
Candidate Selection for Large Scale Personalized Search and
Recommender Systems

Dhruv Arya

LinkedIn Corporation

darya@linkedin.com

Ganesh Venkataraman

LinkedIn Corporation

ghvenkat@linkedin.com

Aman Grover

LinkedIn Corporation

agrover@linkedin.com

Krishnaram Kenthapadi

LinkedIn Corporation

kkenthapadi@linkedin.com

ABSTRACT
Modern day social media search and recommender systems require

complex query formulation that incorporates both user context

and their explicit search queries. Users expect these systems to

be fast and provide relevant results to their query and context.

With millions of documents to choose from, these systems utilize a

multi-pass scoring function to narrow the results and provide the

most relevant ones to users. Candidate selection is required to sift

through all the documents in the index and select a relevant few to

be ranked by subsequent scoring functions. It becomes crucial to

narrow down the document set while maintaining relevant ones in

resulting set. In this tutorial we survey various candidate selection

techniques and deep dive into case studies on a large scale social

media platform. In the later half we provide hands-on tutorial where

we explore building these candidate selectionmodels on a real world

dataset and see how to balance the tradeoff between relevance and

latency.

CCS CONCEPTS
• Information systems → Web searching and information
discovery; Information retrieval; Information retrieval query
processing; Query representation; Query intent; Query lan-
guages; • Software and its engineering → Software design
tradeoffs; Search-based software engineering;

KEYWORDS
Candidate Selection; Search; Recommender Systems; Personaliza-

tion; Information Retrieval

ACM Reference format:
Dhruv Arya, Ganesh Venkataraman, Aman Grover, and Krishnaram Ken-

thapadi. 2017. Candidate Selection for Large Scale Personalized Search and

Recommender Systems. In Proceedings of SIGIR ’17, Shinjuku, Tokyo, Japan,
August 07-11, 2017, 3 pages.
https://doi.org/10.1145/3077136.3082066

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGIR ’17, August 07-11, 2017, Shinjuku, Tokyo, Japan
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-5022-8/17/08. . . $15.00

https://doi.org/10.1145/3077136.3082066

1 MOTIVATION
User experience at social media and web platforms is heavily de-

pendent on the performance and scalability of its products. Appli-

cations such as personalized search and recommendations require

real-time scoring of millions of structured candidate documents

associated with each query, with strict latency constraints. In such

applications, the query incorporates the context of the user and

session (in addition to search keywords if present), and hence can

become very large, comprising of thousands of boolean clauses

representing cross features between the user, their explicit query

and over hundreds of document attributes. Additionally a typical

scoring function for both search and recommendations involves

evaluating a function that matches various fields in the document

with various fields in the query. This in turn translates to evaluating

a function with several thousands of features to get the most per-

sonalized ranking. Consequently, candidate selection techniques

need to be applied since it is infeasible to retrieve and score all

matching documents from the underlying inverted index and bring

down latency. On the other hand, reducing the candidate set could

potentially involve loss of relevant documents. The tutorial helps

provide a hands on experience to understand how to balance this

tradeoff and delivering a relevant and fast user experience at scale.

The tutorial consists of three parts. The first part presents a survey

of candidate selection techniques used for search and recommender

systems. The second part consists of case study on LinkedIn job

search and recommendations and how we used candidate selection

to bring down latencies by over 66%. The third part consists of a

hands-on session where we use open source tools to explore can-

didate selection queries and its impact on relevance and latencies

using a publicly available dataset. This part builds on the codebase

used in the “Instant Search Tutorial” [10] at SIGIR 2016. This tu-

torial is aimed at both researchers interested in knowing about

candidate selection techniques as well as practitioners interested

in deploying a search and recommender system at scale.

2 OBJECTIVES
Large scale search and recommender systems attempt at match-

ing the right documents from a corpus of hundreds of millions to

billions of documents. Typically, the number of documents shown

to the user is far lower than the number of documents that match

a user query and profile. The matched documents could run in

millions whereas the number of documents shown could be in tens,

which has a significant overhead in terms of latency for online

Tutorial SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

1391

https://doi.org/10.1145/3077136.3082066
https://doi.org/10.1145/3077136.3082066

search and recommender systems. Moreover, the latency require-

ments for end-to-end retrieval, i.e. candidate selection and ranking

for candidate documents, need to factor the computation time for

ranking by a nonlinear model document To run a complicated

model and maintain low latency requires a sophisticated candidate

selection model. Such a model at massive scale would involve the

following components.

2.1 Indexing and Static Rank
The index is ordered in such a way that the documents with highest

probability of interaction (independent of query and user) are re-

trieved first. This enables stopping retrieval when sufficient number

of high quality documents are matched.

2.2 Query Understanding
We can achieve significant reduction in number of documents

scored by understanding the type and intent of the query. For

example, if a user types in “oracle” into LinkedIn job search [7], we

could assume that the user meant to search for jobs from company

“Oracle” and rewrite the query as: +COMPANY:oracle Above refor-

mulation significantly reduces the number of documents scored.

This of course requires us to understand that “oracle” in fact repre-

sents a company.

2.3 Query Operators
We look into the use of complex operators likeWAND [5] go beyond

regular MUST/SHOULD/NOT and ensure at least certain type of

documents are retrieved. In the “oracle” example shown above may

be some users meant to search for “oracle db” in which case “oracle”

could in fact represent a skill. By rewriting it based on company, we

could lose on recall. WAND operators can be tuned to address these

use cases. For example, WAND operator can be used to ensure that

at least 1% of the documents retrieved MUST have a skill match for

the term “oracle”.

2.4 Offline Replay and Evaluation
Once index is ordered and query reformulated, one needs to eval-

uate the impact of changes efficiently. Traditionally, we rely on

A/B testing. However, this may be inefficient, take a lot of time

and potentially involve subjecting a small percentage of users to

reduced user experience. Hence, it would be more prudent to use an

offline replay framework [8] which replays real production queries

to evaluate potential loss of recall.

2.5 Query Construction Algorithm
We make use of historical interactions with our dataset for a given

baseline candidate selection query. As we explore new candidate

selection queries, our objective is to maximize retention of docu-

ments with favorable actions and reduction of documents with an

unfavorable action. With the inherent position and presentation

bias in the training data from the previous candidate selection query

model, we will make use of top-k randomized result set (collected by

randomizing top-k results for certain sessions) or a golden dataset

with human annotated quality labels. In summary objectives of the

tutorial are as follows.

• Present a survey of techniques involved for solving all of

the challenges mentioned above - indexing, query rewriting,

replay framework and query construction

• Present a real use case of LinkedIn job search and recom-

mendations and detail how we achieved very significant

reduction in latency (over 66%) by employing candidate se-

lection techniques

• Present open source tools and a real use case (along with

code in Github) about how to solve this problem at big scale.

3 RELATEDWORK
In Information retrieval (IR) systems inverted indexes are used to

support keyword queries, and only top-k results need to be re-

turned. Candidate selection enables use of more complex ranking

functions while scoring a fewer number of candidate documents.

In the space of candidate selection Broder et al. [5] formally in-

troduced the concept of WAND (weighted AND) operator which

utilizes tf-idf based heuristics to tune the weights for each of the

clauses to facilitate retrieval at a large scale.

For inverted index based search systems early termination is

a technique used to speed up retrieval. Use of early termination

requires ordering of the posting list in such a way that the highest

quality document as determined through a “static rank” is placed

first. The rank is computed per document and is independent of the

user or the query. Persin et al. [9] proposed use of within document

term frequencies and Brin et al. [4] proposed use of document pop-

ularity as the static rank.

Agarwal et al. [2] propose a two pass approach to ranking. The

first pass retrieves the top-k documents using approximate ranking.

e second pass uses a more accurate model. The document and items

are represented in a vector space. The first state ranking leverages

this vector space representation to retrieve a limited set of docu-

ments. This gives more time for the second pass to work on a more

accurate model.

More recently Covington et al. [6] propose a neural network

based candidate selection for YouTube recommendations. In this

work, the authors reduce the number of videos to be ranked to

a few hundreds by converting the recommendation problem into

an extreme multi class classification problem. A high dimensional

embedding of each document and item (in this case user and videos)

is learned using neural networks. A nearest neighbor search is exe-

cuted in real time in this high dimensional space to retrieve the top

N documents.

Aphinyanaphongs et al. [3] propose a way to learn Boolean

queries in such a way that they are manageable by humans. Such

queries are then used as filters.

In terms of the open source technologies elasticsearch [1] is a

search server based on Apache Lucene that provides capabilities to

build search engines. It also provides different query building apis

to allow exploration of different candidate selection techniques to

find the one that best serves the intended use case.

In this tutorial we aim to provide an overview of the candidate se-

lection methodologies and explore how to build candidate selection

queries to serve fast and relevant search results and recommenda-

tions at scale.

Tutorial SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

1392

4 FORMAT AND DETAILED SCHEDULE
We provide details on the format and hands-on part of the tutorial.

The hands-on part builds on the open source codebase used in

Instant Search tutorial in SIGIR 2016.

4.1 Introduction and Problem Setting
• Motivate the necessity and importance of candidate selection

in large scale personalized search and recommender systems,

and describe the problem setting.

• Showcase examples from LinkedIn search and recommenda-

tions

4.2 Literature Survey
• WAND Operator

• Early Termination and Static Rank

• Two phase ranking as proposed by [2]

• NN based candidate selection at youtube

• Learning weights for boolean clauses

4.3 Candidate Selection
• Building static rank

• Query understanding and query operators

• Query construction methodology

• Offline replay and evaluation

4.4 Walking through a real world example
• Utilize a public dataset to explore relevance/latency tradeoff

by building different candidate selection queries.

• Evaluation methodology of candidate selection models

5 SUPPORTING MATERIAL
Supported material and setup instructions will be provided prior to

the tutorial. The material will also be accompanied with detailed

READMEs and guidance will be provided to attendees during the

tutorial.

REFERENCES
[1] Elasticsearch. https://www.elastic.co/products/elasticsearch.

[2] Agarwal, D., and Gurevich, M. Fast top-k retrieval for model based recom-

mendation. In Proceedings of the fifth ACM international conference on Web search
and data mining (2012), ACM, pp. 483–492.

[3] Aphinyanaphongs, Y., and Aliferis, C. Learning boolean queries for article

quality filtering. Medinfo 11, 1 (2004), 263–267.
[4] Brin, S., and Page, L. The anatomy of a large-scale hypertextual web search

engine. Computer networks and ISDN systems 30, 1 (1998), 107–117.
[5] Broder, A. Z., Carmel, D., Herscovici, M., Soffer, A., and Zien, J. Efficient

query evaluation using a two-level retrieval process. In Proceedings of the twelfth
international conference on Information and knowledge management (2003), ACM,

pp. 426–434.

[6] Covington, P., Adams, J., and Sargin, E. Deep neural networks for youtube

recommendations. In Proceedings of the 10th ACM Conference on Recommender
Systems (2016), ACM, pp. 191–198.

[7] Li, J., Arya, D., Ha-Thuc, V., and Sinha, S. How to get them a dream job?:

Entity-aware features for personalized job search ranking. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, San Francisco, CA, USA, August 13-17, 2016 (2016), pp. 501–510.

[8] Li, L., Chu, W., Langford, J., and Wang, X. Unbiased offline evaluation of

contextual-bandit-based news article recommendation algorithms. In Proceedings
of the fourth ACM international conference on Web search and data mining (2011),

ACM, pp. 297–306.

[9] Persin, M., Zobel, J., and Sacks-Davis, R. Filtered document retrieval with

frequency-sorted indexes. JASIS 47, 10 (1996), 749–764.
[10] Venkataraman, G., Lad, A., Guo, L., and Sinha, S. Fast, lenient and accurate:

Building personalized instant search experience at linkedin. In 2016 IEEE Inter-
national Conference on Big Data, BigData 2016, Washington DC, USA, December
5-8, 2016 (2016), pp. 1502–1511.

Tutorial SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

1393

https://www.elastic.co/products/elasticsearch

	Abstract
	1 Motivation
	2 Objectives
	2.1 Indexing and Static Rank
	2.2 Query Understanding
	2.3 Query Operators
	2.4 Offline Replay and Evaluation
	2.5 Query Construction Algorithm

	3 Related Work
	4 Format and Detailed Schedule
	4.1 Introduction and Problem Setting
	4.2 Literature Survey
	4.3 Candidate Selection
	4.4 Walking through a real world example

	5 Supporting Material
	References

