Anonymizing Tables

G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani,
R. Panigrahy, D. Thomas, A. Zhu

Stanford University*

Abstract. We consider the problem of releasing tables from a rela-
tional database containing personal records, while ensuring individual
privacy and maintaining data integrity to the extent possible. One of
the techniques proposed in the literature is k-anonymization. A release
is considered k-anonymous if the information for each person contained
in the release cannot be distinguished from at least kK — 1 other per-
sons whose information also appears in the release. In the k-ANONYMITY
problem the objective is to minimally suppress cells in the table so as
to ensure that the released version is k-anonymous. We show that the
k-ANONYMITY problem is NP-hard even when the attribute values are
ternary. On the positive side, we provide an O(k)-approximation algo-
rithm for the problem. This improves upon the previous best-known
O(k log k)-approximation. We also give improved positive results for the
interesting cases with specific values of kK — in particular, we give a 1.5-
approximation algorithm for the special case of 2-ANONYMITY, and a
2-approximation algorithm for 3-ANONYMITY.

1 Introduction

The information age has witnessed a tremendous growth in the amount of per-
sonal data that can be collected and analyzed. This has led to an increasing
use of data mining tools with the basic goal of inferring trends in order to
predict the future. However, the protection of personal data against privacy
intrusions has restricted the direct usage of data containing personal informa-
tion [Eur98,Tim97]. In many scenarios, access to large amounts of personal data
is essential in order for accurate inferences to be drawn. For example, hospitals
might wish to collaborate with each other in order to catch the outbreak of
epidemics in their early stages. This requires them to allow outside access to
medical records of their patients, potentially violating the doctor-patient privi-
lege. In such cases, the remedy is to provide data in a manner that enables one
to draw inferences without violating the privacy of individual records.

Different approaches to address this problem have emerged recently. One
approach is to use perturbation techniques in order to hide the exact values
of the data [AS00,AA01,DN03,DN04,EGS03,AST03]. However, this may not be
suitable if one wants to make inferences with 100% confidence. If the function to

* Supported in part by NSF Grants 11S-0118173, EIA-0137761, and ITR-0331640, and
grants from Microsoft, SNRC, and Veritas.

be evaluated is known in advance, we can use techniques from secure multi-party
computation [LP00,AMP04,FNP04]. However interactive data-mining tasks are
inherently ad-hoc and the queries are not known ahead of time.

Another approach is to suppress or generalize some of the sensitive data
values. We consider the k-anonymity model which was proposed by Samarati and
Sweeney [Swe02,5598]. Suppose we have a table with n tuples and m attributes.
Let £ > 1 be an integer. We wish to release a modified version of this table,
where we can suppress the values of certain cells in the table. The objective is to
minimize the number of cells suppressed while ensuring that for each tuple in the
modified table, there are at least k—1 other tuples in the modified table identical to
it. For example, consider the following table which is part of a medical database,
with the identifying attributes such as name and social security number removed.

Age| Race |Gender|Zip Code| Diseases
47 |White| Male | 94305 |Common Cold
35 |White|Female| 94045 Flu

27 |Black |Female| 92010 Flu

27 |White|Female| 92010 |Hypertension

By joining with public databases (such as a voter list), non-identifying at-
tributes such as Age, Race, Gender and Zip Code in the above table can together
be used to identify individuals. In fact, Sweeney [Swe00] observed that for 87%
of the population in the United States, the combination of Date of Birth, Gen-
der and Zip Code corresponded to a unique person. Hence, simply removing the
identifying (or key) attributes from a database is not enough. Instead we would
like to suppress some of these entries so that any (Age, Race, Gender, Zip Code)
tuple corresponds to at least k individuals. Note that we do not suppress any
entry in the column for “Diseases”. Joining this anonymized table with public
databases can, if at all, only identify an individual’s disease to be one among k
diseases. For instance, when k& = 2, we could obtain the following anonymized
table.

Age| Race |Gender|Zip Code| Diseases
*

* |White| * Common Cold
* |White * * Flu
27 * |Female| 92010 Flu

27| * |Female| 92010 | Hypertension

We study the k-ANONYMITY problem: finding the optimal (in terms of min-
imizing the number of cells suppressed) k-anonymized table for any given ta-
ble instance. We show that this problem is NP-hard even for the special case
of ternary attribute values. This significantly strengthens the NP-hardness re-
sult in [MWO04], which required the domain of attribute values to be larger
than the number of tuples in the table. On the positive side, we give an O(k)-
approximation algorithm for this problem (for arbitrary alphabet size) using a
graph representation. This improves upon the previous best-known approxima-
tion guarantee of O(klogk) [MWO04]. We also show that it is not possible to

achieve an approximation factor better than O(k) using the graph representa-
tion approach. In addition, for binary alphabets, we give a 1.5-approximation
algorithm for k = 2 and a 2-approximation algorithm for k& = 3.

The rest of the paper is organized as follows. In Section 2, we specify our
model and formally state the problem of k-ANONYMITY. We establish the NP-
hardness of k-ANONYMITY in Section 3. We then provide a 1.5 approximation
algorithm for the 2-ANONYMITY problem for binary alphabet in Section 4,
and follow this up with a brief sketch of the 2-approximation algorithm for
3-ANONYMITY (for binary alphabet) in Section 5. In Section 6, we present an
O(k)-approximation algorithm for the k-ANONYMITY problem. In the Appendix,
we present the details of the 2-approximation algorithm for 3-ANONYMITY.

2 Model and Main results

Consider a database with n rows and m columns in which each entry comes from
a finite alphabet Y. For example, in a medical database, the rows represent
individuals and the columns correspond to the different attributes. We would
like to suppress some of the entries so that each row becomes identical to at
least k — 1 other rows. A suppressed entry is denoted by the symbol *. Since
suppression results in the release of less information and hence less utility, we
would like to suppress as few entries as possible.

We can view the database as consisting of n m-dimensional vectors: 1, ...,
Ty € X™. A k-anonymous suppression function ¢t maps each x; to ; by replacing
some components of x; by *, so that every Z; is identical to at least £ — 1 other
Z;’s. This results in a partition of the n row vectors into clusters of size at least
k each. The cost of the suppression, ¢(t) is the total number of *’s in all the Z;’s.

k-ANONYMITY: Given x1,Z2,...,T, € X™, and an anonymity parame-
ter k, obtain a k-anonymous suppression function t so that c¢(t) is min-
imized.

Clearly the decision version of k-ANONYMITY is in NP, since we can verify
in polynomial time if the solution is k-anonymous and the suppression cost less
than a given value. We show that k-ANONYMITY is NP-hard even when the
alphabet size | Y| = 3. This improves upon the NP-hardness result of [MW04]
which required an alphabet size of n. On the positive side, we provide an O(k)-
approximation algorithm for arbitrary k& and arbitrary alphabet size. For a binary
alphabet, we also provide 1.5-approximation for ¥ = 2 and 2-approximation for
k=3.

3 NP-hardness of k-ANONYMITY

Theorem 1. k-ANONYMITY 4s NP-hard for a ternary alphabet (X = {0,1,2}).

Proof Sketch:
We show the NP-hardness of k-anonymity by reducing a specific instance of
the problem from a known NP-hard graph problem. More specifically we show

the hardness of k-anonymity for ¥ = 3, by reduction from EDGE PARTITION
INTO TRIANGLES [Kan94]: Given a graph G = (V, E) with |E| = 3m for some
integer m, can the edges of G be partitioned into m edge-disjoint triangles?

Given an instance of the above problem, we create a database as follows.
W.l.o.g., we assume that G is simple. The rows correspond to the 3m edges and
the columns to the n vertices of G. The row corresponding to edge (a,b), Tap,
has 1’s in the positions corresponding to a and b and 0’s everywhere else. We
first show that the cost of the optimal 3-ANONYMITY solution is at most 9m
if and only if E can be partitioned into a collection of m disjoint triangles and
4-stars!.

Suppose such a partition of edges is given. Consider any triangle (with a,b, ¢
as the vertices). By suppressing the positions a,b and c in the rows 74,74 and
Tcq, We get a cluster with three x’s in each modified row. Similarly, consider a
4-star with vertices a, b, c,d, where d is the center vertex. By suppressing the
positions a,b and ¢ in the rows r,4,7pq and r.q, we get a cluster with three *’s
in each modified row. Thus we obtain a solution to 3-ANONYMITY of cost 9m.

On the other hand, suppose that there is a 3-ANONYMITY solution of cost
at most 9m. Since G is simple, any three rows are distinct and differ in at least
3 positions. Hence there should be at least three x’s in each modified row, so
that the cost of the solution is at least 9m. Thus the solution cost is exactly
9m and each modified row has exactly three ’s. Since any cluster of size > 3
will have at least four *’s in each modified row, it follows that each cluster has
exactly three rows. There are exactly two possibilities: the corresponding edges
form a triangle or a 4-star. Each modified row in a triangle has three %’s and
zeros elsewhere while each modified row in a 4-star has three *’s, single 1 and
zeros elsewhere. This corresponds to a partition of the graph edges into triangles
or 4-stars, instead of only triangles.

Since we want a reduction from EDGE PARTITION INTO TRIANGLES, we
“force” the 4-stars to pay more *’s by increasing the number of columns created
in our k-ANONYMITY instance. Let ¢ = 1 + [log,(3m)]. Consider an arbitrary
ordering of E and express the rank of an edge e = (a,b), in this ordering, in
binary notation as b1bs ... b;. Every row in the database now has t blocks, each
of which has n columns. In the row corresponding to edge e, each block has zeros
in all positions except a and b. Depending on the values in positions a and b, a
block can be in two configurations: con fy has 1 in position a and 2 in position b
while conf; has 2 in position a and 1 in position b. The i** block in this row has
configuration con f,. (For example, consider a complete graph on four vertices:
{v1,v2,v3,v4}. Suppose edge (v1,v2) has rank 5 = (0101)2. The corresponding
row would have 4 blocks of 4 columns each: 1200 — 2100 — 1200 — 2100.)

We will now show that the cost of the optimal 3-ANONYMITY solution is at
most 9mit if and only if E can be partitioned into m disjoint triangles.

As earlier, every triangle in such a partition corresponds to a cluster with 3¢
*’s in each modified row. Thus we get a 3-ANONYMITY solution of cost 9mit.

! By 4-star, we mean a tree on four vertices with a vertex of degree 3.

For the converse, suppose that we are given a 3-ANONYMITY solution of cost
at most 9mt. Again, any three rows differ in at least 3t positions so that the
cost of any solution is at least 9mt. Hence the solution cost is exactly 9mt and
each modified row has exactly 3t *’s. Each cluster has exactly three rows. The
corresponding edges should form a triangle: As any two of these edges differ in
the configuration of at least one block, there would have been more than 3t *’s
per row if they formed a 4-star instead. Thus we get a partition of E into disjoint
triangles.

By reduction from EDGE PARTITION INTO r-CLIQUES [Kan94], we can ex-
tend the above proof for k = (), for r > 3. By replicating the graph in the
above reduction, we can further extend the proof for k = a(}) for any integer a
and r > 3. O

4 Algorithm for 2-ANONYMITY

For a binary alphabet, we provide a polynomial time 1.5-approximation algo-
rithm for 2-ANONYMITY, using a polynomial time algorithm for obtaining a min-
imum weight [1,2]-factor of a graph. A [1,2]-factor of an edge-weighted graph
G is defined to be a spanning (i.e., containing all the vertices) subgraph F' of
G such that each vertex in F' has degree 1 or 2. The weight of F' is the sum of
the weights of edges in F. Cornuejols [Cor88] showed that a minimum weight
[1,2]-factor of a graph can be computed in polynomial time.

Given an instance of the 2-ANONYMITY problem, we create an edge-weighted
complete graph G = (V, E) as follows. The vertex set V contains a vertex cor-
responding to each vector in the 2-ANONYMITY problem. The weight of an edge
(a,b) is the Hamming distance between the vectors represented by a and b (i.e.,
the number of positions at which they differ). First we obtain a minimum weight
[1,2]-factor F' of G. By optimality, F' is a vertex-disjoint collection of edges and
pairs of adjacent edges (If a [1, 2]-factor has a component which is either a cycle
or a path of length > 3, we can obtain a lesser weight [1,2]-factor by remov-
ing edge(s).). We treat each component of F' as a cluster, i.e., retain the bits
on which all the vectors in the cluster agree and replace all other bits by *’s.
Clearly this results in a 2-anonymized database.

Theorem 2. The number of stars introduced by the above algorithm is at most
1.5 times the number of stars in an optimal 2-ANONYMITY solution.

Proof Sketch: Let ALG and OPT denote the costs of the above solution and
optimal 2-ANONYMITY solution respectively. Let OF AC' denote the weight of
an optimal [1, 2]-factor. The optimal 2-ANONYMITY solution can be assumed to
consist only of disjoint clusters of size 2 or 3 (as bigger clusters can be broken
into such clusters without increasing the cost). We derive a [1, 2]-factor from this
solution as follows. Include the edge between the two vertices in each 2-cluster.
For 3-clusters, include the two edges of lesser weights amongst the three edges.
Denote the weight of this [1,2]-factor by FAC.

Consider three m-bit vectors 1,2 and x3 with pairwise Hamming distances
a,p and 7 as in Fig. 1. Wlo.g, let v > a, 5. Let x4 denote the “median”
vector whose it" bit is the majority of the i** bits of z;,z2 and z3 and let p, q
and r be the Hamming distances to x,,.q from the three vectors. Let x, be
the “star” vector obtained by minimal suppression of z1,zs and x3, i.e., it has
the common bits where the three vectors agree and *’s elsewhere. Observe that
a=q+r,=r+pandy=p+ q. The other relevant distances are shown in
the figure.

Fig. 1. Three vectors and their corresponding “median” and “star” vectors

Lemma 1. ALG<3-0OFAC

Proof Sketch: For a 2-cluster, we have to suppress all the bits at which the
two vectors differ so that the total number of *’s is twice the Hamming distance
(which is the edge weight). For a 3-cluster, say the one in the figure, the number
of ¥’s is (p+ g +r) for each vector, so that the total is 3(p+q+r) = 2(a+ 8+
v) < 3(a + B) (using triangle inequality). The optimal [1, 2]-factor would have
contained two (lesser weight) edges, incurring a cost of (a + 3) for this cluster.
Considering all the clusters formed by the optimal [1, 2]-factor algorithm, we get
ALG <3-OFAC. |

Lemma 2. FAC < OPT/2

Proof Sketch: For a 2-cluster, cost incurred in FAC = (cost incurred in
OPT). For a 3-cluster (in the figure), cost incurred in FAC = a+ 8 < 2(a +
B+7) = 5(p+ q+r), where the inequality follows using v > a, 8. Since the
cost incurred in OPT is 3(p + g +), cost incurred in FAC < 3 (cost incurred
in OPT). By considering all the clusters, we get FAC < OPT/2. |

Since OF AC < FAC, it follows from the above lemmas that ALG < %OPT.

O

For an arbitrary alphabet size, ¢4 is no longer defined. However as before
it can be shown that OPT > (a++7) > 2(a+f), proving FAC < 20PT. As
ALG < 3-OFAC holds as before, we get ALG < 2 - OPT. Thus the algorithm
achieves a factor 2 approximation for arbitrary alphabet size.

5 Algorithm for 3-ANONYMITY

We now present a 2-approximation algorithm for 3-ANONYMITY with a binary
alphabet. The idea is similar to the algorithm for 2-ANONYMITY. We construct
the graph G corresponding to the 3-ANONYMITY instance as in the previous
algorithm. A 2-factor of a graph is a spanning subgraph with each vertex having
degree 2 (in other words, a collection of vertex-disjoint cycles spanning all the
vertices). We run the polynomial time algorithm to find a minimum-weight 2-
factor F of the graph G [Cor88]. We first show that the cost of this 2-factor, say
OFAC, is at most 2/3 times the cost of the optimal 3-ANONYMITY solution,
say OPT'. Then, we show how to transform this 2-factor F into a 3-ANONYMITY
solution of cost at most 3- OF AC, giving us a factor-2 approximation algorithm
for 3-ANONYMITY. The details can be found in the appendix.

6 Algorithm for general k-ANONYMITY

In this section, we address the problem of k-ANONYMITY for general k and arbi-
trary alphabet size, and give an O(k)-approximation algorithm for the problem.
Given an instance of the k-ANONYMITY problem, we create an edge-weighted
complete graph G = (V, E). The vertex set V contains a vertex corresponding to
each vector in the k-ANONYMITY problem. The weight, w(e) of an edge e = (a, b)
is the number of attributes along which the vectors represented by a and b differ.

As mentioned in the introduction, with this representation, we lose some
information about the structure of the problem, and cannot achieve a better
than O(k) approximation factor for the k-anonymity problem. We show this by
giving two instances whose k-anonymity cost differs by a factor of O(k), but the
corresponding graphs for both the instances are identical. Let [= 2¥=2. For the
first instance, take k vectors with kl-dimensions each. The bit positions (i—1)I+1
to il are referred to as the i-th block of a vector. The i-th vector has ones in the
i-th block and zeros everywhere else. The k-anonymity cost for this instance is
k21. For the second instance, take k vectors with 4/ = 2% dimensions each. The
i-th vector breaks up its 2¥ dimensions into 2¢ equal-sized blocks and has ones in
the odd blocks and zeros in the even blocks. This instance incurs a k-anonymity
cost of 4kl. Note that the graph corresponding to both the instances is a k-clique
with all the pairwise distances being 2/ = 2+~1.

Next, we describe our O(k)-approximation algorithm for the k-anonymity
problem.

For any given k-ANONYMITY solution, define the charge of a vertex to be
the number of x’s introduced into the vector it represents. Let OPT denote the

cost of an optimal k-ANONYMITY solution, i.e., OPT is the sum of charges of all
vertices in an optimal k-ANONYMITY solution.

Let F = {T1,T»,...,T,}, a forest in which each tree T; has at least k ver-
tices, be a subgraph of G. This forest describes a feasible partition for the k-
ANONYMITY problem. In the k-ANONYMITY solution as per this partition, the
charge of each vertex is at most the cost of the tree, W(T;) = Xecp(r;)w(e). This
is because any attribute along which a pair of vertices differs appears on the path
between the two vertices. Thus, the k-anonymity cost of such a partition is at
most X; |V (T;)|W (T;). We will refer to this as the k-anonymity cost of the forest.
Note that the cost of a forest is simply the sum of the costs of its trees. The ratio
of the k-anonymity cost to the simple cost of a forest is at most the number of
vertices in the largest tree in the forest. Thus, if we can find a forest with the
size of the largest component at most L and cost at most OPT, then we have
an L-approximation algorithm. Next, we present an algorithm that finds such a
forest with L < 3k — 3. Actually, the forest that we obtain has dummy vertices
that act as Steiner points, but this does not affect the result.

The algorithm has the following overall structure, which is explained in more
detail in the next two subsections.

Outline:

1. Create a forest G with cost at most OPT. The number of vertices in each
tree is at least k.

2. Compute a decomposition of this forest (we are allowed to delete edges) such
that each component has between k and 3k — 3 vertices. The decomposition
is done in a way that does not increase the sum of the costs of the edges.

6.1 Algorithm for producing a forest with components of size at
least k

The key observation is that since each partition in a k-ANONYMITY solution
groups a vertex with at least kK — 1 other vertices, the charge of a vertex is
at least equal to its distance to its (k — 1)% nearest neighbor. The idea is to
construct a directed forest such that each vertex has at most one outgoing edge
and (@,?) is an edge only if v is one of the k& — 1 nearest neighbors of u.

Algorithm FOREST
Invariant:
— The chosen edges do not create any cycle.
— The out-degree of each vertex is at most one.

1. Start with an empty edge set so that each vertex is in its own connected
component.
2. Repeat until all components are of size at least k:
Pick any component 7" having size smaller than k. Let u be a vertex in T’
without any outgoing edges. Since there are at most k — 2 other vertices
in T, one of the k — 1 nearest neighbors of u, say v, must lie outside

T. We add the edge (@,) to the forest. Observe that this step does not
violate any of the invariants.

Lemma 3. The forest produced by algorithm FOREST has minimum tree size at
least k and has cost at most OPT.

Proof Sketch: It is evident from the algorithm description that each component
of the forest it produces has at least k vertices.

Let the cost of an edge (@,?) be paid by vertex u. Note that each vertex u
pays for at most one edge to one of its £ — 1 nearest neighbors. As noted earlier,
this is less than the charge of this vertex in any k~-ANONYMITY solution. Thus,
the sum of costs of all edges in the forest is less than the total charge of all
vertices in an optimal solution. O

6.2 Algorithm to decompose large components into smaller ones

We next show how to break any component with size greater than 3k — 3 into
two components each of size at least k. Let the size of the component we are
breaking be s > 3k — 3.

Algorithm DECOMPOSE-COMPONENT

1. Pick any vertex as the candidate vertex.

2. Root the tree at the candidate vertex u. Let U be the set of subtrees rooted
at the children of u. Let the size of the largest subtree of U be ¢. If ¢ < s—k,
then we do the following partition and terminate.

If ¢ > k, then partition the tree into the largest subtree and the rest.
Clearly, the size of both components is at least k. Otherwise, all subtrees
have size at most k — 1. In this case, keep adding subtrees to a partition
till the first time its size becomes at least k. Clearly, at this point, its size
is at most 2k —2. Put the remaining subtrees and u (at least k vertices in
all) into the other partition. In order to keep the first partition connected,
a dummy vertex corresponding to u is placed in the first partition which
acts only as a Steiner point and does not contribute to the size of the
component.

3. Otherwise, pick the root of the largest subtree as the new candidate vertex
and go to Step 2.

Lemma 4. The above algorithm terminates.

Proof Sketch: We will show that the size of the largest component ¢ (in Step
2) decreases in each iteration. Consider moving from candidate vertex w in one
iteration to candidate vertex v in the next iteration. Since the algorithm did not
terminate with wu, if we root the tree at v, then the size of the subtree rooted at
u is less than s — (s — k) = k. When we consider the largest subtree under v,
either it is rooted at w, in which case, it is smaller than & < s — k. Otherwise,
the new largest subtree is a subtree of the previous largest subtree. O

Theorem 3. There is a (3k—3)-approximation algorithm for the k-ANONYMITY
problem.

Proof Sketch: First, use Algorithm FOREST to create a forest with cost at
most OPT and minimum tree size at least k. Then repeatedly apply Algorithm
DECOMPOSE-COMPONENT to any component that has size larger than 3k — 3.
Note that both these algorithms terminate in polynomial time. O

This factor can be improved to max(2k — 1,3k — 5) by appropriately choos-
ing the partition for u in Step 2 of Algorithm DECOMPOSE-COMPONENT. This
reduces to 3k — 5 for k > 4.

We can easily extend the above algorithm and analysis to the version of the
problem where we allow an entire row to be deleted from the published database,
instead of forcing it to pair with at least £ — 1 other rows. The cost of deleting
an entire row is modelled as changing all the entries of that row to stars, while
the objective remains to minimize the number of stars.

7 Conclusion and further research directions

We showed that the k-ANONYMITY problem is NP-hard, even when the attribute
values are ternary. Then we gave an O(k)-approximation algorithm for the gen-
eral k-ANONYMITY problem with arbitrary alphabet size, improving upon the
previous best known O(k log k)-approximation. For binary alphabets, we achieve
an approximation factor of 1.5 for £ = 2 and a factor of 2 for k£ = 3. We also show
that for k-ANONYMITY, it is not possible to achieve an approximation factor bet-
ter than k/4 by using the graph representation. It would also be interesting to
see a hardness of approximation result for k-ANONYMITY without assuming the
graph representation.

Releasing a database after k-anonymization prevents definitive record link-
ages with publicly available databases [Swe(02]. In particular, for each record in
the public database, at least k records in the k-anonymized database could corre-
spond to it, which hides each individual in a crowd of k other people. The privacy
parameter k must be chosen according to the application in order to ensure the
required level of privacy. One source of concern about the k-anonymization model
is that for a given record in the public database, all the k records corresponding
to it in the anonymized database might have the same value of the sensitive at-
tribute(s) (“Diseases” in our examples), thus revealing the sensitive attribute(s)
conclusively. To address this issue, we could add a constraint that specifies that
for each cluster in the k-anonymized database, the sensitive attribute(s) should
take at least r distinct values. This would be an interesting direction for future
research.

Another interesting direction of research is to extend the basic k-ANONYMITY
model to deal with changes in the database. A hospital may want to periodically
release an anonymized version of its patient database. However, releasing several
anonymized versions of a database might leak enough information to enable
record linkages for some of the records. It would be useful to extend the k-
ANONYMITY framework to handle inserts, deletes and updates to a database.

References

[AAO01] D. Agrawal and C. Aggarwal. On the design and quantification of privacy
preserving datamining algorithms. In Proc. of the ACM Symp. on Principles
of Database Systems, 2001.

[AMPO04] G. Aggarwal, N. Mishra, and B. Pinkas. Privacy preserving computation of
the k-th ranked element. In EUROCRYPT, 2004.

[AS00] R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proc. of the
ACM SIGMOD Intl. Conf. on Management of Data, pages 439-450, May
2000.

[ASTO03] R. Agrawal, R. Srikant, and D. Thomas. Privacy preserving aggregates. Tech-
nical report, Stanford University, 2003.

[Cor88] G. P. Cornuejols. General factors of graphs. In Journal of Combinatorial
Theory B 45, pages 185-198, 1988.

[DNO03] I. Dinur and K. Nissim. Revealing information while preserving privacy. In
Proc. of the ACM Symp. on Principles of Database Systems, pages 202-210,
2003.

[DN04] C. Dwork and K. Nissim. Privacy-preserving datamining on vertically parti-
tioned databases. In CRYPTO, 2004.

[EGS03] A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in
privacy preserving data mining. In Proc. of the ACM Symp. on Principles of
Database Systems, June 2003.

[Eur98] European Union. Directive on Privacy Protection, October 1998.

[FNP04] M. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set
intersection. In EUROCRYPT, 2004.

[Kan94] V. Kann. Maximum bounded H-matching is MAX SNP-complete. In Infor-
mation Processing Letters, 49, pages 309-318, 1994.

[LP00] Y. Lindell and B. Pinkas. Privacy preserving data mining. In CRYPTO,
pages 36-54, 2000.

[MW04] A. Meyerson and R. Williams. On the complexity of optimal k-anonymity.
In Proc. of the ACM Symp. on Principles of Database Systems, June 2004.

[SS98] P. Samarati and L. Sweeney. Generalizing data to provide anonymity when
disclosing information (abstract). In Proc. of the ACM Symp. on Principles
of Database Systems, page 188, 1998.

[Swe00] L. Sweeney. Uniqueness of simple demographics in the U.S. population. In
LIDAP-WP/. Carnegie Mellon University, Laboratory for International Data
Privacy, Pittsburgh, PA, 2000.

[Swe02] L. Sweeney. k-Anonymity: A model for protecting privacy. In International
Journal on Uncertainty Fuzziness Knowledge-based Systems, June 2002.

[Tim97] Time. The Death of Privacy, August 1997.

A Detailed algorithm for 3-ANONYMITY

Lemma 5. The cost of the optimal 2-factor, OF AC' on graph G corresponding
to the vectors in the 3-ANONYMITY instance is at most 2/3 times the cost of the
optimal 3-ANONYMITY solution, OPT.

Proof Sketch: Note that the optimal 3-ANONYMITY solution will cluster 3, 4
or 5 vertices together (any larger groups can be broken up into smaller groups

of size at least 3, without increasing the cost of the solution). Given an optimal
solution to the 3-ANONYMITY problem, we construct a 2-factor solution as fol-
lows. For every cluster of the 3-ANONYMITY solution, pick the minimum-weight
cycle involving the vertices of the cluster. Next, we analyze the cost FAC of
this 2-factor. Define the charge of a vertex to be the number of x’s in the vec-
tor corresponding to this vertex in the 3-ANONYMITY solution. We consider the
following three cases:

(a) If a cluster i is of size 3, the 2-factor contains a triangle on the corresponding
vertices. Let a, b and ¢ be the lengths of the edges of the triangle. Using an
argument similar to Lemma 1, we get that (a+b+c) is twice the charge of each
vertex in this cluster. Thus, OPT pays a total cost of OPT; = 3(a+b+c¢)/2
while FAC pays FAC; =a+b+c= 20PT;

(b) If a cluster i is of size 4, the 2-factor corresponds to the cheapest 4-cycle
on the 4 vertices. Let 7 be the sum of the weights of all the (3) = 6 edges
on these four vertices. Then, by considering all 4-cycles and choosing the
minimum weight 4-cycle, we ensure that the cost paid by FAC for these
vertices FFAC; < %7’. Also, the charge of any of these 4 vertices is at least
half the cost of any triangle on (three of) these four vertices (again by using
the argument of Lemma 1) Averaging over all triangles, we get that cost
paid by OPT, OPT; > 4 6 .7 = 7. Thus, FAC; < 2OPT

(c) If a cluster i is of size 5, let 7 be the sum of welghts of all (3) = 10 edges
on these five vertices. Then, FAC pays FAC; < 7. Also, the charge of
any of these vertices is at least half the cost of any triangle on (three of)
these vertices. Averaging over all triangles, we get that cost paid by OPT

for cluster i, OPT; > 5.2. 3.7 = 27. Thus, FAC; < 20PT;.

Thus, adding up over all clusters, we get FAC < 2OPT Thus, OFAC <
20PT.
O

Lemma 6. Given a 2-factor F with cost FAC, we can get a solution for 3-
ANONYMITY of cost SOL < 3-FAC.

Proof Sketch: To get a solution for 3-ANONYMITY, we make every cycle in F’
with size 3, 4 or 5 into a cluster. For each larger cycle C, if |C| = 3z for z an
integer, then we break it up into x clusters, each containing 3 adjacent vertices of
C, such that the total cost of edges of the cycle within the clusters is minimized.
Similarly, if C' = 3z 4+ 1, z an integer, we break it into x clusters, z — 1 of size
3, and one of size 4. If C' = 3z + 2, x an integer, then we break it up into z — 2
clusters of size 3, and two clusters of size 4.

Let len(C) denote the length of a cycle C in the 2-factor. Then depending
on the size of the cycle C, we can show that the 3-ANONYMITY solution SOL
pays as follows:

(a) For a triangle, SOL pays 3 - len(C) 3-len(C).
(b) For a 4-cycle, SOL pays at most 4. ? en(C) < 3-len(C).
(c) For a 5-cycle, SOL pays at most 5- 5 -len(C) < 3 -len(C).

This is so (for the above cases) because the number of attributes along which
the vertices differ is at most len(C)/2.

(d) For a 3z-cycle, x > 1, SOL pays at most 3 - g—ﬁ -len(C) < 3-len(C).

(e) Fora (3z+1)-cycle, z > 1, SOL pays at most %-len(C) < 3-len(C).

(f) For a (3z+2)-cycle, z > 1, SOL pays at most W&en((}) < 3-len(C).
(Equality can hold in this case, when x = 2.)

Thus, adding over all clusters, SOL pays no more than 3 times the total cost of
all cycles, i.e., 3- FAC. O

Combining the above lemmas, we obtain a factor-2 approximation for 3-
ANONYMITY.

