

2872518.2890549

[11] Jeff Harrison and Mike West. 1999. Bayesian forecasting & dynamic models.

Springer New York.

Marios Kokkodis, Panagiotis Papadimitriou, and Panagiotis G. Ipeirotis. 2015.
Hiring Behavior Models for Online Labor Markets. In WSDM. https://doi.org/10.
1145/2684822.2685299

Ravi Kumar, Silvio Lattanzi, Sergei Vassilvitskii, and Andrea Vattani. 2011. Hiring
a Secretary from a Poset. In EC. https://doi.org/10.1145/1993574.1993582
Kuang-Chih Lee, Ali Jalali, and Ali Dasdan. 2013. Real Time Bid Optimization
with Smooth Budget Delivery in Online Advertising. In ADKDD. https://doi.org/
10.1145/2501040.2501979

Pei Lee, Laks V.S. Lakshmanan, Mitul Tiwari, and Sam Shah. 2014. Modeling
Impression Discounting in Large-scale Recommender Systems. In KDD. https:
//doi.org/10.1145/2623330.2623356

Jia Li, Dhruv Arya, Viet Ha-Thuc, and Shakti Sinha. 2016. How to Get Them a
Dream Job?: Entity-Aware Features for Personalized Job Search Ranking. In KDD.
https://doi.org/10.1145/2939672.2939721

Greg Linden, Brent Smith, and Jeremy York. 2003. Amazon.Com Recommenda-
tions: Item-to-Item Collaborative Filtering. IEEE Internet Computing 7, 1 (2003),
76-80. https://doi.org/10.1109/MIC.2003.1167344

Omid Madani and Dennis DeCoste. 2005. Contextual Recommender Problems
[Extended Abstract]. In UBDM. https://doi.org/10.1145/1089827.1089838
Sankar Sriram and Asif Makhani. 2014. LinkedIn’s Galene Search engine. (2014).
http://engineering linkedin.com/search/did-you-mean-galene.

Roshan Sumbaly, Jay Kreps, Lei Gao, Alex Feinberg, Chinmay Soman, and Sam
Shah. 2012. Serving Large-scale Batch Computed Data with Project Voldemort.
In FAST. http://dl.acm.org/citation.cfm?id=2208461.2208479

Jian Xu, Kuang-chih Lee, Wentong Li, Hang Qi, and Quan Lu. 2015. Smart Pacing
for Effective Online Ad Campaign Optimization. In KDD. https://doi.org/10.1145/
2783258.2788615

XianXing Zhang, Yitong Zhou, Yiming Ma, Bee-Chung Chen, Liang Zhang, and
Deepak Agarwal. 2016. GLMix: Generalized Linear Mixed Models For Large-Scale
Response Prediction. In KDD. https://doi.org/10.1145/2939672.2939684

https://doi.org/10.1145/1835804.1835834
https://doi.org/10.1145/1526709.1526713
https://doi.org/10.1145/1526709.1526713
https://doi.org/10.1145/2623330.2623366
https://doi.org/10.1145/2623330.2623366
https://doi.org/10.1007/978-3-642-10841-9_21
https://doi.org/10.1145/2939672.2939718
https://doi.org/10.1137/07070629X
http://dl.acm.org/citation.cfm?id=2986459.2986710
https://doi.org/10.1145/2684822.2685286
https://doi.org/10.1145/2843948
https://doi.org/10.1145/2872518.2890549
https://doi.org/10.1145/2872518.2890549
https://doi.org/10.1145/2684822.2685299
https://doi.org/10.1145/2684822.2685299
https://doi.org/10.1145/1993574.1993582
https://doi.org/10.1145/2501040.2501979
https://doi.org/10.1145/2501040.2501979
https://doi.org/10.1145/2623330.2623356
https://doi.org/10.1145/2623330.2623356
https://doi.org/10.1145/2939672.2939721
https://doi.org/10.1109/MIC.2003.1167344
https://doi.org/10.1145/1089827.1089838
http://engineering.linkedin.com/search/did-you-mean-galene
http://dl.acm.org/citation.cfm?id=2208461.2208479
https://doi.org/10.1145/2783258.2788615
https://doi.org/10.1145/2783258.2788615
https://doi.org/10.1145/2939672.2939684

	Abstract
	1 Introduction
	2 Problem Setting
	3 Job Applications Forecasting Model
	3.1 Per-job CTR Estimate _jt
	3.2 Forecasting Model of v_j,(t+1):T
	3.3 Forecasting Model of c_j,(t+1):T
	3.4 Discussions

	4 Job Boosting and Penalization
	4.1 Penalization of the Job Score
	4.2 Boosting of the Job Score

	5 System Architecture
	6 Experiments
	6.1 Data analysis
	6.2 Offline Experiments
	6.3 Online A/B Testing Experiments
	6.4 Effect of the Boosting and Penalization Parameters

	7 Related Work
	8 Conclusion
	9 Acknowledgments
	References

