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Abstract. A large class of separable quadratic programming problems is
presented. The problems in the class can be solved in linear time. The class in-
cludes the separable convex quadratic transportation problem with a fixed number
of sources and separable convex quadratic programming with nonnegativity con-
straints and a fixed number of linear equality constraints.

1. Introduction

There is a general interest in finding a strongly polynomial algorithm for linear program-
ming. If a general convex quadratic function can be minimized subject to nonnegativity
constraints in strongly polynomial time, then obviously the linear programming problem
can be solved in strongly polynomial time. Thus, a natural interest arises in quadratic
programs with some separable structure.

The (separable) quadratic transportation problem is an optimization problem defined
as follows. Givena € R, b € R*, C = (¢;;) € R"™*" (¢;; > 0), and D = (d;;) € R™*",
find X = (2;;) € R™*" so as to

Minimize % Z cijx?j + Z dija

] ]

subject to > @y =a; (i=1,...,m)
Q)

inj:b] (j:1,...,n)
=1

;>0 (i=1,...,m,j=1,...,n).
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Cosares and Hochbaum [4] showed that for any fixed value of m, this problem can be
solved in strongly polynomial time. Their algorithm runs in O(r™*!) arithmetic opera-
tions.

Matsui [9] gave a linear time algorithm for the linear transportation problem (i.e.,
with C = O) for any fixed m. But this is really a special case of the d-dimensional linear
multiple choice knapsack problem for which linear time algorithms based on the basic
multidimensional search of [10] were given by Dyer [6] and Zemel [12]. Tokuyama and
Nakano [11] proved that the linear transportation problem can be solved in O(m?n log®n)
time if n > mlogm.

A somewhat simpler problem is that of a separable convex quadratic programming
with a fixed number of linear constraints. Best and Tan [1] gave an O(n? logn) algorithm
for the following problem:

Minimize % Z cj:z/'? + d;x;
J
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We demonstrate in this note how the technique of Lagrangian relaxation provides
linear time algorithms for such problems based on the multidimensional search procedure
of Megiddo [10], and the improvements by Clarkson [3] and Dyer [5]. We do not describe
the mulitdimensional search procedure in detail. The interested reader should consult
the references. In Sections 2 and 3 we give the idea of the algorithm for the two special
cases. A more general treatment is given in Section 4.

2. Separable quadratic programming

For any vector ® € R", denote
2’ = (2f,...,22).

Consider an optimization problem as follows. Given ¢ > 0, d, e and f in R", (e¢; > —o0,
fi <o), A€ R and b € R, find & € R" so as to

Minimize %c 2P+ d-x
(QP) subject to Ax =b
e<z<f,



and think of m as fixed. For any A € R™, define ¢(A) to be the optimal value of the
following optimization problem:

Minimize ic-a@*+d-x—X-(Axz —b)
subject to e <& < f.

(P(A))

It is well known that ¢(A) is concave and, furthermore, maximizing ¢ is equivalent to
solving (QP). Note that the evaluation of ¢(A) at any given A is quite easy due to the
separability:

G(A) = 01(A) + -+ (X)) + A b,
where

¢](A) = min{%qx? + (d] — Z)\ZGU) Tj €5 S €5 S f]} .
=1

Denote by #7(A) a minimizer that yields ¢;(A) if the latter is finite. If ¢; = 0, we may
choose
e; if S Nay; < d;
Ay =4 ! =1 Ailij X 4
z(2) {fj it Ay > d;
If ¢; # 0, denote
Yz Aittij — d;

0;(A) = 4 (J=1,...,n).
Cj
Obviously, in this case
€ if 6;(A) < ¢
ri(A) = 6(A) i e o (A) < fs

<
fio i fi <8N

It follows that the function ¢(A) is piecewise quadratic and concave and its domains of
quadraticity are bounded by hyperplanes represented by equations of the form:

Zaij)\i = d]‘ + C;€; and Zaij)\i = d]‘ + C]‘f]‘ .

Note that once we know the position of a maximizer A" relative to the two hyperplanes
represented by these equations for some value of 7, we can replace the function ¢; by the
resulting quadratic (or linear) function of A,

bestes A2+ (4= 3o h (0

where 2%(X) is the corresponding linear function. Our algorithm runs in phases so that in
each phase a fixed proportion of the remaining functions ¢, is converted into a quadratic
function over a reduced domain in the A-space. In order to identify such proportions,
we determine the position of A™ relative to a fixed proportion of hyperplanes using the
technique of [10]. More details will be given in Section 4.
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3. The quadratic transportation problem

To apply the Lagrangian relaxation approach to (QTP), define ¢(A) for any A € R™ to
be the optimal value of the following optimization problem:

Minimize 1% ¢zl +) (dij — )z + A - a

%) %)
subject to > x;=b; (j=1,...,n)
=1

;>0 (i=1,...,m,j=1,...,n).
We now have a separable problem:
(A) = 01(A)+ -+ (A + A a,

where ¢;(A) is the optimal value of the problem:

Minimize %Z cijx?j + Z(dij — Ai)ag;
=1 =1
subject to Z x; = b;
=1

J}”ZO (izl,...,m),

(j =1,...,n). For any fixed A, the latter problem is a quadratic knapsack problem (see
Brucker [2]) or a resource allocation problem (see Ibaraki and Katoh [8]):

Minimize % Z iyl + Z diy;
=1

7 =1
(QRS) subject to Zyi =
=1
Y >0 (i: 1,...,m)

(where we assume, for simplicity of presentation, that ¢; > 0,7 = 1,...,m). This problem
is also used by Cosares and Hochbaum [4]. It can be solved as follows. A vector y € R™,
such that Y-, y; = b, is an optimal solution of (QRS) if and only if there exists a scalar p

such that .
=it di<p .
yz—{ 0 if d> (t=1,...,m).
The value of y can be found in O(m) time by searching the set of d;’s (using a linear
time median-finding algorithm repeatedly) until the set I of indices ¢ such that d; < p is
determined. The value of p is then calculated from the equation (recall that ¢; > 0)

Zﬂ_di:b.

el G




Thus,
_ b+ Yierdi/ci
Yerl/e
In the case of ¢;(A),

di = di(A) = di(X;j) =dij — A (t=1,....,m),

b:b]‘, C; = Gy

and

_ b+ Yierldiy — M) /e
Yierl/ci
Consider the cell partition induced on R™ by the hyperplane equations:

dij_)\i:dkj_)\k (1§Z<k§m)

The order on the d;’s is fixed within every cell. Assume, for the moment, that we have
already determined the cell in which the optimal A™ lies. Without loss of generality, we
assume that the indices are such that over this cell di(A) < --- < d,,(X). Denote

M ody — d;
Sp=S5%A) ==

=1

(k=1,...,m),

¢

and S, 11 = oo. Obviously, 0 = 51 < --- <5, < S;uy1. Consider a finer cell partition
obtained by adding also the hyperplane equations: Si(A) = b (k = 1,...,m). Thus,
over a cell in the new partition, the order on {5i,...,5,,,b} is fixed. Suppose we have
determined the cell that contains A*. Let ¢ (1 < ¢ < m) be the index such that

Sg<b§5g+1.

Then, there exists a u, d; < g < dpyq, such that

l

>t

=1 G

which, in fact, can be calculated directly:

b+ dife
f:l 1/02 ‘

The essential point to note is that once the order of the d;(A) is known, and also the
index ¢ such that S, < b < Sy4q is known, then the value of ¢;(X) can be represented as
a quadratic function over a certain polyhedron which is known to contain A*. Again, the
multidimensional search of [10] can be employed to convert the functions ¢; into quadratic
functions by identifying the position of A* relative to the critical hyperplanes. This is
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done in O(log n) phases, where in each phase a fixed proportion of the remaining functions
is converted. Fxamine for example the first phase. We start this phase by considering
the cell partition induced by the collection of the O(m?n) hyperplane equations:

dij_)\i:dkj_)\k (1§]§n,1§l<k§m)

Using the multidimensional search in [10], (see Section 4), we find a cell of this partition
containing A* such that the order of the d;(A;j) (: = 1,...,m) is fixed over this cell for
at least half of the indices j. Let J C {1,...,n} denote the subset of indices for which the
order is fixed. Next, for all indices j € J we define the hyperplane equations: Sp(A) =5
(k=1,...,m). Consider the cell partition induced by this collection of equations. Again,
apply [10] to determine for at least one half of the indices in J an index ¢ (1 < { < m)
such that
S <b< Sg_H .

Thus, at least one quarter of the n original functions ¢; can be converted into quadratic
functions during the first phase. More details are given in Section 4.

4. The general model

We now present a more general class of separable quadratic programming problems which
can be solved in linear time. For j = 1,...,n, let ®’ denote a vector in R*. Consider
the following quadratic program:

Problem 4.1. Given @ € R™, and for every j (j =1,...,n) A’ € R™*% B/ ¢ R%*%
b’ € R, d’ € R*, and a symmetric positive semi-definite D7 € R¥*% find non-negative
vectors ' € R% (j =1,...,n), so as to

Minimize %a:lDla:l +d' -2 4+ %w”D”w” +d"-z"
subject to Alz! +o A" =a
(GQP) B'z! = b'
B'ar — b

Think of the k;’s, the {;’s, and m as fixed. For any A € R, define ¢(X) to be the optimal

value of the following optimization problem:

Minimize  iz'D'a' 4 (d' —AA)z' +.--+ iz"D"z"+(d"—AA")z" +X-a

subject to B'a! = b
Bz =b"
x! e x” >0



Separability

Due to the separability, ¢(A) can be written as
(X)) =2 6;XN)+Aa,
7=1

where ¢;(A) is the optimal value of the problem

Minimize le'D’@’ + (d — AA7)z’
(P(X)) subject to B/a’ = b’
x’ >0.

Fix the value of j for a moment. The function ¢;(A) is concave and piecewise quadratic.
[ts domains of quadraticity are determined by the linear complementarity problem (LCP),
associated with the optimization problem defining ¢;(A), which is formulated as follows.
A vector @/ is an optimizer of the problem defining ¢;(\) if and only if there exist w € R%
and v € R% such that

(BY'u+v—Diz’ =d — (A)'A

Bixl = b
(LCP) ,

', v>0

vl =0.

We now analyze basic solutions of (LCP). A basic (and complementary) solution
2%V = (@, u,v) is characterized by two sets: S C K = {1,...,k;} and U C [ =
{1,...,1;}, such that (i) for every ¢ € S, v; = 0, (ii) for every ¢ & S, 2! =0, and (iii) for
every 1 € U, u; = 0. Each coordinate of z°Y is, in fact, a linear function of A, so there
exist linear functions s (A) (S € K, U C L,1 € S), and nspi(A) (S C K, U C L,
i € S), such that in the basic solution 25U,

vI(A) = Esui(A) and  vi(A) = nspi(A) .

Hence, the corresponding value of the objective function %a:ija:j + (dj — )\Aj)a:j is a
quadratic function of A whenever S and U are fixed.

A typical domain of quadraticity of ¢; can be described as follows. Fix S and U and
consider the linear equations of A corresponding to z! for 7 € S and to v; for ¢ € S. The

cell C(S,U) corresponding to S and U is defined by
C(S, U) = {)\ | fS,U,i(A) >0 (Z € S), US,U,i(A) >0 (Z € S)} .

The hyperplanes that induce the partition of the A-space into domains of quadraticity of
¢, can be characterized as {X | £sp(A) =0} for ¢ € S and {X | sy (A) =0} fori & S.
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Note, however, that for any pair (5,7) such that : € S, the equations {sp:(A) = 0 and
ns\(i},0,{(A) = 0 are identical and both are induced by v; = 2! = 0.

It is important to note that for each j, the total number of hyperplanes is fixed.
Moreover, the number of cells is bounded by a fixed constant, since both k; and (; are
fixed. Thus, for each variable it takes only constant time to construct all the cells (i.e.,
domains of quadraticity) of ¢;(X), and compute for each cell a solution vector ®/(\)
whose corresponding objective function value is ¢;(X), where ®/(\) is linear over this
cell. Note that it may be impossible to choose ®/(A) as a continuous function over the
whole A-space, but this is not really necessary. Let p; denote the number of hyperplane
equations that determine the cells of the finer partition corresponding to ¢;(A). In the
model of Section 2, k; = 1 (7 € R), so p; = 2. In the quadratic transportation model
of Section 3, k; = m (x/ € R™), and p; = O(m?).

Maximizing ¢(\)

Each function ¢; (j = 1,...,n) has p; hyperplane equations. For each j, we compute
these p; functions, all the respective cells, and the linear representation of a solution /()
for each cell. Altogether, we have at most 3-"_; p; = O(n) equations and Y-7_; O(p7') =
O(n) cells of quadraticity of the functions ¢;. We note in passing that the cells of the
function ¢ can be found by computing intersections of the components ¢;; the number of
such intersections is O(n™) and they can all be computed in O(n™) time (since the total
number of hyperplanes is O(n); see chapter 7 in [7]), so ¢ can be maximized in strongly
polynomial time whenever m is fixed. Let A" be a maximizer of ¢(A). If a cell of ¢,
containing A™ is known, then ¢; can be replaced by its respective quadratic expression.
Furthermore, if such a cell is determined for r values of 5, then we can replace r functions
¢; by a single quadratic function of A.

The algorithm works in phases as follows. At the start of Phase s (s =1,2,...), the
function ¢(A) is represented as the sum of rs functions ¢; and a single concave quadratic
g(A) = A-QAX+a-A. During a phase we identify, for each of at least r;/2 functions ¢;, a
cell of ¢; that contains A". In this way we "discard” r;/2 functions in the sense that we
start the next phase with r,4; < r;/2 functions and the discarded functions are simply
replaced by quadratic functions which are accumulated into the quadratic term ¢(A).

To identify a cell of ¢; containing A*, we determine the position of A™ with respect
to all of its p; hyperplane equations. We apply the multidimensional search of [10] (or
the improvements suggested in [3] and [5]) for identifying the cells.

Suppose there exists an oracle which accepts as input any hyperplane equation in
R™ and outputs the position of A* with respect to this equation. Consider any set
of k hyperplane equations in R™. ;From the multidimensional search it follows that
there are constants o, 0 < a < 1, and 3, which depend on m but not on k, such that



by calling upon the oracle 3 times, we can identify the position of A™ with respect to
at least ak of the given hyperplane equations. In addition to the time spent by the
oracle, the multidimensional search takes O(k) effort. Using the multidimensional search
repeatedly on the remaining equations, we conclude that for any constant +, independent
of k(0 <~ < 1), Blog(l —~)/log(l — a) calls to the oracle plus O(k) additional time,
suffice to identify the position of A* with respect to at least some vk of the given set of
k hyperplanes.

The reader is referred to [10; 3; 5] for a detailed description of the multidimensional
search. We note in passing that the approach is based on reducing the m-dimensional
problem into a number of (m — 1)-dimensional problems. This number depends on m
but not on k. Ultimately, a one-dimensional case is solved with the linear-time median-
finding algorithm as the main tool. In this case each of the k hyperplane equations
defines a point on the real line. Let Ag be the median of these £ points. We determine
the position of A" with respect to Ag by computing the one-sided derivatives of ¢(A) at
Ag. This can clearly be done in linear time. Since Ag is the median, we now know the
position of A* with respect to at least half of the given k points.

We now show how to use the above to identify the cells containing A* with respect
to at least a half of the functions ¢;. Let {¢;}, j = 1,... 7, be the set of piecewise
quadratic functions given at the beginning of Phase s. Assume, without loss of generality,
that py > ps > - > p,, > 1. Set k =3, p; and v = 1 —1/(2py). Also, define p to
be the mean of the p;’s. Using the above approach, we identify the position of A™ with
respect to vk of the k hyperplanes. (Recall that & = O(r;).) We claim that, having done
that, for each of at least r;/2 out of the ry ¢;’s, the position of A™ with respect to all
the corresponding p; hyperplanes has already been computed. In other words, the cell of
¢, that contains A" can now be identified. For, if this was not true, then the maximum
number of hyperplanes with respect to which the position of A has been identified, would
be less than

rs/24 ) (pi—1) = pi—rs/2.
7=1 7=1

However, vk > (1 = 1/(2p)) > p; = >, 05 — 7's/2.

To summarize, it takes a constant number of calls to the oracle plus O(r;) time to
discard at least half of the r; functions ¢;(A), which are given at the beginning of Phase
s. Since the total number of functions at Phase 1 is O(n), the total number of phases
is O(logn). We will show, however, that the total effort of maximizing the objective
function ¢(A) is only O(n). The proof goes by induction on the dimension m. (Note that
we view the objective function ¢ as a sum of O(n) concave piecewise quadratics defined
over R™, where the number of hyperplanes associated with each term j is some constant
p;.) For the case m = 1, we use the usual median-finding scheme as in Zemel [12] to
maximize ¢ in O(n) time.



Turning to a general m, it follows from our solution approach, that the O(n) bound is
implied if the oracle can find the position of A* with respect to a single hyperplane during
Phase s in O(r,) time. (Such an oracle ensures that the total effort spent during Phase s
is O(rs), and since r541 < rs/2, the overall bound is O(n).) Consider a hyperplane H in
R™ presented to the oracle during Phase s, i.e., we need to find the position of A™ with
respect to H. We argue that this task can be accomplished by solving three maximization
problems of our generic type over R™~!. Assume that the LCP and the heperplane H are
defined by rational data, and let I denote their input length. Then A* is the minimum
of a quadratic function with rational coefficients. The input length of these coefficients
can easily be bounded above by a quadratic function of /. If A* is not on H, then a
rational lower bound, say ¢, on the distance between A* and H can be predetrmined in
terms of the input length I.! Let H_ and H, be two hyperplanes parallel to H, lying
on different sides of H at a distance of e. Due to concavity, by maximizing the objective
¢ over H, H_, and H,, (1.e., solving 3 (m — 1)-dimensional maximization problems), we
can clearly conclude the position of A* with respect to H. By the induction hypothesis,
we conclude that the effort involved is O(ry).

References

[1] M. W. Best and R. Y. Tan, “An O(n?logn) strongly polynomial algorithm for
quadratic program with two equations and lower & upper bounds,” Research Re-
port 90-04, Department of Combinatorics and Optimization, University of Waterloo,
Waterloo, Ontario, Canada, 1990.

[2] P. Brucker, “An O(n) algorithm for quadratic knapsack problems,” Operations Re-
search Letters 3 (1984) 163-166.

[3] K. L. Clarkson, “Linear programming in O(n3d2) time,” Information Processing Let-
ters 22 (1986) 21-24.

[4] S. Cosares and D. S. Hochbaum, “Strongly polynomial algorithms for the quadratic
transportation problem with a fixed number of sources,” manuscript, University of
California, Berkeley, October 1990.

[5] M. E. Dyer, “On a multidimensional search technique and its application to the
FEuclidean one-center problem,” SIAM .J. Comput. 15 (1986) 725-738.

[6] M. E. Dyer, “An O(n) algorithm for the multiple-choice knapsack linear program,”
Math. Programming 29 (1984) 57-63.

[7] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, Berlin,
Heidelberg, New York, 1987.

'We note that instead of parallel hyperplanes we can also develop a method based on subgradients
which works over the real numbers as well.

10



[8] T. Ibaraki and N. Katoh, Resource allocation problems: Algorithmic approaches, The
M. I. T. Press, Cambridge, Mass. 1988.

[9] T. Matsui, “Linear time algorithm for the Hitchcock transportation with fixed number
of supply points,” unpublished.

[10] N. Megiddo, “Linear programming in linear time when the dimension is fixed,”
J. ACM 31 (1984) 114-127.

[11] T. Tokuyama and J. Nakano, “Efficient algorithms for the Hitchcock transportation
problem,” IBM Research Report RT 0060, Tokyo Research Laboratory, Tokyo, Japan,
July 1991.

[12] E. Zemel, “An O(n) algorithm for the linear multiple choice knapsack problem and
related problems ,” Information Processing Letters 18 (1984) 123-128.

11



