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Chapter 1

Introduction

This thesis is about coding theory. Coding theory studies (error-correcting) codes, sets of strings that protect

information from noise. A natural illustration of a code is the set of valid English sentences: “yOu alr*dy

kn*w what an err*r coarecting code is.” is a corrupted English sentence whose meaning you can decode,

despite the errors.

While the English language is a code useful to people, coding theory studies codes useful to computers,

specifically codes with mathematical guarantees. To formalize these guarantees, we typically imagine a

communication setup (see Figure 1.1): a sender, conventionally named Alice, wants to send a message to a

receiver, conventionally named Bob, through a noisy channel, so she sends Bob an encoded message called

a codeword (e.g., an English sentence) with enough redundancy that Bob can decode the message, even in

the presence of noise. The success of this protocol largely boils down to the mathematical properties of the

code, the set of possible codewords Alice could send (e.g., the set of all English sentences).

The goal of coding theory is to help Alice and Bob by finding good codes. A code is “good” if it is less

redundant, meaning Alice’s codeword is not too much longer than the message, and more robust, meaning

the protocol can tolerate more noise. We formally quantify these notions later, but for now we note that

there are many ways to measure robustness, depending on the meanings of “tolerate” and “noise.” For

instance, the “noise” could be substitution errors, the error in Figure 1.1, which changes individual symbols

of a string, or deletion errors, which drop symbols in strings (so that “cat” may become “at”). Additionally,

“tolerate” could mean the natural notion of unique-decoding or a more relaxed (but also central) notion

called list-decoding, both to be defined later. In these various settings, this central challenge—finding codes

that are both less redundant and more robust—has several facets.

Question 1.1. What is the mathematically optimal tradeoff between redundancy and robustness?

Question 1.2. Can we find explicit codes achieving the optimal redundancy versus robustness tradeoff?

Question 1.3. For such explicit codes, are there fast encoding and decoding algorithms? That is, can Alice

encode her message into a codeword quickly, and can Bob decode the message from the noisy codeword

quickly?

Coding theory is a broad field spanning electrical engineering, computer science, and mathematics. Be-

cause of the pervasive need to protect data from noise, codes find many applications in electrical engineering

such as communication and storage. For example, “Alice” could be your phone sending a message to “Bob”,

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Error correcting codes: Alice want to send a message to Bob through a noisy channel. She
encodes the message as a codeword of an (error-correcting) code, so that Bob can recover the message from
a noisy copy of the codeword. Here, Alice uses a very simple code, encoding her message by repeating every
symbol 3 times. The message has length k = 2, the codeword has length n = 6, so the rate is R = 1/3.

a cell tower, or “Alice” could be a satellite sending a message to “Bob”, a satellite dish. For similar reasons,

and because codes have such a fundamental mathematical definition, codes find applications in computer

science such as pseudorandomness, computational complexity, and cryptography. For example, list-decodable

codes, which we study in this thesis, are intimately connected to central objects in pseudorandomness. Be-

cause we use a variety of mathematical techniques to construct and analyze codes, coding theory has rich

connections to diverse areas of mathematics. For example, in this thesis, we make a novel application of

regularity, a powerful tool in additive combinatorics and extremal combinatorics, to deletion codes.

Despite tremendous progress since its inception over 70 years ago, coding theory has basic mathematical

challenges that remain open. This thesis makes progress on several such challenges in two classic contexts:

deletion errors and list-decoding. Each setting is a simple variation of the most traditional error-correction

model: In deletion codes, we consider deletion errors rather than the more traditionally studied substitution

errors. In list-decoding, we keep the standard error model of substitutions, but Bob only needs to output a

small list of message containing the correct one.

1.1 Overview of contributions

As mentioned above, the central question in coding theory is finding codes C (which, recall, are simply sets of

strings) with the optimal tradeoff between redundancy and robustness, for various definitions of redundancy

and robustness. Non-redundancy is typically quantified by the rate R = k/n, the ratio between Alice’s

message length k and the codeword length n (recall a codeword is simply an element of the code). Note that,

(i) unlike our illustration of English sentences, we require all codewords in a code to be the same length and

(ii) unlike in English where the “message” is a nebulous idea, here the message is a concrete length k string

over the same alphabet as the codeword (see Figure 1.1 for an example). We also typically think of the

message and the codeword as strings over the same alphabet (in Figure 1.1, the alphabet is {0, 1}). We want

larger rate, so that there is a smaller number n− k of “redundant” symbols that Alice sends in addition to

the message.

Robustness is typically is quantified by a parameter p, which roughly represents the fraction of symbols

that the channel can corrupt. The exact definition depends on the error model, which depends on questions

such as: Are the errors applied by an adversary, or randomly, or some other way? Are the errors substitutions,

erasures, deletions, or something else? Does Bob need to recover the message exactly (unique-decoding), or
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Figure 1.2: Deletion errors: The noisy channel applies deletions, which drops symbols from unknown positions
so that Bob receives a subsequence of Alice’s codeword. In contrast to the closely related erasure errors, the
position of deleted bits is unknown. The table on the right compares substitutions, erasures, and deletions.
While substitutions and erasures are well understood, deletions are still poorly understood.

is it enough to return a list of messages containing the correct one (list-decoding)?

Given these parameters R and p, which we both want to be large, the natural and central questions are:

• What is the optimal tradeoff between R and p? (Question 1.1)

• Can we find explicit codes C (Question 1.2) with fast encoding/decoding algorithms (Question 1.3)

that achieve the optimal R versus p tradeoff?

This thesis considers these questions in two classic settings: deletion errors and list-decoding.

1.1.1 Deletion errors

Codes correcting deletions tolerate a different type of noise than in classical settings. Deletions drop in-

formation from unknown positions so that Bob receives a subsequence of Alice’s codeword; if Alice sends

“cat”, Bob may receive “at”. By contrast, classical noise models like erasures and substitutions preserve

the positions of uncorrupted symbols; if Alice sends “cat”, Bob may receive “hat” or “?at”. Despite their

superficial similarity to erasures and substitutions, deletions are far less understood.

Codes correcting deletion errors are of practical and theoretical interest. Practically, deletion codes find

applications in DNA storage, magnetic recording, and internet communication. Theoretically, this area asks

basic combinatorics questions about subsequences: Levenshtein [91], who initiated the study of deletion

codes, showed that a code C corrects p fraction of worst-case deletions if and only if the longest common

subsequence of every pair of strings is less than n− pn.

Adversarial bit deletions. Our understanding of deletion codes is poor and in some cases embarrassing,

as the following example shows. Suppose Alice is constrained to sending bits (0s and 1s), so that the

codewords are binary strings. If the channel gets a budget of n/2 deletions, the channel, in the worst-case,

could delete all the zeros or all the ones of Alice’s codeword, so that Bob gets either n/2 0s or n/2 1s, and

thus basically no information about Alice’s message. This simple argument shows it is impossible for binary

codes to correct p = 1/2 fraction of worst-case deletions. The natural question is then, what about p slightly

less than 1/2? Perhaps, for any δ > 0, there could be nontrivial codes that handle p = 1/2 − δ fraction of

worst-case deletions, but embarrassingly we had not been able to confirm or rule out this possibility.
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Figure 1.3: List-decoding: In list-decoding, Bob’s task is easier. He only needs to output a small list of
messages that contains the correct one. In exchange for this relaxed guarantee, Alice and Bob can tolerate
more error (approximately twice as much).

The above question is even more basic than determining the optimal rate versus deletion fraction tradeoff

in Question 1.1. The above asks for a bound on the zero-rate threshold, pthr
del namely the largest (supremum)

deletion fraction p tolerable by a code of non-vanishing rate. While the rate R versus deletion fraction p

tradeoff question asks for the curve of R versus p values achievable by a worst-case deletion code, the zero-

rate threshold asks simply for the “p-intercept” of this curve. For the traditional substitutions and erasures,

the zero-rate threshold has been known since 1960 [104]. By contrast the zero rate threshold for worst-case

deletions is still open, despite that the more general rate versus deletion fraction question is over 50 years

old [122].

The main contribution of this part of the thesis is to improve the trivial limitation of 1/2, showing that

the zero rate threshold for worst-case deletions is at most 1/2− δ for an absolute constant δ > 0. The proof

turns out to be a challenging combinatorial argument on finding common subsequences, and along the way

we develop several techniques for reasoning about common subsequences. As common subsequences appear

throughout computer science, we hope that the techniques will be of independent interest and find other

applications.

1.1.2 List-decoding

In list-decoding [34, 127], Bob only needs to output a small list of messages containing the correct message.

In general, this relaxation allows the protocol to tolerate more noise (approximately twice as much). For this

reason, list-decoding finds various applications such as communications, group testing, compressed sensing.

List-decodable codes also have a fundamental mathematical definition, allowing them to find “extraneous”

applications that have no obvious need for error correction, such as pseudorandomness, complexity, and

cryptography.

In list-decoding, the goal is still to find codes with large rate R and that tolerate a large number of

substitution errors p, while keeping the list size L small (often a constant, or at most polynomial in the

codeword length n). In contrast to deletions, we have long known the optimal R versus p tradeoff and

thus the answer to Question 1.1 for list-decoding. We call this optimal R vs. p tradeoff the (list-decoding)

capacity, and we say codes approaching this optimal tradeoff achieve (list-decoding) capacity. However,

in the standard proof of this tradeoff, the capacity achieving codes are obtained non-explicitly using the

probabilistic method. As most applications require explicit list-decodable codes, the major challenge in
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Figure 1.4: Geometric interpretation of list-decoding: List decoding asks to find sets that are not too
“clustery,” meaning no “neighborhood” contains too many codewords. Our work on list-decoding random
linear codes asks how clustery are random subspaces over finite fields and compares the clustery-ness of
random subspaces versus random sets.

list-decoding is finding explicit codes achieving list-decoding capacity (Question 1.2), and finding fast list-

decoding algorithms (Question 1.3) for such codes.

Towards the goal of explicit list-decodable codes, we prove stronger list-decoding guarantees for more

structured ensembles of codes such as random linear codes and Reed–Solomon codes. Our study of random

linear codes is relevant for the setting where Alice is sending Bob bits (“binary codes”), and our study of

list-decoding Reed–Solomon codes is relevant for the setting where Alice sends Bob symbols over a larger

alphabet.

These results are fundamental mathematical results as well. Our study of random linear codes answers

a geometric question about how “clustery” are random subspaces over finite fields (see Figure 1.4). Reed–

Solomon codes are a classic and ubiquitous family of codes, making their list-decodability a tantalizing

question. In analyzing Reed–Solomon codes, we discover surprising connection between list-decoding Reed–

Solomon codes and the Nash-Williams–Tutte tree packing theorem.

Binary alphabets. For binary codes, uniformly random codes achieve list-decoding capacity, but we do

not have any explicit codes achieving list-decodable capacity. Towards explicit list-decodable codes, we study

random linear codes, which are more structured (less random) ensembles of codes than uniformly random

codes.

We give an extremely tight analysis of the list-decodability of random binary linear codes, improving

both the known upper and lower bounds. Previous positive results (upper bounds) on the list-decodability

of random linear binary codes either hold only in certain (non-overlapping) parameter regimes, or else get

substantially sub-optimal bounds on Bob’s list-size. Our argument obtains improved list size bounds over all

these results and works in all parameter regimes. Furthermore, we present matching lower bounds, showing

that our upper-bound analysis is tight in a very strong way: we show a lower bound on Bob’s list-size of

random linear binary codes that matches the upper bound up to a small additive factor, showing that the
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“correct” list-size is concentrated on at most 3 values.

Large alphabets. For codes with no restriction on the alphabet size, we do have explicit codes achieving

capacity, the optimal R versus p tradeoff. These codes are all generalizations of the classic and ubiquitous

Reed–Solomon codes. However, despite this progress, we still do not know whether Reed–Solomon codes

themselves achieve capacity. In addition to being a natural question in its own right, this question is also

interesting because, if Reed–Solomon codes achieve list-decoding capacity, they would offer advantages over

existing explicit list-decodable codes, such as simplicity and potentially smaller alphabet sizes.

This thesis gives list-decoding bounds for Reed–Solomon codes. We give the first proof that, for small

constant rates, Reed–Solomon codes can be list-decoded beyond the Johnson bound, and in fact nearly

to capacity. We also show a surprising connection between list-decoding Reed–Solomon codes and the

Nash-Williams–Tutte tree-packing theorem, and prove that a generalization of the tree-packing theorem

to hypergraphs implies that Reed–Solomon codes are list-decodable to capacity (non-asymptotically). Our

techniques also apply to list-recovery, a generalization of list-decoding.

1.2 Dissertation outline

In Chapter 3 we prove our limitation result for deletion codes, showing that the zero rate threshold for

adversarial bit deletions is less than 1/2. The results of Chapter 3 is based on the paper [50], which is joint

work with Venkatesan Guruswami and Xiaoyu He. In Chapter 4, we discuss our results for list-decoding

random linear binary codes. We present tight upper and lower bounds on list-size of random linear binary

codes. The upper bound is based on the paper [93], joint with Mary Wootters, and the lower bound is based

on the paper [59], joint with Venkatesan Guruswami, Jonathan Mosheiff, Nicolas Resch, Shashwat Silas, and

Mary Wootters. In Chapter 5, we discuss our results for list-decoding Reed–Solomon codes. We present our

main result that there exist Reed–Solomon codes list-decodable almost to capacity for small constant rate,

and present the connection to the Nash-Williams–Tutte tree packing theorem. The results of Chapter 5 are

based on the paper [43], joint with Zeyu Guo, Chong Shangguan, Itzhak Tamo, and Mary Wootters. In

Chapter 6, we conclude with some open questions.



Chapter 2

Setup and Preliminaries

2.1 Notation

Unless otherwise specified, all logarithms are base 2. We let exp(x) denote 2x. Let N+ = {1, 2, . . . } and

[n] = {1, 2, . . . , n} for n ∈ N+. For a prime power q, let Fq denote the field field with q elements. We

use standard Landau notation O(·),Ω(·),Θ(·), o(·), ω(·). We use the notation Ox(·),Ωx(·) to mean that

dependencies on the variable(s) x are suppressed.

2.2 Coding theory: basic notation

An (error-correcting) code C ⊂ Σn is a set of strings. Elements of a code are called codewords. We call Σ

the alphabet of the code and n the (block) length of the code. We call elements in the alphabet “symbols”,

so that codewords consist of n symbols. Sometimes, as in Chapter 3, we denote the length with a capital

N for notational convenience. If |Σ| = 2, we say the code is a binary code. Sometimes, as in Chapter 4, we

think of the alphabet of a binary code as Σ = F2. The dimension of the code is defined as k = log|Σ| |C|,
and the rate R = R(C) is the ratio R = k/n. If Σ = Fq is a finite field and C is a subspace of Fnq , we say C is

a linear code. Note that for linear codes, the dimension of the code equals the dimension of the subspace.

We are interested in asymptotic tradeoffs for codes, so throughout we imagine the length n of the code

growing while other parameters remain fixed. Formally, a family of codes C1, C2, . . . is a sequence of codes

of length n1 < n2 < · · · . We say that the family has rate R if limi→∞R(Ci) = R. Similarly, for other code

parameters, such as the noise parameter p, we say the family of codes has noise parameter p if the individual

codes have noise parameter approaching p. For the rest of the thesis, by extensive abuse of notation, when we

speak of codes with rate R that tolerate noise parameter p, we mean a family of codes with rate approaching

R and noise parameter approaching p.

This thesis focuses on combinatorial bounds for error-correcting codes, which means we consider what

codes allow Alice and Bob to succeed, if we ignore computational constraints. In practice, we are also

interested in explicit codes with efficient encoding and decoding. We reference these terms in the thesis

so we make them precise here for clarity. A code has efficient encoding if Alice can do her part of the

protocol efficiently: formally, there exists a bijection Enc : {1, . . . , |C|} → C computable by a deterministic

polynomial time algorithm (here, polynomial means polynomial in the length n). When an encoding function

7
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is considered, we think of the elements of {1, . . . , |C|} as the messages. We sometimes equivalently think

about the message set as Σk if the dimension k = log|Σ| |C| is an integer. A code has efficient decoding if

Bob can do his part of the protocol efficiently: formally, there exists a function Dec that maps noisy received

words to the original codeword or message (or a list of codewords/messages, in the case of list-decoding). A

code is explicit if we can produce a description of the encoding function Enc and decoding function Dec in

deterministic polynomial time.

The Hamming distance is a useful notion for reasoning about substitution errors. For two strings x, y of

the same length, let ∆H(x, y) = |{i : xi 6= yi}| denote the Hamming distance of x and y. If the alphabet is

a finite field, the Hamming weight of a string x is the number of nonzero entries and is equal to ∆H(x, 0)

where 0 here is the all-zeros vector of length n. For a string z ∈ Σn, we let BΣ(z, pn) denote the Hamming

ball around z of radius pn, i.e., the set of all strings at Hamming distance at most pn from z. Typically, the

alphabet Σ is understood and omitted. Clearly Hamming balls B(z, pn) have the same size for all z, so we

let Vol(n, pn)
def
= |B(0, pn)| denote the volume of a Hamming ball of radius pn in {0, 1}n. For binary codes,

we have the following useful estimate of Vol(n, pn) (see [97]):

2(h(p)−o(1))n ≤ Vol(n, pn) ≤ 2h(p)n. (2.1)

Above, h : [0, 1]→ [0, 1] is the ubiquitous binary entropy function, defined as

h(p)
def
= −p log p− (1− p) log(1− p).

2.3 The Hamming model: Worst-case substitutions

Coding theory began with Shannon’s seminal work [114], which considered codes against random errors,

particularly random erasures and substitutions. Shortly after, Hamming [77] considered codes against worst-

case errors, also called adversarial errors. These are the two most traditionally studied models of errors. The

settings considered in this thesis are variations on the Hamming model. As an introduction to the models in

this thesis, and as a way to introduce some of the codes and techniques we work with, we start with a brief

overview of the Hamming model.

The Hamming model considers codes against worst case errors, particularly worst case substitutions.

For Alice and Bob, the channel is modeled by an adversary with a budget of pn substitution errors, and

is allowed to change up to pn of Alice’s symbols arbitrarily. Formally, we say a code is p-unique-decodable

against pn worst-case substitutions if, for any z ∈ Σn, |B(z, pn) ∩ C| ≤ 1. In this definition, we think of z

as the string Bob receives: no matter what Bob receives, there is at most one codeword it could have come

from, assuming at most pn bit-flips were applied. So if the channel is constrained to applying pn bit-flips,

Bob has enough information to recover the original string.

The unique-decoding radius p, the maximum p for which a code is p-unique-decodable, is closely related

to the minimum distance of the code. The minimum distance of a code is ∆H(C) def
= minx6=y∈C ∆H(x, y),

and the minimum relative distance of a code is δH(C) def
= ∆H(C)

n . The following proposition states that the

unique-decoding radius is essentially half of the minimum distance (and, if we take n → ∞, then they are

exactly equal for families of codes). This proposition gives the intuitive geometric interpretation of a code: a

code in the Hamming model is a set of points that are “spread out” in the Hamming metric (see Figure 2.3).
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Figure 2.1: Proposition 2.1: A p-unique-decodable code is a set of points that are “spread out” in the
Hamming metric. The definition says it is a set of points such that no pn-radius Hamming ball has more
than one codeword, but it equivalently says that any two codewords have Hamming distance greater than
2pn.

Proposition 2.1. For p such that pn is an integer, a code C of length n is p-unique-decodable if and only if

p < δH
2 .

Proof. First, if p < δH
2 , then C is p-unique-decodable as no Hamming ball B(z, pn) contains two codewords

c and c′: if it did, then by the triangle inequality, ∆H(c, c′) ≤ ∆H(c, z) + ∆H(z, c′) ≤ 2pn, so δH(C) ≤ 2p, a

contradiction.

Now suppose 2p ≥ δH . Then there exists two codewords c, c′ at distance ≤ 2pn. We can find a string z

by flipping pn of the bits in x that differ from y, so that ∆H(z, x) ≤ pn and ∆H(z, y) ≤ 2pn − pn. Then

B(z, pn) has at least 2 codewords and C is not p-unique-decodable.

For linear codes, we have the following simpler characterization of minimum distance: the minimum

distance is the minimum Hamming weight of a nonzero codeword.

Proposition 2.2. In a linear code, ∆H(C) = min06=c∈C ∆H(0, x).

Proof. Clearly ∆H(C) ≤ min06=c∈C ∆H(0, c). Furthermore, if there are two codewords c and c′ at distance

∆, then ∆H(0, c− c′) = ∆, and c− c′ ∈ C, so ∆H(C) ≥ min06=c∈C ∆H(0, x).

We now look at a few classic bounds on the rate versus noise parameter tradeoff in the Hamming model,

first for binary codes and then for codes with no alphabet size restriction (we informally call this the “large

alphabet” setting).

Binary codes. We first present the Gilbert-Varshamov (GV) bound [40, 124], which shows the existence

of p-uniquely-decodable codes with rate approaching 1− h(2p). The proof, via the probabilistic method [3],
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Figure 2.2: Simple bounds for unique-decoding substitutions. For binary alphabets: the Gilbert–Varshamov
bound (Theorem 2.3), the Hamming Bound (Theorem 2.4), and the Plotkin bound (Theorem 2.5). For
large alphabets: the Singleton bound (Theorem 2.6). Blue means a positive result, red means a negative
(limitation) result, and purple means a matching upper and lower bound.

is characteristic of many proofs in coding theory: we choose a random code and show that it is p-unique-

decodable with high probability, hence some instantiation of randomness gives a p-unique-decodable code.

The random code here is in fact a random linear code, which we study the list-decoding properties of in

Chapter 4.

Theorem 2.3 (GV Bound [40, 124]). For all ε > 0 and p ∈ (0, 1/4), for all positive integers n, there exist

binary codes of rate R = 1− h(2p)− ε that are p-unique-decodable.

Proof. Recall we let k = Rn. Let G ∈ Fn×k2 be a matrix with independent uniformly random entries in F2.

Let C be the subspace spanned by the columns of G. That is, C = {Gv : v ∈ Fk2}. One can check that with

probability 1−2−(n−k), the columns of G are linearly independent, so with high probability C has dimension

exactly k and thus rate R.

By Proposition 2.2, it suffices to show that, with high probability ∆H(0, c) ≥ pn for all nonzero codewords

c. For any v ∈ Fk2 , v 6= 0, we have Gv is distributed uniformly over Fn2 , so Pr[Gv ∈ B(0, pn)] = Vol(n,pn)
2n ≤

2h(p)n

2n = 2−n(1−h(p)) using (2.1). Thus, by the union bound, the probability that there exists v 6= 0 such

that Gv ∈ B(0, pn) is 2−n(1−h(p)) · 2Rn = 2−εn. Thus, with probability 1− 2−εn, C is p-unique-decodable, as

desired.

A number of a limitations are known for unique-decodable codes. We describe a few simple ones here.

The first one, known as the Hamming bound, comes from a packing argument.

Theorem 2.4 (Hamming Bound [77]). For any family of p-unique-decodable binary codes of rate R, we have

R ≤ 1− h(p).

Proof. For a p-unique-decodable code C, the set of pn-radius Hamming balls around codewords are disjoint

subsets of {0, 1}n. Thus, we must have 2n ≥ |B(0, pn)| · |C| ≥ 2n(h(p)−o(1))|C| by (2.1). Rearranging, we have

R(C) ≤ 1− h(p) + o(1).
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The second limitation, known as the Plotkin bound, tells us that codes of non-vanishing rate are only

p-unique-decodable for p ≤ 1/4 (in fact, one can show p < 1/4).

Theorem 2.5 (Plotkin Bound [104]). Any 1/4 + ε-unique-decodable binary code C satisfies |C| ≤ 1
4ε + 1.

Proof. Since we are working over the Hamming metric, we can without loss of generality change the alphabet

of the code to be the real numbers {−1,+1}. Suppose C has M codewords c1, · · · , cM ∈ {−1,+1}n. Since

C is 1/4 + ε unique-decodable, then ∆H(ci, cj) ≥ (1/2 + 2ε)n for all i 6= j by Proposition 2.1, so we have

ci · cj ≤ (1/2− 2ε)n− (1/2 + 2ε)n = −4εn. Then we have

0 ≤

∥∥∥∥∥
M∑
i=1

ci

∥∥∥∥∥
2

=

M∑
i=1

‖ci‖2 + 2
∑
i 6=j

ci · cj ≤Mn+M(M − 1)(−4εn)

Simplifying and rearranging, we have M ≤ 1
4ε + 1.

Hence, combining Theorem 2.3 and Theorem 2.5 gives that the “zero-rate threshold” for worst-case

substitutions for binary codes is 1/4: non-vanishing rate codes can be p-unique-decodable if p < 1/4 but not

if p > 1/4.

These are some of the simplest bounds, and the literature is far too vast to survey here. We refer the

reader to the books [97, 65] for an introduction to coding theory and more known bounds.

Large alphabet codes. Over large alphabets (more precisely, codes with no constraint on the alphabet

size), the optimal rate versus noise parameter tradeoff is known, and the limitation result is given by the

Singleton bound.

Theorem 2.6 (Singleton bound [117]). For a code C with dimension k, we have ∆(C) ≤ n − k + 1. In

particular, any family of p-unique-decodable codes has rate R ≤ 1− 2p.

Proof. By the pigeonhole principle, there exist two codewords that agree on the first k − 1 symbols, which

means their Hamming distance is at most n+1−k, so ∆(C) ≤ n+1−k. Proposition 2.1 gives that R ≤ 1−2p

for any family of p-unique-decodable codes of rate R.

The random GV-bound argument can also be applied to codes over large alphabets, showing that for

sufficiently large alphabets there exist codes with rate approaching 1−2p, so the Singleton bound is achievable

. These codes are again obtained by the probabilistic method, and thus non-explicit.

Reed–Solomon codes [106] are a classic family of explicit codes achieving the Singleton bound. Let

α1, . . . , αn be distinct elements of Fq. The [n, k] Reed–Solomon code over Fq with evaluation points

(α1, . . . , αn) is defined as

C = {(f(α1), . . . , f(αn)) : f ∈ Fq[X],deg(f) < k}.

Theorem 2.7 (Reed–Solomon codes). The above code C has minimum distance ∆(C) = n− k+ 1, and thus

is (1−R)-unique-decodable.

Proof. The proof is a simple corollary of the basic fact that degree-less-than-k polynomials have less than

k roots. Indeed, let f1, f2 be two degree-less-than k polynomials. Then f1 − f2 has less than k roots, so
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f1(αi) = f2(αi) for at most k − 1 values of i. This holds for any f1, f2, so any two codewords agree on at

most k − 1 positions, so their Hamming distance is at least n− k + 1.

This thesis. This thesis considers the two simple variations of the Hamming model: worst-case deletions

and list-decoding. Worst-case deletions have the same setup as the Hamming model except we consider

deletion errors instead of substitution errors. List-decoding is the same setup as the Hamming model except

the recovery guarantee is relaxed, so that Bob, rather than outputting the correct codeword, only needs to

output a small list of codewords containing the correct codeword.

2.4 Worst-case deletions

In this setting, we consider a channel that applies worst-case deletions. Codes correcting deletions are

motivated by applications such as internet transmission [42, 29, 100, 99], DNA storage [90, 118, 105], and

magnetic recording [20, 19]. However, deletions are poorly understood with many gaps in our theoretical

understanding, and hence few applications in practice.

In this setting, when Alice sends n symbols on a channel that can adversarially delete a fraction p of the

bits, Bob receives a subsequence of length (1−p)n. Crucially, Bob does not know the location of the deleted

bits. To do this, Alice must restrict the sequence of transmitted bits to a code C ⊂ Σn so that every c ∈ C
can be unambiguously identified from an arbitrary subsequence of c of length (1− p)n. It is easy to see that

this property is equivalent to the property that for every two distinct codewords c, c′ ∈ C, the length of their

longest common subsequence, denoted LCS(c, c′), is less than (1 − p)n. Defining LCS(C) to be the largest

value of LCS(c, c′) over all distinct pairs c, c′ ∈ C, we therefore have the following definition.

Definition 2.8. A code C ⊆ {0, 1}n is corrects p fraction of worst-case deletions if LCS(C) < (1− p)n.

In Chapter 3, we consider a very basic question about this definition: what is the zero-rate threshold,

the supremum of p for which codes of non-vanishing rate can correct p fraction of worst-case deletions? As

we saw with Theorem 2.3 and Theorem 2.5, this zero-rate threshold for substitutions for binary codes has

long been known to be 1/4, but for deletions, determining the zero-rate threshold is still open. In fact, our

knowledge is even more embarrassing: trivially any code correcting n/2 deletions has at most 2 codewords

(among any three length-n strings, there are two strings with either 0n/2 or 1n/2 as a common subsequence),

and thus the zero-rate threshold for worst-case deletions is at most 1/2. This trivial bound on the zero-rate

threshold had remained the best-known ever since the more general rate versus deletion fraction question

(Question 1.1) was studied over 50 years ago [122]. In Chapter 3, we give the first improvement of this trivial

bound.

2.5 List-decoding

A code C is (p, L)-list-decodable if, for any z ∈ Σn, we have |B(z, pn) ∩ C| ≤ L. Like in unique decoding,

we think of z as Bob’s received string, and the definition requires that, if the channel applies pn deletions,

Bob can produce a list of L codewords (the L codewords in B(z, pn)) containing the correct one. Note

that being (p, 1)-list-decodable is equivalent to being p-unique-decodable, so list-decoding generalizes the
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Figure 2.3: The list-decoding capacity over binary alphabets. The capacity is given by R = 1 − h(p)
(Theorem 2.9). The GV-bound of 1−h(2p) (Theorem 2.3), the essentially best-known achievable rate versus
noise parameter tradeoff for unique-decoding binary codes, is plotted for comparison.

Hamming model. Since list-decoding was introduced in the 1950’s [34, 127] in the context of communication,

it has found other applications, for example in pseudorandomness [123] and complexity theory [119].

The best list-decodable codes we know of are often non-explicit, random codes. In list-decoding, the rate

R and noise parameter p, which we call the (list-decoding) radius, are the main parameters that we would

like to trade off (we want both to be large). We would like to do this while keeping the list-size L small,

ideally a constant (but poly(n) is okay). The optimal trade off between R and p is known for list-decoding:

• For binary codes, the optimal tradeoff is R = 1− h(p). That is, for R < 1− h(p), there exist a family

of list-decodable codes with list-decoding radius p and constant L, and for R > 1 − h(p), the list size

must be exponential in n (see Theorem 2.9 below).

• For codes with no alphabet restriction, the optimal tradeoff is R = 1− p. That is, for R < 1− p, there

exist a family of list-decodable codes with list-decoding radius p and constant L, and for R > 1 − p,
the list size must be exponential in n.

Codes whose rate approaches the optimal tradeoff (binary codes of rate 1− h(p)− ε or large-alphabet codes

of rate 1− p− ε) are called capacity-achieving codes.

Binary codes. The list-decoding capacity theorem is a classic result that establishes the optimal rate versus

error rate tradeoff for list-decoding binary codes. A similar statement holds for q-ary codes, but we focus on

the binary case here.

Theorem 2.9 (List decoding capacity theorem [34, 127]). Let p ∈ (0, 1/2) and ε > 0.

1. There exist binary codes of rate 1− h(p)− ε that are (p, d1/εe)-list-decodable.

2. Any binary code of rate 1−h(p) + ε that is (p, L)-list-decodable up to distance p must have L ≥ 2Ω(εn).
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Proof. For the first part, let L = d1/εe and R = 1 − h(p) − ε. Let C = {c1, . . . , c2·2Rn} where c1, . . . , c2·2Rn

are i.i.d. binary strings in {0, 1}n. It is easy to check that with high probability |C| ≥ 2Rn so C has rate (at

least) R. Then,

Pr[C not (p, L)-list-decodable] = Pr[∃z ∈ Fn2 : |B(z, pn) ∩ C| ≥ L+ 1]

≤ 2n ·Pr[|B(0, pn) ∩ C| ≥ L+ 1]

≤ 2n · (2 · 2Rn)L+1 Pr[c1, c2, . . . , cL+1 ∈ B(0, pn)]

= 2n · (2 · 2Rn)L+1 ·
(

Vol(n, pn)

2n

)L+1

≤ 2n · (2 · 2Rn)L+1 ·
(

2h(p)n

2n

)L+1

= 2L+1 · 2n−nε(L+1) < 2−Ω(n).

Thus, with high probability C has rate R and is (p, L) list-decodable, as desired.

For the second part, suppose the code has rate 1 − h(p) + ε. The number of pairs {(z, c) ∈ Fn2 × C :

∆H(z, c) ≤ pn} is Vol(n, pn) · 2Rn ≥ 2n(1+ε−o(1)), by (2.1). By the pigeonhole principle, there exists some z

such that B(z, pn) has at least 2n(ε−o(1)) codewords, so the code is not (p, 2n(ε−o(1)))-list-decodable.

Theorem 2.9 is remarkable because it means than even when pn is much larger than the unique-decoding

radius, it still can be the case that only a constant number of codewords c ∈ C lie in any Hamming ball

of radius pn. Indeed, comparing Theorem 2.9 with the GV bound Theorem 2.3, which is still essentially

the best bound for uniquely-decodable codes, the maximum list-decoding radius of a (p, L) list-decodable

code is roughly h−1(1−R), while the maximum known unique-decoding radius of a p-unique-decodable code

is roughly half of the list-decoding radius, h−1(1−R)
2 .1 Because of this, there has been a great deal of work

attempting to understand what codes achieve list-decoding capacity, the bound in Theorem 2.9. Theorem 2.9

shows that a uniformly random code achieves this list-decoding capacity with high probability, but are there

other, more explicit codes? In Chapter 4, we make progress towards this goal by giving a very tight analysis

of random linear binary codes, showing that random linear binary codes have the same (and in fact slightly

better, in the list-size) list-decoding properties as uniformly random codes.

Large alphabet codes. Over general alphabets, the Singleton bound upper bounds the rate versus error

radius tradeoff for list-decoding.

Theorem 2.10 (Singleton bound). For (p, L)-list-decodable codes with L ≤ poly n, we have R ≤ 1− p.

Proof. Suppose R = 1 − p + ε and C is (p, L) list-decodable. By the pigeonhole principle, there exist 2εn

codewords agreeing on the first (1 − p)n symbols. Let c be one such codeword. Then the Hamming ball

B(c, pn) has at least 2εn codewords, so we must have L ≥ 2εn.

Using the same probabilistic method argument as in Theorem 2.9, by taking random codes over an

alphabet of size 2O(1/ε) where ε is the gap to capacity, we can show that the Singleton bound is achievable.

The proof is similar to Theorem 2.9 so we omit it.

1Here we use h−1(·) : [0, 1]→ [0, 1/2] to denote the inverse of the binary entropy function on [0, 1/2], which exists as h(·) is
one-to-one on [0, 1/2]
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Figure 2.4: The list-decoding capacity over general alphabets. The capacity is given by p = 1 − R (Theo-
rem 2.10 and Theorem 2.11). The optimal tradeoff for unique-decoding, p = (1 − R)/2, (Theorem 2.6 and
Theorem 2.7) is shown for comparison, along with p = 1−

√
R, the Johnson bound (Theorem 2.12) applied

to optimal unique-decodable codes such as Reed–Solomon codes.

Theorem 2.11. For any ε > 0 and p ∈ (0, 1), there exists rate R = 1− p− ε codes that are (p,O(1/ε))-list-

decodable.

Like in the binary case, the original proof of Theorem 2.11 is by the probabilistic method and thus gives

non-explicit codes, but unlike in the binary case, we do have explicit codes [64, 45, 87, 86] achieving capacity

in the large alphabet setting. These codes are all generalizations the classic and ubiquitous Reed–Solomon

codes (Theorem 2.7). However, despite this progress, we still do not know whether Reed–Solomon codes

themselves achieve list-decoding capacity. This is a natural question as Reed–Solomon codes are optimally

list-decodable in the special case of L = 1 (a.k.a. unique-decoding, Theorem 2.7). Additionally, if Reed–

Solomon codes achieve list-decoding capacity, they would offer advantages over existing explicit list-decodable

codes, such as simplicity and potentially smaller alphabet sizes.

The Johnson bound helps us understand the list-decodability of Reed–Solomon codes. The Johnson

bound is a classic bound that shows any p-unique-decodable code is automatically p′-list-decodable for some

p′ > p. Here, we state the alphabet-independent version of the Johnson bound [82]. For codes over a fixed

alphabet size q, the bound can be strengthened (see [65, Theorem 7.3.1]).

Theorem 2.12 (Johnson bound [82]). For p ∈ (0, 1/2), if a code C over an alphabet of size q is p-unique-

decodable, the C is (1−
√

1− 2p, L)-list-decodable for L ≤ O(nq).

One can indeed check that for all p ∈ (0, 1/2), we have 1−
√

1− 2p > p, so indeed list-decoding allows for

more error than unique decoding. As an immediate corollary of the Johnson bound, Reed–Solomon codes

of rate R, which are unique-decodable up to radius 1−R
2 , are list-decodable up to radius 1−

√
R. Whether

Reed–Solomon codes are list-decodable beyond this 1 −
√
R radius implied by the Johnson bound, and,

optimistically, all the way to the optimal radius 1−R, is the main question considered in Chapter 5.



Chapter 3

Deletion codes

3.1 Introduction

This chapter considers the limits of reliable communication against an adversarial deletion channel. Through-

out this chapter, we use capital N rather than lowercase n for the length of the code for notational conve-

nience (n has a different meaning here). Recall LCS(C) is the largest value of LCS(x, y) over all distinct pairs

x, y ∈ C, and recall a code C ⊆ {0, 1}N is a p-deletion correcting code if LCS(C) < (1− p)N . If there exists a

family of such codes C whose rates are bounded away from zero as N →∞, we say it is possible to achieve a

non-vanishing rate of information communication. For any noise model of interest, one of the basic goals is

to understand the threshold noise level below which it is possible to communicate with non-vanishing rate.

For example, recall it is well-known that for a channel that flips an adversarially chosen set of at most pN

bits, the threshold value for the error-fraction p equals 1/4 (see discussion in Section 2.3). On the other

hand, for the adversarial deletions channel, this fundamental question remains unsolved:

What is the largest fraction of deletions p ∈ (0, 1) for which it is possible to achieve zero-error

communication with non-vanishing information rate?

Formally, define the zero-rate threshold of adversarial bit-deletions is

pthr
del := sup{p | ∃ αp > 0 s.t for infinitely many N there is a subset C ⊂ {0, 1}N with

LCS(C) < (1− p)N and |C| ≥ 2αpN} . (3.1)

The main question is then: What is the value of pthr
del? We have a trivial upper bound pthr

del ≤ 1/2. Indeed,

among any three strings x, y, z ∈ {0, 1}N , there must be two with the same majority bit, and thus a common

subsequence (of all 0’s or all 1’s) of length at least N/2. Thus any 1
2 -deletion correcting code C ⊂ {0, 1}N

satisfies |C| ≤ 2.

The value of pthr
del remains unknown. Even more starkly, as simplistic as the above argument is, it was

not previously known if pthr
del is strictly bounded away from 1

2 , or whether there are in fact codes of non-

vanishing rate for correcting a ( 1
2 − δ) fraction of deletions for any desired δ > 0. This tantalizing question

was implicit in early works on deletion codes, particularly in [122], which gave bounds on the achievable

tradeoffs between rate and deletion fraction, and was explicitly raised in [84]. Since then, this question has

16
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been mentioned in several works, including the work of Bukh and Ma [15] which showed that an upper bound

of 1
2 −

1
poly logN on the correctable deletion fraction, and many recent works on deletion code constructions

such as [125, 56, 70, 14, 57, 47], other works on coding theory [128], as well as the recent surveys [24, 75].

In the other direction, the best known lower bound pthr
del >

√
2 − 1 is due to [14], who constructed explicit

binary codes of non-vanishing rate to correct a fraction of deletions approaching
√

2 − 1 (see [112, 84] for

prior constructions).

3.1.1 Our results

In this chapter, we prove the first nontrivial upper bound on pthr
del .

Theorem 3.1. There exists an absolute constant δ0 > 0 such that pthrdel ≤ 1
2 − δ0. More concretely, there

exists absolute constants A, δ0 > 0 such that for all large enough N , any binary code C ⊂ {0, 1}N tolerating

( 1
2 − δ0)N adversarial deletions must satisfy |C| ≤ 2(logN)A .

We show the above in the contrapositive form—in any code C ⊂ {0, 1}N of quasi-polynomial size, we find

two codewords s, t ∈ C with LCS(s, t) > ( 1
2 + δ0)N . We made no attempts to optimize the value of δ0 but

regardless it is very small for our argument. In Section 3.2, we give an overview of the proof and an outline

of this chapter. In the remainder of this introduction we survey some generalizations of Theorem 3.1 and

connections to other problems in coding theory.

Non-binary alphabets. We generalize Theorem 3.1 to alphabets of larger size. Let us denote the quantity

analogous to (3.1) for any fixed alphabet size q ≥ 2, namely the zero-rate threshold for q-ary deletion codes,

by pthr
del(q). The trivial upper bound is pthr

del(q) ≤ 1− 1/q; this corresponds to finding a common sequence of

at least N/q repeated i’s between two strings that share the same most frequent symbol i ∈ {0, 1, . . . , q− 1},
in any code of size bigger than q. Just as in the binary case, no improvement over this trivial bound was

previously known.

For any code C ⊆ {0, 1, . . . , q−1}N over an alphabet of size q > 2, we may pick some two symbols i, j and

a set Ci,j ⊆ C of at least |C|/q2 strings whose two most frequent symbols are i and j. We can then obtain a

binary code C′ ⊆ {i, j}2N/q by restricting each element of Ci,j to a substring of length 2N/q consisting only

of i’s and j’s. Applying Theorem 3.1 to C′, we see that some two strings in C′ have a common subsequence

with length at least ( 1
2 + δ0) 2N

q . We have thus shown the following theorem as an immediate corollary of

Theorem 3.1.

Theorem 3.2. Fix an integer q ≥ 2. Then

pthrdel(q) ≤ 1− 1+2δ0
q < 1− 1

q ,

where δ0 > 0 is the positive constant promised in Theorem 3.1.

We note that for the simpler model of erasures where the location of missing symbols are known to the

decoder, the zero-rate threshold equals 1 − 1/q.1 Thus our results also show a formal separation between

the zero-rate threshold for the models of erasures and deletions, for any fixed alphabet.

1The erasure fraction correctable by a code is exactly governed by its relative (Hamming) distance. The Plotkin bound shows
that the rate must be vanishing for relative Hamming distance 1− 1/q. We know the existence and even explicit constructions
of codes of non-vanishing rate and relative Hamming distance 1− 1/q − ε for any ε > 0.
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In the list-decoding model with list-size L for deletion fraction p, there can be up to L codewords

that contain the (arbitary) input sequence y ∈ {0, 1}(1−p)N . The zero-rate threshold for list-decoding from

deletions, as the list-size L→∞, is known to equal 1−1/q [70]. Thus our result also demonstrates that list-

decoding is provably more powerful in terms of the deletion fractions that can be handled with non-vanishing

rate.

3.1.2 Related works

Performance of random codes. An ubiquitous approach to establish strong, and in many cases the best

known, possibility results in coding theory is to analyze random codes of certain rates. These results typically

also identify the precise performance threshold of random codes [60]. For the case of binary deletion codes,

however, the performance of random codes itself is hard to analyze, as we do not rigorously know a tight

estimate of the expected length γN of the longest common subsequence of two random N -bit strings (γ is

called the Chvátal-Sankoff constant [26]). The known bounds on this expectation γN [95], together with

standard probabilistic arguments, imply that with high probability, random codes can tolerate a deletion

fraction at least 0.17, but also at most 0.22 [84]. For codes over alphabet size q, random codes can correct

a deletion fraction approaching 1− 2/
√
q for large q [85].

As mentioned earlier, we now have constructions of binary codes that can correct a deletion fraction

0.414 [14], which is substantially better than random codes. This raised the possibility that perhaps there

might be binary codes of non-vanishing rate capable of correcting a deletion fraction all the way up to the

trivial limit of 1
2 , which we refute in this chapter.

Trade-offs for correcting N/2 − N1−θ deletions. In terms of previously known limitations of deletion

codes, Bukh and Ma [15] showed that for each fixed r and large enough N (specifically, at least rO(r)), every

set C ⊆ {0, 1}N of size r + 4 satisfies

LCS(C) ≥ N
2 + Ω(r−9)N1−1/r . (3.2)

Choosing r appropriately, the result (3.2) implies that there exist absolute constants b, c such that every

code C ⊆ {0, 1}N with LCS(C) < N
2 + N

(logN)b
has size |C| ≤ c logN

log logN . Bukh and Ma demonstrated that this

N1−1/r advantage in (3.2) is asymptotically sharp for each fixed r, by exhibiting a set W of (r + 4) N -bit

strings with LCS(W) ≤ N
2 +O(N1−1/r). Interestingly, this set W played a crucial role in the developments

on constructions of codes to correct a large fraction of deletions in [14, 57], as well as codes achieving the

zero-rate threshold for list decoding from insertions and deletions in [47]. A suitable modification of this

Bukh-Ma code W also drives the best known 0.414-deletion correcting codes of [14].

Twins and regularity techniques. One of the ideas used in this chapter is a new regularity-type result

about strings. Szemerédi’s regularity lemma and its variants are ubiquitous in extremal and additive com-

binatorics, but applying these ideas to coding theory is a relatively recent development. The first example

of such a result was proved by [5], and their regularity lemma roughly shows that every long string can

be partitioned into a constant number of consecutive substrings, each of which is regular (a regular string

is one in which the one-density in any long consecutive substring is close to the one-density in the whole

string). They used this regularity lemma to prove that every string of length N contains two disjoint copies

of some length (1/2 − o(1))N subsequence (so-called “twins”). Given the similarity between finding twins
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in a single string and finding long common sequences between different strings, it should not come as a

surprise that these techniques are useful here as well. The main difference in our approach is that we require

a stronger regularity condition, which is that every substring not only has the same one-density but has

similar “oscillation statistics” at many scales with the parent string.

3.1.3 Deletion correction in related models

To offer some wider context, we now discuss some results related to the broader study of codes for deletions

and synchronization errors under various channel assumptions.

Non-adversarial models. This chapter focuses on the adversarial model, where an arbitrary subset of p

fraction of the codeword bits, can be deleted. There is a rich body of work on the binary deletion channel

where each codeword bit is deleted i.i.d with probability p. In this case, it is known that one can have

positive rate codes that ensure vanishing miscommunication probability even for p approaching 1 (so the

zero-rate threshold equals 1). The interested reader can find more information about codes for the deletion

channel in the surveys [100, 24].

One can consider models that are intermediate in power between i.i.d random and adversarial channels.

For instance, in the oblivious model the deletion pattern can be chosen arbitrarily, but without knowledge

of the codeword. In this case, too, the zero-rate threshold is 1, as for any p < 1, Guruswami and Li [57]

showed the existence of codes that ensured that for every pattern of p-fraction deletions most codewords are

communicated correctly.2 Their work also considered the online model, where the decision to delete the i-th

bit must be made based only on the first i bits of the codeword. They showed that the zero-rate threshold

for this model (again, for the average-error criterion of ensuring most codewords are communicated correctly

for any deletion pattern) equals 1
2 if and only if pthr

del = 1
2 . By virtue of Theorem 3.1, this implies that the

zero-rate threshold for the online model is also bounded away from 1
2 .

Large alphabets. We focused on codes over the binary and fixed small alphabets in this chapter. This is

in fact the most challenging setting for deletion codes. Indeed, if the code alphabet is allowed to grow with

N , then one can include the index i along with the i-th codeword symbol, effectively reducing the deletion

model to the much simpler erasure model, where Reed-Solomon codes give a simple, optimal solution. For

alphabets that are large, but still independent of N , a natural greedy strategy shows the existence of codes

of rate (1− p− ε) capable of correcting a fraction p of deletions, over an alphabet of size exp(O(1/ε)) [70].

In particular, the zero-rate threshold approaches 1. Also, 1 − p is a trivial upper bound on the possible

rate, even for the simpler model of p fraction of erasures. Explicit constructions of p-deletion correcting of

rate approaching 1− p over an alphabet size independent of N were given in [74] based on synchronization

strings, which is a very elegant tool that has since found several other applications (see the survey [75]).

Insertions and deletions. Another form of errors that affect the synchronization between sender and

receiver are insertions of symbols. It is well known (since [91]) that a code C with LCS(C) < (1 − p)N can

tolerate any combination of a total of pN insertions and deletions (insdel errors). Thus allowing insertions

as well does not change the combinatorial aspects of the underlying coding problem, as it is governed by the

2This average-case criterion to achieve decoding success for most, as opposed to all, codewords is necessary, as otherwise
tackling the oblivious model becomes as hard as tackling the adversarial model. Alternatively, one can allow a stochastic
encoder, and ensure high probability of successful transmission of each message when averaged over the choice of its random
encoding.
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LCS. However, for efficient algorithms for insdel errors are not implied by deletion correction algorithms,

and have to be reworked [56].

In the model of list-decoding, even the combinatorial aspects are more nuanced in the presence of in-

sertions. The trade-off between the combinations of fractions of insertions and deletions that governs the

zero-rate region exhibits an interesting piece-wise linear behavior [47]. (As mentioned earlier, the zero-rate

threshold for list-decoding q-ary codes from deletions alone equals 1− 1/q.)

Low-deletions regime. This chapter focused on the largest deletion fraction that can be corrected with

non-vanishing rate. At the opposite end of the spectrum are codes to correct a deletion fraction p → 0.

In this case, the optimal rate behaves as 1 − O(p log(1/p)) and we also know explicit codes with such

rate 1 − O(p log2(1/p)) and efficient deletion-correction algorithms [21, 73]. There has also be an active

line of recent code constructions, triggered by [13], for correction of a fixed number k of deletions with

redundancy at most ck logN . We now have codes with the optimal (up to constant factors) redundancy of

O(k logN) [21, 73, 115, 116].

3.2 Proof overview

In this section, we give a high-level overview of the proof of Theorem 3.1, as well as the organization of the

rest of this chapter. Let C ⊆ {0, 1}N be a binary code of size 2(logN)A for some large constant A, and our

goal will be to find two elements s, t ∈ C for which LCS(s, t) ≥ (1/2 + δ0)N . The proof breaks down into five

conceptually independent parts that roughly correspond to the Sections 3.4 through 3.8. It will be natural

to explain these parts here in roughly reverse order, starting with Section 3.8.

Pigeonholing by “statistics”. The only place where we use the size of C is in the final Section 3.8, which

wraps up the proof of Theorem 3.1. We need C to be large enough to find by the pigeonhole principle

two elements s, t ∈ C with similar “macroscopic statistics.” That is, we pick s and t to have the same

number of ones in every long subinterval of length N/poly logN , and also to share some other statistics that

characterize the “frequencies at which they oscillate.” As there are only O(poly logN) long intervals and the

statistics in question take on only 2poly logN possible values on each interval, C is large enough to guarantee

the existence of two s and t sharing identical statistics on all such intervals. The remaining sections explain

how to define the statistics we care about and show that if s and t have identical statistics, then they must

have a long LCS.

We now describe the three different high-level strategies we use for finding long common subsequences

between s and t.

Strategy 1: Globally imbalanced strings. The first strategy is extremely simple: match corresponding

ones (or zeros if there are more zeros) in s and t. In the case that s and t are significantly imbalanced, this

strategy immediately finds an LCS of length noticeably more than N/2. This naive strategy is illustrated in

Figure 3.1. It may be helpful to visualize the strategy as sending two runners, one down the length of each

string, who must advance simultaneously while holding hands and only step on the ones in their respective

strings.

Strategy 2: Green strategy. The other two strategies, which we call the Green strategy and the Blue-

Yellow strategy, are both modifications of the naive strategy. We first describe the Green Strategy, which
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1 0 1 1 0 1 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 0 0 1 0 1 1 0 0 0 1 1 1 1 0 1 0 0 0 0 1 0 1 0 1 0 1 1

Figure 3.1: In the naive strategy, we match ones greedily between s and t. In this example, the strings are
balanced so the naive strategy finds a common subsequence of length exactly 16 between s and t of length
32.

is carried out in Section 3.6, as it is simpler. The naive strategy above can be thought of as a scanning

process, where two runners move along the ones in s and t simultaneously, matching bits together to find a

common subsequence composed entirely of ones. In the Green strategy, we fix an “oscillation period” ` ≥ 1

and preprocess s by counting, for every index i of a one-bit in s, the number of zeros between the i-th one

and the (i + `)-th one. For each such i, we plant a marker there, which we call a Green `-flag, if there are

more than (1 + ε)(` − 1) zeros in this interval. Since there are exactly ` − 1 ones in this same interval, the

Green `-flags are meant to signal to the runners that they are entering a zero-rich patch within s. The same

preprocessing is also done in t.

In the Green strategy, the two runners proceed in the same way as the naive strategy except that each

time the runners reach Green flags simultaneously, they switch to stepping only on zeros for the duration

of the flagged regions. As there are more zeros than ones in the flagged regions, they pick up an advantage

over the naive strategy for every single pair of Green flags they simultaneously match. The Green strategy

is pictured in Figure 3.2.

1 0 1 1 0 1 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 0 0 1 0 1 1 0 0 0 1 1 1 1 0 1 0 0 0 0 1 0 1 0 1 0 1 1

Figure 3.2: In the Green strategy, we find a long common subsequence by matching zeros instead of ones in
the zero-rich patches immediately following Green `-flags. In this example ` = 4, the darker Green one-bits
are Green `-flags, and the light Green substrings following them are zero-rich patches. The Green strategy
finds a common subsequence of length 20 between the s and t pictured above.

Our analysis of the success of the Green strategy is conditioned on the existence of a single oscillation

period ` for which many of these zero-rich patches exist in both s and t. Indeed, suppose there exists ` for

which a constant g` = Ω(1) fraction of the ones in both s and t are Green `-flags. Typically, we expect that

the two runners hit Green flags simultaneously a constant g2
` fraction of the time (this can be made rigorous

by randomly shifting the starting position of one of the runners slightly). Thus, using the Green strategy one

can find a common subsequence of length (1/2 + g2
` ε)N . The Green case finishes the proof of Theorem 3.1 if

there exists any single oscillation period ` for which a constant fraction of ones in s and t are Green `-flags.

Unfortunately, it is not always the case that a string s has a single oscillation period ` as above. Indeed,

if

si
def
= (12i02i)2k−i−1

,

then each si is a string of length 2k which oscillates with period 2i. It is not hard to check that the
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concatenation s
def
= s0s1 · · · sk−1 is a string of length N = k · 2k, such that there are at most O(2k) Green

`-flags in s for any given choice of `. Thus, g` = O((logN)−1) = o(1) for every single `, so the Green strategy

is insufficient for this type of string. We remark that is essentially the worst case, and one can always find

two strings s and t in C with g` = Θ((logN)−1) with the same `, proving LCS(s, t) ≥ (1/2+Ω((logN)−2))N

using the Green strategy alone. Already, this argument saves several factors of logN in the surplus term

over the argument of Bukh and Ma [15].

Strategy 3: Blue-Yellow strategy. We give a third and final strategy which handles the cases in which

g` = o(1) for all oscillation periods `, which we call the Blue-Yellow strategy. This strategy, handled in

Section 3.7, is the most involved of the three and we do not explain all of the technical complications here.

However, the general picture is similar to the Green strategy: we send two runners along s and t matching

ones, and find opportune moments to switch to matching zeros to gain an advantage.

1 0 1 1 0 1 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 0 0 1 0 1 1 0 0 0 1 1 1 1 0 1 0 0 0 0 1 0 1 0 1 0 1 1

Figure 3.3: In the Blue case, we find a long common subsequence by matching zeros from extremely zero-
rich patches (signalled by Blue flags) to longer relatively balanced patches (signalled by Yellow flags) and
vice-versa. The Blue-Yellow strategy finds an LCS of length 18 between the s and t pictured above.

In the Blue-Yellow strategy, we also mark certain one-bits in s and t by flags, but we use flags of two

different colors Blue and Yellow. A Blue `-flag is a relatively rare occurrence: it signals that there is an

extremely zero-rich interval afterwards containing `−1 ones and more than ε−1(`−1) zeros. A Yellow `-flag,

on the other hand, is very common: it signals there is an interval afterwards containing `− 1 ones and more

than 0.9(` − 1) zeros. Also, since there is no single oscillation period that captures the behavior of s and t

(or else we would apply the Green strategy), we must pay attention to flags at many different scales ` at the

same time. The rough idea is then that the runners will switch to matching zeros when one of them reaches

a Blue flag, and the other one simultaneously hits a Yellow flag of a similar scale, see Figure 3.3.

In the above diagram, the top runner reaches a Blue flag first, and the bottom runner happens upon a

Yellow flag at the same time. This signals both of them to switch to matching zeros, which allows the top

runner to gain a great advantage (since the patch past a Blue flag is so zero-rich). The bottom runner may

lose out slightly in efficiency because Yellow intervals can have slightly fewer zeros than ones, but on net we

see that more bits are used from the two patches together than would have been otherwise. In the long run,

we expect Blue flags to appear approximately equally frequently in s and t, so the advantages and losses

balance out to a net gain on both sides.

Now we explain roughly how the Blue-Yellow strategy circumvents the obstacle that the Green strategy

ran into. The Green strategy by itself cannot prove Theorem 3.1, since there exists strings s such as

s = s0 . . . sk−1 where si oscillates with period 2i, so that s has only O(N/ logN) Green `-flags at any single

scale `. Thus, it is insufficient to consider flags at only a single scale. To take a concrete example, supposing

t = sσ(0) . . . sσ(k−1) for a typical permutation σ, the Green strategy fails to find an common subsequence of

length more than (1/2 + Ω((logN)−2))N between s and t. In this example, instead of focusing on a single `,

we instead consider all one-bits in s and t that are the Blue `-flags for some ` ≥ N1−ε. This threshold N1−ε
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is chosen so that there are Θ(ε2N) such flags in each of s and t. Because these are the flags at the largest

ε-fraction of scales, we see that for every single ` ≥ N1−ε, most `-intervals in s and t have density close to

1/2, so most `-flags in s and t are Yellow. As a result, we expect that as the two runners scan through s and

t, most Blue `-flags in one will be matched with a Yellow flag in the other, resulting in favorable situations

as in Figure 3.3. The Blue-Yellow strategy succeeds by accumulating all these advantages across the Ω(εN)

Blue flags in each of s and t, to find an LCS of length (1/2 + Ω(1))N .

String regularity. In order to guarantee that the two runners remain relatively synchronized as the Blue-

Yellow strategy proceeds, we need Blue flags to be somewhat consistently distributed within s and within t.

We get this desired property by proving a string regularity lemma similar to that of [5] (see also [16, 4, 78]).

Our regularity lemma, proved in Section 3.5 differs from previous versions for words in that we use an entropy

increment argument, rather than the usual density increment argument.

The structure lemma. The remainder of the chapter is designed to set up the strings s and t so that

one of the above three strategies can succeed in finding a long common subsequence. To do this, we prove a

structure lemma in Section 3.4 about strings, which says each string falls in one of three cases (1) Globally

imbalanced, (2) Green at some oscillation period `, or (3) Blue-Yellow at some oscillation period `. These

types are defined such that, if two strings s and t have the same type and same oscillation period (if

applicable), one can find a long common subsequence of s and t using the corresponding strategy.

With this structure lemma, we simply need to put all the pieces together (Section 3.8). We partition each

codeword s into poly logN substrings s1, . . . , spoly logN and apply the structure lemma to each substring si.

By pigeonhole, there exist two strings s and t such that, for each i = 1, . . . ,poly logN , the substrings si

and ti are the same “type,” meaning that they are in the same case of the structure lemma and have the

same oscillation period (if applicable). Then in each pair of substrings si and ti one can find a long common

subsequence using one of the three strategies, giving an overall large LCS.

It is important for two technical reasons to split into substrings si and ti, rather than applying the

structure lemma directly to the entire strings s and t. First, we need to randomly shift the starting position

of one of the “runners” to get enough synchronized flags, incurring a loss of order up to |s1|, so it is necessary

that this loss is o(N). Second, our regularity lemma guarantees Blue flags to have sufficient regularity at

most, but not all, substrings lengths. Thus, we may not obtain the desired regularity until we consider

substring lengths down to around O(N/poly logN).

Organization. Section 3.3 collects the common notations, definitions, and preliminary lemmas we need

for the rest of the chapter. In Section 3.4, we prove a structure lemma which divides strings into three

types, one suitable to each of the three strategies above. In Section 3.5, we perform an additional technical

argument to prove a “regularity-type” property of strings necessary for the runners to remain synchronized

in the Blue-Yellow case (so that one does not race too far ahead of the other). These two sections together

set the stage for Sections 3.6, 3.7, and 3.8 to handle the Green case, the Blue-Yellow case, and complete the

proof, respectively.

3.3 Preliminaries and Notation

Constants. Throughout, fix ε = 10−6 and γ = 10−15 = 0.001ε2.
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Indicators. For a boolean statement ϕ, let I[ϕ] be 1 if ϕ is true and 0 if ϕ is not true.

Strings. Throughout the remainder of this chapter, all strings are binary. Let {0, 1}∗ be the set of all binary

strings of any nonnegative length. For strings s1 and s2, let s1s2 denote the string concatenation of s1 with

s2.

A subsequence in a string s is any string obtained from s by deleting zero or more symbols. In contrast, a

substring is a subsequence consisting of consecutive symbols of s (substrings are also sometimes referred to

as subwords elsewhere, but we do not use this terminology). Thus, if s = 10001, then 101 is a subsequence

of s but not a substring.

Intervals and sets. Throughout, for real numbers x and y we define an interval I = Jx, yK to be the set

of integers a such that x ≤ a ≤ y (rather than the set of real numbers a). We similarly define intervals

Lx, yK and Jx, yM and Lx, yM as subsets of the integers. The size of an interval is the number of integers in the

interval. For α ∈ (0, 1) and real number x, let (1± α)x denote the interval J(1− α)x, (1 + α)xK.
For integers m ≥ 0 and i ≥ 1, we let Im,i

def
= J(i − 1) · 2m + 1, i · 2mK. We call such an Im,i, where both

the size is a power of two and the endpoints are aligned with the same power of two, a dyadic interval.

For a string s with L ones and an interval I = Jx, yK, let sI denote the contiguous substring of s between

the x-th one of s (or the beginning of the string if x ≤ 0) and the (y + 1)-st one of s (or until the end

of the string if y ≥ L), including the first but excluding the second. For example, if w = 1001011, we

have wJ1,2K = 10010. For m ≥ 0 and i ≥ 1 write sm,i as shorthand for sIm,i . Informally, we refer to

sm,1, sm,2, sm,3, . . . as the substrings of s at scale m. We note that leading zeros of a string are not included

in any dyadic substring sm,i, but this is negligible as we typically work with strings that start with a one.

We write z(s) for the number of zeros in a string s.

Reversing strings that begin with a one. In the Blue-Yellow strategy on two strings s and t, we apply

the Blue-Yellow matchings in pairs: (i) matching Blue flags in s with Yellow flags in t, and (ii) matching Blue

flags in t with Yellow flags in s. Arguments (i) and (ii) can be see as applying the same lemma (Lemma 3.22)

when (ii) is viewed as applying the lemma on the reversals of s and t. However, since throughout we index

our substrings sI by the one-bits rather than all bits, it is helpful to slightly modify the definition of string

reversal as follows. Given a string s starting with a one, let rev(s) denote the string obtained by reversing

the order of all the bits in s after the first bit. Thus, rev(s) is only defined for strings starting with a one.

It is easy to check the following properties of rev.

Lemma 3.3. Let w be a string that begins with a one and has L ones in total.

1. The strings w and rev(w) have the same length and number of ones.

2. For an interval I = Jx, yK ⊂ [L], we have rev(wI) = rev(w)JL+1−y,L+1−xK.

3. When w has L = 2n ones we have rev(wm,i) = rev(w)m,2n−m+1−i.

Proof. The first item is obvious. For the second item, it suffices to consider when x and y are integers: indeed,

for real numbers x and y, we have Jx, yK = Jdxe, bycK and JL+ 1− y, L+ 1− xK = JL+ 1−byc, L+ 1−dxeK,
so we may replace x and y with dxe and byc. The zeros between the i-th and (i+ 1)-st one of w map to the

zeros between the (L+ 1− i)-th and (L+ 2− i)-th one of rev(s). Let zi denote the number of zeros between
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the i-th and (i+ 1)-st one of w. Then

rev(wJx,yK) = rev(10zx10zx+11 · · · 10zy ) = 10zy10zy−11 · · · 10zx = rev(w)JL+1−y,L+1−xK.

The third item follows from the second:

rev(wm,i) = rev(wJ(i−1)·2m+1,i·2mK) = rev(w)J2n+1−i·2m,2n−(i−1)·2mK

= rev(w)J2m(2n−m−i)+1,2m·(2n−m−i+1)K = rev(w)m,2n−m−i+1.

Example 3.4. For w = 1001011, we have

rev(wJ1,2K) = rev(10010) = 10100 = (1110100)J3,4K = rev(w)J3,4K.

Lemma 3.5. (rev preserves LCS) For strings s and t starting with a one, LCS(s, t) = LCS(rev(s), rev(t)).

Proof. The LCS always matches the first bits if they are equal, and reversing strings preserves the LCS.

Flags. We now define flags, a key notion that measures the oscillation frequencies within string.

Definition 3.6 (Flags). For a positive integer ` and a string w, define an index i ∈ Z to be an `-flag of

rate r in w if (` − 1)−1z(wJi,i+`M) = r. Here r ∈ J0,+∞K (so it can take on the value +∞) and we define

0−1 · 0 = 0 and 0−1 ·m = +∞ for any positive integer m. The rate of an `-flag i in w is the ratio of zeros to

ones (strictly) between the i-th one and the (i+ `)-th one of w, and we would like to find `-flags with high

rate in order to execute the zero-matching strategies described in the previous section. We say `-flag i of

rate r is 

Blue if r > ε−1,

Green if r > 1 + 2ε,

Yellow if r > 0.9,

Red if r ≤ 0.9.

Note that Blue flags are Green flags and Green flags are Yellow flags. For a string w with L ones, for each

i ∈ [L], define bw(i) to be the largest power of two ` ∈ [L] such that i is a Blue `-flag in w, and 0 if no such

` exists. We say i is a Blue `+-flag in w if bw(i) ≥ `.

Imbalanced strings. For δ ∈ (0, 1/2), we say a string w with L ones is δ-imbalanced if its number of

zeros z(w) is not in (1± δ)L. For convenience, we simply say that w is imbalanced if it is ε-imbalanced with

ε = 10−6 defined at the beginning of this section. We will reason about imbalanced substrings wI of w at

various scales, and exploit the existence of these imbalanced substrings.

Lemma 3.7. Let w be a string with L ones, and let ` ≥ 2ε−1. Suppose that i is a Blue or Green `-flag in

w, or i ≤ L− `+ 1 is a Red `-flag. On the interval I = Ji,min(i+ `− 1, L)K, the substring wI is imbalanced.

Proof. If i is a Green `-flag, substring wI has at least (1 + 2ε)(` − 1) > (1 + ε)` ≥ (1 + ε)|I| zeros. Since

Blue flags are Green flags, wI is also imbalanced if i is a Blue `-flag. If i is a Red `-flag, substring wI has at

most 0.9(`− 1) < (1− ε)|I| zeros. In all three cases, wI is imbalanced, as desired.
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It is also easy to see that if two imbalanced strings have the same length n and the same number of ones,

then their LCS is a constant fraction larger than n/2.

Lemma 3.8. Let δ ∈ (0, 1/2). Let s and t be δ-imbalanced strings of the same length with the same number

L of ones in each. Then LCS(s, t) ≥ (1/2 + δ/5)|s|.

Proof. If the number of zeros is at most (1− δ)L, then the all-ones string is a common subsequence of length

L ≥ 1
2−δ |s| ≥ (1/2 + δ/5)|s|. If the number of zeros is at least (1 + δ)L, then the all-zeros string is a common

subsequence of length at least 1+δ
2+δ |s| ≥ (1/2 + δ/5)|s|.

Prefixes and suffixes. For a string w with L ones, and ∆ ∈ J−L,LK, let Trim∆(w)
def
= wJmax(1,1−∆),min(L,L−∆)K.

Thus, Trim∆(w) is a prefix of w if ∆ ≥ 0 and a suffix otherwise. The following lemma (see Figure 3.4) shows

that finding long common subsequences across prefixes and suffixes of many subintervals of s and t implies

that LCS(s, t) is large overall.

t

s

sm,3

tm,3

sm,2n−m

tm,2n−m

+δ · 2m

Trim∆(sm,3)

Trim−∆(tm,3)

+δ · 2m

Trim∆(sm,6)

Trim−∆(tm,6)

+δ · 2m

Trim∆(sm,8)

Trim−∆(tm,8)

+δ · 2m

Trim∆(sm,14)

Trim−∆(tm,14)

1 2m 2n −∆

1 ∆ 2m 2n

Figure 3.4: If, for some ∆, we find a large LCS between many (prefixes and suffixes of) dyadic substrings of
s and t, then LCS(s, t) is large overall. We note that Lemma 3.9 works as long as the subintervals (in purple)
have LCS beating the trivial matching by δ · 2m on average, even though the figure depicts each subinterval
having LCS advantage δ · 2m. In the diagram, the set Z from Lemma 3.9 is {3, 6, 8, 14}. 4

Lemma 3.9 (Prefix/Suffix LCS). Let δ > 0, let m and n be integers with 0 ≤ m ≤ n − 10 − log δ−1 and

L = 2n, and let Z ⊂ [2n−m] satisfy |Z| ≥ 2n−m/10. Suppose that s and t are strings with L ones each, and

there exists ∆ ∈ J−2m, 2mK and δ > 0 such that

∑
i∈Z

LCS(Trim∆(sm,i),Trim−∆(tm,i)) ≥ |Z| · (2m − |∆|+ δ · 2m).

Then we have

LCS(s, t) ≥
(

1 +
δ

20

)
L.

Proof. Finding a common sequence between s and t is equivalent to exhibiting a matching between the bits

of s and the bits of t such that only equal bits are matched and such that the matching is “non-crossing,”

meaning that earlier bits of s are matched with earlier bits of t.

Consider the matching where we match the i-th one in s with the (i + ∆)-th one in t. This matches

L− |∆| ones. In this matching, for each i ∈ Z, the 2m− |∆| ones of Trim∆(sm,i) are exactly matched to the

4Technically, the figure is invalid because we need m ≤ n − 10 − log δ−1 and here m = n − 4, but we ignore this issue for
illustration.
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2m − |∆| ones of Trim−∆(tm,i). For each i ∈ Z, replace the matching between the ones of Trim∆(sm,i) and

Trim−∆(tm,i) with a matching for the LCS of Trim∆(sm,i) and Trim−∆(tm,i).

All of these replacements can be done simultaneously and independently while keeping the matching

non-crossing. Each of the |Z| replacement operations deletes 2m − |∆| pairs, and in total the replacements

add |Z|(2m− |∆|+ δ · 2m) pairs. Thus in total the replacements increase the number of matched pairs by at

least |Z| · δ · 2m. Thus, the total length of this common subsequence is at least (recall L = 2n)

L− |∆|+ |Z| · (δ2m) ≥ L− 2m +
2n−m

10
· δ · 2m ≥ L− δ

210
L+

δ

10
L ≥

(
1 +

δ

20

)
L.

In the second inequality, we used that m ≤ n− 10− log δ−1. Thus LCS(s, t) ≥
(
1 + δ

20

)
L, as desired.

3.4 The structure lemma and definition of types

3.4.1 The structure lemma

Throughout this section, we reason about a single string w with L ones, and assume w starts with a one.

Recall that ε = 10−6. Our main structure lemma is as follows.

Lemma 3.10 (Structure Lemma). If w ∈ {0, 1}∗ is a string that starts with one and has exactly L = 2n

ones, and n is sufficiently large (in terms of ε), then at least one of the following conditions hold.

1. There exists an interval I ⊆ [L] of size |I| ≥ ε2L such that wI is imbalanced.

2. There exists 1 ≤ ` ≤ L such that the number of Green `-flags in w is at least ε2L.

3. There exists 1 ≤ m ≤ n such that the number of Blue (2m)+-flags in w is at least ε2L, and for every

` ≥ 2m the number of Red `-flags in w is at most 600εL.

The three cases of the Structure Lemma correspond exactly to the three matching strategies outlined

in the Overview (Section 3.2). Case 1 is when w is imbalanced at a macroscopic scale, i.e., a linear-length

subword with density far from 1
2 . Case 2, the “Green case”, is when w “fluctuates on a single scale” and

can be treated by studying that scale only, i.e., using the Green strategy described in the Overview. Case 3

is when w is “sporadic” and must be analyzed at many scales simultaneously, which is done with the Blue-

Yellow strategy in the Overview. Before we prove Lemma 3.10, we need the following technical lemma, which

gives part of Lemma 3.10 under the additional assumption that many of the zeros in w are concentrated at

Blue flags.

Lemma 3.11. Suppose α > 0, n is sufficiently large, L = 2n, 1 ≤ ` ≤ L, and w ∈ {0, 1}∗ is a string with L

ones. If
1

`

∑
i∈B`

z(wJi,i+`M) ≥ αL,

where B` is the set of all Blue `-flags of w, then at least one of the following conditions hold.

1. There exists an interval I ⊆ [L] of size |I| ≥ ε2L such that wI is imbalanced.

2. The number of Blue `-flags in w is at least ε2L.
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3. The number of Blue `+-flags in w is at least (α− 22ε)εL/16.

Proof. We assume Conditions 1 and 2 do not hold and prove Condition 3. We first prove a slightly stronger

lower bound (see (3.4)) on the number of Blue `+ flags than claimed in Condition 3 in the special case that

` is a power of 2, and will then handle the case of general `.

Since |B`| < ε2L, if we define A`
def
= {i ∈ B` | z(wJi,i+`M) > 2ε−1`} we find that

1

`

∑
i∈B`\A`

z(wJi,i+`M) ≤
1

`
· (2ε−1`) · |B` \A`| ≤ 2εL, so

1

`

∑
i∈A`

z(wJi,i+`M) ≥ (α− 2ε)L .

By the pigeonhole principle, we can pick a residue class r ∈ {1, . . . , `} such that the set S ⊆ [L/`] defined

by S
def
= {j | (j − 1)`+ r ∈ A`} satisfies

∑
j∈S

z(wJ(j−1)`+r,j`+rM) ≥ (α− 2ε)L.

Write bj
def
= z(wJ(j−1)`+r,j`+rM). We have that for each j ∈ S, bj > 2ε−1`, and bS ≥ (α − 2ε)L (using the

summation notation bS
def
=
∑
j∈S bj).

Let L′ = L/`. Since ` and L are powers of 2, L′ is as well. We consider the family of all dyadic intervals

Im,i
def
= J(i−1) ·2m+1, i ·2mK where 0 ≤ m ≤ log2(L′) and 1 ≤ i ≤ L′ ·2−m. Let I be the set of such intervals

Im,i maximal under the property that bIm,i > 2ε−1` · |Im,i|. By maximality of the Im,i, the intervals of I are

pairwise disjoint. Furthermore, for j ∈ S, we have bI0,j = bj > 2ε−1`, so each j ∈ S is in some interval of I.

We claim that these intervals satisfy bIm,i ≤ 4ε−1` · |Im,i|. Suppose otherwise. Either Im,i = [L′] or

there is a dyadic interval Im+1,di/2e in [L′] containing Im,i with twice the size of Im,i. In the former case,

z(w[L]) = b[L′] > 4ε−1`L′ > L + εL, which would imply condition 1. In the latter case, Im+1,di/2e is an

interval containing Im,i satisfying bIm+1,di/2e > 2ε−1` · |Im+1,di/2e|, contradicting the maximality of Im,i. This

proves the claim.

Since every i ∈ S lies in some element of I, we have

4ε−1` ·
∑

Im,i∈I
|Im,i| ≥

∑
Im,i∈I

b
Im,i
≥ bS ≥ (α− 2ε)L,

and so
∑
I |Im,i| ≥

1
4 (α− 2ε)εL/`.

Thus the dyadic intervals in I have an abundance of zeroes in total. We need to convert this into an

abundance of `+-flags. To this end, let us define Jm,i
def
= J(i − 1) · 2m` + r, i · 2m` + rM, defined so that

bIm,i = z(wJm,i). The key observation is that if Im,i ∈ I, then any j ∈ Jm,i−1 is a Blue `+-flag. Indeed, for

such a j we have Jj, j + 2m+1`M ⊇ Jm,i, so

z(wJj,j+2m+1`M) ≥ z(wJm,i) = bIm,i > 2ε−1` · |Im,i| = ε−1 · 2m+1`,

so j is a Blue (2m+1`)-flag, and thus an `+-flag as desired since ` is a power of 2.

We conclude that all of the elements of

T
def
= [L] ∩

⋃
Im,i∈I

Jm,i−1 (3.3)
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are Blue `+-flags of w.

Note that the union in (3.3) may not be a disjoint union. Indeed, although any two intervals Im1,i1 , Im2,i2 ∈
I must be disjoint, their predecessor intervals Im1,i1−1, Im2,i2−1 may not be disjoint if m1 6= m2 (and the

corresponding Jm,i may not be either). To address this issue, we pass to a subcollection I ′ ⊆ I so that for

any two Im1,i1 , Im2,i2 ∈ I ′, their respective shifts Im1,i1−1 and Im2,i2−1 are disjoint. Notice that for disjoint

Im1,i1 , Im2,i2 ∈ I with m1 ≤ m2, their shifts Im1,i1−1 and Im2,i2−1 intersect only if Im1,i1 ( Im2,i2−1. Thus,

it suffices to find a subcollection I ′ ⊆ I so that no interval Im1,i1 lies in the shift Im2,i2−1 of another. Such

a subcollection can be picked greedily by scanning from right to left through I, skipping any Im1,i1 which

appears in the shift Im2,i2−1 of an interval already picked, and breaking ties by preferring larger intervals.

Any greedily chosen Im2,i2 removes at most |Im2,i2 | in total interval size from I ′, so the total size of the

intervals in I ′ is at least half of the total size of intervals in I.

Thus,
∑
I′ |Im,i| ≥

1
2

∑
I |Im,i|, and {Jm,i−1 | Im,i ∈ I ′} is now a disjoint collection. Inside I ′, there can

be at most one interval Im,i for which Jm,i−1 does not lie entirely inside [L], and Jm,i−1 must have size at

most ε2L or else

z(wJm,i−1) > (1 + ε) · 2m,

for 2m ≥ ε2L, implying condition 1. It follows that w has at least

|T | ≥
∑

Im,i∈I′
|Jm,i−1| − ε2L ≥ 1

2

∑
Im,i∈I

|Jm,i−1| − ε2L ≥ (α− 10ε)ε

8
L, (3.4)

Blue `+-flags. This proves the lemma, in fact with a stronger lower bound on number of Blue `+ flags, when

` is a power of 2.

Now suppose ` is not a power of 2. If `′ is the smallest power of 2 greater than or equal to `, then all

Blue (`′)+-flags are also Blue `+-flags and 1 ≤ `′ ≤ L since L is a power of 2. Furthermore, if B`′ is the set

of Blue `′-flags, z(wJi,i+`M) ≤ z(wJi,i+`′M) ≤ ε−1(`′ − 1) if i 6∈ B`′ . Thus, since |B`| < ε2L we get

1

`′

∑
i∈B`\B`′

z(wJi,i+`M) ≤ εL,

which implies

1

`′

∑
i∈B`′

z(wJi,i+`′M) ≥
1

`′

∑
i∈B`∩B`′

z(wJi,i+`M) ≥
1

2`

∑
i∈B`

z(wJi,i+`M)− εL ≥ (α/2− ε)L,

and so the conditions of the lemma are true with modified parameters `′ ≥ ` a power of 2 and α′ = α/2− ε.
It follows by applying (3.4) with these parameters instead that w must have at least

(α′ − 10ε)ε

8
L ≥ (α− 22ε)ε

16
L

Blue `+-flags in the general case, thus completing the proof.

Now we are ready to prove Lemma 3.10.

Proof of Lemma 3.10. We assume conditions 1 and 2 do not hold for some w, and prove condition 3.
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Pick m ∈ J0, nK maximal such that w contains at least ε2L Blue (2m)+-flags. To see that such an m

exists, let B1 denote the set of Blue 1-flags in w, which is just the set of one-bits in w immediately followed

by at least one zero. Then, we have

∑
i∈B1

z(wJi,i+1M) = z(w[L]) ≥ L− εL,

assuming condition 1 does not hold. Furthermore, because Blue flags are Green flags, condition 2 being

false implies there are fewer than ε2L Blue 2m-flags for any 0 ≤ m ≤ n. In particular, |B1| < ε2L. Thus,

the conditions of Lemma 3.11 are satisfied with ` = 1 and α = 1 − ε, and we obtain that either w satisfies

condition 1 or condition 2 (since Blue flags are Green flags) or the number of Blue 1+-flags in w is at least

(α− 22ε)εL/16 = (ε− 23ε2)L/16 ≥ 2ε2L.

Hence we used that ε is sufficiently small. Thus, some such 0 ≤ m ≤ n exists.

By the maximality of m and the fact that there are fewer than ε2L Blue 2m-flags for any particular

0 ≤ m ≤ n, we see that in fact m ≥ 1 and the number of Blue (2m)+-flags is in Jε2L, 2ε2LM. It remains to

check that the second half of condition 3 holds.

Suppose ` ≥ 2m, and let B`, G`, Y`, and R` be the sets of `-flags in w which are Blue, Green, Yellow, and

Red (respectively). Note that by our definitions of the colors, B` ⊆ G` ⊆ Y` and Y` t R` = [L]. Suppose

for the sake of contradiction that |R`| > 600εL. We may assume ` ≤ ε2L, as otherwise a single Red `-flag

would violate condition 1. We can express z(w[L]) as

z(w[L]) =
1

`

L∑
i=−`

z(wJi,i+`M)

since each z(w{i}) appears exactly ` times in the sum on the right. Setting aside the terms on the right with

i ≤ 0, we find by breaking up the sum in terms of the colors of the flags,

z(w[L]) ≤
1

`

(
0∑

i=−`

z(wJi,i+`M) +
∑
i∈B`

z(wJi,i+`M) + (`− 1)(ε−1|G`\B`|+ (1 + 2ε)|Y`\G`|+ 0.9|R`|)

)
.

We can bound 1
`

∑0
i=−` z(wJi,i+`M) ≤ z(w[`]), |G`\B`| ≤ |G`| < ε2L (since condition 2 is false), and |Y`\G`| ≤

|Y`| = L− |R`|. Putting these together with (3.4.1), we obtain

z(w[L]) ≤ L+ 3εL+ z(w[`]) +
1

`

∑
i∈B`

z(wJi,i+`M)− 0.1|R`|.

Since condition 1 is false, we have z(w[L]) ≥ L− εL, so together with (3.4.1) and |R`| > 600εL we get

z(w[`]) +
1

`

∑
i∈B`

z(wJi,i+`M) ≥ 56εL.

Next, we claim that z(w[`]) ≤ εL. This follows from the facts that ` ≤ ε2L and z(w[ε2L]) ≤ εL (by the
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assumption that condition 1 does not hold). We get

1

`

∑
i∈B`

z(wJi,i+`M) ≥ 55εL.

The conditions of Lemma 3.11 are satisfied with this ` and α = 55ε. Applying the lemma, we find that either

w satisfies one of condition 1 or 2, or the number of Blue `+-flags in w is at least (55ε− 22ε)εL/16 > 2ε2L.

This contradicts the observation we made before that the number of Blue (2m)+-flags is in Jε2L, 2ε2LM and

completes the proof.

3.4.2 Definition of types

Using the structure theorem, we define below the type of a string roughly based on the case that it satisfies in

the structure theorem. These three definitions of types (Imbalanced, Green, Blue-Yellow) roughly align with

the three cases of the structure theorem, though for Green and Blue-Yellow types, it helps to additionally

have an upper bound on `, the length of the flags. Because we only prove the Structure Lemma (Lemma 3.10)

for strings whose number of ones is a power of two, we also only define types for strings whose number of

ones is a power of two, which is enough for our application. Recall that γ = 0.001ε2.

Definition 3.12. Given a string w with L = 2n ones with n sufficiently large, we say the type of w is

1. Imbalanced if there exists some interval I ⊆ [L] of size |I| ≥ ε5L such that wI is imbalanced.

2. `-Green for some integer 1 ≤ ` ≤ ε5L if the number of Green `-flags in w is at least ε2L.

3. m-Blue-Yellow if there exists 1 ≤ m ≤ n such that the number of indices i ∈ [L] with 2m ≤ bw(i) ≤ γL
is at least (ε2 − γ)L, and the number of Red `-flags in w is at most 600εL for any ` ≥ 2m.

If w could be more than one type, we assign w one of the possible types arbitrarily.

Note that there are at most 1 + L + logL = O(|w|) possible types for a string w. As a corollary of

Lemma 3.10, each string w has a type, assuming n is sufficiently large:

Lemma 3.13. If n is sufficiently large, each string w with L = 2n ones has a type.

Proof. If w satisfies Case 1 of Lemma 3.10, then w has type Imbalanced.

If w satisfies Case 2 of Lemma 3.10 with parameter `, then w has at least ε2L Green `-flags, and in

particular there exists an i ≤ L − ε2L that is a Green `-flag. If ` ≥ ε5L, then by Lemma 3.7, the interval

I = Ji, i+ `− 1K of size at least ε5L gives that wI is imbalanced, so w has type Imbalanced. If ` ≤ ε5L, then

w has type `-Green.

If w satisfies Case 3 of Lemma 3.10 with parameter m, then there are at least ε2L indices with bw(i) ≥ ε2L,

and the number of Red `-flags in w is at most 600εL for any integer ` ≥ 2m. If there are at least γL indices

i ∈ [L] with bw(i) ≥ γL, then some i ≤ L − γL + 1 satisfies bw(i) ≥ γL, so by Lemma 3.7, there exists an

interval I of size at least γL > ε5L such that wI is imbalanced, so w is type Imbalanced. Otherwise, for at

least (ε2 − γ)L indices i ∈ [L], we have 2m ≤ bw(i) ≤ γL, so w is type m-Blue-Yellow.
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3.5 The entropy regularity argument

In this section, we prove the regularity-type result Lemma 3.19, which roughly states that in most dyadic

substrings of a given string s, the positions of the Blue flags are distributed relatively uniformly. In the

Blue-Yellow strategy, we may be matching bits in s and t that lie in nearby but different dyadic intervals

(because of our random shifting argument and because the Blue-Yellow strategy consumes ones from s and t

at different rates). Because of this, it is helpful to say that there many neighboring pairs of dyadic intervals

with similar Blue flag distributions in s and t.

3.5.1 Flag balance

Define the L1 distance between two discrete probability distributions p, q to be ‖p− q‖1
def
=
∑
|p(x)− q(x)|.

Recall that bw(i) is the largest power of two ` ∈ [L] such that i is a Blue `-flag in w, and 0 if no such ` exists.

For a string w with L ones and an interval I ⊂ [L], let pw,I denote the distribution of the value of bw(i) over

a uniform random i ∈ I. Put another way, the probability mass pw,I(`) is the fraction of indices i ∈ I with

bw(i) = `.

Definition 3.14 (Blue-flag-balance). For β > 0, we say that a dyadic interval Im,i is β-Blue-flag-balanced

in w if ‖pw,Im−1,2i−1 − pw,Im−1,2i‖1 ≤ β. We say that a string w with L = 2n ones is β-Blue-flag-balanced if

the interval In,1 is β-Blue-flag-balanced in w.

Showing Blue-flag balance is useful because we can show that if a Blue-flag-balanced string w has many

Blue flags of a certain length, then both halves of w also have many Blue flags of the same length. The next

lemma formalizes this idea.

Lemma 3.15. If string w is β-Blue-flag-balanced with L = 2n ones, then for any set S of integers, we have∣∣∣∣ Pr
i∈[L]

[bw(i) ∈ S]− Pr
i∈[L/2]

[bw(i) ∈ S]

∣∣∣∣ ≤ β

2
.

Proof. Since w is β-Blue-flag-balanced, interval In,1 is β-Blue-flag-balanced in w. We have∣∣∣∣ Pr
i∈[L]

[bw(i) ∈ S]− Pr
i∈[L/2]

[bw(i) ∈ S]

∣∣∣∣ =
∑
`′∈S

|pw,In,1(`′)− pw,In−1,1
(`′)|

≤
∑
`′

|pw,In,1(`′)− pw,In−1,1(`′)|

=
∥∥pw,In,1 − pw,In−1,1

∥∥
1

=
∥∥∥pw,In−1,1

− pw,In−1,2

2

∥∥∥
1
≤ β

2
.

The third equality uses that
pw,In−1,1

+pw,In−1,2

2 = pw,In,1 , and the last inequality uses the definition of interval

In,1 being β-Blue-flag-balanced in w.

3.5.2 Flag balance of intervals

Our goal is to find a scale at which most intervals are Blue-flag-balanced. We start by proving a simple

lemma about probability distributions. Recall that the binary entropy of a discrete probability distribution
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p is defined as H(p)
def
= −

∑
x p(x) log p(x) over all values x in the support of p, and the logarithms are base

2.

Lemma 3.16. If p−, p, and p+ are three discrete probability distributions supported on a finite domain Ω

satisfying p−(x) + p+(x) = 2p(x) for all x ∈ Ω, then

H(p−) +H(p+) ≤ 2H(p)− 1

4
‖p+ − p−‖21.

Proof. We use Pinsker’s inequality, which states in the case of discrete probability distributions that the

Kullback-Leibler divergence between two distributions P and Q satisfies

DKL(P‖Q) =
∑
i

P (i) log

(
P (i)

Q(i)

)
≥ 1

2
‖P −Q‖21.

In particular, applying this to the pairs (P,Q) = (p−, p) and (P,Q) = (p+, p), we obtain

2H(p)−H(p−)−H(p+) =
∑
i

(
p−(i) log p−(i) + p+(i) log p+(i)− 2p(i) log(p(i))

)
= DKL(p−‖p) +DKL(p+‖p)

≥ 1

2
‖p− − p‖21 +

1

2
‖p+ − p‖21

=
1

4
‖p+ − p−‖21.

We now obtain with a regularity argument the following lemma, which is the most substantial result in

this section.

Lemma 3.17 (Interval Blue-flag-balance). For β > 0, n ≥ 2, and any w ∈ {0, 1}N with L = 2n ones, except

for at most 32β−3 log n values of m ∈ J0, nK, the following holds: the number of dyadic intervals Im,i that

are not β-Blue-flag-balanced in w is less than β · 2n−m.

Proof. Consider the expression

Em
def
= 2m ·

2n−m∑
i=1

H(pw,Im,i).

By the definition of an β-Blue-flag-balanced interval, we obtain that whenever interval Im,i is not β-Blue-

flag-balanced in w,

‖pw,Im−1,2i−1 − pw,Im−1,2i‖1 ≥ β,

and so if there are tm dyadic intervals Im,i that are not β-Blue-flag-balanced in w, we obtain

Em−1 ≤ Em − 2m−1 · tm ·
1

4
β2 ≤ Em − 2m−3tmβ

2,

by Lemma 3.16. Since bw(i) ≤ L is either 0 or a power of two for all indices i ∈ [L], we have that bw(i) takes

on one of n+ 2 values. Thus, we have En = 2n ·H(pw,In,1) ≤ log(n+ 2) · 2n. Since we also have E0 ≥ 0, at

most 8β−3 log(n+ 2) < 32β−3 log n values of tm are at least β · 2n−m, completing the proof.
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3.5.3 Flag balance of substrings

In Lemma 3.17 we showed that there exists many scales m where many (dyadic) intervals were β-Blue-flag-

balanced in the sense of Definition 3.14. For technical reasons, it is helpful to establish that there are many

substrings that are β-Blue-flag-balanced, and we do so in this section. The distinction here is that certain

one-bits in the interval I may be Blue `-flags in w, but not Blue `-flags in wI once the zeros to the right of

I are taken out of consideration.

For a string w with L ones, let pw
def
= pw,[L]. Note that the distribution pw,I may be different from the

distribution pwI , because indices i ∈ I that are Blue `-flags in string w may not correspond to Blue `-flags

in substring wI . However, the converse is true: for I = Jx, yK, if i − x + 1 is a Blue `-flags of substring wI ,

then i is a Blue `-flag of string w. Because of this, we can show that pw,I and pwI are similar in distribution

under certain conditions.

Lemma 3.18. Let β > 0, w be a string with L ones, I ⊂ [L] be an interval, and `0 be an integer, such that

at most β|I| indices i ∈ I satisfy bw(i) ≥ `0. Then

‖pw,I − pwI‖1 ≤ 2

(
β +

`0
|I|

)
.

Proof. Recall that bw(i) is the largest power of two such that the i-th one of w is an bw(i)-flag of w (or 0 if

no such power of two exists). For an interval I = Jx, yK, if index i− x+ 1 is a Blue `-flag of wI , then index i

is a Blue `-flag of w, and furthermore if index i is a Blue `-flag of w and x ≤ i ≤ y− `, then index i−x+ 1 is

a Blue `-flag of wI as well. Hence, for all x ≤ i ≤ y− `0 with bw(i) ≤ `0, we have that bw(i) = bwI (i−x+ 1).

Thus, by the union bound,

Pr
i∈I

[bw(i) 6= bwI (i− x+ 1)] ≤ Pr
i∈I

[i ≥ y − `0] + Pr
i∈I

[bw(i) ≥ `0] ≤ `0
|I|

+ β, (3.5)

We also have

‖pw,I − pwI‖1 =
∑
`′

|pw,I(`′)− pwI (`′)| =
∑
`′

1

|I|

∣∣∣∣∣∑
i∈I

I(bw(i) = `′)−
∑
i∈I

I(bwI (i− x+ 1) = `′)

∣∣∣∣∣
Thus, the expression ‖pw,I−pwI‖1 is a 1

|I| -Lipschitz function in the indicator functions I(bw(i) = `′) for i ∈ I
and `′ a power of two or 0. Changing the value of any single bw(i) changes the value of at most two such

indicator functions, and furthermore we know that changing the value of |I| ·Pri∈I [bw(i) 6= bwI (i− x+ 1)]

values of bw(i) makes the expression ‖pw,I − pwI‖1 equal to 0, so we have that

‖pw,I − pwI‖1 ≤
1

|I|
· 2 · |I| ·Pr

i∈I
[bw(i) 6= bwI (i− x+ 1)]. ≤ 2 ·Pr

i∈I
[bw(i) 6= bwI (i− x+ 1)] (3.6)

Combining (3.5) and (3.6) gives the desired result.

Lemma 3.17 argues about the Blue-flag-balance of intervals. Combining Lemma 3.17 with Lemma 3.18,

we obtain the following result about the Blue-flag-balance of substrings.

Lemma 3.19 (Substring Blue-flag-balance). Let β > 0, and n be sufficiently large in terms of β. Let

w ∈ {0, 1}N be a string with L = 2n ones, and suppose that at most β2L indices i ∈ [L] satisfy bw(i) ≥
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2n−200β−3 logn. Then, except for at most 32β−3 log n values of m ∈ Jn− 150β−3 log n, nK the following holds:

the number of i ∈ [2n−m] for which wm,i is not 6β-Blue-flag-balanced is less than 3β · 2n−m.

Proof. Let m ∈ Jn− 150β−3 log n, nK be any value such that there are at most β · 2n−m dyadic intervals Im,i

that are not β-Blue-flag-balanced in w. By Lemma 3.17, all but 32β−3 log n values of m have this property.

We show that each such m satisfy the requirements of the lemma.

Call an index i ∈ [2n−m] good if (1) the dyadic interval Im,i is β-Blue-flag-balanced in w, and (2) for both

intervals I ∈ {Im−1,2i−1, Im−1,2i}, there are at most β|I| indices i ∈ I with bw(i) ≥ 2n−200β−3 logn. By the

choice of m, there are less than β · 2n−m choices of i ∈ [2n−m] that violate requirement (1). Next, we use the

assumption that in total at most β2L indices i ∈ [L] satisfy bw(i) ≥ 2n−200β−3 logn. Thus, at most β ·2n−m+1

of the dyadic intervals I of size 2m−1 contain at least β|I| indices i ∈ I satisfying bw(i) ≥ 2n−200β−3 logn.

Hence, at most 2β ·2n−m choices of i ∈ [2n−m] violate requirement (2). We see that all but less than 3β ·2n−m

choices of i ∈ [2n−m] are good.

We now show that for each good index i ∈ [2n−m], the substring wm,i is 6β-Blue-flag-balanced. By

Lemma 3.18, for each good i and either interval I ∈ {Im−1,2i−1, Im−1,2i}, we have

‖pw,I − pwI‖1 ≤ 2

(
β +

2n−200β−3 logn

2m

)
≤ 2

(
β + 2−50β−3 logn

)
.

Since interval Im,i is β-Blue-flag-balanced with respect to w, we have by the triangle inequality

‖pwm−1,2i−1 − pwm−1,2i‖1 ≤ ‖pwm−1,2i−1 − pw,Im−1,2i−1‖1 + ‖pwm−1,2i − pw,Im−1,2i‖1 + ‖pw,Im−1,2i−1 − pw,Im−1,2i‖1

≤ 4(β + 2−50β−3 logn) + β < 6β,

assuming n is sufficiently large. Hence, for each good i, the substring wm,i is 6β-Blue-flag-balanced, as

desired.

3.6 Green case

Call a pair of strings (s, t) a Green pair if

1. s and t have the same number L of ones, and

2. there exists an 1 ≤ ` ≤ ε5L such that s and t are both type `-Green.

In this section, we implement the Green strategy in the Overview (Section 3.2). Specifically, we show

(Lemma 3.21) that when we have strings s and t and some scale m∗ with many Green pairs (sm∗,i, tm∗,i),

then we can find a common subsequence of s and t of length (0.5 + δ)|s|. At the highest level, we do this by

finding common subsequences within the Green pairs, and matching ones elsewhere, using the Prefix/Suffix

LCS Lemma (Lemma 3.9).

Within the Green pairs, we match ones everywhere, except that we switch to matching zeros at Green

flags in s and t.

Lemma 3.20 (Green matching lemma). Let L be a power of two. Let (s, t) be a Green pair where strings s



CHAPTER 3. DELETION CODES 36

and t have L ones each. Then for ∆ uniformly random in J−L,LK, we have

E
∆

[LCS(Trim∆(s),Trim−∆(t)) + |∆|] ≥ L+
ε5

8
L.

Proof. For a fixed ∆ in J−L,LK, let G′∆ be the set of indices i ∈ [L] such that i is Green `-flag of s and

i+ ∆ ∈ [L] and i+ ∆ is a Green `-flag of t. Let G∆ ⊆ G′∆ be a subset of size at least |G′∆|/`− 1 such that

any two distinct i, i′ ∈ G∆ satisfy |i− i′| ≥ `, and furthermore every i ∈ G∆ satisfies i+ ∆ + ` ≤ L. Such a

G∆ can be greedily selected from G′∆: we can get |G∆|/` indices such that any two differ by at least `, and,

as any i ∈ G′∆ satisfies i + ∆ ≤ L, we can guarantee i + ∆ + ` ≤ L for all i ∈ G∆ by removing the largest

index.

Since s and t are type `-Green, both s and t have at least ε2L Green `-flags. Thus, for each Green `-flag

i ∈ [L] of s, there are at least ε2L values of ∆ such that i ∈ G′∆. Hence, Pr∆∈J−L,LK[i ∈ G′∆] ≥ ε2L
2L+1 >

ε2

3 .

By linearity of expectation, we have E∆∼J−L,LK[|G′∆|] ≥ ε2

3 · ε
2L = ε4

3 L. Hence, as |G∆| ≥ |G′∆|/` − 1, we

have

E
∆∼J−L,LK

[|G∆|] ≥
ε4L

3`
− 1 >

ε4L

4`
. (3.7)

Here we used that ` ≤ ε5L.

1 0 1 1 0 1 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 0 0 1 0 1 1 0 0 0 1 1 1 1 0 1 0 0 0 0 1 0 1 0 1 0 1 1

Figure 3.5: The matching strategy for Lemma 3.20. In this example ` = 4 and ∆ = 0. The darker Green
one-bits are Green `-flags, and the light Green substrings following them are relatively zero-rich. The solid
and dashed black lines indicate the initial matching of ones, and the thick dark-green lines indicate matchings
of zeros that replace the matchings of ones. The matchings of ones that are replaced are dashed.

It suffices to construct a large matching between the bits of s and the bits of t such that only equal

bits are matched and such that the matching is “non-crossing”, meaning that earlier bits of s are matched

with earlier bits of t. Indeed, the number of pairs in a non-crossing matching corresponds to the length of a

common subsequence of s and t.

Consider the matching where we match the i-th one in s with the (i + ∆)-th one in t. This matches

L − |∆| ones. In particular, for each i ∈ G∆, the ones in substring sJi+1,i+`−1K are exactly matched with

the ones in substring tJi+∆+1,i+∆+`−1K. In this matching, for each i ∈ G∆, replace the matching between

the ones of sJi+1,i+`−1K and the ones of tJi+∆+1,i+∆+`−1K with a matching between the zeros of sJi,i+`−1K

and the zeros of tJi+∆,i+∆+`−1K. All of the zeros of sJi,i+`−1K come after the i-th one of s, and all the

zeros of tJi+∆,i+∆+`−1K come after the (i+ ∆)-th one of t, which stays matched to the i-th one of s, so the

matching stays non-crossing after this replacement. Furthermore, since any two i ∈ G∆ differ by at least `,

the substrings sJi,i+`−1K and tJi+∆,i+∆+`−1K across i ∈ G∆ are pairwise disjoint, so these |G∆| replacements

can be done simultaneously while keeping the matching non-crossing and thus valid.

Substrings sJi,i+`−1K and tJi+∆,i+∆+`−1K each have at least max(1, (1 + ε)(` − 1)) zeros because i is a

Green `-flag of s and i + ∆ is a Green `-flag of t. Thus, each replacement deletes (` − 1) pairs of ones and
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adds at least max(1, (1 + ε)(`− 1)) pairs of zeros. If ` ≥ 2, each replacement increases the number of pairs

matched by ε(`− 1) > ε
2`, so the total number of bits in the new matching is at least L− |∆|+ ε

2`|G∆|. If

` = 1, each replacement increases the number of pairs matched by at least 1, so the total number of pairs in

the new matching is L− |∆|+ |G∆| which is also at least L− |∆|+ ε
2`|G∆|. Thus, for all ∆, we have shown

LCS(Trim∆(s),Trim−∆(t)) ≥ L− |∆|+ ε

2
`|G∆|.

Hence, we have by linearity of expectation and (3.7),

E
∆∼J−L,LK

[LCS(Trim∆(s),Trim−∆(t)) + |∆|] ≥ L+
ε

2
` · E

∆∼J−L,LK
[|G∆|] ≥ L+

ε5

8
L,

as desired.

To find strings s and t that have LCS beating the 1/2 barrier, it is not enough to assume that s and t

form a Green pair and use Lemma 3.20, because we lose by the size of the random shift |∆|. To remedy

this, we break s and t into shorter substrings so that the loss from the random shift is at most the length of

a single substring. If a substantial fraction of these substrings form Green pairs, then we can combine the

gains using the Shifted LCS Lemma (Lemma 3.9) to get a large overall LCS, and the loss from the random

shift is negligible. The following lemma implements this idea, showing that many Green pairs gives large

overall LCS.

Lemma 3.21 (Many Green pairs implies large LCS). Let s and t be strings with the same length and the

same number L = 2n of ones, and let m∗ ≤ n − 10 − log ε−5. Suppose there exists a set Z ⊂ [2n−m
∗
] such

that |Z| > 2n−m
∗
/10 and for all i ∈ Z, the pair of substrings (sm∗,i, tm∗,i) is a Green pair. Then

LCS(s, t) ≥
(

0.5 +
ε5

5000

)
|s|.

Proof. Let L∗ = 2m
∗
. We may assume L ≥ (0.5 − ε5

1000 )|s| or else we are done by having an LCS of

(0.5 + ε5

1000 )|s| zeros. By Lemma 3.20, we have, for all i ∈ Z,

E
∆∼J−L∗,L∗K

[LCS (Trim∆(sm∗,i),Trim−∆(tm∗,i)) + |∆|] ≥ L∗ +
ε5

8
L∗.

We have, by linearity of expectation,

E
∆∼J−L∗,L∗K

[∑
i∈Z

(LCS (Trim∆(sm∗,i),Trim−∆(tm∗,i)) + |∆|)

]
=
∑
i∈Z

E
∆∼J−L∗,L∗K

[LCS (Trim∆(sm∗,i),Trim−∆(tm∗,i)) + |∆|]

≥ |Z| ·
(
L∗ +

ε5

8
L∗
)
.
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Hence, we may fix a single ∆ for which |∆| ≤ L∗ and

∑
i∈Z

LCS (Trim∆(sm∗,i),Trim−∆(tm∗,i)) ≥ |Z| ·
(
L∗ − |∆|+ ε5

8
L∗
)
.

Thus, the set Z satisfies the setup of Lemma 3.9 with n′ = n and m′ = m∗ and L′ = L and δ′ = ε5

8 .

Therefore we get

LCS(s, t) ≥
(

1 +
ε5

160

)
L >

(
1 +

ε5

160

)(
0.5− ε5

1000

)
|s| >

(
0.5 +

ε5

5000

)
|s|.

3.7 Blue-Yellow case

In this section, we implement the Blue-Yellow strategy described in the Overview (Section 3.2), which is the

most intricate part of our argument. Call a pair of strings (s, t) a Blue-Yellow pair if:

1. The strings s and t have the same length and the same number of ones.

2. There exists an m such that s and t are both of type m-Blue-Yellow.

3. Both s and t are 6γ-Blue-flag-balanced.

Note that (s, t) is a Blue-Yellow pair if and only if (t, s) is a Blue-Yellow pair.

We show that when we have strings s and t and some scale m∗ with many Blue-Yellow pairs (sm∗,i, tm∗,i)

among their substrings at scale m∗, then we can find a common subsequence of s and t of length (1/2+δ)|s|.
At the highest level (Lemma 3.24), we do this by finding common subsequences within the Blue-Yellow

pairs, and matching ones elsewhere. To find large common subsequences within Blue-Yellow pairs, we use

Lemma 3.22 and Lemma 3.23.

Lemma 3.22 shows that, for a Blue-Yellow pair (si, ti), we can find substrings s′i and t′i of si and ti which

“gain in span,” meaning that LCS(s′i, t
′
i) > (1/4 + δ)(|s′i|+ |t′i|). To do this, we match ones of si with ones

of ti, and switch to matching zeros when we simultaneously encounter a Blue flag in si and Yellow flag in ti

of the appropriate lengths. However, despite gaining in span, the lengths of si and ti may be quite different

(this offset comes from the zeros of the Blue flags in si spanning fewer ones than the zeros of the Yellow

flags in ti), so repeatedly applying Lemma 3.22 is insufficient. Indeed, this would cause us to systematically

match shorter substrings in s with longer substrings in t, leading the common subsequence obtained to reach

the end of t well before reaching the end of s.

The subsequent lemma, Lemma 3.23, shows that if two Blue-Yellow pairs (si, ti) and (si+1, ti+1) occur

consecutively in a string, then we can find a common subsequence that gains in span, like Lemma 3.22, but

also uses the same number of ones in both strings, creating a balanced matching. Roughly, the proof follows

by applying Lemma 3.22 twice, once on the pair (si, ti), matching more bits in ti, and once on the pair

(ti+1, si+1), matching more bits in si+1, so that together the number of bits used from s and t is equal. As

a result, in total our common subsequence spans the same number of bits in s and t but still gains in span.

We refer the reader to Figure 3.6 below for a visual illustration of this argument.

Thanks to Lemma 3.23, it follows that if we have many Blue-Yellow pairs, then we have many pairs of

subsequences (sisi+1, titi+1) of s and t where there is a common subsequence that gains in span. Thus, using
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Lemma 3.9, we can piece these subsequences together, matching ones in between, giving a large LCS overall;

this is the content of Lemma 3.24.

Lemma 3.22 (Blue-Yellow matching lemma). Let (s, t) be a Blue-Yellow pair where each string has L = 2n

ones. Then, for ∆ uniformly random in [L/4],

Pr
∆

[
LCS(sJ1,(0.5+0.01ε)LK, tJ1+∆,(0.5+0.3ε)L+∆K) ≥ (0.5 + 0.24ε)L

]
≥ 0.9.

Proof. This proof is long, so we organize it into four parts. First, we use the assumptions to find many

disjoint Blue flags in s. Next, we match the Blue flags in s with candidate Yellow flags in t. We then show

that, on average, most of these candidate flags are in fact Yellow flags in t. Finally, with these ingredients

in place, we show the desired lower bound on the expected LCS over the random offset ∆.

Finding many disjoint Blue flags in s. Since (s, t) is a Blue-Yellow pair, the strings s and t are both type

m-Blue-Yellow for some integer m. Because s is type m-Blue-Yellow, the fraction of indices i ∈ [L] with

bs(i) ∈ J2m, γLK is at least ε2 − γ. As s is 6γ-Blue-flag-balanced, by Lemma 3.15, the fraction of indices

i ∈ [L/2] with bs(i) ∈ J2m, γLK is at least ε2 − 4γ. Let 1 ≤ i1 < i2 < · · · be such that ik ∈ [L/2] is the

smallest index satisfying bs(ik) ∈ J2m, γLK and, if k > 1, ik ≥ ik−1 + bs(ik−1). Intuitively, (ik)k≥1 is a

maximal sequence of non-overlapping Blue flags in [L/2].

We claim that there is a smallest index d such that
∑d
k=1 bs(ik) ≥ 0.5(ε2−4γ)L. By the minimality of each

ik, the intervals Jik, ik+bs(ik)−1K for k = 1, . . . , k′ together contain all indices i < ik′+1 with bs(i) ∈ J2m, γLK.
Since there are at least 0.5(ε2 − 4γ)L such indices i ∈ [L/2], as long as

∑k′

k=1 bs(ik) < 0.5(ε2 − 4γ)L, the

index ik′+1 is well defined, so in particular d is well defined. Furthermore, by minimality of d, we have∑d
k=1 bs(ik) ≤ 0.5(ε2 − 4γ)L+ γL < 0.5ε2L. We thus have found indices i1, . . . , id where

id ≤ L/2, ik+1 ≥ ik + bs(ik) for each k < d, and
∑

bs(ik) ∈ [0.5(ε2 − 4γ)L, 0.5ε2L].

Matching Blue flags in s with candidate Yellow flags in t. Define i0 = 1, `s,0 = 0, and id+1 = b(0.5 + 0.01ε)Lc.
For k ∈ [d], let `s,k

def
= bs(ik) > 1 for the lengths of these Blue flags in s, and let `t,k

def
= d0.56ε−1`s,ke for

k ∈ [0, d], corresponding to Yellow flag length we want to match in t. Here the constant 0.56ε−1 above is

chosen so that 0.9(`t,k − 1) ≥ 0.5ε−1`s,k, so that a Yellow `t,k-flag guarantees roughly the same number of

zeros in t as a Blue `s,k-flag does in s.

For a subset K ⊂ [0, d], define `s,K
def
=
∑
k∈K `s,k, and define `t,K similarly. Recall the shift ∆ is to be

chosen uniformly from [L/4]. For k ∈ [0, d+ 1], let jk
def
= ik + ∆ + `t,[k−1] − `s,[k−1]. This jk is the index in

t that we would like to be a Yellow `t,k-flag to be matched with the Blue `s,k-flag at ik. The indices ik and

jk partition s and t into substrings as follows. Let

s′k
def
= sJik,ik+`s,k−1K for k ∈ J1, dK

s′′k
def
= sJik+`s,k,ik+1−1K for k ∈ J0, dK

t′k
def
= tJjk,jk+`t,k−1K for k ∈ J1, dK

t′′k
def
= tJjk+`t,k,jk+1−1K for k ∈ J0, dK.

By construction of i0, . . . , id, we have ik + `s,k ≤ ik+1 for k ∈ J0, d − 1K, and also id + `s,d ≤ L/2 + γL <
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id+1. Thus, the substrings defined above give a partition sJ1,(0.5+0.01ε)LK = s′′0s
′
1s
′′
1s
′
2s
′′
2 . . . s

′
ds
′′
d , where the

substrings alternate between the regions s′k corresponding to Blue flags and the regions s′′k in between.

Similarly, for k ∈ J0, d− 1K we have

jk + `t,k = ik + ∆ + `t,k − `s,[k−1] = jk+1 − (ik+1 − ik − `s,k) ≤ jk+1,

and

jd+1 = id+1 + `t,[d] − `s,[d] + ∆

≤ 1 + L/2 + γL+ 0.57ε−1 · `s,[d] + ∆

≤ 1 + L/2 + 0.01εL+ 0.57ε−1 · 0.5ε2L+ ∆

≤ 1 + (0.5 + 0.3ε)L+ ∆.

Thus, we have that t′′0 t
′
1t
′′
1 t
′
2t
′′
2 . . . t

′
dt
′′
d is a prefix of tJ1+∆,(0.5+0.3ε)L+∆K, alternating between the regions t′k

that we would like to be Yellow flags and the regions t′′k in between.

Showing many jk’s are Yellow flags of t. We next show that typically, most of the jk’s as defined above

are Yellow flags. Let K be the set of k ∈ [d] for which the jk is a Yellow `t,k-flag of string t. Call a shift

∆ ∈ [L/4] good if `t,K ≥ (1 − 24000ε)`t,[d], i.e. that when weighted by flag length, the set K comprises

most of [d]. Since string t has type m-Blue-Yellow and `t,k > `s,k ≥ 2m for every k ∈ [d], we know that for

every k ∈ [d], at most 600εL of the indices in [L] are not Yellow `t,k-flags in string t. Hence, if ∆ is chosen

uniformly at random in [L/4], for each k ∈ [d], the probability that k 6∈ K is at most 600εL/(L/4) = 2400ε.

By linearity of expectation,

E
∆∼[L/4]

[`t,[d] − `t,K ] ≤ 2400ε`t,[d],

As `t,K ≤ `t,[d] always, we have by Markov’s inequality on `t,[d] − `t,K that

Pr[∆ is good] = 1−Pr
[
`t,[d] − `t,K ≥ (24000ε)`t,[d]

]
≥ 1−

2400ε`t,[d]

24000ε`t,[d]
= 0.9.

Lower bounding expected LCS. Since s′′0s
′
1s
′′
1s
′
2s
′′
2 . . . s

′
ds
′′
d = sJ1,(0.5+0.01ε)LK and t′′0 t

′
1t
′′
1 t
′
2t
′′
2 . . . t

′
dt
′′
d is a prefix

of tJ1+∆,(0.5+0.3ε)L+∆+1K, it suffices to show that, when ∆ is good,

LCS(s′′0s
′
1s
′′
1s
′
2s
′′
2 . . . s

′
ds
′′
d , t
′′
0 t
′
1t
′′
1 t
′
2t
′′
2 . . . t

′
dt
′′
d) ≥ (0.5 + 0.24ε)L.

As the index ik is a Blue `s,k-flag in s, substring s′k has at least ε−1(`s,k − 1) ≥ 0.5ε−1`s,k zeros. If k ∈ K,

then jk is a Yellow `t,k-flag in t, so substring t′k has at least 0.9(`t,k − 1) > 0.5ε−1`s,k zeros as well. Hence,

for k ∈ K, we have

LCS(s′k, t
′
k) ≥ 0.5ε−1`s,k.

Furthermore, for k ∈ J0, dK, we have that s′′k has ik+1 − ik − `s,k ones, and the number of ones in t′′k is also

jk+1 − jk − `t,k = (ik+1 + ∆ + `t,k − `s,[k])− (ik + ∆ + `t,[k−1] − `s,[k−1])− `t,k = ik+1 − ik − `s,k,
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so for all k ∈ J0, dK,
LCS(s′′k , t

′′
k) ≥ ik+1 − ik − `s,k.

Indeed, we now have that for any good ∆,

LCS(sJ1,(0.5+0.01ε)LK, tJ1+∆,(0.5+0.3ε)L+∆K) ≥
d∑
k=1

LCS(s′k, t
′
k) +

d∑
k=0

LCS(s′′k , t
′′
k)

≥
∑
k∈K

LCS(s′k, t
′
k) +

d∑
k=0

(ik+1 − ik − `s,k)

≥ 0.5ε−1`s,K + (id+1 − i0 − `s,[d]) (3.8)

≥ 0.5ε−1(1− 24000ε)`s,[d] + (0.5 + 0.01ε)L− 2− `s,[d] (3.9)

= 0.5ε−1(1− 24002ε)`s,[d] + (0.5 + 0.01ε)L− 2

≥ 0.5ε−1(1− 24002ε)(0.5(ε2 − 4γ)L) + (0.5 + 0.01ε)L(3.10)

≥ (0.5 + 0.24ε)L. (3.11)

In (3.8), we used that `s,0 = 0. In (3.9), we used that id+1− i0 = b(0.5 + 0.01ε)Lc− 1 > (0.05 + 0.01ε)L− 2.

In (3.10), we used that `s,[d] =
∑d
k=1 bs(ik) ≥ 0.5(ε2 − 4γ)L by construction of i1, . . . , id. In (3.11), we used

that ε ≤ 10−6 and γ ≤ 0.001ε2. This completes the proof as the probability that ∆ ∈ [L/4] is good is at

least 0.9.

The next lemma shows that when two Blue-Yellow pairs occur consecutively (for technical reasons, we

require that the second Blue-Yellow pair occurs on the reversed strings), we get a large common subsequence

that also spans the same number of ones in both s and t. This allows us to piece together many such

matchings and apply the Prefix/Suffix LCS Lemma (Lemma 3.9), giving an overall gain in LCS over the 1/2

barrier.

Lemma 3.23 (Blue-Yellow balanced matching lemma). Let s = s1s2 and t = t1t2 such that substrings

s1, s2, t1, t2 each have L ones and start with a one, and the pairs (s1, t1) and (rev(t2), rev(s2)) are Blue-

Yellow pairs. Then for ∆ uniformly random in [L/4], we have

E
∆∼[L/4]

[LCS(Trim∆(s),Trim−∆(t)) + ∆] ≥ 2L+ 0.12εL.

Proof. We have Trim∆(s) and Trim−∆(t) each have 2L−∆ ones, so we always have

LCS(Trim∆(s),Trim−∆(t)) + ∆ ≥ 2L.

Thus, because 0.8 · 0.16εL > 0.12εL, it suffices to show that

Pr
∆∼[L/4]

[LCS(Trim∆(s),Trim−∆(t)) + ∆ ≥ 2L+ 0.16εL] ≥ 0.8.
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Call ∆ good if both of the following inequalities are true:

LCS
(
(s1)J1,(0.5+0.01ε)LK, (t1)J1+∆,(0.5+0.3ε)L+∆K

)
≥ (0.5 + 0.24ε)L (3.12)

LCS
(
rev(t2)J1,(0.5+0.01ε)LK, rev(s2)J1+∆,(0.5+0.3ε)L+∆K

)
≥ (0.5 + 0.24ε)L. (3.13)

By Lemma 3.22, first applied to the Blue-Yellow pair (s1, t1), then applied to the Blue-Yellow pair

(rev(t2), rev(s2)), each of (3.12) and (3.13) holds with probability at least 0.9 for ∆ sampled uniformly from

[L/4], so a random ∆ in [L/4] is good with probability at least 0.8.

Fix a good ∆. We show that

LCS(Trim∆(s),Trim−∆(t)) ≥ 2L−∆ + 0.16εL. (3.14)

By the second part of Lemma 3.3,

rev(t2)J1,(0.5+0.01ε)LK = rev
(
(t2)J1+(0.5−0.01ε)L,LK

)
rev(s2)J1+∆,(0.5+0.3ε)L+∆K = rev

(
(s2)J1+(0.5−0.3ε)L−∆,L−∆K

)
.

Hence since rev(·) preserves LCS (Lemma 3.5), we have

LCS
(
(t2)J1+(0.5−0.01ε)L,LK, (s2)J1+(0.5−0.3ε)L−∆,L−∆K

)
= LCS

(
rev(t2)J1,(0.5+0.01ε)LK, rev(s2)J1+∆,(0.5+0.3ε)L+∆K

)
≥ (0.5 + 0.24ε)L .

s

t

s1 s2

t1 t2

Trim∆(s)

Trim−∆(t)

sinit smid send

tinit tmid tend

(0.5 + 0.24ε)L (1 − 0.31ε)L −∆ (0.5 + 0.24ε)L

1 (0.5 + 0.01ε)L (1.5 − 0.3ε)L −∆ 2L −∆

1 + ∆ (0.5 + 0.3ε)L + ∆ (1.5 − 0.01ε)L 2L

Figure 3.6: Lemma 3.23. We obtain two “trapezoids” with good LCS obtained from applying Lemma 3.22 to
two Blue-Yellow pairs, (s1, t1) and (rev(s2), rev(t2)), and match ones in between (in the grey region), giving
an improved LCS for Trim∆(s) and Trim−∆(t).
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Writing Trim∆(s) = sinitsmidsend and Trim−∆(t) = tinittmidtend where (see Figure 3.6)5

sinit
def
= sJ1,(0.5+0.01ε)LK = (s1)J1,(0.5+0.01ε)LK

smid
def
= sJ(0.5+0.01ε)L,(1.5−0.3ε)L−∆+1K

send
def
= sJ(1.5−0.3ε)L−∆+1,2L−∆K = (s2)J(0.5−0.3ε)L−∆+1,L−∆K

tinit
def
= tJ1+∆,(0.5+0.3ε)L+∆K = (t1)J1+∆,(0.5+0.3ε)L+∆K

tmid
def
= tJ(0.5+0.3ε)L+∆,(1.5−0.01ε)L+1K

tend
def
= tJ(1.5−0.01ε)L+1,LK = (t2)J(0.5−0.01ε)L+1,LK .

We have smid and tmid both have at least (1− 0.31ε)L−∆ ones. Hence, we have

LCS(Trim∆(s),Trim−∆(t)) ≥ LCS(sinit, tinit) + LCS(smid, tmid) + LCS(send, tend)

≥ (0.5 + 0.24ε)L+ (1− 0.31ε)L−∆ + (0.5 + 0.24ε)L

> 2L−∆ + 0.16εL,

establishing (3.14) as desired.

Combining Lemma 3.23 with the Prefix/Suffix LCS Lemma (Lemma 3.9) shows that when two strings

have many Blue-Yellow pairs among their substrings at some scale, we get a large LCS.

Lemma 3.24 (Many Blue-Yellow pairs implies good LCS). Let s and t be strings with the same length and

the same number L = 2n of ones, and let m∗ ≤ n−10−log ε−1. Suppose there exists a set Z ⊂ [2n−m
∗−1] such

that |Z| > 2n−m
∗−1/10 and for all i ∈ Z, the substring pairs (sm∗,2i−1, tm∗,2i−1) and (rev(sm∗,2i), rev(tm∗,2i))

are Blue-Yellow pairs. Then,

LCS(s, t) > (1 + 0.0001ε) |s|.

Proof. Let L∗ = 2m
∗
. We may assume L ≥ (0.5 − 0.001ε)|s| or else we are done by having an LCS of

(0.5+0.001ε)|s| zeros. For all i ∈ Z, substrings sm∗+1,i = sm∗,2i−1sm∗,2i and tm∗+1,i = tm∗,2i−1tm∗,2i satisfy

the setup of Lemma 3.23 with L = L∗, so we have, for all i ∈ Z,

E
∆∼[L∗/4]

[
LCS (Trim∆(sm∗+1,i),Trim−∆(tm∗+1,i)) + ∆

]
≥ 2L∗ + 0.12εL∗ .

By linearity of expectation, we have

E
∆∼[L∗/4]

[∑
i∈Z

[
LCS (Trim∆(sm∗+1,i),Trim−∆(tm∗+1,i)) + ∆

]]
≥ |Z| · (2L∗ + 0.12εL∗) .

5A negligible detail: we do not need to shift the endpoints of substrings smid and tmid by 1 because L is a power of two so
εL is never an integer
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Hence, we may fix a ∆ ∈ [L∗/4] for which

∑
i∈Z

LCS (Trim∆(sm∗+1,i),Trim−∆(tm∗+1,i)) ≥ |Z| · (2L∗ −∆ + 0.12εL∗) .

Thus, set Z satisfies the setup of Lemma 3.9 with n′ = n and m′ = m∗ + 1 and L′ = 2L∗ and δ′ = 0.06ε.

Hence, by Lemma 3.9,

LCS(s, t) ≥
(

1 +
0.06ε

20

)
L ≥ (1 + 0.003ε) (0.5− 0.001ε)|s| > (0.5 + 0.0001ε) |s| .

3.8 Putting it all together

3.8.1 Statistics

We now prove our main theorem. The first step is to define the statistics of a string w.

Definition 3.25 (Statistics). Let w be a string with L = 2n ones, and let n0
def
= max(0, n− 200γ−3 log n).

Let the statistics of string w be a table of the following data:

1. For all m ≥ n0 and i ≥ 1, the number of zeros and the number of ones in wm,i (the number of ones is

always 2m).

2. For all m ≥ n0 and i ≥ 1, the type (see Definition 3.12) of string wm,i.

3. The set In0(w) of pairwise disjoint intervals I ⊂ [L] that each have size |I| ≥ 2n0 such that wI is

imbalanced for each I ∈ In0(w), and the sum
∑
I∈In0 (w) |I| is maximized (if multiple such In0(w)

exist, break the tie arbitrarily).

4. For each I ∈ In0(w), the indices x and y such that substring wI starts at the x-th bit and ends at the

y-th bit of s.

We say two strings s and t agree on statistics if their tables of statistics are identical.

This next lemma shows that it is possible to pigeonhole strings by their statistics, by showing that there

are not too many possible statistics for a string.

Lemma 3.26. There are at most 2poly logN possible tables of statistics for a string of length N .

Proof. A string w of length N has at most

n∑
m=n0

2n−m = poly logN

substrings wm,i that are considered in its table of statistics. Furthermore, for each substring wm,i, there

are at most N choices for the number of zeros and the number of ones, and at most O(N) choices for the

type of wm,i (there is one Imbalanced type, O(N) Green types, and O(logN) Blue-Yellow types), so there

are at most 2poly logN choices for all the types and zero/one-counts in the table. Lastly, In0(w) has at most

2n−n0 = logOε(1)N intervals (because intervals have length at least 2n0 and are disjoint), so there are at

most 2poly logN choices for In0(w) and the locations of the endpoints of the intervals in In0(w).
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3.8.2 The Imbalanced case

This next lemma covers an easy case, when s has many large imbalanced intervals. In this case, our

pigeonholing by statistics guarantees that s and t are imbalanced in common locations, allowing us to apply

the imbalanced strategy to find a large LCS.

Lemma 3.27. Let s and t be strings that each start with a one, agree on statistics, and have L = 2n ones

where n is sufficiently large. Suppose there exists a set I of pairwise disjoint intervals I that each satisfy

|I| ≥ 2n−200γ−3 logn such that sI is imbalanced for each I ∈ I and
∑
I∈I |I| ≥

ε5

10L. Then

LCS(s, t) ≥
(

0.5 +
ε6

150

)
|s|.

Proof. Let n0 = n − 200γ−3 log n. We may assume that L ≥ |s|
3 , or else s and t each have 2|s|

3 zeros and

LCS(s, t) ≥ 2
3 |s| > (0.5 + ε6

150 )|s|. Since s and t agree on statistics, we have In0(s) = In0(t). Furthermore, as

In0(s) maximizes the sum
∑
I∈In0 (s) |I|, we have

∑
I∈In0 (s) |I| ≥

∑
I∈I |I| ≥

ε5

10L. Let In0(s) = In0(t) =

{I1, . . . , Ik}, with I1 < I2 < · · · < Ik (these intervals are pairwise disjoint so the order is the obvious one).

We thus may write

s = s′′0s
′
1s
′′
1s
′
2 · · · s′ks′′k , t = t′′0 t

′
1t
′′
1 t
′
2 · · · t′kt′′k

where s′j = sIj for j ∈ [1, k], and substring s′′j consists of the bits between the end of substring s′j (or the

beginning of string s if j = 0) and the beginning of substring s′j+1 (or the end of string s if j = k), and the

partition of t is defined analogously. By the definitions of sIj and tIj , for j ∈ J1, kK, s′j and t′j have the same

number |Ij | of ones, and for j ∈ J0, kK, s′′j and t′′j have the same number of ones as well. Further, since s

and t agree on statistics, for all j ∈ J1, kK, substrings sIj and tIj start and end in the same positions in their

respective strings s and t. In particular, s′j and t′j have the same length for all j ∈ J1, kK, and s′′j and t′′j have

the same length for all j ∈ J0, kK.
For each j ∈ J0, kK, the substrings s′′j and t′′j have the same length and the same number of ones, so

LCS(s′′j , t
′′
j ) ≥ |s′′j |/2. Additionally, for j ∈ J1, kK the number of zeros in substrings s′j and t′j are equal and

not in (1± ε)|s′j |. Hence, by Lemma 3.8, we have LCS(s′j , t
′
j) ≥ (1/2 + ε/5)|s′j |. Therefore we have

LCS(s, t) ≥
k∑
j=1

LCS(s′j , t
′
j) +

k∑
j=0

LCS(s′′j , t
′′
j ) ≥

k∑
j=1

(
1

2
+
ε

5

)
|s′j |+

k∑
j=0

|s′′j |
2

=
|s|
2

+
ε

5

k∑
j=1

|s′j | ≥
|s|
2

+
ε6L

50
≥
(

1

2
+

ε6

150

)
|s|,

where the last two inequalities used that |s′j | ≥ |Ij |,
∑k
j=1 |Ij | ≥

ε5L
10 , and L ≥ |s|3 .

3.8.3 Combining the arguments for the Imbalanced, Green, and Blue-Yellow

cases

We now prove the main technical lemma, which shows that two strings that agree on statistics have LCS

beating the 1/2 barrier. This establishes Theorem 3.1 up to a pigeonhole argument and an assumption
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about the number of ones being a power of two. The proof consists of piecing together (1) the Imbalanced

case, when s and t have many substrings of Imbalanced type, Lemma 3.27, (2) the Green case, when s and

t have many substrings of Green type, and (3) the Blue-Yellow case, when s and t have many substrings

of Blue-Yellow type. These three cases correspond to the three matching strategies stated in the Overview

(Section 3.2).

Lemma 3.28. There exists an absolute constant δ = ε6

150 such that the following holds for n sufficiently

large. Let s and t be strings that each start with a one, have L = 2n ones each, such that s and t agree on

statistics, and rev(s) and rev(t) agree on statistics. Then LCS(s, t) ≥ (0.5 + δ)|s|.

Proof. First, suppose that at least γ2L values of i ∈ [L] satisfy bs(i) ≥ 2n−200γ−3 logn. Define 1 ≤ i1 < · · · <
id such that ik is the smallest index such that bs(ik) ≥ 2n−200γ−3 logn and ik ≥ ik−1 +bs(ik−1) if k > 1, and d

is the largest index such that id is well-defined. By the definition of bs(ik), index ik is a Blue bs(ik)-flag in s,

so for the interval Ik
def
= Jik,min(ik+bs(ik)−1, L)K, substring sIk is imbalanced by Lemma 3.7. Furthermore,

since ik + bs(ik) ≤ ik+1 for k = 1, . . . , d − 1, we have I1, . . . , Id are pairwise disjoint. Lastly, by minimality

of each ik, each index i ∈ [L] with bs(i) ≥ 2n−200γ−3 logn is in some interval Ik. Thus,
∑
|Ik| ≥ γ2L > ε5

10 .

Thus, we may apply Lemma 3.27 to strings s and t, giving LCS(s, t) ≥ (0.5 + δ)|s|. Hence, we may assume

for the rest of the argument that

• At most γ2L values of i ∈ [L] satisfy bs(i) ≥ 2n−200γ−3 logn.

Similarly, we may assume

• At most γ2L values of i ∈ [L] satisfy brev(s)(i) ≥ 2n−200γ−3 logn (applying Lemma 3.27 to rev(s) and

rev(t)),

• At most γ2L values of i ∈ [L] satisfy bt(i) ≥ 2n−200γ−3 logn (applying Lemma 3.27 to t and s), and

• At most γ2L values of i ∈ [L] satisfy brev(t)(i) ≥ 2n−200γ−3 logn (applying Lemma 3.27 to rev(t) and

rev(s)).

Hence, we may apply the Substring Blue-flag-balance Lemma, Lemma 3.19, to each of the strings s,

rev(s), t, and rev(t) with β = γ. This shows the existence of some scale m∗ with n − 10 − log δ−1 ≥ m∗ ≥
n− 150γ−3 log n such that the following hold:

• For at least (1− 3γ) · 2n−m∗ values of i ∈ [2n−m
∗
], the substring sm∗,i is 6γ-Blue-flag-balanced,

• For at least (1− 3γ) · 2n−m∗ values of i ∈ [2n−m
∗
], the substring rev(sm∗,i) is 6γ-Blue-flag-balanced,

• For at least (1− 3γ) · 2n−m∗ values of i ∈ [2n−m
∗
], the substring tm∗,i is 6γ-Blue-flag-balanced, and

• For at least (1− 3γ) · 2n−m∗ values of i ∈ [2n−m
∗
], the substring rev(tm∗,i) is 6γ-Blue-flag-balanced.

Indeed, for each bullet, Lemma 3.19 implies there are at most 32γ−3 log n values of m∗ for which the condition

does not hold, so among 150γ−3 log n − 10 − log δ−1 > 128γ−3 log n values of m∗, some m∗ allows all four

conditions to hold. Fix this m∗ and let

L∗
def
= 2m

∗
.

Since the number of ones in s and t are a power of two, s and t agree on statistics, and m∗ > n0, where

n0 is from Definition 3.25, we have s = sm∗,1 · · · sm∗,2n−m∗ and t = tm∗,1, . . . , tm∗,2n−m∗ , where, for all
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i = 1, . . . , 2n−m
∗
, substrings sm∗,i and tm∗,i have the same number L∗ of ones and the also the same number

of zeros, and thus have the same length. Similarly, we may write rev(s) = rev(sm∗,2n−m∗ ) · · · rev(sm∗,1) and

rev(t) = rev(tm∗,2n−m∗ ) · · · rev(tm∗,1).

Since n is sufficiently large, for all i ∈ [2n−m
∗
], substrings sm∗,i and rev(sm∗,i) have types by Lemma 3.13.

Let Z1 (resp. Z̄1) be the set of i ∈ [2n−m
∗
] such that substring sm∗,i (resp. rev(sm∗,i)) is Imbalanced. Let

Z2 (resp. Z̄2) be the set of i ∈ [2n−m
∗
] such that substring sm∗,i (resp. rev(sm∗,i)) is `-Green for some `.

Let Z3 (resp. Z̄3) be the set of i ∈ [2n−m
∗
] such that substring sm∗,i (resp. rev(sm∗,i)) is m-Blue-Yellow

for some m. Since |Z1| + |Z2| + |Z3| = |Z̄1| + |Z̄2| + |Z̄3| = 2n−m
∗
, we have the following cases covering all

possibilities.

Case 1a. |Z1| ≥ 2n−m
∗
/10. In this case, for each i ∈ Z1, because sm∗,i is type Imbalanced, there exists

some interval Ji ⊂ Im∗,i with |Ji| ≥ ε5L∗ > 2n−200γ−3 logn such that sJi is imbalanced. Since the intervals

Im∗,i are pairwise disjoint, the intervals Ji are pairwise disjoint. Then setting I ′ = {Ji : i ∈ Z1}, we have

that
∑
J∈I′ |J | ≥ ε5L∗ · |Z1| = ε5

10 ·L. Hence, by Lemma 3.27, we have LCS(s, t) ≥ (0.5+ ε6

150 )|s| = (0.5+δ)|s|.

Case 1b. |Z̄1| ≥ 2n−m
∗
/10. By an identical argument to Case 1a, we can show LCS(rev(s), rev(t)) ≥

(0.5 + δ)|s|, which implies that LCS(s, t) ≥ (0.5 + δ)|s|.

Case 2a. |Z2| ≥ 2n−m
∗
/10. Since m∗ ≤ n− 10− log ε−5 by definition of m∗, we may apply Lemma 3.21

to strings s and t with subset Z ⊂ [2n−m
∗
]. By Lemma 3.21, we have LCS(s, t) ≥ (0.5+ ε5

5000 )|s| > (0.5+δ)|s|.

Case 2b. |Z̄2| ≥ 2n−m
∗
/10. By an identical argument to Case 2a, we can show LCS(rev(s), rev(t)) ≥

(0.5 + δ)|s|, which implies that LCS(s, t) ≥ (0.5 + δ)|s|.

Case 3. |Z3| ≥ 4
5 ·2

n−m∗ and |Z̄3| ≥ 4
5 ·2

n−m∗ . Let Z ′3 be the set of i ∈ [2n−m
∗−1] such that the following

hold:

• Substring sm∗,2i−1 is 6γ-Blue-flag-balanced.

• Substring tm∗,2i−1 is 6γ-Blue-flag-balanced.

• Substring rev(sm∗,2i) is 6γ-Blue-flag-balanced.

• Substring rev(tm∗,2i) is 6γ-Blue-flag-balanced.

• We have 2i− 1 ∈ Z3.

• We have 2i ∈ Z̄3.

By choice of m∗, the first four conditions above each fail for at most 3γ ·2n−m∗ values of i ∈ [2n−m
∗−1]. Since

|Z3| ≥ 4
5 · 2

n−m∗ , the fifth condition fails for at most 1
5 · 2

n−m∗ values of i, and similarly the last condition

fails for at most 1
5 · 2

n−m∗ values of i. Since there are 1
2 · 2

n−m∗ values of i ∈ [2n−m
∗−1], we have that Z ′3

has size at least (1
2 − 12γ − 2

5 ) · 2n−m∗ > 1
10 · 2

n−m∗−1 (recall γ = 10−15 is very small).

Fix i ∈ Z ′3. We claim that strings s and t with parameter m∗ and set Z satisfy the setup of Lemma 3.24.

The bound on m∗ ≤ n − 10 − log ε−1 follows from the definition of m∗. We thus need to show that,

for all i ∈ Z ′3, the pairs (sm∗,2i−1, tm∗,2i−1) and (rev(sm∗,2i), rev(tm∗,2i)) are a Blue-Yellow pairs. Since

2i − 1 ∈ Z3, there exists some integer m such that substring sm∗,2i−1 is type m-Blue-Yellow, and since

s and t agree on statistics, substring tm∗,2i−1 is also type m-Blue-Yellow. Since i ∈ Z ′3, we have that

strings sm∗,2i−1 and tm∗,2i−1 are both 6γ-Blue-flag-balanced, so (sm∗,2i−1, tm∗,2i−1) form a Blue-Yellow pair.
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Similarly, since 2i ∈ Z̄3 and rev(s) and rev(t) agree on statistics, there exists some integer m′ such that

substrings rev(sm∗,2i) = rev(s)m∗,2n−m∗−(2i−1) and rev(tm∗,2i) have type m′-Blue-Yellow. Since i ∈ Z ′3,

we have that strings rev(sm∗,2i) and rev(tm∗,2i) are both 6γ-Blue-flag-balanced, so (rev(sm∗,2i), rev(tm∗,2i))

form a Blue-Yellow pair, as desired. Thus, by Lemma 3.24, we have

LCS(s, t) ≥ (0.5 + 0.0001ε) |s| > (0.5 + δ) |s|.

In all cases we have shown that LCS(s, t) ≥ (0.5 + δ)|s|, proving the lemma.

3.8.4 Finishing the proof

To prove the main theorem, we need to find two strings that agree on statistics, and remove the assumption

that the number of ones is a power of two.

Theorem 3.29. There exists absolute constants A > 0 and δ = ε6

900 such that the following holds for N

sufficiently large. Let C ⊂ {0, 1}N be a code with at least 2logAN strings. Then C contains two strings s and

t such that LCS(s, t) ≥ (0.5 + δ)N .

Proof. By Lemma 3.26, there exists a constant A′ such that the number of possible tables of statistics for a

string of length N is at most 2O(logA
′
N). We pick A = A′+1. By removing at most half of the elements of C,

we may assume that every string in C starts with the same bit, and without loss of generality we may assume

that every string starts with a one. Let 2n be the largest power of two less than N/3, so that 2n ≥ N/6.

If there exist two strings s and t in C with less than 2n ones, then we have LCS(s, t) ≥ 2N/3, so we may

assume that all but at most one string in C has at least 2n ones.

By the pigeonhole principle, there exist two strings s, t ∈ C such that

• s and t have the same number L ≥ 2n of ones,

• sn,1 and tn,1 agree on statistics, and

• rev(sn,1) and rev(tn,1) agree on statistics.

Indeed, the total number of tables of statistics for each of substrings sn,1 and rev(sn,1) is at most 2O(logA
′
N),

so the total number of pigeonholes here is at most 2O(logA
′
N) < 2logAN = |C| if N is sufficiently large.

Let s = sn,1s
′ and t = tn,1t

′. Since strings s and t have the same length and same number of ones, and

substrings sn,1 and tn,1 agree on statistics, we have that the suffixes s′ and t′ have the same length and the

same number of ones as well. Thus, LCS(s′, t′) ≥ |s′|/2. By applying Lemma 3.28 to strings sn,1 and tn,1,

we have

LCS(sn,1, tn,1) ≥
(

0.5 +
ε6

150

)
|sn,1|.

Hence, we have

LCS(s, t) ≥ LCS(sn,1, tn,1) + LCS(s′, t′) ≥
(

0.5 +
ε6

150

)
|sn,1|+ 0.5|s′| = 0.5N +

ε6

150
|sn,1| ≥ (0.5 + δ)N,

as desired. In the last inequality, we used that |sn,1| ≥ 2n ≥ N/6.
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Chapter 4

List decoding: binary alphabet

4.1 Introduction

In this chapter, we consider list-decoding over binary alphabets. Recall that a binary code C ⊂ Fn2 is (p, L)-

list-decodable if any Hamming ball of radius pn in Fn2 contains at most L points of C: that is, if for all x ∈ Fn2 ,

|B(x, pn) ∩ C| ≤ L, where B(x, pn) is the Hamming ball of radius pn centered at x. Recall the list-decoding

capacity theorem (Theorem 2.9):

Theorem 4.1 (List decoding capacity theorem). Let p ∈ (0, 1/2) and ε > 0.

1. There exist binary codes of rate 1− h(p)− ε that are (p, d1/εe)-list decodable.

2. Any binary code of rate 1−h(p) + ε that is (p, L)-list decodable up to distance p must have L ≥ 2Ω(εn).

As shown in Chapter 2, the existential part of Theorem 4.1 is proved by showing that a uniformly random

subset of Fn2 is (p, 1/ε)-list decodable with high probability. For a long time, uniformly random codes were

the only example of binary codes known to come close to this bound, and today we still do not have many

other options. There are explicit constructions of capacity-achieving list-decodable codes over large alphabets

(either growing with n or else large-but-constant) [33, 71, 72], but over binary alphabets we still do not have

any explicit constructions; we refer the reader to the survey [46] for an overview of progress in this area.

Because it is a major open problem to construct explicit binary codes of rate 1− h(p)− ε with constant

(or even poly(n)) list-sizes, one natural line of work has been to study structured random approaches, in

particular random linear codes. A random linear code C ⊂ Fn2 is simply a random subspace of Fn2 , and

the list-decodability of these codes has been well-studied [129, 49, 48, 23, 126, 108, 111]. There are several

reasons to study the list-decodability of random linear codes. Not only is it a natural question in its own

right as well as a natural stepping stone in the quest to obtain explicit binary list-decodable codes, but also

the list-decodabilility of random linear codes is useful in other coding-theoretic applications. One example of

this is in concatenated codes and related constructions [54, 63, 80, 79], where a random linear code is used as

a short inner code. Here, the linearity is useful because (a) a linear code can be efficiently described; (b) it is

sometimes desirable to obtain a linear code at the end of the day, hence all components of the construction

must be linear; and (c) as in [80] sometimes the linearity is required for the construction to work.

To this end, the line of work mentioned above has aimed to establish that random linear codes are “as

list-decodable” as uniformly random codes. That is, uniformly random codes are viewed (as is often the

50
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case in coding theory) as the optimal construction, and we try to approximate this optimality with random

linear codes, despite the additional structure.

Our contributions. In this paper, we give an improved analysis of the list-decodability of random linear

binary codes. More precisely, our contributions are as follows.

• A unified analysis. As we discuss more below, previous work on the list-decodability of random

linear binary codes either work only in certain (non-overlapping) parameter regimes [48, 126], or else

get substantially sub-optimal bounds on the list-size [111]. Our argument obtains improved list size

bounds over all these results and works in all parameter regimes.

Our approach is surprisingly simple: we adapt an existential argument of Guruswami, H̊astad, Sudan

and Zuckerman [49] to hold with high probability. Extending the argument in this way was asked as

an open question in [49] and had been open until now.

• Improved list-size for random linear codes. Not only does our result imply that random linear

codes of rate 1 − h(p) − ε are (p, L)-list-decodable with list-size L = O(1/ε), in fact we show that

L ≤ h(p)/ε+ 2. In particular, the leading constant is small and—to the best of our knowledge—is the

best known, even existentially, for any list-decodable code.

• Better lower bounds on the list size for list-decoding random linear codes. We show a

matching lower bound to our upper bound: if a binary random linear code of rate 1 − h(p) − ε is

list-decodable with high probability up to radius p with an output list size of L, then we must have

L ≥ bh(p)
ε − 0.01c.

Previous work [61] has established that L = Ω(1/ε), but to the best of our knowledge this is the first

work that pins down the leading constant. In particular, [61] shows that, in the situation above, we

have L ≥ cp/ε, where cp is a constant that goes to zero as p goes to 1/2. In contrast, we show below

that the leading constant is at least h(p), which goes to 1 as p goes to 1/2.

4.2 Previous Work and Our Results

Below, we survey related work on the list-decodability of random linear binary codes, state our results,

describe a few generalizations and variations provable with our techniques, and highlight some related work.

4.2.1 Random Linear Codes

The list-decodability of random linear binary codes has been well studied. Here we survey the results that

are most relevant for this chapter. As this chapter focuses on binary codes, we focus this survey on results for

binary codes, even though many of the works mentioned also apply to general q-ary codes. We additionally

remark that, in contrast to the large alphabet setting [64], capacity achieving binary codes have no known

explicit constructions.

A modification of the proof of the list decoding capacity theorem shows that a random linear code of rate

1− h(p)− ε is (p, exp(O( 1
ε )))-list decodable [129]. However, whether or not random linear codes of this rate

with list-sizes that do not depend exponentially on ε remained open for decades: this question was explicitly

asked in [35].
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A first step was given in the work of Guruswami, H̊astad, Sudan and Zuckerman [49], who proved via a

beautiful potential-function-based-argument that there exist binary linear codes or rate 1 − h(p) − ε which

are (p, 1/ε)-list-decodable. However, this result did not hold with high probability. Our approach relies

heavily on the approach of [49], and we return to their argument in §4.4.

Over the next 15 years, a line of work [48, 23, 126, 108, 110, 111] has focused on the list-decodability

(and related properties) of random linear codes, which should hold with high probability. The works most

relevant to ours are [48, 126], which together more or less settle the question. We state these results here for

binary alphabets, although both works address larger alphabets as well.

The first result, of [48], establishes a result for a constant p, bounded away from 1/2.

Theorem 4.2 (Theorem 2 of [48]). Let p ∈ (0, 1/2). Then there exist constants Cp, δ > 0 such that for all

ε > 0 and sufficiently large n, for all R ≤ 1− h(p)− ε, if C ⊆ Fn2 is a random linear code of rate R, then C
is (p, Cp/ε)-list decodable with probability at least 1− 2−δn.

However, Cp is not small and tends to ∞ as p approaches 1/2. The following result of [126] fills in the

gap when p is quite close to 1/2.

Theorem 4.3 (Theorem 2 of [126]). There exist constants C1, C2 so that for all sufficiently small ε > 0 and

sufficiently large n, for p = 1/2− C1
√
ε and for all R ≤ 1− h(p)− ε, if C ⊆ Fn2 is a random linear code of

rate R, then C is (p, C2/ε)-list decodable with probability at least 1− o(1).

4.2.2 Our list-size upper bounds for random linear codes

We show that high probability a random linear binary code of rate 1− h(p)− ε is (p, L)-list-decodable with

L ∼ h(p)/ε. More precisely, the upper bound is as follows (proved in §4.4).

Theorem 4.4. Let ε > 0 and p ∈ (0, 1/2). A random linear code of rate 1− h(p)− ε is (p, h(p)/ε+ 1)-list

decodable with probability 1− exp(−Ωε(n)).

Theorem 4.4 improves upon the picture given by Theorems 4.2 and 4.3 in two ways. First, the leading

constant on the list size, which is h(p), improves over both the constant Cp from Theorem 4.2 (which blows

up as p → 1/2) and on the constant C2 from Theorem 4.3 (which the authors do not see how to make less

than 2). Moreover, when p→ 1/2, Theorem 4.4 improves on Theorem 4.3 in that it decouples p from ε: in

Theorem 4.3, we must take p = 1/2 − O(
√
ε) and R = 1 − h(p) − ε, while in Theorem 4.4, p and ε may

be chosen independently. Thus, Theorem 4.4 offers the first true “list-decoding capacity theorem for binary

linear codes,” in that it precisely mirrors the quantifiers in Theorem 4.1.

The list size of h(p)/ε+ 1 is smaller than the list size of 1/ε given by the classical list decoding capacity

theorem for uniformly random codes. Guruswami and Narayanan [61] showed that uniformly random codes

have list-size Ω(1/ε). By tightening their second moment method proof (see Appendix A of [93]), we can

in fact show that the list the list size of 1/ε given by uniformly random binary codes in the list decoding

capacity theorem is tight, even in the leading constant of 1. That is, the “correct” list size of a uniformly

random code is tightly concentrated between b1/εc± 1 for small ε. Thus, for all p ∈ (0, 1/2) and sufficiently

small ε, random linear codes of rate 1− h(p)− ε with high probability can be list decoded up to distance p

with smaller list sizes than uniformly random codes.
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We are unaware of results in the literature that give even the existence of binary codes list decodable with

list size better than h(p)/ε. We remark that the Lovasz Local Lemma also gives the existence of (p, h(p)/ε)

list decodable codes, matching our high probability result for random linear codes (see Appendix C of [93]).

4.2.3 Our lower bounds: Pinning down the output list size.

Pinning down the output list size L is an important problem. For example, for many of the algorithmic

applications within coding theory, the list size represents a bottleneck on the running time of an algorithm

that must check each item in the list before pruning it down [54, 33, 71, 72, 55]. For applications in

pseudorandomness, for example to expanders or extractors, the list size corresponds to the expansion or to

the amount of entropy in the input, respectively, and it is of interest to precisely pin down these quantities.

Motivated by pinning down the list size, we also prove an essentially tight lower bound on the list-size of

random linear binary codes.

Theorem 4.5. Fix p ∈ (0, 1/2), and fix δ ∈ (0, 1). There exists εp,δ > 0 such that for all ε ∈ (0, εp,δ) and

n sufficiently large, a random linear code in Fn2 of rate 1− h(p)− ε is not
(
p, bh(p)

ε − δc − 1
)

-list-decodable

with probability 1− 2−Ω(n).

Previously, Guruswami and Narayanan [61] showed that lists of size cp/ε are necessary, and we improve

this lower bound to essentially h(p)/ε. The constant cp is not explicitly computed, but one can deduce from

the proof that if p tends to 1/2 then cp will tend to 0. Their lower bound follows from a second moment

method argument, i.e., they consider a certain random variable X whose positivity is equivalent to the

failure of a random linear code to be list-decodable, and then show that VarX = o(EX)2. In this sense

our approach is similar to theirs, because we rely on results from [101] which themselves are proved using a

second moment method. However, we are able to get stronger results (in the sense that our leading constant

does not decay as p→ 1/2, and moreover is optimal for binary codes). One of the reasons may be the notion

of “implicit rareness” from [101], which provides a useful characterization of the lists contained in a random

linear code.

4.2.4 Generalizations and variations

The techniques in Theorem 4.4 and Theorem 4.5 can be applied to obtain variations and generalizations,

which appear in [93, 59]. We informally state the variations and generalizations here, and refer the reader

to [93, 59] for the proofs.

Larger alphabets. One naturally might wonder whether the upper and lower bounds in this chapter also

extend beyond binary codes to codes over all constant-sized fields. We do not know how to extend the

list-size upper bounds in Theorem 4.4 to nonbinary codes, but the list-size lower bounds in Theorem 4.5

generalize to similar lower bounds over nonbinary fields. Over alphabets of size q, the list-decoding capacity

is 1− hq(p), where hq(x)
def
= x logq(q − 1)− x logq x− (1− x) logq(1− x) is the q-ary entropy, and we show

random-linear codes of rate 1−hq(p)− ε cannot have list size better
hq(p)
ε (see [59]). We conjecture that for

any finite field size q the list size of
hq(p)
ε is optimal, as we show it is for q = 2.

Average radius list-decodability. Our upper bound can be generalized to hold for a strengthening of

list-decoding known as average-radius list-decoding. A code C is (p, L)-average-radius list-decodable if for any
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set Λ ⊆ C of size L+ 1 and z ∈ Fnq ,
1

L+ 1

∑
c∈Λ

∆H(c, z) > pn.

It is not hard to see that (p, L)-average-radius list-decodability implies (p, L)-list-decodability, and this

stronger formulation has led to stronger lower bounds than are achievable otherwise [61]. In addition to

stronger lower bounds, average-radius list-decoding—essentially replacing a maximum with an average in

the definition of list-decoding—is a natural concept, and it has helped establish connections between list-

decoding and compressed sensing [23].

A modification of our list-size upper bound in Theorem 4.4 can give Theorem 4.4 for average-radius

list-decodability. That is, we can show that a random linear code of rate 1 − h(p) − ε is (p, h(p)/ε + 1)-

average-radius-list-decodable with probability 1− exp(−Ωε(n)). See [59] for proof.1

List-recovery. List-recovery is a variation of list-decoding where the “noise” is replaced by uncertainty

about each symbol of the received word z. Formally, we say that a code C is (`, L)-list-recoverable if for any

sets S1, . . . , Sn ⊆ Fq with |Si| ≤ ` for all i,

| {c ∈ C s. t. ci ∈ Si ∀i} | < L.

List-recovery was originally used as a stepping-stone to list-decoding and unique-decoding (e.g., [51, 52, 53,

54]) but it has since become a useful primitive in its own right, with applications beyond coding theory [81,

103, 39, 76, 31].

Our lower bound techniques in Theorem 4.5 also give list-recovery lower bounds for random linear codes.

In the list-recovery setting, we can show a random linear code of rate 1 − logq(`) − ε requires output list

size L ≥ `Ω(1/ε) for list-recovery from input list size `, which is in surprising contrast to completely random

codes, where output list size L = O(`/ε) suffices with high probability. See [59].

Rank metric codes. Rank metric codes, introduced by Delsarte in [27], are codes C ⊆ Fm×nq ; that is, the

codewords are m × n matrices, where typically m ≥ n. The distance between two codewords X and Y is

given by the rank of their difference: ∆R(X,Y )
def
= 1

n rank(X − Y ), where ∆R is called the rank metric.

Our upper bound argument can be adapted to random linear rank-metric codes (see [93]). As with

standard (Hamming-metric) codes, recent work aimed to show that random linear rank-metric codes are

nearly as list-decodable as uniformly random codes [30, 62]. Our approach establishes that in fact, random

linear binary rank-metric codes are more list-decodable than their uniformly random counterparts in certain

parameter regimes, in the sense that the list sizes near capacity are strictly smaller. Along the way, we show

that low-rate random linear binary rank-metric codes are list-decodable to capacity, answering a question of

[62].

4.2.5 Related work

We now highlight some related work.

1We note that in the definition of list-decoding in [59], Hamming balls have strictly less than L codewords, rather than at
most L codewords, so the list sizes in [59] differ by 1 from our list sizes.
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Lower bounds for list sizes of arbitrary codes. It is known that a typical (i.e., uniformly random)

list-decodable code of rate 1 − h(p) − ε has list size L = Θ(1/ε), and a natural question to ask is whether

every code requires a list of size L = Ω(1/ε). Blinovsky ([11, 10]) showed that lists of size Ωp(log(1/ε))

are necessary for list-decoding a code of rate 1 − h(p) − ε. Later, Guruswami and Vadhan [69] considered

the high-noise regime where p = 1 − 1/q − η and showed that lists of size Ωq(1/η
2) are necessary. Finally,

Guruswami and Narayanan [61] showed that for average-radius list-decoding, the list size must be Ωp(1/
√
ε).

Relevant results for other ensembles of codes. Lastly, we discuss some other results concerning other

code ensembles. First of all, uniformly random codes are known to achieve list-decoding capacity with high

probability, with list size roughly 1/ε, and this list size is tight for binary codes [93]. Comparing with the

above results, random linear binary codes have smaller list sizes than random codes by a factor of roughly

h(p), while for larger alphabet sizes, the best list size bounds for random linear codes are a constant factor

worse than the 1/ε list size of random codes. Random codes exhibit sharp threshold behavior for a number

of “symmetric” properties including list-decoding, list average-radius list-decoding, list-recovery, and perfect

hashing [60].

Recent work of [101] shows that a random code from Gallager’s ensemble of LDPC codes [38] achieves

list-decoding capacity with high probability. More generally, they show that random LDPC codes inherit

combinatorial properties from random linear codes, including list-decoding, average-radius list-decoding, and

list-recovery. Consequently, our positive results for binary random linear codes also apply to binary LDPC

codes. Furthermore, as part of their approach, they develop techniques to characterize the lists that appear

in a random linear code with high probability, which we utilize for this chapter.

Finally, we note that there are no known explicit constructions of list-decodable codes of rate 1−h(p)−ε
which achieve a list size even of O(1/ε). Over large alphabets, the best explicit constructions of capacity-

achieving list-decodable or list-recoverable codes have list sizes at least (1/ε)Ω(1/ε) (e.g., [89, 88]). Further,

if one insists on binary codes, or even codes over alphabets of size independent of ε, we do not know of any

explicit constructions of list-decodable codes with rate approaching 1− h(p).

Two-point concentration. We showed that the optimal list size L of a random linear code is concentrated

on at most three values for both list-decoding and average-radius list-decoding: bh2(p)/εc + 1, bh2(p)/εc,
and, if the value is different, bh2(p)/ε− 0.01c.

In [93, Theorem 2.5], it was also shown that the optimal list size of a completely random binary code is

concentrated on two or three values for list-decoding. This type of concentration is also well studied in graph

theory, where it is known that in Erdős-Rényi graphs, a number of graph parameters are concentrated on

two values. Examples include the clique number (size of the largest clique) [98, 12], the chromatic number

[94, 2, 1], and the diameter [107].

4.3 Preliminaries

We define a random linear binary code of rate R to be the span of k = Rn independently random vectors

b1, . . . , bk ∈ Fn2 . One can easily check the vectors b1, . . . , bk are linearly independent with probability at least

1−2−(n−k), so the dimension of this code is indeed k with high probability. Given a code C and p ∈ (0, 1/2),

we define the list size of a point x ∈ Fn2 to be LC(x)
def
= |B(x, pn) ∩ C|.
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For a vector x ∈ FL2 and I ⊂ [L], we use xI ∈ F|I|2 to denote the vector (xi)i∈I with coordinates from I

in increasing order. We use 1L to denote the all ones vector of length L. For two sets A,B ⊆ Fn2 , define the

sumset A+B = {a+ b : a ∈ A, b ∈ B}. When b ∈ Fn2 , let A+ b denote A+ {b}.
We use several notions from probability and information theory. We let Bernoulli(p) be the distribution

that returns 0 with probability 1− p and 1 with probability p. For a random variable X with domain X , we

use H(X) to denote the entropy of X:

H(X) = −
∑
x∈X

Pr
X

(x) log(Pr
X

(x)).

For a probability distribution τ , we may also use H(τ) to denote the entropy of a random variable with

distribution τ . We use supp(τ) to denote the set of values on which τ has positive probability mass.

Let X be a random variable supported on X and Y be a random variable supported on Y. We define

the conditional entropy of Y given X as

H(Y |X) = −
∑

x∈X ,y∈Y
p(x, y) log

p(x, y)

p(x)
.

It is easy to check that H(X)−H(X|Y ) = H(Y )−H(Y |X) and we call this the mutual information I(X;Y ):

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X)

For random variables X,Y, Z, we define the conditional mutual information I(X;Y |Z) by

I(X;Y |Z) = H(X|Z)−H(X|Y,Z) = H(Y |Z)−H(Y |X,Z)

Conditional entropy, mutual information, and conditional mutual information satisfy the data processing

inequality: for any function f supported on the domain of Y , we have

H(X|f(Y )) ≥ H(X|Y ) and I(X;Y ) ≥ I(X; f(Y )) and I(X;Y |Z) ≥ I(X; f(Y )|Z).

We also use Fano’s inequality, which states that if X is a random variable supported on X and Y is a random

variable supported on Y, and if f : Y → X is a function and perr = PrX,Y [f(Y ) 6= X]

H(X|Y ) ≤ h(perr) + perr · log(|X | − 1)

We also use the following binomial estimate. For a distribution τ whose support elements have probability

masses p1, . . . , p` summing to 1, we have

2(H(τ)−o(1))n ≤
(

n

p1n, . . . , p`n

)
≤ 2H(τ)n. (4.1)

4.4 Upper bound proof

In this section, we prove Theorem 4.4, which we restate here.
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Theorem (Theorem 4.4, restated). Let ε > 0 and p ∈ (0, 1/2). A random linear code of rate 1 − h(p) − ε
is (p, h(p)/ε+ 1)-list decodable with probability 1− exp(−Ωε(n)).

Before it was known that a typical random linear code is (p,O(1/ε))-list decodable, Guruswami, H̊astad,

Sudan and Zuckerman [49] proved the existence of binary linear codes of rate 1−h(p)−ε that are (p, 1/ε)-list

decodable. However, their argument did not work with high probability, and the authors explicitly stated

this as a drawback of their proof. This section shows how to make the argument in [49] work with high

probability. We start by reviewing the approach of [49], which is the basis of our proof.

4.4.1 The approach of [49]

The approach of [49] followed from a beautiful potential-function argument, which is the basis of our approach

and which we describe here.

Let k
def
= Rn = (1 − h(p) − ε)n. We choose vectors b1, . . . , bk one at a time, so that the code Ci

def
=

span(b1, . . . , bi) remains “nice”: formally, so that a potential function S̃Ci remains small. Once we have

picked all k vectors, we set C = Ck, and the fact that S̃Ck is small implies list-decodability.

Recall that for a code C and x ∈ Fn2 , we set LC(x) = |B(x, pn) ∩ C|. Define

S̃C
def
=

1

2n

∑
x∈Fn2

2εnLC(x).

It is not hard to show that for any vectors b1, . . . , bi ∈ Fn2 ,

E
bi+1∼Fn2

[
S̃Ci+{0,bi+1}|b1, . . . , bi

]
≤ S̃2

Ci . (4.2)

That is, when a uniformly random vector bi+1 is added to the basis {b1, . . . , bi}, we expect the potential

function not to grow too much. Hence, there exists a choice of vectors b1, . . . , bk so that S̃Ci+1
≤ S̃2

Ci for

i = 0, 1, . . . , k − 1.2

As C0 = {0}, we have S̃C0 ≤ 1 + 2−n(1−h(p)−ε). Setting C = Ck = span(b1, . . . , bk), we have

S̃C ≤ S̃2k

C0 ≤
(

1 + 2−n(1−h(p)−ε)
)2k

≤ e2k−n(1−h(p)−ε)
= e

by our choice of k. This implies that
∑
x 2εnLC(x) ≤ e · 2n, and in particular, for all x ∈ Fn2 , we have

2εnLC(x) ≤ e · 2n. Thus, for all x, LC(x) ≤ 1
ε + o(1), as desired.

The approach of [49] is extremely clever, but these ideas have not, to the best of our knowledge, been

used in subsequent work on the list-decodability of random linear codes. One reason is that the crux of the

argument, which is (4.2), holds in expectation, and it was not clear how to show that it holds with high

probability; thus, the result remained existential, and other techniques were introduced to study typical

random codes [48, 23, 126, 108, 111].

2As a technical detail, one needs to be careful that bi+1 /∈ Ci. One can guarantee bi+1 /∈ Ci by carefully examining the proof
of (4.2), or use (4.2) to get a similar equation where we additionally condition bi+1 /∈ Ci.
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4.4.2 Proof of Theorem 4.4

We improve the argument of [49] in two ways. First, we show that in fact, (4.2) essentially holds with high

probability over the choice of bi+1, which allows us to use the approach sketched above for random linear

codes. Second, we introduce one additional trick which takes advantage of the linearity of the code in order

to reduce the constant in the list size from 1 to h(p). Before diving into the details, we briefly describe the

main ideas.

The first improvement follows from looking at the potential function in the right way. In this paragraph,

all o(1) terms are exponentially small in n. Our goal is S̃Ck ≤ O(1). Write S̃Ci = 1 + T̃Ci . By above,

T̃C0 = S̃C0 − 1 = o(1). We show that with high probability, for all i ≤ k, we have T̃Ci = o(1). In the [49]

argument we have

E S̃Ci+1 ≤ S̃2
Ci = (1 + T̃Ci)

2 = 1 + 2T̃Ci(1 + o(1)),

and so E T̃Ci+1
= 2T̃Ci(1 + o(1)). Crucially, one can show that, always, 2T̃Ci ≤ T̃Ci+1

. Thus, by Markov’s

inequality, T̃Ci+1
= 2T̃Ci(1 + o(1)) with probability 1 − o(1), for appropriately chosen o(1) terms. Union

bounding over the o(1) failure probabilities in the k steps, we conclude that T̃Ci grows roughly as slowly as

in the existential argument, giving the desired list decodability.

The second improvement follows from the linearity of the code. In the last step of the [49] argument, we

replace the summation “
∑
x” in

∑
x 2εnLC(x) ≤ e · 2n with a “∀x.” We can save a bit because, by linearity,

the contribution 2εnLC(x) is the same for all x in a coset y + C.
Now we go through the details. With hindsight, let η = bh(p)

ε + 2c − (h(p)
ε + 1) > 0. It is convenient to

change the definition of the potential function very slightly: losing the tilde, define, for a code C ⊂ Fn2 ,

AC(x)
def
= 2

εnLC(x)

1+εη and SC
def
= E

x∼Fn2
[AC(x)] and TC

def
= SC − 1.

As noted above, it is helpful to think of TC as a very small term; we would like to show—in accordance with

(4.2)—that TC approximately doubles each time we add a basis vector. The term SC differs from the term

S̃C above in that AC(x) has an extra factor of 1
1+εη in the exponent. This is an extra “slack” term that helps

guarantee a high probability result under the same parameters. However, this definition does not change

how the potential function behaves. In particular, we still have the following lemma:

Lemma 4.6 (Following [49]). For all linear C ⊆ Fn2 and all b ∈ Fn2 ,

LC+{0,b}(x) ≤ LC(x) + LC(x+ b) (4.3)

AC+{0,b}(x) ≤ AC(x) ·AC(x+ b), (4.4)

with equality if and only if b /∈ C.

Proof. To see (4.3), notice that

LC+{0,b}(x) = |B(x, pn) ∩ (C ∪ (C + b))|

≤ |B(x, pn) ∩ C|+ |B(x, pn) ∩ (C + b)|

= |B(x, pn) ∩ C|+ |B(x+ b, pn) ∩ C|

= LC(x) + LC(x+ b),



CHAPTER 4. LIST DECODING: BINARY ALPHABET 59

with equality in the second line if and only if b 6∈ C. Inequality (4.4) follows as a consequence of (4.3), and

this proves the lemma.

The following lemma is the key step of our proof, establishing that when TC is small, it essentially doubles

with high probability each time we add a basis vector.

Lemma 4.7. If C is a fixed linear code,

Pr
b∼Fn2

[
SC+{0,b} ≥ 1 + 2TC + T 1.5

C
]
≤ T 0.5

C .

Proof. By Lemma 4.6, for all b,

SC+{0,b} = E
x

[
AC+{0,b}(x)

]
≤ E

x
[AC(x)AC(x+ b)]

= E
x

[−1 +AC(x) +AC(x+ b) + (AC(x)− 1)(AC(x+ b)− 1)]

= 1 + 2TC + E
x

[(AC(x)− 1)(AC(x+ b)− 1)] .

Over the randomness of b and x, we have x and x+ b are independently uniform over Fn2 , so

E
b

E
x

[(AC(x)− 1)(AC(x+ b)− 1)] = E
b,x

[AC(x)− 1] · E
b,x

[AC(x+ b)− 1] = T 2
C . (4.5)

As AC(x)− 1 is always nonnegative, we have, by Markov’s inequality,

Pr
b

[
SC+{0,b} ≥ 1 + 2TC + T 1.5

C
]
≤ Pr

b

[
E
x

[(AC(x)− 1)(AC(x+ b)− 1)] ≥ T 1.5
C

]
≤ T 2

C
T 1.5
C

= T 0.5
C .

Iterating Lemma 4.7 gives the following.

Lemma 4.8. Let p ∈ (0, 1/2) and ε ∈ (0, 1−h(p)). Let C ⊂ Fn2 be a random linear code of rate 1−h(p)− ε.
Then, with probability 1− exp(−Ωε,p(n)), we have SC < 2.

Proof. It suffices to prove this when n is sufficiently large in terms of ε. As in §4.4.1, let b1, b2, . . . , bk ∈ Fn2
be independently and uniformly chosen, and let Ci = span{b1, . . . , bi}. Consider the sequence

δ0
def
= 2−n(1−h(p)− ε

1+εη )

δi
def
= 2δi−1 + δ1.5

i−1.

We can verify by induction that for i ≤ n(1 − h(p) − ε), we have δi < 2i+1δ0 < 2−
ε2ηn

2 . To see this, notice

that the base case is trivial, and if δj < 2j+1δ0 for j < i, we have

δi = 2δi−1(1 + δ0.5
i−1) = 2iδ0 ·

i−1∏
j=0

(1 + δ0.5
j ) ≤ 2iδ0 · e

∑i−1
j=0 δ

0.5
j < 2i+1δ0.

In the first two equalities, we applied the definitions of δi and δi−1, . . . , δ1, respectively. In the first inequality,

we used the estimate 1 + z ≤ ez, and in the second we used the inductive hypothesis δj < 2−
ε2ηn

2 for j < i
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and that n is sufficiently large. By this induction, we conclude that, if k = n(1−h(p)−ε), then δk < 2−
ε2ηn

2 .

Let b1, . . . , bk ∈ Fn2 be random vectors, and let Ci = span(b1, . . . , bi) with Ck = C. Call Ci good if TCi < δi.

We have

TC0 = S{0} − 1 =
(

2
εn

1+εη − 1
)
· Vol(n, pn)

2n
< 2

εn
1+εη · 2h(p)n

2n
= δ0,

so C0 is always good. On the other hand, by the definition of δi and Lemma 4.7, if Ci is good,

Pr [Ci+1 not good] = Pr
[
TCi+1

≥ δi+1

]
≤ Pr

[
TCi+1

≥ 2TCi + T 1.5
Ci
]
≤ T 0.5

Ci < δ0.5
i .

Thus, with probability at least

1−
(
δ0.5
0 + δ0.5

1 + · · ·+ δ0.5
k−1

)
> 1− k2−ε

2ηn/4 ≥ 1− 2−Ωε,p(n)

we have TCi < δi for all i = 0, . . . , k. In particular, TC = TCk < δk < 2−
ε2ηn

2 . Thus, SC = 1 + TC < 2 with

probability 1− exp(−Ωε,p(n)), completing the proof of Lemma 4.8.

Finally, we prove the following lemma, which implies Theorem 4.4.

Lemma 4.9. Any linear code C ⊆ Fn2 of rate 1− h(p)− ε with SC < 2 is (p, h(p)
ε + 1)-list decodable.

Proof. Suppose for sake of contradiction that there exists x∗ ∈ Fn2 such that |B(x∗, pn)∩C| ≥ bh(p)
ε + 2c. By

linearity of C, for all x ∈ Fn2 and c ∈ C, we have

|B(x+ c, pn) ∩ C| = |B(x, pn) ∩ (C − c)| = |B(x, pn) ∩ C|,

so |B(x∗ + c, pn) ∩ C| ≥ bh(p)
ε + 2c = h(p)

ε + 1 + η for all c ∈ C. If SC < 2, then we have

2n+1 > 2nSC =
∑
x∈Fn2

exp

(
n · ε

1 + εη
· |B(x, pn) ∩ C|

)

≥
∑
c∈C

exp

(
n · ε

1 + εη
· |B(x∗ + c, pn) ∩ C|

)
≥ exp (n(1− h(p)− ε)) · exp

(
n · ε

1 + εη
·
(
h(p)

ε
+ 1 + η

))
= exp

(
n

(
1 +

εη(1− h(p)− ε)
1 + εη

))
.

which is a contradiction for large enough n.

Proof of Theorem 4.4. Apply Lemma 4.8 and then Lemma 4.9 for R = 1− h(p)− ε.

Remark 4.10. We do not see how to extend this proof to larger alphabets. If, for example, q = 3, Lemma 4.7

would need to say Pr[SC+{0,b,2b} > 1 + 3TC + o(TC)] < o(1). However, the current proof would fail to show
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this, as we could not separate the expectation in (4.5); that is, we cannot say

E
b,x

[(AC(x)− 1)(AC(x+ b)− 1)(AC(x+ 2b)− 1)]

= E
b,x

[AC(x)− 1] · E
b,x

[AC(x+ b)− 1] · E
b,x

[AC(x+ 2b)− 1]

4.5 Lower bound proof

4.5.1 Techniques.

To illustrate the techniques for our lower bounds, we warm with some calculations that suggest why the

“right” list-size is h(p)
ε .

Consider a random linear code C ⊂ Fnq , of rate R = 1−h(p)−ε, where p ∈ (0, 1
2 ). Let L = bh(p)/ε− 0.01c.

We claim that C is unlikely to be (p, L)-list-decodable.

Define a set of matrices M as follows: Let u ∈ FLq be a random vector with independent Bernoulli(p)

entries, namely, each entry is 0 with probability 1− p and 1 with probability p. Let x be uniformly sampled

from F2. Let τ denote the distribution (over FL2 ) of the random vector u + x · 1L. Finally, define M to be

the set of all matrices M ∈ Fn×Lq , such that a uniformly sampled row of M has the distribution τ . So, for

example, every M ∈M has 1
2 ((1− p)L + pL)n rows with all ones.

We will show thatM is bad and abundant. By bad we mean that a linear code containing a matrix from

M cannot be (p, L)-list-decodable. Given a matrix M ∈ Fn×Lq , we write M ⊆ C (“C contains M”) to mean

that each of the columns of M is a codeword in C. We say thatM is abundant (for the rate R) if a random

linear code of rate R is likely to contain at least one matrix from M. Clearly, the combination of these

properties means that C is unlikely to be (p, L)-list-decodable.

We first prove that M is bad. Assume that C contains some matrix M ∈ M. For j = 1, . . . , n we

may write the jth row of M as uj + xj · 1L, so that, for a random j ∈ [n], the pair (uj , xj) is distributed

as Bernoulli(p)L × Bernoulli(1/2). Then every column of M has Hamming distance exactly pn from the

vector x = (x1, x2, . . . , xn), so then B(x, pn) contains all the column vectors of M . Thus, C cannot be

(p, L)-list-decodable, as the set of L column vectors of M is a “bad list” for list-decodability with these

parameters.

Showing that M is abundant is harder, and at this stage we only provide some intuition for this fact.

Let us compute the expected number of matrices M ∈ M that are contained in C. First, we estimate the

cardinality of M. Let M be a matrix in M. For each u ∈ FL2 , let pu denote the probability that a sample

from τ is u, so that
∑
u pu = 1. For example p1L = 1

2 ((1− p)L + pL). ThenM is the set of all matrices with

with exactly pun rows equal to u for all u. Thus, we have by (4.1)

|M| =
(

n

pvn : v ∈ FL2

)
≈ 2H(pu:u∈FL2 )n = 2H(τ)n.

We can estimate H(τ), and thus |M|, as follows: τ is the distribution u+x ·1L for u ∼ Bernoulli(p)L and

x ∼ Bernoulli(1/2). Note that, if L is large, then for a random sample v ∼ τ , we can with high probability

recover the pair (u, x) used to generate v: let x be the majority bit of v and let u = v − x · 1L. Thus, H(τ)
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is H(u, x) = L · h(p) + 1. Therefore,

|M| ≈ 2n(Lh(p)+1). (4.6)

and

E |{M ∈M s. t.M ⊆ C}| = 2RLn · |M|2−Ln ≈ 2n−εLn ≥ 2n(1−h(p)) (4.7)

where, the approximation comes from (4.6) and substituting 1 − h(p) − ε for R. Thus, in expectation, C
contains many “bad” lists for list-decoding.

Of course, this back-of-the-envelope calculation does not yield the result advertised above. It might be

the case that, even though the expected number of M ∈ M so that M ⊆ C is large, the probability that

such an M exists is still small. In fact, as [101] shows, there are simple examples where this does happen.

The above example also illustrates this: even if we chose L ∼ 1/ε, rather than L ∼ h(p)/ε, the expected

number of bad lists would still be exponentially large in (4.7). But of course if L = 1/ε, we cannot have

many bad lists with high probability, because earlier in this chapter (Theorem 4.4) we showed that random

linear codes are (p, L) list decodable with L = h(p)/ε+ 1. Thus, proving thatM is abundant requires more

work.

A standard approach to show that M is abundant would be via the second-moment method. Recently,

[101] gave a general theorem which encompasses second-moment calculations in this context. In particular,

they showed that there is essentially only one reason that a setM might not be abundant: there exists some

matrix A ∈ FL×L
′

2 , such that the set {MA | M ∈ M} is small. If this occurs, we say that M is implicitly

rare.3 They used this result to study the list-decodability of random Low-Density Parity-Check codes, but

we can use their result to do our second moment calculation. We show that our example of M above is not

implicitly rare, by showing that there is no such linear map A. Appealing to the machinery of [101], rather

than applying the second moment method from scratch, allows us to get tighter constants with slightly less

work, and gives a more principled approach to our lower bound.

With the above outline, we can sketch why L = bh(p)/ε− 0.01c is the “correct” list size from our lower

bound. By above, we can show a list-size lower bound of L if the expected occurrences of matrices of

MA
def
= {MA|M ∈ M} is large for any A ∈ FL×L

′

2 . For our chosen M, the matrix A with the smallest

expected occurrences of MA turns out to be the matrix

A =

 I

1 · · · 1

 ∈ FL×(L−1)
2 .

In this case, the rows of MA are distributed as τ ′ ∼ (u1 + uL, u2 + uL, . . . , uL−1 + uL) where u1, . . . , uL ∼
Bernoulli(p). For L large, we can recover u1, . . . , uL from a sample v ∼ τ ′ with high probability by setting

uL as the majority bit and ui = vi−uL for i = 1, . . . , L−1. Thus, we have roughly H(τ ′) ∼ H(u1, . . . , uL) =

3The term “implicitly rare” is used by the first version of [101], available at https://arxiv.org/abs/1909.06430v1.

https://arxiv.org/abs/1909.06430v1
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L · h(p). This implies that

E |{M ∈M s. t. AM ⊆ C}| = 2R(L−1)n · |M|2−(L−1)n ≈ 2h(p)n−εLn.

Thus, the expected occurrences of MA is larger than 1 only for L < h(p)
ε , hence the choice of L.

4.5.2 Tools from [101]

As discussed in Section 4.5.1, for our lower bounds we use tools from the recent work [101].

For a distribution τ on FL2 and a matrix A ∈ FL
′×L

2 , we define the distribution Aτ on FL′2 in the natural

way by

Pr
Aτ

(x) =
∑

{y∈FL2 s.t. Ay=x}

Pr
τ

(y),

namely, Aτ is the distribution of the random vector Ay, where y ∼ τ .

We work with matrices M ∈ Fn×L2 (L ∈ N), where we view the columns of M as potential codewords in

C. We use the notation “M ⊆ C” to mean that the columns of M are all contained in C.
We group together sets of such matrices M according to their row distribution.

Definition 4.11 (τM , dim(τ), Mn,τ ). Given a matrix M ∈ Fn×L2 , the empirical row distribution defined

by the rows of M over FL2 is called the type τM of M . That is, τM is the distribution so that for v ∈ FL2 ,

Pr
τM

(v) =
|{i s. t. the i’th row of M is equal to v}|

n
.

For a distribution τ on FL2 , we use dim(τ) to refer to dim(span(supp(τ))). We use Mn,τ to refer to the set

of all matrices in Fn×L2 which have empirical row distribution τ .

Remark 4.12. We remark that for some distributions τ over FL2 , the set Mn,τ may be empty due to

n · Prτ (v) not being an integer. For such τ we can define Mn,τ to consist of matrices M with either

bn ·Prτ (v)c or dn · Prτ (v)e copies of v. This has a negligible effect on the analysis as we always take n to

be sufficiently large compared to other parameters, so for clarity of exposition we ignore this technicality.

Given M ∈Mn,τ , note that Mn,τ consists exactly of those matrices obtained by permuting the rows of

M . In particular, since the random linear code model is invariant to such permutations, all of the matrices

in Mn,τ have the same probability of being contained in C.
As discussed in Section 4.5.1, we prove a lower bound by exhibiting a distribution τ such that the

corresponding set Mn,τ is both bad and abundant. When Mn,τ satisfies these properties, we say that τ

itself is, respectively, bad and abundant.

The work [101] characterizes which distributions τ satisfy the abundance property, namely, which classes

Mn,τ are likely to have at least one of their elements appear (as a matrix) in a random linear code of a given

rate. To motivate the definition below, suppose that the distribution τ has low entropy: H(τ) < γ · dim(τ)

for some γ ∈ (0, 1). This implies that the classMn,τ is not too big: more precisely, it is not hard to see that

|Mn,τ | ≤ 2H(τ)·n ≤ 2γ dim(τ)n. Using a calculation like we did in Section 4.5.1, we see that, since Mn,τ is

not very large, it is unlikely for a random linear code of rate less than 1− γ to contain a matrix fromMn,τ .

However, this is not the only reason that Mn,τ might be unlikely to appear in a random linear code.
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As is shown in [101], it could also be because a random output of τ , subject to some linear transformation

(perhaps to a space of smaller dimension), has low entropy. We call such distributions implicitly rare:

Definition 4.13 (γ-implicitly rare). We say that a distribution τover FL2 is γ-implicitly rare if there exists

a full-rank linear transformation A : FL2 → FL′2 where L′ ≤ L such that

H(Aτ) < γ · dim(Aτ)

Observe that by taking A to be the identity map, we recover the case where τ itself has low entropy.

Furthermore, note that every matrix in Mn,Aτ has all of its columns contained in the column-span of some

matrix inMn,τ . Hence, for a linear code to contain the latter matrix, it must also contain the former. Thus,

abundance of the distribution τ implies abundance of Aτ . Definition 4.13 is motivated by the contrapositive

of this statement, namely, non-abundance of Aτ implies non-abundance of τ .

For an illustrative example of an implicitly rare distribution, we refer the reader to [101, Example 2.5].

Specifically, the example provides a case where for some full-rank matrix A, we have H(Aτ)/ dim(Aτ) >

H(τ)/dim(τ).

Essentially, [101] shows that a row distribution τ is likely to appear in a random linear code (namely, τ

satisfies the abundance property) if and only if it is not implicitly rare. The following theorem follows from

Lemma 2.7 in [101].4

Theorem 4.14 (Follows from Lemma 2.7 in [101]). Let R ∈ (0, 1) and fix η > 0. Let τ be a (1 − R − η)-

implicitly rare distribution over FL2 (L ∈ N), and let C be a random linear code of rate R. Then

Pr[∃M ∈Mn,τ : M ⊆ C] ≤ 2−ηn

Conversely, suppose that τ is not (1−R+ η)-implicitly rare. Then

Pr[∃M ∈Mn,τ : M ⊆ C] ≥ 1− nOL(1) · 2−ηn .

The first part of the theorem follows from a natural first-moment method argument, while the second

part follows from the analogous second-moment argument. The OL(1) term in the second part is 2O(L).

We emphasize that it is important that we allow arbitrary full-rank linear transformations A : FL2 → FL′2 in

Definition 4.13: if we only allowed A to be the identity map, the second part of the theorem would be false.

4.5.3 List decoding RLC lower bound

In this section, we prove Theorem 4.5, which we restate here for convenience.

Theorem (Theorem 4.5, restated). Fix p ∈ (0, 1/2), and fix δ ∈ (0, 1). There exists εp,δ > 0 such that for all

ε ∈ (0, εp,δ) and n sufficiently large, a random linear code in Fn2 of rate 1−h(p)−ε is not
(
p, bh(p)

ε − δc − 1
)

-

list-decodable with probability 1− 2−Ω(n).

We first define a bad distribution τ in Definition 4.15; then we will show that it is bad in Proposition 4.16;

then we will show that it is not implicitly rare (and hence abundant by Theorem 4.14) in Lemma 4.18. Finally

we will prove Theorem 4.5 from these pieces.

4This is also given as Theorem 2.2 in the first version of [101], available at https://arxiv.org/abs/1909.06430v1.

https://arxiv.org/abs/1909.06430v1


CHAPTER 4. LIST DECODING: BINARY ALPHABET 65

Definition 4.15 (The bad distribution τ for list-decoding lower bounds). Let p ∈ (0, 1/2) and δ > 0.

Choose L > 0. Define the distribution τ on FL2 as the distribution of the random vector u + α1L, where

u ∼ Bernoulli(p)L, and α is sampled independently and uniformly from F2.

First, we observe that τ is indeed bad, in the sense that it provides a counter-example to list-decodability.

Proposition 4.16 (τ is bad). Let τ be as in Definition 4.15. Let C ⊆ Fn2 and let M ∈ Mn,τ . If M ⊆ C,

then C is not (p, L− 1)-list-decodable.

Proof. Let M ∈Mn,τ . We want to show that the columns of M all lie in a single ball of radius pn.

By definition of τ and Mn,τ , we may write the j-th row of M as u(j) + αj1L, so that the empirical

distribution of the pairs (u(j), αj)1≤j≤n is Bernoulli(p)L × Bernoulli(1/2).5

For any i ∈ [L], the number of j ∈ [n] such that Mi,j = u
(j)
i + αj 6= αj is exactly the number of times

u
(j)
i 6= 0, which is pn, since u

(j)
i is distributed as Bernoulli(p). Thus, each column Mi,∗ of M has distance at

most pn from the word (α1, . . . , αn), so that any code containing M has L codewords in a ball of radius pn

and hence is not (p, L− 1)-list-decodable.

Next, we show that τ is not implicitly rare for large enough L by showing that Aτ has high entropy for

any matrix A. We first show this is true when A is either the L × L identity IL or an L × (L + 1) matrix

with the identity and an additional column with all nonzero entries.

Lemma 4.17. Let p ∈ (0, 1/2), p′ ∈ [p, 1/2], and δ > 0. There exists Lp,δ such that, for all L ≥ Lp,δ and

0 ≤ d ≤ L, the following holds. Let w be a fixed vector in Fd2 all of whose entries are nonzero. Let v be a

vector sampled from Bernoulli(p)d and let α be sampled from Bernoulli(p′). Then

H(v + αw) ≥ d ·
(
h(p) +

h(p)

L+ δ

)
. (4.8)

Proof. If d = 0, the assertion is trivial, so assume d ≥ 1. As a guide to the reader, we emphasize that

throughout the proof the vector v and the field element α are random variables, while the vector w is fixed.

We will bound H(v+αw) in two cases, one when d is small (relative to L) and one when d is large. (The

precise definitions of “small” and “large” will be determined below.)

First we consider the case where d is small. We have (for any d) that

H(v + αw) = H(v1 + αw1, v2 + αw2, . . . , vd + αwd)

= H(v2 + αw2, . . . , vd + αwd|v1 + αw1) +H(v1 + αw1)

≥ H(v2 + αw2, . . . , vd + αwd|v1, α) +H(v1 + αw1)

= H(v2, . . . , vd) +H(v1 + αw1) (4.9)

The second equality uses the definition of conditional entropy. The inequality follows from the data processing

inequality. The last equality uses the fact that w is a fixed vector so once α is known, αw2, . . . , αwd are also

known, along with the assumption that the v1 is independent of v2, . . . , vL.

5This is without loss of generality: if not, as per Remark 4.12, we can associate pairs with rows so that the empirical
distribution is close to Bernoulli(p)L × Uniform(F2) up to an additive factors that are o(1) as n → ∞. After adjusting
parameters, this has a negligible effect on the analysis and final result.



CHAPTER 4. LIST DECODING: BINARY ALPHABET 66

Now, v1 + αw1 is nonzero if v1 = 0 and α 6= 0, if v1 6= 0 and α = 0, or if v1, α 6= 0 and v1 + αw1 6= 0.

This happens with probability p∗ = (1− p)p′+ (1− p′)p. In the case that v1 +αw1 is nonzero, each nonzero

element of F2 has equal probability by symmetry. Thus v1 + αw1 is distributed as Bernoulli(p∗). One can

check that H(Bernoulli(p∗)) = h(p∗), so from (4.9) we have

H(v + αw) ≥ H(v2, . . . , vd) + h(p∗) = (d− 1) · h(p) + h(p∗). (4.10)

Since p < 2p(1− p) ≤ p∗ ≤ 1/2 and h(·) is strictly increasing on (0, 1/2), we have h(p∗) ≥ h(p) + εp for

some εp > 0. Thus, when d ≤ εpL, (4.10) implies that

H(v + αw) ≥ d · h(p) + εp ≥ d ·
(
h(p) +

1

L

)
> d ·

(
h(p) +

h(p)

L+ δ

)
,

where in the last inequality we have used that δ > 0 and h(p) < 1. This lower bounds H(v+αw) in the case

when d is “small,” specifically when d < εp · L.

Next we handle the case when d is “large.” We have (for any d) that

H(v + αw) = H(v + αw|α) +H(α)−H(α|v + αw)

= d · h(p) + h(p′)−H(α|v + αw)

≥ d · h(p) + h(p)−H(α|v + αw).

It thus suffices to show that H(α|v + αw) is “small,” which we do with Fano’s inequality.

Let α̂ be the element of F2 that minimizes the Hamming distance ∆H(α̂w, v + αw), breaking ties arbi-

trarily. In expectation a p < 1/2 fraction of the d coordinates of v are nonzero. Similarly, for any vector

w′ ∈ Fd2 with all nonzero entries, in expectation a 1− p > 1/2 fraction of the coordinates of v disagree with

w′.

By Hoeffding’s inequality, for any nonzero ζ ∈ F2,

Pr

[
∆H(v, ζw) ≥ d

2

]
≤ 2exp

(
−2d

(
1

2
− p
))

= exp(−Ωp(d)) (4.11)

and similarly

Pr

[
∆H(v,0) ≤ d

2

]
≤ 2exp

(
−2d

(
1

2
− p
))

= exp(−Ωp(d)). (4.12)

If none of the events in (4.11) and (4.12) hold, then we have ∆H(α′w, v + αw) < d/2 for all α′ 6= α and

∆H(αw, v + αw) > d/2, in which case α̂ = α. Thus, by the union bound over the two events in (4.11) and

(4.12), the probability that α 6= α̂ is at most

perr
def
= Pr[α̂ 6= α] ≤ exp(−Ωp(d)).

By Fano’s inequality, as α takes at most 2 values and as α̂ is a function only of v + αw, we have

H(α|v + αw) ≤ h(perr) ≤ exp(−Ωp(d)).
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Thus, there exists some dp,δ such that, for d ≥ dp,δ, we have H(α|v + αw) ≤ δh(p)
d+δ , in which case

H(v + αw) ≥ d · h(p) + h(p)−H(α|v + αw) ≥ d · h(p) +
d

d+ δ
· h(p) ≥ d ·

(
h(p) +

h(p)

L+ δ

)
.

This completes the case where d is “large.”

We have shown that (4.8) holds when d ≤ εp · L and when d ≥ dp,δ. Thus, for L ≥ dp,δ/εp
def
= Lp,δ, we

have (4.8) always holds, as desired.

Using Lemma 4.17, we may now prove that τ is not implicitly rare.

Lemma 4.18. Let p ∈ (0, 1/2) and let δ > 0. There exists Lp,δ such that, for L ≥ Lp,δ, the distribution τ

given in Definition 4.15 is not (h(p) + h(p)
L+δ )-implicitly rare.

Proof. Let Lp,δ be as in Lemma 4.17. Let L ≥ Lp,δ, and let τ be the corresponding distribution in the

lemma statement.6 Fix a full-rank matrix A of rank L′. As τ is supported on FL2 , the rank of Aτ is L′. We

show that H(Aτ) ≥ L′ · (h(p) + h(p)
L+δ ). At a high level, our strategy is to decompose the distribution Aτ into

several distributions that each have the set up of Lemma 4.17. Furthermore, this decomposition has enough

conditional independence that the entropy of Aτ can be lower bounded by the sum of the entropies of the

smaller distributions, which we can lower bound by Lemma 4.17.

As A is full-rank it must have exactly L′ rows. Since permuting the coordinates of τ yields the same

distribution τ , permuting the columns of A does not change the entropy H(Aτ); thus, we may assume that

the first L′ columns are linearly independent. Furthermore, if B is invertible, H(BAτ) = H(Aτ). Thus, by

running Gaussian elimination on the rows of A, we may assume without loss of generality that

A =


| | · · · |

IL′ w(1) w(2) · · · w(k)

| | · · · |


where w(1), . . . , w(k) ∈ FL′2 and k = L− L′. Let a sample from τ be given by

v1

...

vL′

α1

...

αk


+



1

...

1


· αk+1.

where v1, . . . , vL′ , α1, . . . , αk ∼ Bernoulli(p) and αk+1 ∼ Bernoulli(1/2). (Note that this means that αk+1 is

uniform on F2.) Then Aτ is given by 
v1

...

vL′

+

k+1∑
i=1


|

w(i)

|

 · αi (4.13)

6We treat the output of τ as a column vector.
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where we let w(k+1) be the product A·1L ∈ FL′2 . We emphasize that v1, . . . , vL′ , α1, . . . , αk+1 are independent

random variables, while A and w(1), . . . , w(k) are fixed.

By definition of A and w(k+1), for any coordinate i 6∈
⋃k
j=1 supp(w(j)), we have i ∈ supp(w(k+1)). Thus,⋃k+1

i=1 supp(w(i)) = [L′]. For i = 1, . . . , k + 1, let Ji = supp(w(i)) \ (
⋃i−1
j=1 Jj) (when i = 1 the union is the

empty set), so that J1, . . . , Jk+1 form a partition of [L′]. Recall that the notation vJ ∈ F|J|2 denotes the

vector (vi)i∈J with coordinates from J in increasing order. We have

H(Aτ) = H(Aτ |vJk+1
, αk+1) + I(Aτ ; vJk+1

, αk+1)

= H(Aτ |vJk , vJk+1
, αk, αk+1) + I(Aτ ; vJk , αk|vJk+1

, αk+1) + I(Aτ ; vJk+1
, αk+1)

Continuing, we have

H(Aτ) = H(Aτ |vJ1
, . . . , vJk+1

, α1, . . . , αk+1) +

k+1∑
i=1

I(Aτ ; vJi , αi|vJi+1
, . . . , vJk+1

, αi+1, . . . , αk+1)

=

k+1∑
i=1

I(Aτ ; vJi , αi|vJi+1 , . . . , vJk+1
, αi+1, . . . , αk+1), (4.14)

where the second equality uses that J1, . . . , Jk+1 form a partition of [L′], so Aτ is completely determined by

vJ1 , . . . , vJk+1
, α1, . . . , αk+1, and thus H(Aτ |vJ1 , . . . , vJk+1

, α1, . . . , αk+1) = 0. For clarity, we note that the

summand above when i = k + 1 is simply I(Aτ ; vJk+1
, αk+1). We thus have

H(Aτ) ≥
k+1∑
i=1

I((Aτ)Ji ; vJi , αi|vJi+1 , . . . , vJk+1
, αi+1, . . . , αk+1)

=

k+1∑
i=1

I

vJi +
∑
j≥i

w
(j)
Ji
· αj ; vJi , αi

∣∣∣∣vJi+1
, . . . , vJk+1

, αi+1, . . . , αk+1


=

k+1∑
i=1

I
(
vJi + w

(i)
Ji
· αi; vJi , αi

∣∣vJi+1
, . . . , vJk+1

, αi+1, . . . , αk+1

)
=

k+1∑
i=1

I
(
vJi + w

(i)
Ji
· αi; vJi , αi

)
=

k+1∑
i=1

H
(
vJi + w

(i)
Ji
· αi
)

The inequality applies the data processing inequality to (4.14), using that (Aτ)Ji is a function of Aτ . The

first equality uses (4.13) and that w(1), . . . , w(i−1) have no support in Ji by definition of Ji. The second

equality uses that αi+1, . . . , αk+1 are being conditioned on. The third equality uses that the vi’s and αi’s

are all independent and that the Ji are pairwise disjoint, so changing vJi+1 , . . . , vJk+1
, αi+1, . . . , αk+1 does

not affect vJi + w
(i)
Ji
· αi. The last equality uses that H(vJi + w

(i)
Ji
· αi|vJi , αi) = 0. As L ≥ Lp,δ and as w

(i)
Ji

has all nonzero entries by definition of Ji, we may apply Lemma 4.17 with v = vJi and α = αi and w = w
(i)
Ji
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and d = |Ji|. This gives

H(Aτ) ≥
k+1∑
i=1

H
(
vJi + w

(i)
Ji
· αi
)

≥
k+1∑
i=1

|Ji| ·
(
h(p) +

h(p)

L+ δ

)
= L′ ·

(
h(p) +

h(p)

L+ δ

)
,

as desired. The last equality uses that J1, . . . , Jk+1 partition [L′].

We now finish the proof of Theorem 4.5.

Proof of Theorem 4.5. Let Lp,δ/2 be as in Lemma 4.18 and choose εp,δ
def
= h(p)

Lp,δ/2+1 . Fix ε < εp,δ. Let

L = bh(p)
ε − δc. Let τ be as in Definition 4.15 with this choice of L. By Lemma 4.18, as L ≥ Lp,δ/2, τ is not(

h(p) + h(p)
L+δ/2

)
-implicitly rare. Thus, as ε ≤ h(p)

L+δ <
h(p)
L+δ/2 , there is some constant cp,ε > 0 so that τ is not

(h(p) + ε+ cp,ε)-implicitly rare.

Then Theorem 4.14 with η = cp,ε tells us that, for n sufficiently large, a random linear code of rate

1 − (h(p) + ε + cp,ε) + cp,ε = 1 − h(p) − ε contains L codewords given by some matrix M ∈ Mn,τ with

probability at least 1− 2−Ωp,ε(n).

Finally, Proposition 4.16 implies that C is not (p, L − 1)-list-decodable. Our choice of L proves the

theorem.
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Chapter 5

List decoding: large alphabet

5.1 Introduction

Recall that the [n, k]-Reed–Solomon code over Fq with evaluation points (α1, . . . , αn) is defined as the set

{(
f(α1), . . . , f(αn)

)
: f ∈ Fq[x], deg(f) < k

}
.

Because (recall Theorem 2.7) RS codes attain the optimal rate versus unique-decoding-radius trade-off

(and also because they admit efficient algorithms), they have been well-studied since their introduction in the

1960’s [106]. However, perhaps surprisingly, there is still much about them that we do not know. One notable

example is their list-decodability and more generally their list-recoverability. We discuss list-decodability first,

and discuss list-recoverability after that.

List-Decodability of RS Codes. Recall that a code C ⊂ Fnq is (p, L)-list-decodable if for any y ∈ Fnq ,

|{c ∈ C : d(c, y) ≤ p}| ≤ L.

In particular, (p, 1)-list-decodability is the same as having distance greater than 2p. List-decodability was

introduced by Elias and Wozencraft in the 1950’s [34, 127]. By now it is an important primitive in both

coding theory and theoretical computer science more broadly. In general, larger list sizes (the parameter L)

allow for a larger list-decoding radius (the parameter p). In this chapter, we are interested in the case when

p = 1− ε is large.

The list-decodability of Reed–Solomon codes is of interest for several reasons. First, both list-decodability

and Reed–Solomon codes are central notions in coding theory, and we believe that question is interesting in

its own right. Moreover, the list-decodability of Reed–Solomon codes has found applications in complexity

theory and pseudorandomness [17, 120, 96].

Until recently, the best bounds available on the list-decodability of RS codes were bounds that hold

generically for any code. Recall (Theorem 2.12) the Johnson bound states that any p-unique-decodable code

is (1 −
√

1− 2p,O(nq))-list-decodable over an alphabet of size q ([82], see also [65, Theorem 7.3.3]). This

implies that, for any ε ∈ (0, 1], there are RS codes that are list-decodable up to radius 1−ε (with polynomial

list sizes) that have rate Ω(ε2). The celebrated Guruswami–Sudan algorithm [66] gives an efficient algorithm

70
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to list-decode RS codes up to the Johnson bound, but it breaks down at this point. Meanwhile, the list-

decoding capacity theorem implies that no code (and in particular, no RS code) that is list-decodable up to

radius 1− ε can have rate bounded above ε, unless the list sizes are exponential.

There have been several works over the past decade aimed at closing the gap between the Johnson bound

(rate Θ(ε2)) and the list-decoding capacity theorem (rate Θ(ε)). On the negative side, it is known that some

RS codes (that is, some way of choosing the evaluation points α1, . . . , αn), are not list-decodable substantially

beyond the Johnson bound [7]. On the positive side, Rudra and Wootters [109] showed that a random choice

of evaluation points will, with high probability, yield a code that is list-decodable up to radius 1 − ε with

rate O
(

ε
log5(1/ε) log q

)
. Unfortunately, while the dependence on ε in the rate is nearly optimal (the “correct”

dependence should be linear in ε, according to the list-decoding capacity theorem), the log q term in the

denominator means that the rate necessarily goes to zero as n grows, as we must have q ≥ n for RS codes.

Working in a different parameter regime, Shangguan and Tamo showed that over a large alphabet, there

exist RS codes of rate larger than 1/9 that can also be list-decoded beyond the Johnson bound (and in fact,

optimally) [113]. However, this result only holds for small list sizes (L = 2, 3), and in particular, for such

small list sizes one cannot hope to list-decode up to a radius 1− ε that approaches 1. Thus, there was still

a substantial gap between capacity and the best known trade-offs for list-decoding RS codes.

List-Recoverability of RS Codes. The gap between capacity and the best known trade-offs for RS

codes is even more pronounced for list recovery, a generalization of list decoding. We say that a code C ⊂ Fnq
is (p, `, L)-list-recoverable if for any S1, S2, . . . , Sn ⊂ Fq with |Si| = `,

| {c ∈ C : d(c, S1 × S2 × · · · × Sn) ≤ p} | ≤ L.

Here, we extend the definition of Hamming distance to sets by denoting

d(c, S1 × · · · × Sn) =
1

n
| {i ∈ [n] : ci 6∈ Si} |.

The parameter ` is called the input list size. List-decoding is the special case of list-recovery for ` = 1. List-

recovery first arose in the context of list-decoding (for example, the Guruswami–Sudan algorithm mentioned

above is in fact a list-recovery algorithm), but has since found applications beyond that, for example in

pseudorandomness [68] and algorithm design [32].

Both the Johnson bound and the list-decoding capacity theorem have analogs for list-recovery. The

list-recovery Johnson bound [67] implies that there are RS codes of rate Ω(ε2/`) that are list-recoverable up

to radius 1 − ε with input list size ` and polynomial output list size. However, the list-recovery capacity

theorem implies that there are codes of rate Ω(ε) (with no dependence on `) that achieve the same guarantee,

provided that the alphabet size q is sufficiently large.

Thus the gap for list-recovery (between rate Θ(ε2/`) and Θ(ε)) is even larger than that for list-decoding,

and in particular the dependence on ` becomes important. To the best of our knowledge, before our work

there were no results known for RS codes that established list-recovery up to arbitrarily large radius 1 − ε
with a better dependence on ` than 1/`.

Motivating question. Given this state of affairs, our motivating question is whether or not RS codes can

be list-decoded or list-recovered up to radius 1− ε with rates Ω(ε) (in particular, with a linear dependence
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on ε and no dependence on the alphabet size q or the input list size `). As outlined below, we nearly resolve

this question for list-decoding and make substantial progress for list-recovery.

Subsequent work. After this work first appeared as [43], and inspired by the techniques in [43] and in

[113], Ferber, Kwan, and Sauermann showed that there exist (1 − ε, O(1/ε))-list-decodable RS codes with

rate Ω(ε) over a field size polynomial in the block length, improving our result for list-decoding [36]. In a

very recent work, Goldberg, Shangguan, and Tamo further improved the rate of [36] by showing the existence

of (1− ε, O(1/ε))-list-decodable RS codes with rate approaching ε
2−ε [41]. See Section 5.1.2 for more details.

5.1.1 Contributions

Our main result establishes the list-recoverability (and in particular, the list-decodability), of Reed–Solomon

codes up to radius 1 − ε, representing a significant improvement over previous work. Our techniques build

on the approach of [113]; the main new technical contribution is a novel connection between list-decoding

RS codes and the Nash-Williams–Tutte theorem in graph theory, which may be of independent interest. We

outline our contributions below.

Existence of RS codes that are near-optimally list-decodable. Our main theorem for list-decoding

is as follows.

Theorem 5.1 (RS codes with near-optimal list-decoding). There is a constant c ≥ 1 so that the following

statement holds. For any ε ∈ (0, 1] and any sufficiently large n, there exist RS codes of rate R ≥ ε
c(log(1/ε)+1)

over a large enough finite field (as a function of n and ε), that are (1− ε, c/ε)-list-decodable.

As discussed above, Theorem 5.1 is stronger than the result of Rudra and Wootters [109], in that the

result of [109] requires that the rate tend to zero as n grows, while ours holds for constant-rate codes. On the

other hand, our result requires the field size q to be quite large (see Table 5.1), which [109] did not require.

Our result also differs from the result of Shangguan and Tamo [113] discussed above. Because that work

focuses on small list sizes, it does not apply to list-decoding radii approaching 1. In contrast, we are able to

list-decode up to radius 1− ε. We note that [113] is able to show that RS codes are exactly optimal, while

we are off by logarithmic factors. Both our work and that of [113] require large field sizes.

Generalization to list-recovery. Theorem 5.1 follows from a more general result about list-recovery.

Our main result is the following (see Theorem 5.15 for a more detailed version).

Theorem 5.2 (RS codes with list-recovery beyond the Johnson bound). There is a constant c ≥ 1 such

that the following statement holds. For any ε ∈ (0, 1], any positive integer `, and any sufficiently large n,

there exist RS codes with rate R ≥ ε
c
√
`(log(1/ε)+1)

over a large enough (as a function of n, ε, and `) finite

field, that are (1− ε, `, c`/ε)-list-recoverable.

Theorem 5.2 establishes list-recoverability for RS codes well beyond the Johnson bound, and in particular

breaks the 1/` barrier. To the best of our knowledge, this is the first result to do so for radius arbitrarily close

to 1, although we note that work of Lund and Potukuchi achieved a similar rate for small error radius [96].

We discuss related work below in Section 5.1.2 and summarize quantitative results in Table 5.1.
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Table 5.1: Prior work on list-decoding and list-recovery of RS codes. Above, C refers to an absolute constant.
The “Capacity” results refer to the list-decoding and list-recovery capacity theorems, respectively, and are
impossibility results. Above, we assume that q ≥ n and that n → ∞ is growing relative to 1/ε and `, and
that n is sufficiently large.

Radius p List size L Rate R Field size q

List-Decoding:

Capacity 1− ε - ≤ ε -

Johnson bound 1− ε poly(n) Cε2 q ≥ n

[109] 1− ε C/ε Cε
log5(1/ε) log(q)

q ≥ Cn logC(n/ε)/ε

[113] L
L+1 (1−R) L = 2, 3 R q = 2Cn

This chapter (Thm. 5.1) 1− ε C/ε Cε
log(1/ε) q =

(
1
ε

)Cn
List-Recovery:

Capacity 1− ε - ≤ ε -

Johnson bound 1− ε poly(n) Cε2

` q ≥ n

[96] p ≤ 1− 1/
√

2 C` C√
`·log q

q ≥ Cn
√
` · log n

This chapter (Thm. 5.2) 1− ε C`
ε

Cε√
`·log(1/ε)

q =
(
`
ε

)Cn
A new connection to the Nash-Williams–Tutte theorem, and a new hypergraph Nash-Williams—

Tutte conjecture. In order to derive our results, we build on the framework of [113]. That work developed

a framework to view the list-decodability of Reed–Solomon codes in terms of the singularity of intersection

matrices (which we define in Section 5.2). The main new technical contribution of this chapter is to con-

nect the singularity of these matrices to tree-packings in particular graphs. This connection allows us to

use the Nash-Williams–Tutte theorem from graph theory to obtain our results. The Nash-Williams–Tutte

theorem gives sufficient conditions for the existence of a large tree packing (that is, a collection of pairwise

edge-disjoint spanning trees) in a graph.

We think that this connection is a contribution in its own right, and it is our hope that it will lead

to further improvements to our results on Reed–Solomon codes. In particular, we hope that it will help

establish the following conjecture of [113]:

Conjecture 5.3 (Conjecture 1.5 of [113]). For any ε > 0 and integers 1 ≤ k < n with εn ∈ Z, there exist

RS codes with rate R = k
n over a large enough (as a function of n and ε) finite field, that are list-decodable

from radius 1−R− ε and list size at most d 1−R−ε
ε e.

Conjecture 5.3 is stronger than our Theorem 5.1 about list-decoding. In particular, our theorem is near-

optimal, but it is interesting mostly in the low-rate/high-noise parameter regime. In contrast, Conjecture 5.3

conjectures that there exist exactly optimal RS codes, in any parameter regime.

To encourage others to use our new connection and make progress on Conjecture 5.3, we propose a

method of attack in Section 5.5. This outline exploits our connection to the Nash-Williams–Tutte theorem,

and proceeds via a conjectured generalization of the Nash-Williams–Tutte theorem to hypergraphs: we show

that establishing this hypergraph conjecture (which is stated as Conjecture 5.25 in Section 5.5) would in

fact establish Conjecture 5.3. In Section 5.5, we give evidence for our hypergraph Nash-Williams–Tutte
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conjecture, Conjecture 5.25, observing that the “easy direction” of the conjecture follows from the Nash-

Williams–Tutte theorem, and also that a quantitative relaxation of the conjecture follows from existing work

[25, 18]. As further evidence of the viability of this approach, this quantitative relaxation implies a second

proof of our main list-decoding result, Theorem 5.1, and we also sketch this proof in Section 5.5.1

5.1.2 Related Work

We briefly review related work. See Table 5.1 for a quantitative comparison to prior work.

List-decoding of RS codes. Ever since the Guruswami–Sudan algorithm [66], which efficiently list-

decodes RS codes up to the Johnson bound, it has been open to understand the extent to which RS codes

are list-decodable beyond the Johnson bound, and in particular if there are RS codes that are list-decodable

all the way up to the list-decoding capacity theorem, matching the performance of completely random codes.

There have been negative results that show that some RS codes are not list-decodable to capacity [7], and

others that show that even if they were, in some parameter regimes we are unlikely to find an efficient list-

decoding algorithm [22]. The work of Rudra and Wootters, mentioned above, showed that for any code with

suitably good distance, a random puncturing of that code was likely to be near-optimally list-decodable;

this implies that an RS code with random evaluation points is likely to be list-decodable. Unfortunately, as

discussed above, this result requires a constant alphabet size q in order to yield a constant-rate code, while

RS codes necessarily have q ≥ n.

Recently, Shangguan and Tamo [113] studied the list-decodability of RS codes in a different parameter

regime, namely when the list size L is very small, either 2 or 3. They were able to get extremely precise

bounds on the rate (showing that there are RS codes that are exactly optimal), but unfortunately for such

small list sizes, it is impossible for any code to be list-decodable up to radius 1− ε for small ε, which is our

parameter regime of interest. Unlike the approach of [109], which applies to random puncturings of any code,

the work of [113] targeted RS codes specifically and developed an approach via studying intersection matrices.

The reason that their approach stopped at L = 3 was the difficulty of analyzing these intersection matrices.

We build on their approach and use techniques from graph theory—in particular, the Nash-Williams–Tutte

theorem—to analyze the relevant intersection matrices beyond what [113] were able to do. We discuss our

approach more below in Section 5.1.3.

Subsequent work on list-decoding of RS codes. After the results of this chapter first appeared as

[43], and inspired by our approach, Ferber, Kwan, and Sauermann [36] gave a beautiful proof establishing

the existence of RS codes with rate Ω(ε) that are list-decodable from radius 1− ε with list size O(1/ε), over a

polynomially (in the codes length) large finite field.2 Compared with our result on the list-decodability of RS

codes, their result removes the logarithmic factor in 1/ε, and allows for smaller alphabet sizes; additionally,

their proof is much shorter. In further follow-up work, Goldberg, Shangguan, and Tamo [41] further improved

the rate from Ω(ε) to a rate approaching ε
2−ε .

However, we believe that there are still some advantages to our approach (beyond inspiring that of [36]

and [41]). First, the result of [36] does not apply to list-recovery, and while [41] does apply to list-recovery,

1This second proof does not immediately establish list-recoverability, which is why we focus on our first proof.
2In fact, they show something more general: if one begins with any code of sufficiently large distance over a sufficiently large

alphabet, and randomly punctures it to rate Ω(ε), the resulting code is with high probability (1− ε,O(1/ε)) list-decodable.
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they do not surpass the 1/` barrier in the rate. Second, neither [36] nor [41] fully resolve Conjecture 5.3

about optimal list-decodability of RS codes. We believe that the framework and tools developed in this

chapter together with Conjecture 5.25 provide a plausible attack method to resolve Conjecture 5.3.

List-recovery of RS codes. While the Guruswami–Sudan algorithm is in fact a list-recovery algorithm,

much less was known about the list-recovery of RS codes beyond the Johnson bound than was known about

list-decoding. (There is a natural extension of the Johnson bound for list-recovery, see [67]; for RS codes, it

implies that an RS code of rate about ε2/` is list-recoverable up to radius 1 − ε with input list sizes ` and

polynomial output list size). As with list-decoding, it is known that some RS codes are not list-recoverable

beyond the Johnson bound [44]. However, much less was known on the positive front. In particular, neither

of the works [109, 113] discussed above work for list-recovery. In a recent work, Lund and Potuchuki [96] have

proved an analogous statement to that of [109]: any code of decent distance, when randomly punctured to

an appropriate length, yields with high probability a good list-recoverable code. This implies the existence of

RS codes that are list-recoverable beyond the Johnson bound. However, in [96] there is again a dependence

on log(q) in the rate bound, meaning that for RS codes, the rate must be sub-constant. Further, the work of

[96] only applies up to radius p = 1− 1/
√

2, and in particular does not apply to radii p = 1− ε, as we study

in this chapter. Our results also work in the constant-p setting of [96], and in that regime we show that RS

codes of rate Ω(1/
√
`) are (p, `, O(`)) list-recoverable, which improves over the result of [96] by a factor of

log q in the rate. However, we do require the field size to be much larger than that is required by [96] (see

Table 5.1).

Subsequent work on list-recovery of RS codes. The recent work of Goldberg, Shangguan, and Tamo

[41] mentioned above builds on [36], and shows that there are RS codes of rate approaching ε
1+`−ε that are

(1 − ε, `, Lε,`)-list-recoverable, for a constant Lε,` that depends only on ε and `. Compared to our work,

while [41] improves the dependence on ε in the rate by a factor of log(1/ε), it has a worse dependence on `,

and in particular does not break the 1/` barrier that is present in the Johnson bound.

List-decoding and list-recovery of RS-like codes. There are constructions—for example, of folded

RS codes and univariate multiplicity codes [64, 45, 87, 86]—of codes that are based on RS codes and that

are known to achieve list-decoding (and list-recovery) capacity, with efficient algorithms. Our goal in this

chapter is to study Reed–Solomon codes themselves.

5.1.3 Technical Overview

Intersection matrices. Our approach is centered around intersection matrices, introduced in [113]. Inter-

section matrices and their nonsingularity are defined formally below in Definition 5.7, but we give a brief in-

formal introduction here. A t-wise intersection matrix, M , is defined by a collection of sets I1, I2, . . . , It ⊆ [n],

and has entries that are monomials in Fq[x1, x2, . . . , xn]. It was shown in [113] that if there is a counter-

example to the list-decodability of a Reed–Solomon code with evaluation points (α1, . . . , αn)—that is, if

there exist polynomials f1, f2, . . . , fL+1 that all agree with some other polynomial g : Fq → Fq at many

points αi—then there is a (L+ 1)-wise intersection matrix that becomes singular when αi is plugged in for

xi for all i ∈ [n].
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Vk(I1 ∩ I2)

Vk(I1 ∩ I3)

Vk(I2 ∩ I3)

Vk(I1 ∩ I4)

Vk(I2 ∩ I4)

Vk(I3 ∩ I4)

Ik

Ik

Ik

Ik

Ik

Ik

−Ik

−Ik

−Ik

~f1 − ~f2

~f1 − ~f3

~f2 − ~f3

~f1 − ~f4

~f2 − ~f4

~f3 − ~f4

= 0

Figure 5.1: Let f1, f2, f3, f4 ∈ Fq[x] have degree k − 1 and suppose that Ij = {s : fj(αs) = g(αs)}. (In
particular, fi and fj agree on Ii ∩ Ij). Then the matrix-vector product depicted above is zero, where the

vector ~fi refers to the k coefficients of the polynomial fi, and the j-th coordinate of this vector is the

coefficient of xj−1 in f . Here, Vk(Ii ∩ Ij) ∈ F|Ii∩Ij |×kq denotes the Vandermonde matrix whose rows are
[α0
s, α

1
s, . . . , α

k−1
s ] for s ∈ Ii ∩ Ij . The notation Ik denotes the k × k identity matrix.

The set-up (both the definition of an intersection matrix and the connection to list-decoding) is most

easily explained by an example. Suppose that we are interested in list-decoding for L = 3, and suppose that

we are interested in a RS code with evaluation points α1, α2, . . . , αn. Let f1, f2, f3, f4 and g be a counter-

example to list-decoding, as above, and for 1 ≤ j ≤ 4, let Ij = {i ∈ [n] : fj(αi) = g(αi)}. Now consider the

product shown in Figure 5.1 (see the caption for notation).

An inspection of Figure 5.1 shows that the matrix-vector product depicted is zero. Indeed, the top

part is zero for any choice of the fi, and the bottom part is zero since fi and fj are assumed to agree on

{αs : s ∈ Ii ∩ Ij}. The matrix shown is the 4-wise intersection matrix for the sets I1, I2, I3, I4, evaluated

at α1, . . . , αn. If the fi’s agree too much with the function g (i.e., if they are a counter-example to list-

decodability for some given radius), then the sets Ii ∩ Ij are going to be larger, and this matrix will have

more rows. In particular, the more the fi’s agree with g, the harder it is for this matrix to be singular.

Intuitively, this sets us up for a proof by contradiction: if f1, f2, f3, f4 agree too much with g, then this

matrix is nonsingular (at least for a non-pathological choice of αi’s); but Figure 5.1 displays a kernel vector!

A t-wise intersection matrix (for sets I1, . . . , It) generalizes a 4-wise intersection matrix shown in Fig-

ure 5.1. The bottom part looks exactly the same—a block-diagonal matrix with Vandermonde blocks—and

the top part is an appropriate generalization that causes the analogous k ·
(
t
2

)
-long vector corresponding to

the fi’s to vanish.

A conjecture about t-wise intersection matrices. With the motivation in Figure 5.1, the strategy

of [113] was to study t-wise intersection matrices M for t = L + 1, and to show that for every appropriate

choice of I1, . . . , It, the polynomial det(M) ∈ Fq[x1, x2, . . . , xn] is not identically zero. The list-decodability

of RS codes would then follow from the DeMillo–Lipton–Schwartz-Zippel lemma along with a counting

argument. In particular, they made the following conjecture, and showed that it implies Conjecture 5.3
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about list-decoding. Below, the weight of a family of subsets I1, . . . , It of [n] is defined to be

wt(I1, . . . , It) =

t∑
i=1

|Ii| −

∣∣∣∣∣
t⋃
i=1

Ii

∣∣∣∣∣ , (5.1)

and for a set J of indices, we use the shorthand wt(IJ) := wt(Ij : j ∈ J).

Conjecture 5.4 (Conjecture 5.7 of [113]). Let t ≥ 3 be an integer and I1, . . . , It ⊂ [n] be subsets satisfying

(i) wt(IJ) ≤ (|J | − 1)k for all nonempty J ⊆ [t],

(ii) Equality holds for J = [t], i.e., wt(I[t]) = (t− 1)k.

Then the t-wise intersection matrix Mk,(I1,...,It) is nonsingular over any finite field.

The conditions (i) and (ii) above turn out to be the right way of quantifying “the fi’s agree enough

with g.” That is, if the fi’s agree too much with g (in the sense of going beyond Conjecture 5.3 about

list-decoding), then it is possible to find sets Ij so that (i) and (ii) hold.

Unfortunately, the work of [113] was only able to establish Conjecture 5.4 for t = 3, 4 (corresponding to

L = 2, 3), and it seemed challenging to extend their techniques directly to much larger values of L.

Establishing the conjecture under an additional assumption, and using that to establish our

main results. In this chapter, we use a novel connection to the Nash-Williams–Tutte theorem, which

establishes the existence of pairwise edge-disjoint spanning trees in a graph, to extend the results of [113] to

larger L, at the cost of an additional assumption. More precisely, we are able to show in Theorem 5.9 (stated

and proved in Section 5.3) that Conjecture 5.4 holds, provided that all three-wise intersections Ii ∩ Ij ∩ I` of

the sets Ij are empty.

The connection to the Nash-Williams–Tutte theorem is explained in Section 5.3. Briefly, we consider

each term in the expression

det(M) =
∑
σ∈Sn

(−1)sgn(σ)
n∏
i=1

Mi,σ(i).

We show that
∏n
i=1Mi,σ(i) is a nonzero monomial in x1, . . . , xn if and only if σ picks out a tree packing

of a graph3 that is determined by the sets I1, . . . , It. It turns out that the requirements of (i) and (ii) in

Conjecture 5.4 translate exactly into the requirements needed to apply the Nash-Williams–Tutte theorem

to this graph. Thus, if (i) and (ii) hold, then there exists a tree packing in this graph and hence a nonzero

term in det(M).

If the sets Ii∩Ij and Ii′∩Ij′ that appear in the lower part of the t-wise intersection matrix do not intersect

(that is, if there are no three-wise intersections among the sets Ij), then the reasoning above is enough to

establish the conclusion of Conjecture 5.4, because all of the terms that appear in the expansion of the

determinant are distinct monomials, and they cannot cancel. This is why Theorem 5.9 has this assumption.

In order to apply Theorem 5.9 to list-decoding, we back off from Conjecture 5.4 a bit. First, we allow a

factor of Θ(log t) slack on the right-hand sides of (i) and (ii). Second, rather than showing that the t-wise

intersection matrix Mk,(I1,...,It) is nonsingular, we show that there exists a t′-wise intersection matrix that

3Throughout this chapter, a tree packing of a graph G means a collection of pairwise edge-disjoint spanning trees of G.
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is nonsingular for some t′ < t. Following the connection of [113] illustrated in Figure 5.1, this turns out to

be enough to establish our main theorem on list-decoding/recovery.

We choose this smaller intersection matrix in Lemma 5.17 by carefully choosing a random subset J of

[t]. By greedily removing elements from the sets {Ij : j ∈ J}, we can obtain subsets I ′j ⊂ Ij with empty

three-wise intersections I ′j ∩ I ′j′ ∩ I ′j′′ = ∅. Furthermore, by the careful random choice of J , and since we

allowed a Θ(log t) slack in the initial weight bounds, we can show this step does not delete too many elements.

This is the key step of Lemma 5.17. Using some of the sets {Ij : j ∈ J}, we can find a smaller intersection

matrix obeying the setup of Conjecture 5.4 with the additional guarantee that all three-wise intersections

are empty. We provide a more detailed summary of the proof in Section 5.4.1.

Another avenue to list-decoding: a hypergraph Nash-Williams–Tutte conjecture. Extending

our connection of list-decoding RS codes to the Nash-Williams–Tutte theorem, we show that a suitable hy-

pergraph generalization of the Nash-Williams–Tutte theorem would imply Conjecture 5.4 about the nonsingu-

larity of intersection matrices, without any need for an additional assumption about three-wise intersections

of the sets Ij .

We conjecture that such a generalization is true, and we state it in Section 5.5 as Conjecture 5.25. It

requires a bit of notation to set up, so we do that in Section 5.5 rather than here; however, the reader

interested in the hypergraph conjecture can at this point jump straight to Section 5.5 without missing

anything.

We show that if our hypergraph conjecture were true, it would imply Conjecture 5.4, on the nonsingularity

of intersection matrices (Theorem 5.26). This in turn would imply Conjecture 5.3, establishing the existence

of RS codes with optimal list-decodability. This suggests a plan of attack towards Conjecture 5.3.

While we are unable to establish this challenging conjecture in full, we give some evidence for it. First, we

show that the “easy part” of the conjecture follows from the Nash-Williams–Tutte theorem. Second, we ob-

serve that a quantitative relaxation of the conjecture follows from known results on Steiner tree packings [25]

and disjoint bases of polymatroids [18]. This relaxation can be combined with the connection of hypergraph

packings and intersection matrices established in Theorem 5.26, and the connection between intersection

matrices and list decoding RS codes, to give a second proof of Theorem 5.1, that there are near -optimally

list-decodable RS codes.

In addition to implying the optimal list-decodability of RS codes, Conjecture 5.25 may be of independent

interest. A hypergraph generalization of Nash-Williams–Tutte is known for partition-connected hypergraphs

[37] (see Section 5.5 for definition), a well studied notion. However, for a different notion called weak-partition-

connectivity, less seems to be known, and Conjecture 5.25 poses a Nash-Williams–Tutte generalization for

weakly-partition-connected hypergraphs.

Organization. A graphical overview of our results can be found in Figure 5.2. We begin in Section 5.2

with the needed notation and definitions, including the definition of t-wise intersection matrices.

In Sections 5.3, and 5.4, we prove Theorem 5.1 and Theorem 5.2 using our proof of Conjecture 5.4

under the additional assumption of no three-wise intersections. More precisely, in Section 5.3, we show

how to use the Nash-Williams–Tutte theorem from graph theory to prove Theorem 5.9, which establishes

Conjecture 5.4 under the assumption of no three-wise intersections. In Section 5.4 we prove Theorem 5.2

(and thus Theorem 5.1) on the list-recoverability (list-decodability) of RS codes.
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Conjecture 5.25
Hypergraph

Nash-Williams–
Tutte Conjecture

Conjecture 5.4
Nonsingularity of

intersection matrices

Conjecture 5.3
Optimal List De-

coding of RS Codes

Thm. 5.26 [113]

Lemma 5.10
Nash-Williams–Tutte
theorem [102, 121].

Theorem 5.9
Nonsingularity
of intersection

matrices, provided
that Ii ∩ Ij ∩ I` = ∅
for all distinct i, j, l.

Theorem 5.2
Main Theorem: List
Recovery of RS codes

Theorem 5.1
List Decoding
of RS codes

Proposed roadmap to
optimal list-decoding,

presented in
Section 5.5.

Our proof of
Theorem 5.1

Figure 5.2: A diagram of the results and conjectures presented in this chapter. Solid arrows represent
logical implications. Dashed lines indicate how the proposed roadmap to optimal list decoding parallels our
proof of Theorem 5.1.

In Sections 5.5, we conjecture a hypergraph generalization of the Nash-Williams–Tutte theorem and prove

(Theorem 5.26) that it implies optimal list-decodability of RS codes. We also give some evidence for it by

observing an “easy direction” follows from the ordinary Nash-Williams–Tutte theorem, by highlighting a

known relaxation, and sketching how this relaxation gives us a second proof of Theorem 5.1.

5.2 Preliminaries

For a finite set X and an integer 1 ≤ k ≤ |X|, let
(
X
k

)
= {A ⊆ X : |A| = k} be the family of all k-subsets

of X. For an integer t ≥ 3, we define the following lexicographic order on
(

[t]
2

)
. For distinct S1, S2 ∈

(
[t]
2

)
,

S1 < S2 if and only if max(S1) < max(S2) or max(S1) = max(S2) and min(S1) < min(S2). For a partition

P of X, let |P| denote the number of parts of P.

We view a polynomial f ∈ Fq[x] of degree at most k−1 as a vector of length k defined by its k coefficients,

where for 1 ≤ i ≤ k, the i-th coordinate of this vector is the coefficient of xi−1 in f . By abuse of notation

that vector is also denoted by f . We use the following well-known result.

Lemma 5.5 (DeMillo-Lipton-Schwartz-Zippel lemma, see, e.g., [83] Lemma 16.3). A nonzero polynomial

f ∈ Fq[x1, . . . , xn] of degree d has at most dqn−1 zeros in Fnq .

The main goal of this section is to present the definition of t-wise intersection matrices over an arbitrary

field F.

5.2.1 Cycle Spaces

We need the notion of the cycle space of a graph, which is typically defined over the boolean field F2 (see,

e.g., [28]). Here we define it over an arbitrary field F. An equivalent definition can be found in [8], where it

is called the “circuit-subspace”.
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Let Kt be the undirected complete graph with the vertex set [t]. Denote by {i, j} the edge connecting

vertices i and j. Let Ko
t be the oriented graph obtained by replacing {i, j} with the directed edge (i, j) for

all 1 ≤ i < j ≤ t. For a graph G with vertex set [t], an oriented cycle in G is a set of directed edges of the

form

C = {(i0, i1), (i1, i2), . . . , (im−1, im)}

where m ≥ 3, i0, . . . , im−1 are distinct, im = i0 and {ij−1, ij} is an edge of G for all j = 1, . . . ,m.

Suppose C is a union of edge-disjoint oriented cycles in G. Then C is uniquely represented by a vector

uC = (uC{i,j} : {i, j} ∈
(

[t]
2

)
) ∈ F(t2), defined for 1 ≤ i < j ≤ t by

uC{i,j} =


1 (i, j) ∈ C,

−1 (j, i) ∈ C,

0 else.

Hence, the sign of a nonzero coordinate uC{i,j} indicates whether the orientation of {i, j} in C complies with

its orientation in Ko
t . We further assume that the coordinates of uC are ordered by the aforementioned

lexicographic order on
(

[t]
2

)
.

Denote by C(G) ⊆ F(t2) the subspace spanned by the set of vectors

{uC : C is an oriented cycle in G}

over F. We call C(G) the cycle space of G over F. We are particularly interested in the cycle space C(Kt)

of Kt. For distinct i, j, ` ∈ [t], denote by ∆ij` the oriented cycle {(i, j), (j, `), (`, i)} and call it an oriented

triangle. We have the following lemma, generalizing [28, Theorem 1.9.5].

Lemma 5.6. The vector space C(Kt) ⊆ F(t2) has dimension
(
t−1

2

)
, and the set

Bt = {u∆ijt : 1 ≤ i < j ≤ t− 1}

is a basis of C(Kt).

Proof. The vectors in Bt are linearly independent since u
∆ijt

{i,j} = 1 and u
∆ijt

{i′,j′} = 0 for 1 ≤ i < j ≤ t− 1 and

1 ≤ i′ < j′ ≤ t−1 with {i, j} 6= {i′, j′}. Let W be the span of Bt over F. Consider an arbitrary oriented cycle

C in Kt. We claim that uC ∈ W , and this would imply that Bt is a basis of C(Kt) and that the dimension

of C(Kt) is |Bt| =
(
t−1

2

)
.

Denote by eC the smallest {i, j} ∈
(

[t]
2

)
in the lexicographic order such that (i, j) ∈ C or (j, i) ∈ C. Next,

we will prove the claim by a reverse induction on the lexicographic order of eC . Note that t 6∈ eC since

|C| ≥ 3, which implies that the claim is vacuously true when eC = {t − 1, t} (which never occurs). Now

assume that the claim holds for all oriented cycles C ′ with eC′ > eC . Let {i, j} = eC , where i < j. We may

assume that (i, j) ∈ C by flipping the orientation of C if necessary, which corresponds to negating uC .

Let s be the number of directed edges that C and ∆ijt share. If s = 3 then it is clear by definition that

C = ∆ijt, and we are done. Otherwise, 1 ≤ s ≤ 2 and it is easy to verify that uC − u∆ijt = uC
′

for a

set C ′ that is either an oriented cycle in G or a disjoint union of two oriented cycles C1, C2 in G passing

through t. The latter case occurs when C passes through t and (t, i), (j, t) 6∈ C. In either case, the smallest
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edge (under the lexicographic order) of C ′ is greater than the edge eC = {i, j}. Hence, by the induction

hypothesis and the fact that uC
′

= uC1 +uC2 when C ′ is the disjoint union of C1 and C2, we have uC
′ ∈W .

So uC = uC
′
+ u∆ijt ∈W , completing the proof of the claim.

The basis Bt is also viewed as a
(
t−1

2

)
×
(
t
2

)
matrix over F whose columns are labeled by the edges {i, j}

of Kt, according to the lexicographic order defined above. Moreover, the rows of Bt represent u∆ijt for

1 ≤ i < j ≤ t− 1, and are labeled by {i, j} ∈
(

[t−1]
2

)
, also according to the lexicographic order. For example,

B3 = (1,−1, 1) and

B4 =


1 −1 1

1 −1 1

1 −1 1

 ,

where the 6 columns are labeled and ordered lexicographically by {1, 2} < {1, 3} < {2, 3} < {1, 4} <
{2, 4} < {3, 4}. Observe for example that the ±1 entries in the first row correspond to the oriented triangle

∆124 = {(1, 2), (2, 4), (4, 1)}, where we have −1 on the column labeled by the edge {1, 4}, since the directed

edge (4, 1) in ∆124 has the opposite orientation from the orientation of the edge in Ko
t .

We remark that the above definition of Bt, is given with respect to the fixed orientation of the edges

of Ko
t , as with the definition of uC for any oriented cycle C. One may define Bt with respect to other

orientations of edges, which corresponds to changing the signs in some columns. These definitions are all

equivalent and the analysis in this chapter holds for any orientation up to change of signs.

Moreover, when the characteristic of F is two, we recover the definition of Bt in [113] using the fact that

1 = −1. While working in the case char(F) = 2 has the advantage that there is no need to distinguish the

signs, the theory holds more generally over any field.

5.2.2 t-Wise Intersection Matrices

We proceed to define t-wise intersection matrices, but we begin with a few preliminary definitions. Given n

variables or field elements x1, . . . , xn, define the n× k Vandermonde matrix

Vk(x1, . . . , xn) =


1 x1 · · · xk−1

1

. . .

1 xn · · · xk−1
n

 .

When the xi’s are understood from the context, for I ⊆ [n], we use the abbreviation Vk(I) := Vk(xi : i ∈ I)

to denote the restriction of Vk(x1, . . . , xn) to the rows with indices in I.

Let Ik denote the identity matrix of order k. Next, we give the definition of t-wise intersection matrices.

Definition 5.7 (t-wise intersection matrices). For a positive integer k and t ≥ 3 subsets I1, . . . , It ⊆ [n],

the t-wise intersection matrix Mk,(I1,...,It) is the (
(
t−1

2

)
k +

∑
1≤i<j≤t |Ii ∩ Ij |) ×

(
t
2

)
k variable matrix with

entries in F[x1, . . . , xn], defined as



CHAPTER 5. LIST DECODING: LARGE ALPHABET 82

 Bt ⊗ Ik

diag
(
Vk(Ii ∩ Ij) : {i, j} ∈

(
[t]
2

))
 ,

where ⊗ is tensor product of matrices and

• Bt ⊗ Ik is a
(
t−1

2

)
k ×

(
t
2

)
k matrix with entries in {0,±1},

• diag
(
Vk(Ii ∩ Ij) : {i, j} ∈

(
[t]
2

))
is a block diagonal matrix with blocks Vk(Ii ∩ Ij), ordered by the

lexicographic order on {i, j} ∈
(

[t]
2

)
. Note that this matrix has order (

∑
1≤i<j≤t |Ii ∩ Ij |) ×

(
t
2

)
k. If

Ii ∩ Ij = ∅ for some i, j, then Vk(Ii ∩ Ij) is of order 0× k and the {i, j} ∈
(

[t]
2

)
block of k columns is a∑

1≤i<j≤t |Ii ∩ Ij | × k zero matrix.

Below, we provide an example of a 4-wise intersection matrix. We note that when t = 2, Bt is an empty

matrix and Mk,(I1,I2) is simply a Vandermonde matrix.

Example 5.8 (4-wise intersection matrices). Given four subsets I1, I2, I3, I4 ⊆ [n], the 4-wise intersection

matrix Mk,(I1,I2,I3,I4) is the (3k +
∑

1≤i<j≤4 |Ii ∩ Ij |)× 6k variable matrix

Ik −Ik Ik

Ik −Ik Ik

Ik −Ik Ik

Vk(I1 ∩ I2)

Vk(I1 ∩ I3)

Vk(I2 ∩ I3)

Vk(I1 ∩ I4)

Vk(I2 ∩ I4)

Vk(I3 ∩ I4)



.

For a vector α ∈ Fn, the evaluation of Mk,(I1,...,It) at the vector α is denoted by Mk,(I1,...,It)(α), where each

variable xi is assigned the value αi. Given subsets I1, . . . , It ⊆ [n], we call the variable matrix Mk,(I1,...,It)

nonsingular if it contains at least one
(
t
2

)
k ×

(
t
2

)
k submatrix whose determinant is a nonzero polynomial in

F[x1, . . . , xn].

The paper [113] connects the nonsingularity of intersection matrices to the list-decodability of RS codes.

We will use this connection to prove our main result, Theorem 5.2.

However, we will first prove that certain intersection matrices are nonsingular. This will both allow us

to cleanly illustrate the connection to disjoint tree packings of graphs. We will do this in Theorem 5.9 in

the next section.

5.3 Connection to Tree Packing and an Intermediate Result

In this section we prove the following theorem. We recall from (5.1) the definition of the weight of a collection

of sets:
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wt(I1, . . . , It) =

t∑
i=1

|Ii| −

∣∣∣∣∣
t⋃
i=1

Ii

∣∣∣∣∣ ,
Theorem 5.9. Let t ≥ 2 be an integer and I1, . . . , It ⊂ [n] be subsets satisfying (i) Ii ∩ Ij ∩ Il = ∅ for all

1 ≤ i < j < l ≤ t; (ii) wt(IJ) ≤ (|J | − 1)k for all nonempty J ⊆ [t]; (iii) wt(I[t]) = (t− 1)k. Then the t-wise

intersection matrix Mk,(I1,...,It) is nonsingular over any field.

As discussed above, this theorem stops short of Conjecture 5.4, due to the assumption that Ii∩Ij∩I` = ∅.
In the language of list-decoding Reed–Solomon codes, this only gives us a statement about lists of potential

codewords that have no three-wise intersections. However, we will build on this statement to prove our main

theorem about list-recovery (Theorem 5.2).

The main tool of proving Theorem 5.9 is the following classical result in graph theory.

Lemma 5.10 (Nash-Williams [102], Tutte [121], see also Theorem 2.4.1 of [28]). A multigraph contains k

edge-disjoint spanning trees if and only if for every partition P of its vertex set it has at least (|P| − 1)k

cross-edges. Here an edge is called a cross-edge for P if its two endpoints are in different members of P.

In order to apply the Nash-Williams–Tutte theorem, we will construct a graphG from the sets I1, I2, . . . , It.

We first note that the assumptions on I1, . . . , It from Theorem 5.9 imply some nice properties that will later

allow us to apply Lemma 5.10.

Claim 5.11. Suppose that I1, . . . , It are subsets satisfying the assumptions of Theorem 5.9. Then the matrix

Mk,(I1,...,It) is a square matrix of order
(
t
2

)
k. Further, for any J ⊆ [t] with |J | ≥ 2,

wt(IJ) =
∑

{i,j}∈(J2)

|Ii ∩ Ij |. (5.2)

Proof. By (5.1) (the definition of weight) and the inclusion-exclusion principle

wt(I[t]) =

t∑
i=1

|Ii| −

∣∣∣∣∣
t⋃
i=1

Ii

∣∣∣∣∣ =

t∑
j=2

∑
J∈([t]

j )

(−1)|J|

∣∣∣∣∣⋂
i∈J

Ii

∣∣∣∣∣ .
Therefore, by assumption (i) of Theorem 5.9 we have wt(I[t]) =

∑
1≤i<j≤t |Ii ∩ Ij |. Then, by assumption

(iii) the matrix Mk,(I1,...,It) is in fact a square matrix of order
(
t
2

)
k. Similarly, (5.2) holds for any J ⊆ [t]

with |J | ≥ 2.

To prove Theorem 5.9, let us construct a multigraph G defined on a set V of t vertices, say V =

{v1, . . . , vt}. For 1 ≤ i < j ≤ t, connect vertices vi, vj by |Ii ∩ Ij | multiple edges.

Applying Lemma 5.10 to G leads to the following claim.

Claim 5.12. Let G be as above. Then G contains k edge-disjoint spanning trees.

Proof. Let P = {V1, . . . , Vs} be an arbitrary partition of V . Then it is clear that
∑s
i=1 |Vi| = t. According to

Lemma 5.10, to prove the claim it suffices to show that G has at least (s−1)k cross-edges with respect to P.

By (5.2) and assumption (iii) of Theorem 5.9 it is easy to see that G contains
∑

1≤i<j≤t |Ii ∩ Ij | = (t− 1)k

edges. Moreover, by (5.2) and assumption (ii) of Theorem 5.9 one can infer that for each i ∈ [s], the induced
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subgraph of G on the vertex set Vi has at most wt(Ij : j ∈ Vi) ≤ (|Vi|−1)k edges. It follows that the number

of cross-edges of G (with respect to P) is at least

(t− 1)k −
s∑
i=1

(|Vi| − 1)k =

(
t− 1−

s∑
i=1

|Vi|+ s

)
k = (s− 1)k,

as needed, thereby completing the proof of the claim.

Below, we will relate a tree packing of this graph G to the determinant of the intersection matrix

Mk,(I1,...,It). In order to do this, we first record a property of the matrix Bt. Recall that the columns of Bt
are indexed by

(
[t]
2

)
.

Claim 5.13. Removing a set of columns from Bt will not reduce its row rank if and only if the columns are

labeled by an acyclic subgraph of Kt.

Proof. First we prove the if direction. Assume to the contrary that we can remove from Bt some columns

labeled by an acyclic subgraph H of Kt and reduce the row rank. Let B′t be the submatrix of Bt after the

removal of the columns labeled by H. The rows of B′t are linearly dependent by assumption. Hence, there

exists a nonzero vector u ∈ F(t−1
2 ) such that u ·B′t = 0. As u 6= 0 and the rows of Bt are linearly independent,

we have u · Bt 6= 0. Let S ⊆
(

[t]
2

)
be the support of u · Bt, where the support of a vector of length n is

the subset of [n] that records the indices of its nonzero coordinates. As u · Bt 6= 0 and u · B′t = 0, we have

∅ 6= S ⊆ H.

Consider the
(
t
2

)
× t matrix D = (D{i,j},s) which is defined by

D{i,j},s =


1 s = j,

−1 s = i,

0 otherwise,

where 1 ≤ i < j ≤ t and s ∈ [t]. Note that the rows and columns of D are labeled by {i, j} ∈
(

[t]
2

)
and

s ∈ [t] respectively. It is easy to verify that Bt ·D = 0, which implies that u · Bt ·D = 0. Denote u · Bt by

w = (w{i,j}) ∈ F(t2), whose support is S. As ∅ 6= S ⊆ H and H is acyclic, we can find s0 ∈ [t] whose degree

in S is one, i.e., there exists a unique edge {i0, j0} ∈ S such that s0 ∈ {i0, j0}. Then, the s0-th entry of w ·D
is ∑

{i,j}∈([t]
2 )

w{i,j}D{i,j},s0 = w{i0,j0}D{i0,j0},s0 = ±w{i0,j0} 6= 0,

which is a contradiction as w ·D = u · Bt ·D = 0.

Now we prove the only if direction. It suffices to prove that removing from Bt a set of columns labeled

by a cycle C of Kt will reduce its row rank by at least 1. Let us orient the edges of C to make it an oriented

cycle, which by abuse of notation is also denoted by C. Since the rows of Bt form a basis of C(Kt), there is

a nonzero vector u ∈ F(t−1
2 ) such that u · Bt = uC . Let B′t be the submatrix of Bt after the removal of the

columns labeled by C. Then it is not hard to check that u · B′t = 0, which implies that the rows of B′t are

linearly dependent, as needed.

Next we present the proof of Theorem 5.9. Recall from Claim 5.11 that under the assumptions of Theorem
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5.9, the t-wise intersection matrix

Mk,(I1,...,It) =

 Bt ⊗ Ik

diag
(
Vk(Ii ∩ Ij) : {i, j} ∈

(
[t]
2

))
 ,

is a square matrix of order
(
t
2

)
k, and is defined by exactly (t − 1)k variables xs, s ∈ S, where S ⊆ [n]

is some subset of size (t − 1)k. In order to prove that Mk,(I1,...,It) is nonsingular, we proceed to show the

nonsingularity of the following matrix, obtained by permuting the columns and rows of Mk,(I1,...,It):

M ′k,(I1,...,It) :=

 Ik ⊗ Bt(
Ci : 0 ≤ i ≤ k − 1

)
 ,

where Ci = diag
(
V

(i)
k (Ij ∩ Ij′) : {j, j′} ∈

(
[t]
2

))
and V

(i)
k (Ij ∩ Ij′) is the (i + 1)-th column of Vk(Ij ∩ Ij′).

Above,
(
Ci : 0 ≤ i ≤ k − 1

)
is a (t − 1)k ×

(
t
2

)
k variable matrix, which consists of the matrices Ci stacked

next to each other. See Figure 5.3 for an illustration, and Example 5.14 below for a concrete example.

Example 5.14. For k = 2, instead of considering the following 4-wise intersection matrix

 B4 ⊗ I2

diag(Vk(Ii ∩ Ij) : {i, j} ∈
(

[4]
2

)
 =



1 −1 1

1 −1 1

1 −1 1

1 −1 1

1 −1 1

1 −1 1

1 x1

1 x2

1 x3

1 x4

1 x5

1 x6



,
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This column indexed by {j, `} ∈
([t]
2

)
and i ∈ [k]

This row is indexed by xs, for
s ∈ Ij ∩ I`.

This is xis

Mk,(I1,...,It)

Ik

Ik

Ik

Ik

Ik

Ik

−Ik

−Ik

−Ik

Bt

Bt

Bt

This column indexed by i ∈ [k] and

{j, `} ∈
([t]
2

)
This row is indexed by xs, for

s ∈ Ij ∩ I`.

xis

M ′
k,(I1,...,It)

Figure 5.3: Re-ordering the rows/columns of an intersection matrix. (In this cartoon, t = 4 and k = 3).

we turn to prove the nonsingularity of

 I2 ⊗ B4

(Ci : 0 ≤ i ≤ 1)

 =



1 −1 1

1 −1 1

1 −1 1

1 −1 1

1 −1 1

1 −1 1

1 x1

1 x2

1 x3

1 x4

1 x5

1 x6



.

Proof of Theorem 5.9. If t = 2, then Mk,(I1,I2) is a k × k Vandermonde matrix, which is nonsingular, so

assume t ≥ 3. For the rest of the proof, we will consider the matrix M ′ = M ′k,(I1,...,It) discussed above, and
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show that it is nonsingular.

Let the graph G be as in the discussion above; recall that for distinct i, j ∈ [t], two vertices vi, vj in G

are connected by |Ii ∩ Ij | edges. By Claim 5.11, M ′ is a square matrix with
(
t
2

)
k rows and columns, and

k(t − 1) “variable” rows at the bottom. Let S ⊆ [n] be the subset that records the indices of variables xs

that appear in M ′.

For 1 ≤ i < j ≤ t, fix an arbitrary one-to-one correspondence between the |Ii∩ Ij | edges connecting vi, vj

and the |Ii ∩ Ij | variables xs ∈ S so that s ∈ Ii ∩ Ij . Since any three distinct subsets Ii, Ij , I` have empty

intersection, this yields a one-to-one correspondence

φ : E(G) −→ {xs : s ∈ S},

between the (t− k)k edges of G and the (t− 1)k variables with indices in S.

By Claim 5.12, the edges of G can be partitioned into k edge-disjoint spanning trees Ti, and G =
⋃k−1
i=0 Ti.

Observe that for each 0 ≤ i ≤ k− 1, Ci has entries that are either zero or of the form xis for some xs ∈ S.

We will show how to use the tree decomposition of G to choose nonzero entries in each Ci so that (a) every

row in the bottom part of M ′ is chosen exactly once, and (b) when the columns chosen are removed from

M ′, the resulting submatrix of Bt is nonsingular. This will mean that the product of these non-zero entries

appears in the determinant expansion of M ′.

For each i, we pick t− 1 non-zero elements from each Ci: we choose xis for xs ∈ {φ(e) : e ∈ Ti}. That is,

we consider all of the variables xs corresponding to edges that appear in Ti. Let mi(x) denote the product

of these entries:

mi(x) =
∏

xs∈{φ(e) : e∈Ti}

xis.

Let m(x) =
∏k−1
i=0 mi(x). Since φ is a bijection, m(x) is a product of (t − 1)k distinct entries chosen from

the submatrix
(
Ci : 0 ≤ i ≤ k − 1

)
, and crucially, no two of them appear in the same row or column.

To conclude the proof, it is enough to show that m(x) appears as a nonvanishing term in the determinant

expansion of M ′k,(I1,...,It). Indeed, removing from M ′k,(I1,...,It) the (t− 1)k rows and columns that correspond

to m(x), the resulting submatrix is a block diagonal matrix

diag
(
B′t(i) : 0 ≤ i ≤ k − 1

)
,

where for each i, B′t(i) is a square submatrix of Bt of order
(
t−1

2

)
. By construction, each B′t(i) is obtained

by removing from Bt a set of t − 1 columns labeled by the spanning tree Ti. By Claim 5.13, this implies

that B′t(i) is nonsingular. Moreover, as each of the sets Ii ∩ Ij are disjoint due to the assumptions of the

theorem, the monomial m(x) appears only once in the determinant expansion of M ′k,(I1,...,It). Consequently,

the “coefficient” of m(x) in the determinant expansion of M ′k,(I1,...,It) is nonvanishing, completing the proof

of the theorem.
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5.4 Near-Optimal List-Recovery of RS Codes: Proof of the Main

Theorem

In this section we prove our main theorem on the list-recovery of RS codes, Theorem 5.2. We will in fact

prove the following theorem, which implies Theorem 5.2.

Theorem 5.15. Let k, n, L, ` ∈ N+, ε ∈ (0, 1], and δ > 0 be such that L ≥ (1 + δ)`/ε− 1 and

k/n ≤ ε

c
√
`( 1+δ

δ )(log( 1
ε ) + log( 1+δ

δ ) + 1)
,

where c > 0 is the constant in Lemma 5.17. Consider the RS code

C = {(f(α1), . . . , f(αn)) : f(x) ∈ Fq[x], deg(f) < k}

where q ≥ 2c
′(L+n logL) for a large enough constant c′ > 0 and α1, . . . , αn are chosen uniformly and indepen-

dently from Fq at random. Then with high probability, the code C has rate R = k/n and is list-recoverable

up to relative distance 1 − ε with input list size ` and output list size L. In particular, by choosing δ to be

any positive constant, we could achieve L = O(`/ε) and R = Ω
(

ε√
`(log(1/ε)+1)

)
.

We begin with an overview of the proof.

5.4.1 Overview of the Proof

We give an overview of our proof of Theorem 5.15. For simplicity, let us first assume the input list size `

equals one, i.e., we restrict to the case of list decoding. In this case, Theorem 5.15 states that there exist RS

codes of rate Ω( ε
log(1/ε)+1 ) that are list-decodable from radius 1− ε with list size O(1/ε).

As discussed previously, Conjecture 5.4 about the nonsingularity of intersection matrices would be enough

to establish Theorem 5.15, and indeed an even stronger result. While we do not know if Conjecture 5.4 holds

in general, Theorem 5.9 states that it holds under an extra condition that Ii ∩ Ii′ ∩ Ii′′ = ∅ for distinct

i, i′, i′′ ∈ [t]. Our proof of Theorem 5.15 is based on this theorem.

As Theorem 5.9 requires the above extra condition, which does not hold in general, we cannot simply

follow the proof in [113] and replace Conjecture 5.4 by Theorem 5.9. One naive way of fixing this is removing

elements from the sets Ii until the condition Ii∩ Ii′ ∩ Ii′′ = ∅ for distinct i, i′, i′′ ∈ [t] is satisfied. Specifically,

for each j ∈ [n] such that there exist more than two sets Ii1 , . . . , Iis containing j, we pick two sets (say Ii1 and

Ii2) and remove j from all the other sets. The resulting sets I ′1, . . . , I
′
t satisfy the condition I ′i ∩ I ′i′ ∩ I ′i′′ = ∅

for distinct i, i′, i′′ ∈ [t] and we can now apply Theorem 5.9 to conclude that Mk,(I′1,...,I
′
t)

is nonsingular.

The problem with this idea, however, is that wt(I ′[t]) is generally much smaller than wt(I[t]), possibly by

a factor of Θ(t) = Ω(1/ε). So in order to achieve wt(I ′[t]) ≥ (t − 1)k as required by Theorem 5.9,4 we need

to start with sets Ii such that wt(I[t]) � (t − 1)k. As a consequence, implementing this idea directly only

yields RS codes of rate Ω(ε2).

To mitigate this problem, we perform a random sampling of the collection {I1, . . . , It} before removing

elements from Ii. Namely, we choose a random subset J ⊆ [t] of some appropriate cardinality to be

4Theorem 5.9 requires the stronger condition wt(I′
[t]

) = (t−1)k, but this can be achieved by further removing elements from

the sets I′i.
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determined later. Then, we remove elements from the sets Ii just like before, but only for i ∈ J , so that the

resulting sets I ′i satisfy the condition I ′i ∩ I ′i′ ∩ I ′i′′ = ∅ for distinct i, i′, i′′ ∈ J . Finally, we apply Theorem 5.9

to conclude that the |J |-wise intersection matrix Mk,(I′i)i∈J
is nonsingular, which can still be used to prove

the list-decodability of the RS code.

The advantage of replacing [t] by the random sample J ⊆ [t] is that the condition wt(I ′[t]) ≥ (t − 1)k is

replaced by wt(I ′J) ≥ (|J | − 1)k. It turns out that the condition I ′i ∩ I ′i′ ∩ I ′i′′ = ∅ for distinct i, i′, i′′ ∈ J is

easier to satisfy since |J | may be much smaller than t. Consequently, we are able to show that there exist

RS codes of rate Ω( ε
log(1/ε)+1 ) using this improved method.

Finally, we explain how to choose the cardinality of the sample J . Let j ∈ [n] and denote by sj the

number of sets among I1, . . . , It that contain j. Then for the index j, it is best to choose |J | = Θ(t/sj).

However, the number sj may vary when j ranges over [n], meaning that there may not be a single choice of

|J | that works best for all j ∈ [n] simultaneously.

We solve this problem using the following trick: Create a logarithmic number of “buckets” and put j ∈ [n]

in the i-th bucket if 2i−1 ≤ sj < 2i. Then choose |J | according to the heaviest bucket. Here, we lose a factor

of O(log(1/ε) + 1) in the rate because there are about logL = O(log(1/ε) + 1) buckets.

Generalization to list recovery. In the case of list decoding, we choose each set Ii to be the subset of

coordinates where a codeword ci and the received word y agree. In the more general setting of list recovery,

there are multiple received words y(1), . . . , y(`) in the input list, so we need to keep track of multiple sets

I
(1)
i , . . . , I

(`)
i for each i ∈ [t].

One way of extending our proof to list recovery is choosing r ∈ [`] that maximizes wt(I
(r)
[t] ) = wt(I

(r)
1 , . . . , I

(r)
t )

and then proceeding as in the case of list decoding, with I1, . . . , It replaced by I
(r)
1 , . . . , I

(r)
t . It is not hard

to show that this yields RS codes of rate Ω( ε
`(log(1/ε)+1) ) which are list-recoverable from radius 1 − ε with

input list size ` and output list size O(`/ε).

With a more careful analysis, we show that we can achieve a better rate Ω( ε√
`(log(1/ε)+1)

), as stated

by Theorem 5.2. Our analysis is inspired by [96] which proved a similar result on the list-recoverability of

randomly punctured codes with a different setting of parameters.

5.4.2 A Combinatorial Lemma

In this subsection, we state a combinatorial lemma (Lemma 5.17). It guarantees the existence of a subset

J ⊆ [t] and sets I ′i ⊆ Ii for i ∈ J that satisfy certain conditions, particularly the condition I ′i ∩ I ′i′ ∩ I ′i′′ = ∅
for distinct i, i′, i′′ ∈ J . We then use this lemma together with Theorem 5.9 to prove Theorem 5.2. The

proof of this combinatorial lemma is postponed to Subsection 5.4.4.

First, we need the following generalization of the weight function wt(·).

Definition 5.16 (Generalized weight function). Let n, t ∈ N+ and I1, . . . , It ⊆ [n]. Let Sj = {i ∈ [t] : j ∈ Ii}
for j ∈ [n]. For J ⊆ [t] and ` ∈ N+, define the l-th generalized weight wt`(IJ) of IJ to be

wt`(IJ) :=

n∑
j=1

max{|Sj ∩ J | − `, 0}.
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Note that wt(IJ) =
∑
i∈J |Ii| − |

⋃
i∈J Ii| = wt1(IJ). Also note that

wt`(IJ) ≥
n∑
j=1

(|Sj ∩ J | − `) =
∑
i∈J
|Ii| − `n. (5.3)

The proof of Theorem 5.2 uses the following combinatorial lemma, which we prove in the next subsection.

Lemma 5.17. Let k, n, t, ` ∈ N+, ε ∈ (0, 1], δ > 0, and I
(r)
1 , . . . , I

(r)
t ⊆ [n] for r ∈ [`]. Let Ii =

⋃`
r=1 I

(r)
i

for i ∈ [t]. Suppose t ≥ (1 + δ)`/ε, |Ii| ≥ εn for i ∈ [t], and

wt`(I[t]) ≥
(
c
√
`

(
log

(
1

ε

)
+ log

(
1 + δ

δ

)
+ 1

))
· tk.

where c > 0 is a large enough absolute constant. Then there exist J ⊆ [t] and a collection (I ′i)i∈J of subsets

of [n] indexed by J such that |J | ≥ 2, I ′i ⊆ Ii for i ∈ J , and the following conditions are satisfied:

(1) I ′i ∩ I ′i′ ∩ I ′i′′ = ∅ for distinct i, i′, i′′ ∈ J .

(2) wt(I ′J′) ≤ (|J ′| − 1)k for all nonempty J ′ ⊆ J .

(3) wt(I ′J) = (|J | − 1)k.

(4) For every j ∈ [n], there exists rj ∈ [`] such that {i ∈ J : j ∈ I ′i} ⊆ {i ∈ J : j ∈ I(rj)
i }.

Remark 5.18. Condition (4) is introduced for list recovery. For the case ` = 1, which corresponds to

list decoding, Condition (4) is automatically satisfied by choosing rj = 1 for j ∈ [n] since in this case

I ′i ⊆ Ii = I
(1)
i for i ∈ J .

We also need the following lemma that bounds the number of pairs (J, (I ′i)i∈J).

Lemma 5.19. The number of (J, (I ′i)i∈J) satisfying Condition (1) of Lemma 5.17 is at most 2t(1+t+
(
t
2

)
)n.

Proof. There are at most 2t choices of J . Now fix J ⊆ [t]. For j ∈ [n], let Tj = {i ∈ J : j ∈ I ′i}. Note that

we have |Tj | ≤ 2 for all j ∈ [n] by Condition (1) of Lemma 5.17. So for each j ∈ [n], the number of choices of

Tj is at most 1 + t+
(
t
2

)
. Also note that the sets I ′i are determined by the sets Tj by I ′i = {j ∈ [n] : i ∈ Tj}.

So the number of choices of (J, (I ′i)i∈J) is at most 2t(1 + t+
(
t
2

)
)n.

5.4.3 Proof of Theorem 5.15

Now we are ready to prove our main theorem. For the reader’s convenience, we restate it below.

Theorem (Theorem 5.15, restated). Let k, n, L, ` ∈ N+, ε ∈ (0, 1], and δ > 0 such that L ≥ (1 + δ)`/ε− 1

and

k/n ≤ ε

c
√
`( 1+δ

δ )(log( 1
ε ) + log( 1+δ

δ ) + 1)
,

where c > 0 is the constant in Lemma 5.17. Consider the RS code

C = {(f(α1), . . . , f(αn)) : f(x) ∈ Fq[x],deg(f) < k}

where q ≥ 2c
′(L+n logL) for a large enough constant c′ > 0 and α1, . . . , αn are chosen uniformly and indepen-

dently from Fq at random. Then with high probability, the code C has rate R = k/n and is list-recoverable
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up to relative distance 1− ε with input list size ` and output list size L. In particular, by choosing δ to be

any positive constant, we could achieve L = O(`/ε) and R = Ω
(

ε√
`(log(1/ε)+1)

)
.

Proof. Let t = L+ 1. Consider the following two conditions:

(1) αi 6= αj for all distinct i, j ∈ [n].

(2) For all J ⊆ [t] and (I ′i)i∈J satisfying Conditions (1)–(3) of Lemma 5.17, we have

det(Mk,(I′i)i∈J
(α1, . . . , αn)) 6= 0,

where Mk,(I′i)i∈J
denotes the

(|J|
2

)
k ×

(|J|
2

)
k variable matrix5

Mk,(I′i)i∈J
=

 B|J| ⊗ Ik

diag
(
Vk(I ′i ∩ I ′j) : {i, j} ∈

(
J
2

))
 .

The first condition is satisfied with probability at least 1−
(
n
2

)
/q. For the second condition, consider fixed J ⊆

[t] and (I ′i)i∈J satisfying Conditions (1)–(3) of Lemma 5.17. We know det(Mk,(I′i)i∈J
) 6= 0 by Theorem 5.9.

Also note that det(Mk,(I′i)i∈J
) is a multivariate polynomial of total degree at most (|J | − 1)k(k − 1) ≤ Lk2.

So by Lemma 5.5, det(Mk,(I′i)i∈J
)(α1, . . . , αn) 6= 0 holds with probability at least 1− Lk2/q for fixed J and

(I ′i)i∈J . The number of choices of (J, (I ′i)i∈J) is at most 2t(1 + t +
(
t
2

)
)n by Lemma 5.19. By the union

bound, the two conditions are simultaneously satisfied with probability at least

1−
(
n

2

)
/q − 2t

(
1 + t+

(
t

2

))n
Lk2/q = 1− o(1)

over the random choices of α1, . . . , αn, where we use the assumption that q ≥ 2c
′(L+n logL) and c′ > 0 is a

large enough constant.

Fix α1, . . . , αn ∈ Fq that satisfy the above two conditions. By the first condition, the code C has rate

exactly k/n. It remains to show that C is list-recoverable up to relative distance 1−ε with input list size ` and

output list size L. Assume to the contrary that this does not hold. Then there exist t distinct polynomials

f1, . . . , ft ∈ Fq[x] of degree less than k and ` received words y(r) = (y
(r)
1 , . . . , y

(r)
n ) ∈ Fnq , where r = 1, 2, . . . , `,

such that for all i ∈ [t], the cardinality of the set

Ii := {j ∈ [n] : there exists r ∈ [`] such that fi(αj) = y
(r)
j }

is at least εn.

Let I
(r)
i = {j ∈ [n] : fi(αj) = y

(r)
j } for i ∈ [t] and r ∈ [`], i.e., I

(r)
i denotes the set of coordinates where

C(fi) := (fi(α1), . . . , fi(αn)) and y(r) agree. So Ii =
⋃`
r=1 I

(r)
i for i ∈ [t]. As t = L + 1 ≥ (1 + δ)`/ε and

5The number of rows of Mk,(I′i)i∈J
is
(|J|−1

2

)
k +

∑
{i,j}∈

(
J
2

) |I′i ∩ I′j |, which equals
(|J|−1

2

)
k +

∑
i∈J |I′i| − |

⋃
i∈J I

′
i| =(|J|−1

2

)
k+ wt(I′J ) by Condition (1) of Lemma 5.17. This number further equals

(|J|−1
2

)
k+ (|J | − 1)k =

(|J|
2

)
k by Condition (3)

of Lemma 5.17.
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k/n ≤ ε
c
√
`( 1+δ

δ )(log( 1
ε )+log( 1+δ

δ )+1)
, we also have

wt`(I[t])
(5.3)

≥ tεn− `n ≥ δ

1 + δ
· tεn ≥

(
c
√
`

(
log

(
1

ε

)
+ log

(
1 + δ

δ

)
+ 1

))
· tk.

By Lemma 5.17, there exist J ⊆ [t] and (I ′i)i∈J such that |J | ≥ 2, I ′i ⊆ Ii for i ∈ J , and Conditions (1)–(4)

of Lemma 5.17 are satisfied.

Let u be the vector (fij : {i, j} ∈
(
J
2

)
, i < j) ∈ F(|J|2 )k

q , where fij := fi − fj . As |J | ≥ 2 and f1, . . . , ft are

distinct, we have u 6= 0.

We claim that

Mk,(I′i)i∈J
(α1, . . . , αn) · uT = 0. (5.4)

To see this, first note that (B|J| ⊗ Ik) · uT = 0. Now consider a row v of the submatrix

diag
(
Vk(I ′i ∩ I ′j) : {i, j} ∈

(
J

2

))
(α1, . . . , αn),

of Mk,(I′i)i∈J
(α1, . . . , αn), which corresponds to some {i, j} ∈

(
J
2

)
with i < j and s ∈ I ′i ∩ I ′j . By definition,

we have v · uT = fij(αs), i.e., the row v represents the linear constraint fij(αs) = 0. By Condition (4) of

Lemma 5.17, we have s ∈ I(rs)
i ∩ I(rs)

j for some rs ∈ [`], which implies fi(αs) = y
(rs)
s and fj(αs) = y

(rs)
s . So

v · uT = fij(αs) = fi(αs)− fj(αs) = 0. This proves (5.4).

By (5.4), we have det(Mk,(I′i)i∈J
)(α1, . . . , αn) = 0. But this contradicts the choice of α1, . . . , αn.

5.4.4 Proof of Lemma 5.17

We present the proof of Lemma 5.17 in this subsection.

Let k, n, t, ` ∈ N+, ε ∈ (0, 1], δ > 0, and the sets I
(r)
i , Ii ⊆ [n] for i ∈ [t] and r ∈ [`] be as in Lemma 5.17.

That is, we have t ≥ (1 + δ)`/ε, Ii =
⋃`
r=1 I

(r)
i and |Ii| ≥ εn for i ∈ [t], and

wt`(I[t]) ≥
(
c
√
`

(
log

(
1

ε

)
+ log

(
1 + δ

δ

)
+ 1

))
· tk. (5.5)

where c > 0 is a large enough absolute constant. We may assume without loss of generality that I
(1)
i , . . . , I

(`)
i

are pairwise disjoint for all i ∈ [t]: if an element appears in both I
(r)
i and I

(r′)
i for r 6= r′, we can remove it

from one of them, and the set Ii does not change. Thus, if we can prove Lemma 5.17 when these pairwise

disjoint conditions hold, we can prove it in general, since we can choose the same subsets I ′i ⊆ Ii after

removing redundant elements.

For j ∈ [n], Sj := {i ∈ [t] : j ∈ Ii}. By definition, we have

wt`(I[t]) =

n∑
j=1

max{|Sj | − `, 0}. (5.6)

Assume for a moment that there exists an integer K ∈ N+ such that max{|Sj |− `, 0} equals either K or zero

for all j ∈ [n]. Then by (5.6), the number of j ∈ [n] for which max{|Sj | − `, 0} = K holds (or equivalently,

|Sj | = K + ` holds) is precisely wt(I[t])/K. The next lemma extends this fact to the general case with only
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logarithmic loss.

Lemma 5.20. There exists an integer K > 0 such that the number of j ∈ [n] satisfying |Sj | ≥ K + ` is at

least
wt`(I[t])

c0K(log( 1
ε )+log( 1+δ

δ )+1)
, where c0 > 0 is some absolute constant.

Proof. By (5.3) and the fact that t ≥ (1 + δ)`/ε, we have

wt`(I[t]) ≥ tεn− `n ≥
δ

1 + δ
· tεn. (5.7)

For i = 0, 1, 2, . . . , let Bi = {j ∈ [n] : 2i ≤ |Sj | − ` < 2i+1}. Then

wt`(I[t]) =

n∑
j=1

max{|Sj | − `, 0} =

dlog te−1∑
i=0

∑
j∈Bi

(|Sj | − `).

Let d = blog( δ
1+δ · tε/2)c. Note that d could be negative (possibly δ

1+δ · tε/2 ∈ (0, 1)). Then

∑
0≤i<d

∑
j∈Bi

(|Sj | − `) ≤ n2d ≤ δ

1 + δ
· tεn/2

(5.7)

≤ wt`(I[t])/2.

Therefore
dlog te−1∑
i=max{d,0}

∑
j∈Bi

(|Sj | − `) ≥ wt`(I[t])/2. (5.8)

Let ∆ = dlog te −max{d, 0} = O(log( 1
ε ) + log( 1+δ

δ ) + 1). By (5.8), there exists an integer i0 such that

max{d, 0} ≤ i0 ≤ dlog te − 1 and ∑
j∈Bi0

(|Sj | − `) ≥
wt`(I[t])

2∆
. (5.9)

Choose K = 2i0 . Then K ≤ |Sj | − ` < 2K for all j ∈ Bi0 . The upper bound |Sj | − ` < 2K for j ∈ Bi0 ,

together with (5.9), implies |Bi0 | ≥
wt`(I[t])

4K∆ . So the number of j ∈ [n] satisfying |Sj | ≥ K + ` is at least
wt`(I[t])

4K∆ = Ω
(

wt`(I[t])

K(log( 1
ε )+log( 1+δ

δ )+1)

)
.

Fix K satisfying Lemma 5.20. Define

A := {j ∈ [n] : |Sj | ≥ K + `} ⊆ [n].

By the choice of K and Lemma 5.20, we have

|A| ≥
wt`(I[t])

c0K(log( 1
ε ) + log( 1+δ

δ ) + 1)
. (5.10)

For j ∈ [n] and r ∈ [`], let S
(r)
j := {i ∈ [t] : j ∈ I(r)

i }. So Sj =
⋃`
r=1 S

(r)
j for j ∈ [n]. Note that S

(1)
j , . . . , S

(`)
j

are pairwise disjoint for all j: if i ∈ S(r)
j ∩ S

(r′)
j , we must have j ∈ I(r)

i ∩ I(r′)
i , but we have assumed that

I
(1)
i , . . . , I

(`)
i are pairwise disjoint for all i.

We also need the following technical lemma.

Lemma 5.21. For real numbers p ∈ (0, 1
2 ] and x ≥ 0, we have (1− p)x(1 + px) ≤ 1− 1

8p
2x2 if x ≤ 1

p , and

(1− p)x(1 + px) ≤ 2
e otherwise.
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Proof. Fix p and let f(y) = (1− p)y(1 + py). For y ≥ 0, the derivative f ′(y) satisfies

f ′(y) = (1− p)y(ln(1− p) · (1 + py) + p)

≤ (1− p)y(−p(1 + py) + p)

= −p2y(1− p)y.

(5.11)

So f ′(y) ≤ −p2y(1−p)x for y ∈ [0, x]. As f(0) = 1, we have f(x) ≤ 1+
∫ x

0
−p2y(1−p)xdy = 1− 1

2p
2x2(1−p)x.

If x ≤ 1
p , we have (1 − p)x ≥ (1 − p)1/p ≥ 1/4, as (1 − p)1/p is decreasing with p, and thus is minimized at

p = 1
2 . Hence, we have f(x) ≤ 1− 1

8p
2x2. By (5.11), f(y) is decreasing and thus maximized at y = 1/p on

the interval [1/p,∞), so for x ≥ 1/p, we have f(x) ≤ f(1/p) = (1− p)1/p(1 + 1) ≤ 2
e .

The above lemma is used to prove the following statement.

Lemma 5.22. Choose a random subset J ⊆ [t] by independently including each i ∈ [t] in J with probability

p = min{
√
`/(2K), 1

2}. Let

AJ := {j ∈ A : there exists r ∈ [`] such that |S(r)
j ∩ J | ≥ 2}.

Then ex[|AJ |] = Ω(|A|).

Proof. Fix j ∈ A. It suffices to prove that Pr[j ∈ AJ ] ≥ c for some constant c. Let

tr := max{|S(r)
j | − 1, 0}

for r = 1, . . . , `. Let K ′ :=
∑`
r=1 tj . Since j ∈ A and Sj =

⋃`
r=1 S

(r)
j , we have

K ′ =
∑̀
r=1

tj ≥ |Sj | − ` ≥ K.

For all r = 1, . . . , `, we have

Pr[|S(r)
j ∩ J | ≤ 1] = (1− p)tr (1 + trp)

This is because the probability is exactly (1− p)tr+1 + (tr + 1)p(1− p)tr when tr ≥ 1, and is exactly 1 when

tr = 0.

As S
(1)
j , . . . , S

(`)
j are disjoint, the events that |S(r)

j ∩ J | ≥ 2 are independent. Thus, the probability that

j ∈ AJ is

Pr[j ∈ AJ ] = 1−
∏̀
r=1

Pr[|S(r)
j ∩ J | ≤ 1] = 1−

∏̀
r=1

(1− p)tr (1 + trp)

= 1− (1− p)K
′ ∏̀
r=1

(1 + trp).

We now bound this below by a constant. First consider the case K ′ ≤ `. Then ` ≥ K and p ≥ 1
2
√
K
≥

1
2
√
K′

. When x1, . . . , x` are constrained to be nonnegative integers with a fixed sum, if there exists xi ≤ xj−2,
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we can strictly increase the product f(x1, . . . , x`) :=
∏`
r=1(1 + xrp) by replacing xi with xi + 1 and xj with

xj − 1. Thus, the maximum value of f(x1, . . . , x`) occurs when K ′ of the xi are 1 and the rest are zero.

Hence, we have

Pr[j ∈ AJ ] ≥ 1− (1− p)K
′
(1 + p)K

′
= 1− (1− p2)K

′
≥ 1− (1− 1

4K ′
)K
′
≥ 1− e−1/4,

as desired.

Now suppose K ′ > `. Note that p = min{
√
`/(2K), 1

2} ≥
√
`/(2K ′). As log(1 + xp) is concave for

nonnegative real numbers x, we have that f(x1, . . . , x`) =
∏`
r=1(1 + xrp) subject to x1 + · · · + x` = K ′ is

maximized when all the xi’s are equal. Hence,

Pr[j ∈ AJ ] = 1− (1− p)K
′ ∏̀
r=1

(1 + trp) ≥ 1− (1− p)K
′
(

1 +
K ′

`
p

)`
= 1−

((
(1− p)K

′/`
)(

1 +
K ′

`
p

))`
as desired. If x := K ′/` ≤ 1/p, then, by Lemma 5.21, we have

Pr[j ∈ AJ ] ≥ 1−
(

1− p2 (K ′)2

8`2

)`
≥ 1−

(
1− 1

32`

)`
≥ 1− e−1/32

where the second inequality uses the fact p ≥
√
`/(2K ′). If x ≥ 1/p, then by Lemma 5.21, we have

Pr[j ∈ AJ ] ≥ 1− (2/e)` ≥ 1− 2/e. In all cases, Pr[j ∈ AJ ] is bounded below by a constant, as desired.

Corollary 5.23. There exists J ⊆ [t] of cardinality at most c1
√
`t/K such that the cardinality of the set AJ

as defined in Lemma 5.22 is at least c2|A|, where c1, c2 > 0 are absolute constants.

Proof. Choose a random set J ⊆ [t] as in Lemma 5.22. Then ex[|AJ |] = Ω(|A|) by Lemma 5.22. As

|AJ | ≤ |A|, we have Pr[|AJ | ≥ c2|A|] ≥ c3 for some absolute constants c2, c3 > 0.

Observe that by Lemma 5.22 and the linearity of expectation we have ex[|J |] = pt = O(
√
`t/K). More-

over, by Markov’s inequality we have Pr[|J | > c1
√
`t/K] ≤ c3/2 for some sufficiently large constant c1 > 0.

By the union bound, we know the conditions |J | ≤ c1
√
`t/K and |AJ | ≥ c2|A| are simultaneously satisfied

with probability at least c3/2 > 0, so there exists J ⊆ [t] that satisfies these two conditions.

Fix J ⊆ [t] as in Corollary 5.23, so that |J | ≤ c1
√
`t/K and |AJ | ≥ c2|A|. As the constant c in (5.5) is

large enough, we may assume c ≥ c0c1/c2, where c0 is as in (5.10). Then we have

|AJ | ≥ c2|A|
(5.10)

≥ c2 ·
wt`(I[t])

c0K(log( 1
ε ) + log( 1+δ

δ ) + 1)

(5.5)

≥ (c1
√
`t/K)k > (|J | − 1)k. (5.12)

For each j ∈ AJ , choose a subset Tj ⊆ Sj ∩ J and an index rj ∈ [`] such that |Tj | = 2 and Tj ⊆ S
(rj)
j .

This is possible by the definition of AJ in Lemma 5.22. For j ∈ [n] \AJ , let Tj = ∅. So for j ∈ [n], we have

|Tj | =

2 j ∈ AJ ,

0 j 6∈ AJ .
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Let I ′i = {j ∈ [n] : i ∈ Tj} ⊆ Ii for i ∈ J . We have

wt(I ′J) =

n∑
j=1

max{|Tj | − 1, 0} = |AJ |
(5.12)

≥ (|J | − 1)k.

Moreover, the fact |Tj | ≤ 2 for j ∈ [n] implies that I ′i ∩ I ′i′ ∩ I ′i′′ = ∅ for distinct i, i′, i′′ ∈ J , by noting that

Tj = {i ∈ J : j ∈ I ′i}.
For j ∈ AJ , we have

{i ∈ J : j ∈ I ′i} = Tj ⊆ S
(rj)
j ∩ J = {i ∈ J : j ∈ I(rj)

i }.

And for j ∈ [n] \AJ , we have

{i ∈ J : j ∈ I ′i} = Tj = ∅ ⊆ {i ∈ J : j ∈ I(r)
i } for any r ∈ [`].

Finally, we have |J | ≥ 2 as |AJ | ≥ c2|A| > 0. To summarize, we have proved the following weaker version of

Lemma 5.17.

Lemma 5.24. Under the assumption of Lemma 5.17, there exist J ⊆ [t] and a collection (I ′i)i∈J of subsets

of [n] such that |J | ≥ 2, I ′i ⊆ Ii for i ∈ J , and the following conditions are satisfied:

(1) I ′i ∩ I ′i′ ∩ I ′i′′ = ∅ for distinct i, i′, i′′ ∈ J .

(2) wt(I ′J) ≥ (|J | − 1)k.

(3) For every j ∈ [n], there exists rj ∈ [`] such that {i ∈ J : j ∈ I ′i} ⊆ {i ∈ J : j ∈ I(rj)
i }.

Now we are ready to prove Lemma 5.17.

Proof of Lemma 5.17. Choose the sets J and (I ′i)i∈J satisfying Lemma 5.24 such that |J | ≥ 2 is minimized.

Note that removing one element from I ′i for some i ∈ J preserves (1) and (3) of Lemma 5.24 and reduces

wt(I ′J) by at most one. Removing elements from the sets in (I ′i)i∈J one by one until wt(I ′J) = (|J | − 1)k

holds. Then J and (I ′i)i∈J satisfy (1), (3), and (4) of Lemma 5.17.

The minimality of |J | guarantees that wt(I ′J′) ≤ (|J ′| − 1)k for all nonempty J ′ ⊆ J . (When |J ′| = 1,

this holds since wt(I ′J′) = 0.) So J and (I ′i)i∈J satisfy (2) of Lemma 5.17 as well.

5.5 Towards Conjecture 5.3: A Hypergraph Nash-Williams–Tutte

Conjecture

Recall that Conjecture 5.3 states that RS codes of rate R are list-decodable from radius 1−R− ε with list

size at most d 1−R−ε
ε e. As discussed in the introduction, it was shown in [113, Theorem 5.8] that resolving

Conjecture 5.4 (about the non-singularity of intersection matrices) would resolve Conjecture 5.3 (about

list-decoding).

Our approach above was to show in Theorem 5.9 that intersection matrices are nonsingular under the

additional assumption that Ii ∩ Ij ∩ I` = ∅ for all 1 ≤ i < j < ` ≤ t, and then use that to conclude our

main result about list-recovery. However, to prove Conjecture 5.3 in full, we need to remove the additional
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three-wise intersection assumption. In this section, we describe an approach that could potentially resolve

Conjecture 5.3 in full. To do so, we conjecture a hypergraph generalization of the Nash-Williams–Tutte

theorem [102, 121] that may be of independent interest, and prove that this conjecture implies Conjecture 5.3.

Indeed, one might hope that such a generalization would be useful for Conjecture 5.3, because the Nash-

Williams–Tutte theorem has been instrumental in proving several of the results in this chapter, including

Theorem 5.1, Theorem 5.2, Theorem 5.9. Along the way, we give a second proof of our main list decoding

theorem, Theorem 5.1, by combining this approach with known results on hypergraph packings [25, 18] In

Section 5.5.1, we describe our conjecture, Conjecture 5.25, and in Section 5.5.2, we prove that it implies the

optimal list decoding conjecture, Conjecture 5.3.

5.5.1 A Hypergraph Nash-Williams–Tutte Conjecture

In this section we state a conjecture (Conjecture 5.25 below), and prove that it implies our main goal

Conjecture 5.3. We are not able to prove Conjecture 5.25, but give some evidence for it, pointing out that

special cases and relaxations are known to be true.

Throughout, we use t as the number of vertices in a (hyper)graph. This variable corresponds to the same

t used in t-wise intersection matrices. A (multi)graph G is called k-partition-connected if every partition P
of the vertex set has at least k(|P| − 1) edges crossing the partition. By the Nash-Williams–Tutte theorem,

this is equivalent to the graph having k edge-disjoint spanning trees. The parameter k here is the same k

used as the dimension of the Reed–Solomon code and the same k used for the Vandermonde matrix degrees

in the intersection matrices.

We say a hypergraph H is k-weakly-partition-connected6 if, for every partition P of the vertices of H, we

have

∑
e∈E(H)

(P(e)− 1) ≥ k(|P| − 1), (5.13)

where P(e) is the number of parts of P that e intersects. For example, any k-partition-connected graph is

k-weakly-partition-connected as a hypergraph. As another example, k copies of a hyperedge covering all t

vertices of H is also k-weakly partition-connected.

An edge-labeled graph is a graph G where each edge is assigned a label from some set E. Let H be a

hypergraph. A tree-assignment of H is an edge-labeled graph G obtained by replacing each edge e of H

with a tree Fe of |e| − 1 edges on the vertices of e. Furthermore, each edge of the graph Fe is labeled with

e. The graph G is thus the union of the graphs Fe for e ∈ H.

A k-tree-decomposition of a graph on k(t−1) edges is a partition of its edges into k edge-disjoint spanning

trees T0, . . . , Tk−1. We say tree-decomposition when k is understood. In an edge-labeled graph T with edge-

labels from some set E, let vT ∈ NE be the vector counting the edge-labels in T . Specifically, vTe is the

number of edges of label e in T . For a tree-decomposition (T0, · · · , Tk−1) of an edge-labeled graph, define

6There is also a notion of “k-partition-connected” for hypergraphs which uses min{P(e) − 1, 1} in the sum. In other
words, a hypergraph is k-partition-connected if any partition P has at least k(|P| − 1) crossing edges. This notion admits
a Nash-Williams–Tutte type theorem: any k-partition-connected hypergraph can be decomposed into k 1-partition-connected
hypergraphs [37]
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its signature v(T0,...,Tk−1) by

v(T0,...,Tk−1) :=

k−1∑
i=0

i · vTi . (5.14)

An edge-labeled graph G on t vertices is called k-distinguishable if G has k(t−1) edges and there exists a tree-

decomposition T0, . . . , Tk−1 of G with a unique signature. That is, for any tree-decomposition T ′0, . . . , T
′
k−1

with the same signature v(T ′0,...,T
′
k−1) = v(T0,...,Tk−1), we have T ′i = Ti for i = 0, . . . , k − 1.

With these definitions, we can now conjecture a hypergraph version of the Nash-Williams–Tutte theorem.

Conjecture 5.25. Let t and k be positive integers. Every k-weakly-partition-connected hypergraph H on t

vertices has a k-distinguishable tree-assignment.

The key result of this section is that our optimal list decoding of Reed–Solomon codes conjecture follows

from our hypergraph Nash-Williams–Tutte conjecture. This connection is proved in Section 5.5.2 below.

Theorem 5.26. Conjecture 5.25 implies Conjecture 5.4 and thus Conjecture 5.3.

One should convince themselves that Conjecture 5.25 (if true) is a generalization of the Nash-Williams–

Tutte theorem. Indeed, when H is a (non-hyper) graph, the conjecture boils down to the Nash-Williams–

Tutte theorem. If H is a graph on k(t − 1) edges, then there is only one tree-assignment G of H, namely

H itself with each edge labeled by itself. All edges have distinct edge-labels, so for any tree-decomposition

T0, . . . , Tk−1, the signature v(T0,...,Tk−1) is unique. Thus, showing G is distinguishable, is equivalent to

showing G has k edge-disjoint spanning trees, which follows from the Nash-Williams–Tutte theorem. In the

correspondence between hypergraph partitions and intersection matrices, the special case when H is a graph

corresponds to Theorem 5.9.

To give more intuition when H is not a graph, we give the following example.

Example 5.27. Let t = 4, and k = 2. Below, H is a 2-weakly-partition-connected hypergraph. We take

a tree assignment of H to obtain an edge-labeled graph G on 6 edges, where each edge is labeled by its

color. The tree-decomposition T0 ∪T1 demonstrates that G is 2-distinguishable: We have vT0 = (2, 1, 0) and

vT1 = (0, 1, 2) so the signature is v(T0,T1) = 0 · vT0 + 1 · vT1 = (0, 1, 2). One can check that any other tree

decomposition (T ′0, T
′
1) of G has a different signature v(T ′0,T

′
1) 6= (0, 1, 2). Thus, G is 2-distinguishable. Hence,

H is a 2-weakly partition-connected hypergraph with a 2-distinguishable tree-assignment, as predicted by

Conjecture 5.25.

H G

−→ = +

T0 T1

As evidence towards Conjecture 5.25, we point out that the “easy part” of the conjecture follows from the

Nash-Williams–Tutte theorem. One can check that, even in general hypergraphs, every tree-assignment of

a k-weakly-partition-connected hypergraph gives a k-partition connected graph. Thus, any tree-assignment
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graph can be partitioned into k spanning trees by the Nash-Williams–Tutte theorem, establishing the “exis-

tence” part of the graphG being k-distinguishable. Thus, the hard part of Conjecture 5.25 is the “uniqueness”

part, finding a spanning tree partition with a unique signature.

As further evidence towards Conjecture 5.25, we point out that a relaxation of Conjecture 5.25 is true

by assuming a larger weak-partition-connectivity [25, 18].

Theorem 5.28 (Follows from [25, 18]). There exists an absolute constant C such that the following holds.

Let t and k be positive integers. Every C(log t)k-weakly-partition-connected hypergraph H on t vertices has

a tree-assignment with a k-distinguishable subgraph.

The results in [25, 18] look slightly different from Theorem 5.28 and we briefly describe the connection

here. Both of the works prove that every C(log t)k-weakly partition-connected hypergraph has k hyperedge-

disjoint connected subhypergraphs:7 the first [25] proves an equivalent statement about bipartite Steiner

tree packings, and the second [18] proves a more general result about disjoint bases of polymatroids and

also improves the constant C in front of the log factor over [25]. Furthermore, it is not difficult to show

that, for any hypergraph H with k hyperedge-disjoint connected subhypergraphs H0, . . . ,Hk−1, any tree

assignment of H has a k-distinguishable subgraph: briefly, the k-distinguishable subgraph G is the union of

spanning trees T0, . . . , Tk−1 of the tree assignments of H0, . . . ,Hk−1 that are implied by the tree assignments

of H, and the spanning trees T0, . . . , Tk−1 give the k edge-disjoint spanning trees of G that certify k-

distinguishability. Hence, any C(log t)k-weakly-partition-connected hypergraph has k hyperedge-disjoint

connected subhypergraphs and thus is k-distinguishable, which is Theorem 5.28.

While it is known that the log factor in the results of [25, 18] cannot be removed [6]8, one can still hope

that Conjecture 5.25 is true. The results in [25, 18] are used to obtain k-distinguishability by taking a tree

packing where edges of the same label are always in the same tree. Keeping the same edge labels in the

same trees is not necessary in general to obtain distinguishability. Indeed Example 5.27 illustrates that a

tree-assignment can be k-distinguishable even when the original hypergraph does not have a partition into

k connected subhypergraphs. Thus, we hope that the log factor can still be saved by splitting edge labels

of the tree-assignment graph across the k spanning trees. As we pointed out earlier, the existence of a

tree-packing in the tree-assignment graph follows from the Nash-Williams–Tutte theorem, so the hard part

of the conjecture is not finding the tree-packing, but finding a signature-unique one.

We point out that Theorem 5.28 can be used to obtain a second proof of Theorem 5.1 by following the

proof of Theorem 5.26, which connects hypergraph partitions to intersection matrices and then applies a

polynomial method to obtain list decodable Reed–Solomon codes. The extra O(log t) factor in the weak-

partition-connectivity of Theorem 5.28 appears as an O(log 1
ε ) factor loss in the rate of the Reed–Solomon

code. Since one proof of Theorem 5.1 is already given, and the key ideas for this second proof are covered

throughout the rest of the chapter, we omit the details of this second proof of Theorem 5.1.

In addition to implying optimal list decoding of Reed Solomon codes (Theorem 5.28), Conjecture 5.25 may

be of independent interest as a candidate hypergraph Nash-Williams–Tutte generalization. On one hand,

a hypergraph Nash-Williams–Tutte generalization is known for partition-connectivity [37]. A hypergraph is

k-partition-connected if any partition P has at least k(|P| − 1) crossing edges. Frank, Király, and Kriesell

7A hypergraph is connected if, for every two vertices v and v′, there is a path v = v0, v1, . . . , v` = v′ such that, for all i,
vi−1, vi share a hyperedge.

8[6] shows there exist Ω(logn)-weakly-partition-connected hypergraphs without two edge-disjoint connected subhypergraphs.
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[37] showed that every k-partition-connected hypergraph has k edge-disjoint 1-partition-connected subhy-

pergraphs. On the other hand, Nash-Williams–Tutte generalizations for weak-partition-connectivity seem to

be less studied, and Conjecture 5.25 provides a plausible generalization for weak-partition-connectivity.

5.5.2 Proof of Theorem 5.26

In this section we prove Theorem 5.26. To do so, we show the first implication, establishing the connection

between hypergraph partitions and intersection matrices outlined in Section 5.5.1. The second implication

was proved in [113]. At a high level, the first implication of Theorem 5.26 holds because the uniqueness

of the signature of k edge-disjoint spanning trees implies the uniqueness of a monomial in the determinant

expansion of an intersection matrix. Because such a monomial is unique, it does not cancel with any other

terms in the determinant expansion, implying that the determinant is nonzero. We now give the details.

We first derive a sufficient condition for a hypergraph being k-weakly-partition-connected.

Lemma 5.29. Let H be hypergraph on the vertex set [t] where for all J ( [t],

∑
e∈E(H)

max(0, |e ∩ J | − 1) ≤ k(|J | − 1)

and
∑

e∈E(H)

(|e| − 1) ≥ k(t− 1). (5.15)

Then H is k-weakly-partition-connected.

Proof. According to (5.13) it suffices to show that for any partition P of the vertices of H,
∑
e∈E(H)(P(e)−

1) ≥ k(|P| − 1). To see this, assume that P = {V1, . . . , Vs}. Then
∑s
i=1 |Vi| = t, and for each e ∈ E(H),

|e| =
∑s
i=1 |e ∩ Vi|. By the last equality, it is not hard to check that

|e| = P(e) +

s∑
i=1

max{0, |e ∩ Vi| − 1}.

It follows that

∑
e∈E(H)

(P(e)− 1) =
∑

e∈E(H)

(
|e| −

s∑
i=1

max{0, |e ∩ Vi| − 1} − 1
)

=
∑

e∈E(H)

(|e| − 1)−
s∑
i=1

∑
e∈E(H)

max{0, |e ∩ Vi| − 1}

≥ k(t− 1)−
s∑
i=1

k(|Vi| − 1) = k(s− 1),

where the last inequality follows from (5.15).

We now present the proof of Theorem 5.26.

Proof of Theorem 5.26. Assume Conjecture 5.25 is true. Let I1, . . . , It ⊆ [n] be subsets satisfying the condi-

tions of Conjecture 5.4. For all i ∈ [n], let ei = {j ∈ [t] : i ∈ Ij}. Let H be a (multi)hypergraph with vertex

set [t] and edge set E(H) = {ei : i ∈ [n]}.
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Claim 5.30. For all subsets J ⊆ [t], we have
∑
e∈E(H) max(0, |e ∩ J | − 1) = wt(Ij : j ∈ J).

Proof. We have

∑
i∈[n]

max{0, |ei ∩ J | − 1} =
∑
i∈[n]

|ei ∩ J | −

∣∣∣∣∣∣
⋃
j∈J

Ij

∣∣∣∣∣∣ =
∑
j∈J
|Ij | −

∣∣∣∣∣∣
⋃
j∈J

Ij

∣∣∣∣∣∣ = wt(IJ),

where the first equality follows from the fact ∪j∈JIj = {i ∈ [n] : |ei ∩ J | ≥ 1}, the second equality follows

from easy double-counting, and the last equality follows from (5.1).

The following is an easy consequence of Lemmas 5.29 and Claim 5.30.

Claim 5.31. H is k-weakly-partitioned-connected.

Proof. By Claim 5.30 and the setup of Conjecture 5.4, it is clear that for each J ( [t]

∑
e∈E(H)

max{0, |e ∩ J | − 1} = wt(IJ) ≤ k(|J | − 1)

and
∑

e∈E(H)

max{0, |e| − 1} = wt(I[t]) ≥ k(t− 1).

It follows by Lemma 5.29 that H is k-weakly-partition-connected.

By our assumption that Conjecture 5.25 is true, there exists a tree-assignment G of H that is k-

distinguishable. Note that by definition G has k(t − 1) edges, which are labeled by the hyperedges of

H. Let S ⊆ [n] be the subset so that {es : s ∈ S} forms the set of those labels. Then, an edge {j, j′} of G

has label es for some s ∈ S if and only if s ∈ Ij ∩ Ij′ .
Recall that

Mk,(I1,...,It) =

 Bt ⊗ Ik

diag
(
Vk(Ij ∩ Ij′) : {j, j′} ∈

(
[t]
2

))
 ,

and that the
(
t
2

)
k columns are labeled by the pairs {j, j′} ∈

(
[t]
2

)
, according to the

(
t
2

)
Vandermonde matrices

in the bottom diagonal. Our goal is to show that Mk,(I1,...,It) is nonsingular. As in the proof of Theorem 5.9,

it suffices to show the nonsingularity of

M ′k,(I1,...,It) :=

 Ik ⊗ Bt(
Ci : 0 ≤ i ≤ k − 1

)
 ,

where Ci = diag
(
V

(i)
k (Ij ∩Ij′) : {j, j′} ∈

(
[t]
2

))
and V

(i)
k (Ij ∩Ij′) is the (i+1)-th column of Vk(Ij ∩Ij′). Note

that M ′k,(I1,...,It) is obtained by permuting the columns of Mk,(I1,...,It), with the column labels remaining

unchanged.

The following fact is easy to verify by definition.



CHAPTER 5. LIST DECODING: LARGE ALPHABET 102

Fact 5.32. Each row of
(
Ci : 0 ≤ i ≤ k−1

)
has exactly k nonzero entries, which has the form x0

s, x
1
s, . . . , x

k−1
s

for some s ∈ S. Moreover, there is {j, j′} ∈
(

[t]
2

)
so that s ∈ Ij ∩ Ij′ , and those k nonzero entries are all

contained in {j, j′}-labeled columns.

Let us consider
(
t
2

)
k ×

(
t
2

)
k submatrix M ′ of M ′k,(I1,...,It) obtained as follows:

1. Keep the top
(
t−1

2

)
k ×

(
t
2

)
k submatrix Ik ⊗Bt.

2. For every edge {j, j′} in G of label es, keep the row in
(
Ci : 0 ≤ i ≤ k − 1

)
with nonzero entries

x0
s, . . . , x

k−1
s in {j, j′}-labeled columns (this is well-defined according to Fact 5.32).

3. Remove all other rows.

As G has k(t−1) edges, precisely k(t−1) rows are kept in step 2. Therefore, M ′ has
(
t−1

2

)
k+k(t−1) =

(
t
2

)
k

rows and is thus square.

Below we show that M ′ has a nonzero determinant, thereby implying that M ′k,(I1,...,It) and hence

Mk,(I1,...,It) are nonsingular, which is the claim of Conjecture 5.4, and thus establishing Theorem 5.26.

For that purpose, it is enough to show that there is a monomial that appears as a nonvanishing term in the

determinant expansion of M ′. To find such a monomial, we use the fact that G is k-distinguishable.

Recall that for a subgraph F of G, we use vF ∈ NS to denote the vector that counts the edge labels in

F , where for s ∈ S, vFs is the number of edges with label es. Note that vF is a vector of length |S| whose

coordinates are indexed by elements in S. For spanning trees T, T0, . . . , Tk−1 of G, define

xT :=
∏
s∈S

x
vTs
s and x(T0,...,Tk−1) :=

k−1∏
i=0

(xTi)i. (5.16)

Observe that, by the definition in (5.14), we have v
(T0,...,Tk−1)
s =

∑k−1
i=0 i · vTis for all s ∈ S. Hence, it follows

from (5.16) that

x(T0,...,Tk−1) =
∏
s∈S

xv
(T0,...,Tk−1)
s
s . (5.17)

Since G is k-distinguishable, there exists a tree decomposition T0, . . . , Tk−1 such that for any other tree-

assignment T ′0, . . . , T
′
k−1, we have that the signatures v(T0,...,Tk−1) 6= v(T ′0,...,T

′
k−1). Thus, it follows by (5.17)

that the monomials x(T0,...,Tk−1) 6= x(T ′0,...,T
′
k−1).

Claim 5.33. Let T0, . . . , Tk−1 be spanning trees as defined above. Then, x(T0,...,Tk−1) appears as a nonvan-

ishing term in the determinant expansion of M ′.

Proving Claim 5.33 establishes the nonsingularity of M ′ and thus, as discussed above, Theorem 5.26.

For that purpose, we identify the nonzero entries in the bottom (t− 1)k rows of M ′ by tuples (s, {j, j′}, i),
where s ∈ S ∩ (Ij ∩ Ij′), {j, j′} ∈

(
[t]
2

)
, and 0 ≤ i ≤ k− 1. Indeed, such a tuple corresponds to the entry xis in

the {j, j′}-labeled column of Ci. It is worth mentioning that we used two types of labeling here: first, each

column of Ik ⊗ Bt and (Ci : 0 ≤ i ≤ k − 1) is labeled by some edge {j, j′} ∈
(

[t]
2

)
; second, each edge of G is

labeled by some variable xs, s ∈ S.
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Let U denote the set of all (t− 1)k2 nonzero entries in the bottom (t− 1)k rows of M ′. For Q ⊂ U , let

MQ denote the submatrix of M ′ obtained by removing all of the rows and columns that contain some entry

in Q. We say Q is a partial transversal if it contains exactly one element in each of the bottom (t− 1)k rows

of M ′, and no two share a column. By the definition of determinant,

det(M ′) =
∑

Q partial transversal

±det(MQ) ·
∏

(s,{j,j′},i)∈Q

xis. (5.18)

For a partial transversal Q and 0 ≤ i ≤ k− 1, let Qi be the subgraph of G that corresponds to the tuples

(s, {j, j′}, i) ∈ Q, namely,

Qi =

{
{j, j′} ∈

(
[t]

2

)
: (s, {j, j′}, i) ∈ Q for some s ∈ Ij ∩ Ij′

}
.

Note that we view each Qi as a labeled subgraph that preserves the labeling of G. Moreover, as Q forms a

partial transversal, each Qi is a simple graph with no multiple edges, while G could be a multigraph.

We have the following claim.

Claim 5.34. Let Q ⊆ U be a partial transversal. Then, det(MQ) 6= 0 if and only if Q0, . . . , Qk−1 form

pairwise edge-disjoint spanning trees of G.

Proof of Claim 5.34. For the “only if” part, note, that by the definition of a partial transversal, MQ is a(
t−1

2

)
k ×

(
t−1

2

)
k square matrix with k diagonal blocks, where for each 0 ≤ i ≤ k − 1, the (i+ 1)-th diagonal

block is obtained by removing from Bt all of the columns that are labeled by the edges of Qi. As Bt has full

row rank, det(MQ) 6= 0 if and only if each of the k diagonal blocks also has full row rank. By Claim 5.13,

the (i+ 1)-th block has full row rank if and only if the labels of the removed columns form an acyclic graph

on the vertices [t], namely, Qi is acyclic.

Since k(t− 1) columns are removed in total, and an acyclic subgraph on t vertices can have at most t− 1

edges, det(MQ) 6= 0 can only happen if each Qi is a spanning tree. Moreover, as elements in Q form a partial

transversal, we never have (s, {j, j,′ }, i) and (s, {j, j′}, i′) both in Q, for i 6= i′. It follows that the Qi’s are

also pairwise edge-disjoint, completing the proof of the “only if” part.

According to the discussions above, it is not hard to see that the “if” part follows fairly straightforwardly

from Claim 5.13. Therefore, we omit its proof.

We are now in a position to present the proof of Claim 5.33.

Proof of Claim 5.33. With the notation above, it is not hard to check by definition that for a partial

transversal Q ⊆ U with det(MQ) 6= 0,

∏
(s,{j,j′},i)∈Q

xis =
∏
s∈S

k−1∏
i=0

(xv
Qi
s
s )i =

∏
s∈S

xv
(Q0,...,Qk−1)
s
s = x(Q0,...,Qk−1). (5.19)

It thus follows from (5.18), (5.19), and Claim 5.34 that

det(M ′) =
∑

Q0,...,Qk−1 edge-disj. spanning trees of G

±det(MQ) · x(Q0,...,Qk−1).
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It is clear that by the definition of T0, . . . , Tk−1, in the above summation the monomial x(T0,...,Tk−1) appears

exactly once, and hence appears as a nonvanishing term in the determinant expansion, completing the proof

of Claim 5.33 and thus the proof of Theorem 5.26.

Acknowledgments

This chapter appeared as [43] and is joint work with Zeyu Guo, Chong Shangguan, Itzhak Tamo, and Mary

Wootters. We thank Bruce Spang, Noga Ron-Zewi, and Karthik Chandrasekaran for helpful discussions,

and we thank Karthik Chandrasekaran for the reference [18].



Chapter 6

Summary and Conclusions

6.1 Summary of contributions

In this thesis we gave improved combinatorial bounds for error-correcting codes in two basic settings: deletion

errors and list-decoding.

For deletion codes, we gave the first non-trivial upper bound the zero-rate threshold for bit-deletions,

showing that it is strictly less than 1
2 . We achieved this via a structural lemma that classifies the oscillation

patterns of 0’s and 1’s in a balanced string, and then exploiting it to carefully orchestrate a noticeable

advantage over just matching 1’s by switching to matching 0’s at judicious points.

For list-decoding over binary codes we gave improved analyses of the list-decodability of random linear

binary codes. We gave a list-size upper bound that, in contrast to prior work, works for all values of the

radius p, and also obtains improved bounds on the list size as the rate approaches list-decoding capacity. In

particular, not only do our bounds improve on previous work for random linear codes, but they show that

random linear codes are more list-decodable than completely random codes, in the sense that the list size

is strictly smaller. Furthermore, we pinned down the output list size for list-decoding showing a tight lower

bound that proves 3-point concentration of the list-size of random linear binary codes.

For list-decoding over large alphabets, we gave improved bounds for list-decoding the ubiquitous Reed–

Solomon codes. We showed the existence of near-optimally list-decodable RS codes in the large-radius

parameter regime. To do this, we established a connection between the intersection matrix approach of [113]

and tree packings. Along the way, we also developed applications to the construction of strongly perfect

hash matrices, and we have introduced a new hypergraph version of the Nash-Williams–Tutte theorem.

6.2 Future work

We now list some directions for future work below.

6.2.1 Deletion codes

Now that we finally have a resolution to the first order question of whether pthr
del = 1

2 , it opens up the

opportunity to address several related questions.
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• An obvious and major challenge is to determine the exact value of the zero-rate threshold for bit-

deletions which remains unknown. Our current state of knowledge is
√

2 − 1 ≤ pthr
del ≤ 1/2 − δ0, for

δ0 > 0 given by Theorem 3.1. The true value of 1
2 −p

thr
del is presumably much bigger than the minuscule

δ0 our proof yields. We made no attempt to optimize δ0, but it is likely to be very small regardless. We

hazard a guess that the true value might be closer to the lower bound. More audaciously, one might

even postulate that pthr
del =

√
2− 1 since this threshold appears to be the limit of the techniques in the

spirit of [14].

• As an interesting and necessary step toward improving the upper bound on pthr
del , can one obtain better

upper bounds on the span of a large enough code (which are implied by, but possibly easier to establish

than, a lower bound on LCS)? Here, we define the span of two strings s and t as the minimum ratio

(|s′| + |t′|)/LCS(s′, t′) over all pairs of (contiguous) substrings s′ ⊆ s and t′ ⊆ t which are of lengths

|s′| ≥ Ω(|s|), |t′| ≥ Ω(|t|), and the span of a code is the minimum span between any two distinct strings

in the code. Note that if C has span α, then the LCS of any two distinct strings in C is at most 2N/α.

The codes of [14] are based on the construction of codes (a variant of the Bukh-Ma code) of growing

size with span at least 2 +
√

2. Prior to our work, no non-trivial upper bound (bounded away from the

trivial limit of 4) was known on the span of positive-rate codes.

We point out that using our techniques, proving that there exist two codewords with span at most

4− δ0 is easier than proving there exist two codewords with LCS at least (1/2 + δ)N . To show span at

most 4− δ0, matched flags do not have to be at similar locations in the two strings, so we have more

flexibility with our random shifting argument. In particular, we can apply the structure lemma to

entire codewords rather than dyadic substrings as we do in Lemma 3.28, so we do not need to combine

LCS in prefixes/suffixes with Lemma 3.9. Furthermore, in the Blue-Yellow case, it is okay to use an

imbalanced matching where say, we match Blue flags only in s, consuming more ones in t, and hence

we do not need the string regularity and string reversal rev(·) arguments which were used to ensure a

balanced matching.

• Our quasi-polynomial in N upper bound on the size of codes C ⊂ {0, 1}N with LCS(C) ≤ ( 1
2 +δ0)N can

likely be improved with some more care in the argument, though we settled for it for sake of simplicity.

We conjecture that in fact |C| ≤ O(logN). This would be tight, as the Bukh-Ma code has size Ω(logN)

and LCS(C) ≤ ( 1
2 + δ0)N . As evidence towards this conjecture, our techniques can be used to show

that |C| ≤ O(logN) when any two codewords have span at most 4− δ0, by following the sketch in the

previous item.

• For the q-ary alphabet, the q-ary codes in [14] correct a fraction of deletions approaching 1 − 2
q+
√
q ,

and thus we have

1− 2
q+
√
q ≤ p

thr
del(q) ≤ 1− 1+2δ0

q . (6.1)

An interesting question is to determine the infimum of constants c such that pthr
del(q) ≥ 1− c/q for large

enough q. The bounds in (6.1) imply that c ∈ [1 + 2δ0, 2].

• In the list-decoding model, there are codes of rate poly(ε) which can be list-decoded from a fraction

1/2− ε of deletions with list-size poly(1/ε). Can one prove a lower bound L(ε) on the list-size for list

decoding from (1/2 − ε) fraction of deletions such that L(ε) → ∞ as ε → 0? What is the optimal
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growth rate of the list-size as a function of ε? (For correcting bit-flips, the optimal list-size is known

to be Θ(1/ε2) [9, 69].)

• A pair of twins in a string s is a pair of two disjoint subsequences (recall that in our language subse-

quences of strings are not necessarily contiguous, unlike substrings) of s which are identical. A natural

question to consider is: what is the length t(N) of the longest pair of twins guaranteed to exist in any

s ∈ {0, 1}N? This question is relevant for two reasons. First, the question of finding twins within a

single string is closely related to the problem of finding longest common subsequences between distinct

strings. Second, the twins problem was solved asymptotically by [5] using the regularity technique,

which is also one of the ingredients in our work. It is now known that

N

2
−O

(N(log logN)1/4

(logN)1/4

)
≤ t(N) ≤ N

2
− Ω(logN),

and it would be interesting to determine the exact growth rate of the lower-order term.

• Fundamentally, our main result is a result about finding common subsequences, which are ubiquitous

objects. Can our techniques for finding common subsequences be applied to other kinds of subsequence

questions?

6.2.2 List-decoding small alphabet codes

In Chapter 4, we settle the list-decodability of random linear binary codes. Our work raises several open

questions.

• Our list-size upper bound shows that random linear binary codes of rate 1 − h(p) − ε are not (p, L)-

list-decodable for L ∼ h(p)
ε . Our techniques however do not generalize to q-ary alphabets for q > 2,

and it would be interesting to prove a stronger upper bound.

Our list-size lower bound generalizes to showing that random linear q-ary codes of rate 1−hq(p)−ε are

not (p, L)-list-decodable for L ∼ hq(p)
ε . We conjecture that this lower bound is tight, i.e. that random

linear codes of rate 1− hq(p)− ε are (p, L) list-decodable for L =
hq(p)
ε (1 + o(1)), where the o(1)→ 0

as ε→ 0. Our Theorem 4.4 shows it is true for q = 2, and we conjecture this is true for larger q.

• We have used different techniques for our upper and lower bounds. However, we think it is an interesting

direction to use the characterization of [101]—which we used to prove our lower bounds—to prove upper

bounds as well. This would entail showing that every sufficiently bad list is implicitly rare.

• Our results show that list-decoding and average-radius list-decoding have essentially the same output

list sizes over binary alphabets, for random linear codes. It would be interesting to extend this to larger

alphabets, or even to more general families of codes. This is especially interesting given that there

is an exponential gap in the best known lower bounds (on the list-size for arbitrary codes) between

list-decoding and average-radius list-decoding for general codes. [11, 61].

• Finally, and most ambitiously, there are currently no known explicit constructions of capacity-achieving

binary list-decodable codes for general p. It is our hope that this thesis—which gives more information

about the structure of linear codes which achieve list-decoding capacity—could lead to progress on this
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front. Given that we don’t know how to efficiently check if a given code is (p, L)-list-decodable, even

an efficient Las Vegas construction (as opposed to a Monte Carlo construction) would be interesting.

We remark that recently progress was made towards this goal: [101] showed that Gallager’s ensemble

of LDPC codes [38], which have even more structure than random-linear codes, achieve list-decoding

capacity with high probability.

6.2.3 List-decoding Reed–Solomon codes

Lastly, we conclude with some open questions raised by our work in Chapter 5 on list-decoding Reed–Solomon

codes.

• We remark that, using a simple idea from [113] one can convert each of the existence results of RS

codes reported in this paper into an explicit code construction, although over a much larger field size.

Is it possible to find explicit evaluation points over a smaller field size?

• Can we efficiently list-decode Reed–Solomon codes? In particular, given such an explicit Reed–Solomon

code from the previous question, is it possible to decode it efficiently up to its guaranteed list-decoding

radius? A similar question can be asked for list-recoverability. We note that [22], which shows that

decoding RS codes much beyond the Johnson bound is likely hard in certain parameter regimes, does

not apply to our parameter regime when the field size is large.

• Can we generalize the Nash-Williams–Tutte theorem to hypergraphs? In an attempt to resolve Con-

jecture 5.3, we present Conjecture 5.25, a new graph-theoretic conjecture, which can be viewed as a

generalization of the Nash-Williams–Tutte theorem to hypergraphs. In addition to being interesting

on its own, resolving this conjecture would imply the existence of optimally list-decodable RS codes.
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[26] Václáv Chvatal and David Sankoff. Longest common subsequences of two random sequences. Journal

of Applied Probability, pages 306–315, 1975.

[27] Ph Delsarte. Bilinear forms over a finite field, with applications to coding theory. Journal of Combi-

natorial Theory, Series A, 25(3):226–241, 1978.

[28] Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer, Berlin, fifth

edition, 2017.

[29] Suhas N. Diggavi and Matthias Grossglauser. On information transmission over a finite buffer channel.

IEEE Trans. Inf. Theory, 52(3):1226–1237, 2006.

[30] Yang Ding. On list-decodability of random rank metric codes and subspace codes. IEEE Trans.

Information Theory, 61(1):51–59, 2015.



BIBLIOGRAPHY 111

[31] Dean Doron, Dana Moshkovitz, Justin Oh, and David Zuckerman. Nearly optimal pseudorandomness

from hardness. Technical report, 2020.

[32] Dean Doron and Mary Wootters. High-probability list-recovery, and applications to heavy hitters. In

Electron. Colloquium Comput. Complex., volume 27, page 162, 2020.

[33] Zeev Dvir and Shachar Lovett. Subspace evasive sets. In Proceedings of the forty-fourth annual ACM

symposium on Theory of computing, pages 351–358. ACM, 2012.

[34] Peter Elias. List decoding for noisy channels. Wescon Convention Record, Part 2, pages 94–104, 1957.

[35] Peter Elias. Error-correcting codes for list decoding. IEEE Transactions on Information Theory,

37(1):5–12, 1991.

[36] Asaf Ferber, Matthew Kwan, and Lisa Sauermann. List-decodability with large radius for reed-solomon

codes. IEEE Transactions on Information Theory, 2022.
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