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Abstract� A large class of separable quadratic programming problems is

presented� The problems in the class can be solved in linear time� The class in�

cludes the separable convex quadratic transportation problem with a �xed number

of sources and separable convex quadratic programming with nonnegativity con�

straints and a �xed number of linear equality constraints�

�� Introduction

There is a general interest in �nding a strongly polynomial algorithm for linear program�
ming� If a general convex quadratic function can be minimized subject to nonnegativity
constraints in strongly polynomial time� then obviously the linear programming problem
can be solved in strongly polynomial time� Thus� a natural interest arises in quadratic

programs with some separable structure�

The �separable	 quadratic transportation problem is an optimization problem de�ned
as follows� Given a � Rm� b � Rn� C 
 �cij	 � Rm�n �cij � �	� and D 
 �dij	 � Rm�n�

�nd X 
 �xij	 � Rm�n so as to

�QTP	

Minimize �

�

X
i�j

cijx
�

ij �
X
i�j

dijxij

subject to
nX

j��

xij 
 ai �i 
 �� � � � �m	

mX
i��

xij 
 bj �j 
 �� � � � � n	

xij � � �i 
 �� � � � �m � j 
 �� � � � � n	 �
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Cosares and Hochbaum 
�� showed that for any �xed value of m� this problem can be
solved in strongly polynomial time� Their algorithm runs in O�nm��	 arithmetic opera�
tions�

Matsui 
�� gave a linear time algorithm for the linear transportation problem �i�e��
with C 
 O	 for any �xed m� But this is really a special case of the d�dimensional linear

multiple choice knapsack problem for which linear time algorithms based on the basic
multidimensional search of 
��� were given by Dyer 
�� and Zemel 
���� Tokuyama and
Nakano 
��� proved that the linear transportation problem can be solved in O�m�n log� n	

time if n � m logm�

A somewhat simpler problem is that of a separable convex quadratic programming
with a �xed number of linear constraints� Best and Tan 
�� gave an O�n� log n	 algorithm
for the following problem�

Minimize �

�

nX
j��

cjx
�

j �
nX

j��

djxj

subject to
nX

j��

ajxj 
 �

nX
j��

bjxj 
 �

�j � xj � hj �j 
 �� � � � � n	 �

We demonstrate in this note how the technique of Lagrangian relaxation provides
linear time algorithms for such problems based on the multidimensional search procedure
of Megiddo 
���� and the improvements by Clarkson 
�� and Dyer 
��� We do not describe

the mulitdimensional search procedure in detail� The interested reader should consult
the references� In Sections � and � we give the idea of the algorithm for the two special
cases� A more general treatment is given in Section ��

�� Separable quadratic programming

For any vector x � Rn� denote

x� 
 �x��� � � � � x
�

n	 �

Consider an optimization problem as follows� Given c � �� d� e and f in Rn� �ej � ���
fj � �	� A � Rm�n� and b � Rm� �nd x � Rn so as to

�QP	

Minimize �

�
c � x� � d � x

subject to Ax 
 b

e � x � f �

�



and think of m as �xed� For any � � Rm� de�ne ���	 to be the optimal value of the
following optimization problem�

�P ��		
Minimize �

�
c � x� � d � x� � � �Ax� b	

subject to e � x � f �

It is well known that ���	 is concave and� furthermore� maximizing � is equivalent to

solving �QP	� Note that the evaluation of ���	 at any given � is quite easy due to the
separability�

���	 
 ����	 � � � �� �n��	 � � � b �

where

�j��	 
 min

�
�

�
cjx

�

j �

�
dj �

mX
i��

�iaij

�
xj � ej � xj � fj

�
�

Denote by x�j ��	 a minimizer that yields �j��	 if the latter is �nite� If cj 
 �� we may
choose

x�j��	 


�
ej if

Pm
i�� �iaij � dj

fj if
Pm

i�� �iaij � dj
�

If cj �
 �� denote

�j��	 


Pm
i�� �iaij � dj

cj
�j 
 �� � � � � n	 �

Obviously� in this case

x�j��	 


���
��

ej if �j��	 � ej
�j��	 if ej � �j��	 � fj
fj if fj � �j��	

�

It follows that the function ���	 is piecewise quadratic and concave and its domains of
quadraticity are bounded by hyperplanes represented by equations of the form�

mX
i��

aij�i 
 dj � cjej and
mX
i��

aij�i 
 dj � cjfj �

Note that once we know the position of a maximizer�� relative to the two hyperplanes
represented by these equations for some value of j� we can replace the function �j by the
resulting quadratic �or linear	 function of ��

�

�
cj�x

�
j��		

� �

�
dj �

mX
i��

�iaij

�
x�j ��	 �

where x�j��	 is the corresponding linear function� Our algorithm runs in phases so that in
each phase a �xed proportion of the remaining functions �j is converted into a quadratic
function over a reduced domain in the ��space� In order to identify such proportions�

we determine the position of �� relative to a �xed proportion of hyperplanes using the
technique of 
���� More details will be given in Section ��
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�� The quadratic transportation problem

To apply the Lagrangian relaxation approach to �QTP	� de�ne ���	 for any � � Rm to
be the optimal value of the following optimization problem�

Minimize �

�

X
i�j

cijx
�

ij �
X
i�j

�dij � �i	xij � � � a

subject to
mX
i��

xij 
 bj �j 
 �� � � � � n	

xij � � �i 
 �� � � � �m � j 
 �� � � � � n	 �

We now have a separable problem�

���	 
 ����	 � � � �� �n��	 � � � a �

where �j��	 is the optimal value of the problem�

Minimize �

�

mX
i��

cijx
�

ij �
mX
i��

�dij � �i	xij

subject to
mX
i��

xij 
 bj

xij � � �i 
 �� � � � �m	 �

�j 
 �� � � � � n	� For any �xed �� the latter problem is a quadratic knapsack problem �see
Brucker 
��	 or a resource allocation problem �see Ibaraki and Katoh 
��	�

�QRS	

Minimize �

�

mX
i��

ciy
�

i �
mX
i��

diyi

subject to
mX
i��

yi 
 b

yi � � �i 
 �� � � � �m	

�where we assume� for simplicity of presentation� that ci � �� i 
 �� � � � �m	� This problem
is also used by Cosares and Hochbaum 
��� It can be solved as follows� A vector y � Rm�

such that
P

i yi 
 b� is an optimal solution of �QRS	 if and only if there exists a scalar 	
such that

yi 


�
��di
ci

if di 
 	

� if di � 	
�i 
 �� � � � �m	 �

The value of 	 can be found in O�m	 time by searching the set of di�s �using a linear

time median��nding algorithm repeatedly	 until the set I of indices i such that di 
 	 is
determined� The value of 	 is then calculated from the equation �recall that ci � �	

X
i�I

	� di
ci


 b �

�



Thus�

	 

b�

P
i�I di�ciP

i�I ��ci
�

In the case of �j��	�

di 
 di��	 
 di��� j	 
 dij � �i �i 
 �� � � � �m	 �

b 
 bj� ci 
 cij

and

	 

bj �

P
i�I�dij � �i	�ciP
i�I ��ci

�

Consider the cell partition induced on Rm by the hyperplane equations�

dij � �i 
 dkj � �k �� � i 
 k � m	 �

The order on the di�s is �xed within every cell� Assume� for the moment� that we have
already determined the cell in which the optimal �� lies� Without loss of generality� we
assume that the indices are such that over this cell d���	 � � � � � dm��	� Denote

Sk 
 Sk��	 

kX

i��

dk � di
ci

�k 
 �� � � � �m	 �

and Sm�� 
 �� Obviously� � 
 S� � � � � � Sm 
 Sm��� Consider a �ner cell partition
obtained by adding also the hyperplane equations� Sk��	 
 b �k 
 �� � � � �m	� Thus�

over a cell in the new partition� the order on fS�� � � � � Sm� bg is �xed� Suppose we have
determined the cell that contains ��� Let � �� � � � m	 be the index such that

S� 
 b � S��� �

Then� there exists a 	� d� 
 	 � d���� such that

�X
i��

	� di
ci


 b �

which� in fact� can be calculated directly�

	 

b�

P�
i�� di�ciP�

i�� ��ci
�

The essential point to note is that once the order of the di��	 is known� and also the
index � such that S� 
 b � S��� is known� then the value of �j��	 can be represented as
a quadratic function over a certain polyhedron which is known to contain ��� Again� the

multidimensional search of 
��� can be employed to convert the functions �j into quadratic
functions by identifying the position of �� relative to the critical hyperplanes� This is

�



done inO�log n	 phases� where in each phase a �xed proportion of the remaining functions
is converted� Examine for example the �rst phase� We start this phase by considering
the cell partition induced by the collection of the O�m�n	 hyperplane equations�

dij � �i 
 dkj � �k �� � j � n� � � i 
 k � m	 �

Using the multidimensional search in 
���� �see Section �	� we �nd a cell of this partition
containing �� such that the order of the di��� j	 �i 
 �� � � � �m	 is �xed over this cell for
at least half of the indices j� Let J � f�� ���� ng denote the subset of indices for which the
order is �xed� Next� for all indices j � J we de�ne the hyperplane equations� Sk��	 
 b

�k 
 �� � � � �m	� Consider the cell partition induced by this collection of equations� Again�
apply 
��� to determine for at least one half of the indices in J an index � �� � � � m	
such that

S� 
 b � S��� �

Thus� at least one quarter of the n original functions �j can be converted into quadratic
functions during the �rst phase� More details are given in Section ��

�� The general model

We now present a more general class of separable quadratic programming problems which

can be solved in linear time� For j 
 �� � � � � n� let xj denote a vector in Rkj � Consider
the following quadratic program�

Problem ���� Given a � Rm� and for every j �j 
 �� � � � � n	 Aj � Rm�kj � Bj � R�j�kj �
bj � R�j � dj � Rkj � and a symmetric positive semi�de�niteDj � Rkj�kj � �nd non�negative
vectors xj � Rkj �j 
 �� � � � � n	� so as to

�GQP	

Minimize �

�
x�D�x� � d� � x� � � � �� �

�
xnDnxn � dn � xn

subject to A�x� � � � �� Anxn 
 a

B�x� 
 b�

� � �
���

Bnxn 
 bn

Think of the kj �s� the �j�s� and m as �xed� For any � � Rm� de�ne ���	 to be the optimal
value of the following optimization problem�

Minimize �

�
x�D�x� � �d� � �A�	x� � � � �� �

�
xnDnxn � �dn � �An	xn �� � a

subject to B�x� 
 b�

� � �
���

Bnxn 
 bn

x� � � � xn � �

�



Separability

Due to the separability� ���	 can be written as

���	 

nX

j��

�j��	 � � � a �

where �j��	 is the optimal value of the problem

�P ��		

Minimize �

�
xjDjxj � �dj � �Aj	xj

subject to Bjxj 
 bj

xj � � �

Fix the value of j for a moment� The function �j��	 is concave and piecewise quadratic�

Its domains of quadraticity are determined by the linear complementarity problem �LCP	�
associated with the optimization problem de�ning �j��	� which is formulated as follows�
A vector xj is an optimizer of the problem de�ning �j��	 if and only if there exist u � R�j

and v � Rkj such that

�LCP	

�Bj	Tu� v �Djxj 
 dj � �Aj	T�

Bjxj 
 bj

xj �v � �

v � xj 
 � �

We now analyze basic solutions of �LCP	� A basic �and complementary	 solution
zS�U 
 �xj�u�v	 is characterized by two sets� S � K 
 f�� � � � � kjg and U � L 


f�� � � � � ljg� such that �i	 for every i � S� vi 
 �� �ii	 for every i �� S� xji 
 �� and �iii	 for
every i �� U � ui 
 �� Each coordinate of zS�U is� in fact� a linear function of �� so there
exist linear functions �S�U�i��	 �S � K� U � L� i � S	� and 
S�U�i��	 �S � K� U � L�
i �� S	� such that in the basic solution zS�U �

xji ��	 
 �S�U�i��	 and vi��	 
 
S�U�i��	 �

Hence� the corresponding value of the objective function �

�
xjDjxj � �dj � �Aj	xj is a

quadratic function of � whenever S and U are �xed�

A typical domain of quadraticity of �j can be described as follows� Fix S and U and
consider the linear equations of � corresponding to xji for i � S and to vi for i �� S� The

cell C�S�U	 corresponding to S and U is de�ned by

C�S�U	 
 f� j �S�U�i��	 � � �i � S	� 
S�U�i��	 � � �i �� S	g �

The hyperplanes that induce the partition of the ��space into domains of quadraticity of
�j can be characterized as f� j �S�U�i��	 
 �g for i � S and f� j 
S�U�i��	 
 �g for i �� S�

�



Note� however� that for any pair �S� i	 such that i � S� the equations �S�U�i��	 
 � and

Snfig�U�i��	 
 � are identical and both are induced by vi 
 xji 
 ��

It is important to note that for each j� the total number of hyperplanes is �xed�
Moreover� the number of cells is bounded by a �xed constant� since both kj and �j are
�xed� Thus� for each variable it takes only constant time to construct all the cells �i�e��

domains of quadraticity	 of �j��	� and compute for each cell a solution vector xj��	
whose corresponding objective function value is �j��	� where xj��	 is linear over this
cell� Note that it may be impossible to choose xj��	 as a continuous function over the

whole ��space� but this is not really necessary� Let pj denote the number of hyperplane
equations that determine the cells of the �ner partition corresponding to �j��	� In the
model of Section �� kj 
 � �xj � R	� so pj 
 �� In the quadratic transportation model
of Section �� kj 
 m �xj � Rm	� and pj 
 O�m�	�

Maximizing ���	

Each function �j �j 
 �� � � � � n	 has pj hyperplane equations� For each j� we compute
these pj functions� all the respective cells� and the linear representation of a solution xj��	
for each cell� Altogether� we have at most

Pn
j�� pj 
 O�n	 equations and

Pn
j��O�p

m
j 	 


O�n	 cells of quadraticity of the functions �j� We note in passing that the cells of the

function � can be found by computing intersections of the components �j� the number of
such intersections is O�nm	 and they can all be computed in O�nm	 time �since the total
number of hyperplanes is O�n	� see chapter � in 
��	� so � can be maximized in strongly
polynomial time whenever m is �xed� Let �� be a maximizer of ���	� If a cell of �j
containing �� is known� then �j can be replaced by its respective quadratic expression�
Furthermore� if such a cell is determined for r values of j� then we can replace r functions
�j by a single quadratic function of ��

The algorithm works in phases as follows� At the start of Phase s �s 
 �� �� � � �	� the

function ���	 is represented as the sum of rs functions �j and a single concave quadratic
q��	 
 � �Q��a ��� During a phase we identify� for each of at least rs�� functions �j� a
cell of �j that contains �

�� In this way we �discard� rs�� functions in the sense that we
start the next phase with rs�� � rs�� functions and the discarded functions are simply

replaced by quadratic functions which are accumulated into the quadratic term q��	�

To identify a cell of �j containing �
�� we determine the position of �� with respect

to all of its pj hyperplane equations� We apply the multidimensional search of 
��� �or
the improvements suggested in 
�� and 
��	 for identifying the cells�

Suppose there exists an oracle which accepts as input any hyperplane equation in
Rm and outputs the position of �� with respect to this equation� Consider any set
of k hyperplane equations in Rm� �From the multidimensional search it follows that
there are constants �� � 
 � 
 �� and �� which depend on m but not on k� such that

�



by calling upon the oracle � times� we can identify the position of �� with respect to
at least �k of the given hyperplane equations� In addition to the time spent by the
oracle� the multidimensional search takes O�k	 e�ort� Using the multidimensional search
repeatedly on the remaining equations� we conclude that for any constant �� independent

of k �� 
 � 
 �	� � log�� � �	� log�� � �	 calls to the oracle plus O�k	 additional time�
su�ce to identify the position of �� with respect to at least some �k of the given set of
k hyperplanes�

The reader is referred to 
��� �� �� for a detailed description of the multidimensional

search� We note in passing that the approach is based on reducing the m�dimensional
problem into a number of �m � �	�dimensional problems� This number depends on m

but not on k� Ultimately� a one�dimensional case is solved with the linear�time median�
�nding algorithm as the main tool� In this case each of the k hyperplane equations

de�nes a point on the real line� Let �� be the median of these k points� We determine
the position of �� with respect to �� by computing the one�sided derivatives of ���	 at
��� This can clearly be done in linear time� Since �� is the median� we now know the
position of �� with respect to at least half of the given k points�

We now show how to use the above to identify the cells containing �� with respect
to at least a half of the functions �j� Let f�jg� j 
 �� � � � � rs� be the set of piecewise
quadratic functions given at the beginning of Phase s� Assume� without loss of generality�
that p� � p� � � � � � prs � �� Set k 


P
j pj and � 
 � � ����p�	� Also� de�ne �p to

be the mean of the pj �s� Using the above approach� we identify the position of �� with
respect to �k of the k hyperplanes� �Recall that k 
 O�rs	�	 We claim that� having done
that� for each of at least rs�� out of the rs �j�s� the position of �� with respect to all
the corresponding pj hyperplanes has already been computed� In other words� the cell of

�j that contains �
� can now be identi�ed� For� if this was not true� then the maximum

number of hyperplanes with respect to which the position of �� has been identi�ed� would
be less than

rs�� �
rsX
j��

�pj � �	 

rsX
j��

pj � rs�� �

However� �k � ��� �����p		
P

j pj 

P

j pj � rs���

To summarize� it takes a constant number of calls to the oracle plus O�rs	 time to
discard at least half of the rs functions �j��	� which are given at the beginning of Phase

s� Since the total number of functions at Phase � is O�n	� the total number of phases
is O�log n	� We will show� however� that the total e�ort of maximizing the objective
function ���	 is only O�n	� The proof goes by induction on the dimensionm� �Note that
we view the objective function � as a sum of O�n	 concave piecewise quadratics de�ned

over Rm� where the number of hyperplanes associated with each term j is some constant
pj �	 For the case m 
 �� we use the usual median��nding scheme as in Zemel 
��� to
maximize � in O�n	 time�

�



Turning to a general m� it follows from our solution approach� that the O�n	 bound is
implied if the oracle can �nd the position of �� with respect to a single hyperplane during
Phase s in O�rs	 time� �Such an oracle ensures that the total e�ort spent during Phase s
is O�rs	� and since rs�� � rs��� the overall bound is O�n	�	 Consider a hyperplane H in

Rm presented to the oracle during Phase s� i�e�� we need to �nd the position of �� with
respect to H� We argue that this task can be accomplished by solving three maximization
problems of our generic type over Rm��� Assume that the LCP and the heperplane H are
de�ned by rational data� and let I denote their input length� Then �� is the minimum

of a quadratic function with rational coe�cients� The input length of these coe�cients
can easily be bounded above by a quadratic function of I� If �� is not on H� then a
rational lower bound� say �� on the distance between �� and H can be predetrmined in
terms of the input length I�� Let H� and H� be two hyperplanes parallel to H� lying

on di�erent sides of H at a distance of �� Due to concavity� by maximizing the objective
� over H� H�� and H�� ���e�� solving � �m� �	�dimensional maximization problems	� we
can clearly conclude the position of �� with respect to H� By the induction hypothesis�

we conclude that the e�ort involved is O�rs	�
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