THEORETICAL FOUNDATIONS FOR PRACTICAL PROBLEMS:
NETWORK ANALYSIS, ALGORITHM SELECTION;,
AND INTERACTION DESIGN

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

Rishi Vijay Gupta
December 2016



Abstract

Over the past forty years, worst-case analysis has emerged as the dominant framework for analyzing
problems in theoretical computer science. While successful on many fronts, there are domains where
worst-case analysis is not guiding algorithmic development in a direction useful for solving problems
in practice. The proximate cause is that the parts of the input space directly exposed to worst-case
analyses (the “worst-case instances” of the best algorithms) are not representative of instances
typically seen in practice.

In this work, we look at three domains where it is easy to see that a worst-case framework is not
appropriate, but where the structure of instances seen in practice is poorly understood, and hence
hard to take advantage of directly. For each domain, we propose a framework that captures some
part of this structure, along with new algorithms and theorems inspired by our framework. The
three domains are:

o Network analysis. We consider the class of triangle-dense graphs, which include most social and
biological networks. We show that triangle-dense graphs resemble unions of cliques in a quantifi-
able sense, and exhibit new clustering and clique-counting algorithms that take advantage of that
structure.

e Application specific algorithm selection. Given a computational problem, and a set of already
implemented algorithms, which one should you run? We present one framework that models algo-
rithm selection as a statistical learning problem, and show that one can transfer dimension notions
from statistical learning theory to algorithm selection. We also study the online version of the algo-
rithm selection problem, and give possibility and impossibility results for the existence of no-regret
learning algorithms.

e Interaction design. We look at a specific problem in understanding how users are interacting
with an application, given traces of their behavior. We model the problem as that of recovering
a mixture of Markov chains, and show that under mild assumptions the mixture can be recovered
from only its induced distribution on consecutive triples of states.
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Chapter 1

Introduction

Characterizing algorithm performance is a tricky business. For most problems, any given algorithm
is going to have widely varying performance over the possible inputs to the problem, and the
performance of any two reasonable algorithms is going to be incomparable over the input space.
Rather than trying to directly reason about the performance of an algorithm on the input space as
a whole, a typical analysis will summarize it as a function of just one or two parameters (e.g. the
input size). An example of such a summary might be a worst-case running time, or an average-case
running time with respect to a distribution.

Though seemingly innocuous, an analysis framework, such as a summarizing statistic, is of great
importance in guiding algorithmic development for a particular problem. Algorithm designers
naturally optimize to accepted metrics, and different metrics emphasize different parts of the input
space. Examples of frameworks that have spurred new developments include smoothed analysis,
competitive analysis, and various semi-random models; see the lecture notes at [Roul4| for an
introduction to many more.

Over the past forty years, worst-case analysis has emerged as the dominant framework for analyzing
problems in theoretical computer science. While leading to a beautiful theory of complexity, and
enjoying many algorithmic successes, there are many domains where worst-case analysis isn’t able
to guide development in a direction useful for solving problems in practice. The proximate cause is
usually that the parts of the input space directly exposed to worst-case analyses (the “worst-case
instances” of the best algorithms) are somehow not representative of the types of instances seen in
practice.

In this dissertation, we look at three problem domains where it is easy to see that a worst-case
framework is not appropriate, but where the structure of instances seen in practice is poorly under-
stood, and hence hard to exploit directly. For each domain, we propose a framework that captures
some part of this structure, along with new algorithms and theorems inspired by the framework.

The rest of the dissertation is organized as follows. We briefly introduce the three problem domains
in the following three sections, and provide a sample result from each. We end the chapter with a
note on published works. Chapters 2, 3 and 4 tackle each problem in detail. Each of the 4 chapters
is completely self-contained.



1.1 Interaction Networks

There are many problems on graphs that are NP-hard, but which are often tractable in practice.
For instance, any reasonable formalization of clustering results in an NP-hard problem (e.g. by
including planted clique as a special case), but people regularly cluster graphs with hundreds of
millions of nodes. This motivates the search for a framework for analyzing graph algorithms that
emphasizes a more practical set of inputs.

In Chapter 2, we focus on finding such a framework for the class of interaction networks, or inter-
action graphs. Examples of such graphs include

e Social networks, such as the Facebook graph (nodes are people, and edges are friendships), or
the Wikipedia voting graph (nodes are elected administrators, and two nodes share an edge
if one voted for the other).

e Biological networks, such as protein-protein interaction networks (nodes are proteins, and
two proteins share an edge if they physically interact in a biological pathway).

e Systemic networks, such as interbank payment networks (nodes are banks, and two banks
share an edge if one bank has directly transferred money to the other in the last 12 months).

What makes interaction networks special is that if node A is connected to node B, and node B is
connected to node C, then node A is connected to node C' with much higher probability than would
be suggested by the edge density of the network. Non-examples of interaction networks include road
networks (streets are nodes, and two streets share an edge if they intersect), or random Erdds-Rényi
graphs.

Given the general interest in interaction networks, a lot of work has already been done to try to
understand what makes them special. Much of the recent work on such networks has focused on de-
veloping generative models (along with average-case analyses) that produce graphs with statistical
properties similar to those found in practice.

We pursue a different approach. In lieu of adopting a particular generative model, we ask:

Is there a combinatorial assumption weak enough to hold in every “reasonable” model of
interaction networks, yet strong enough to permit useful structural and algorithmic results?

In other words, we seek a framework that will apply to every reasonable model of interaction
networks, including those yet to be devised, that is yet limited enough to not include the worst-
case examples. We explore the problem of clustering a graph to initiate the discussion, but we
believe our proposal is useful for other graph computations as well.

Triangle-Dense Graphs

Let a wedge be a two-hop path in an undirected graph. The vertices of a wedge form an open
wedge if they induce a path, and a closed wedge if they induce a triangle. We now define the key
parameter we will use to differentiate the graphs of interest from the worst-case graphs.



Definition 1.1 (Triangle Density). The triangle density of an undirected graph G is the fraction
of wedges in G that are closed.

Alternatively, it is 3 times the number of triangles in G divided by the number of wedges in G.
Since every triangle of a graph contains three wedges, and no two triangles share a wedge, the
triangle density of a graph is between 0 and 1.

As an example, the triangle density of a graph is 1 if and only if it is the union of cliques. The
triangle density of a random Erdds-Rényi graph is concentrated around its edge density.

Interaction networks are generally sparse, and yet have remarkably high triangle density. The
Facebook graph, for instance, has triangle density 0.16 [UKBM11], whereas an Erdés-Rényi graph
with the same edge density would have triangle density less than 1076. Large triangle density,
meaning triangle density much higher that what the edge density would suggest, is perhaps one of
the most widely cited signatures of social and interaction networks (see related work in Chapter 2).

In the next section, we show that having large triangle density already implies a surprising amount
of structure. Though social scientists and others have been measuring triangle density in networks
for many years, the idea of parameterizing algorithm analysis by triangle density is new to this
work.

Sample Result: A Decomposition Theorem

As noted above, the triangle density of a graph is 1 if and only if it is a union of cliques. More
surprisingly, we show that large triangle density is enough to ensure that a graph is approximately
a union of cliques.

We first formally define what we mean by an approximate union of cliques.

Definition 1.2 (Tightly-Knit Family). Let p > 0. A collection G1,Ga,...,Gy of vertex disjoint
subgraphs of a graph G forms a p-tightly-knit family if

e Fach G; has both edge density and triangle density at least p.
e FEach G; has radius at most 2.
There is no a priori restriction on the number of subgraphs k.

Our main theorem states that every graph with constant triangle density contains a tightly-knit
family that captures a constant fraction of the graph’s triangles (with the constants depending on
the triangle density).

Theorem 1.3 (Decomposition of Triangle-Dense Graphs). There exists a polynomial f(€) = € for
some constant ¢ > 0, such that for every graph G with triangle density at least €, there exists an
f(e)-tightly-knit family that contains an f(€) fraction of the triangles of G.



Graphs without constant triangle density, such as sparse Erdés-Rényi random graphs, do not gener-
ally admit non-trivial tightly-knit families, even if the triangle density requirement for each cluster
is dropped.

In addition to the structural result, we present an efficient algorithm for finding such a decompo-
sition, which is of independent interest. A preliminary implementation of the algorithm requires a
few minutes on a laptop to decompose networks with millions of edges, and a few simple heuristics
would speed it up even further.

1.2 Application-Specific Algorithm Selection

Given a computational problem, and a number of different already implemented algorithms (say
downloaded from the internet), how should one reason about picking an algorithm to run? Any
worst-case formulation of this problem is likely to be non-computable, let alone NP-hard. De-
spite there being a large literature on empirical approaches to algorithm selection, there has been
surprisingly little theoretical consideration of the problem.

In Chapter 3, we show that application-specific algorithm selection can be usefully modeled as
a learning problem. We propose two different models, and show results in each. In the first
model, inspired by PAC learning, the “application-specific” information is encoded as an unknown
distribution D over inputs to the algorithm. After seeing some number of instances drawn from D,
the algorithm selector’s goal is simply to pick an algorithm that does almost as well as the best
algorithm in their set, (in expectation) with respect to D. The second model is inspired by online
learning, and is explained below.

The Online Learning Model

This section formalizes the problem of learning a best algorithm online, with instances arriving
one-by-one. The goal is choose an algorithm at each time step, before seeing the next instance, so
that the average performance is close to that of the best fixed algorithm in hindsight.

Formally, we have a computational or optimization problem II (e.g., Maximum Weight Independent
Set), a set A of algorithms for II (e.g., a parameterized family of heuristics), and a performance
measure COST : A x IT — [0,1] (e.g., the total weight of the returned solution). We also have an
unknown instance sequence x1,...,Zr.

A learning algorithm outputs a sequence Ai,..., Ar of algorithms. Each algorithm A; is chosen
(perhaps probabilistically) with knowledge only of the previous instances x1, ..., x;—1. The standard
goal in online learning is to choose Ay, ..., Ar to minimize the worst-case (over x1,...,xr) regret,

defined as the average performance loss relative to the best algorithm A € A in hindsight (without
loss of generality, assume COST corresponds to a maximization objective):
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A no-regret learning algorithm has expected (over its coin tosses) regret o(1), as T" — oo, for every
instance sequence. The design and analysis of no-regret online learning algorithms is a mature field;
for example, many no-regret online learning algorithms are known for the case of a finite set |.A]
(e.g. the “multiplicative weights” algorithms).

Sample Result: Online Learning of Independent Set

We first define the Maximum Weight Independent Set problem (MWIS), along with a parame-
terized family of heuristics. The input to MWIS is an undirected graph G = (V, E) with a fixed
number of vertices n, and a non-negative weight w, for each vertex v € V. The goal is to compute
the independent set — a subset of mutually non-adjacent vertices — with maximum total weight.
Two natural greedy heuristics are to greedily choose vertices (subject to feasibility) in order of non-
increasing weight w,, or nonincreasing density w, /(1 + deg(v)). The intuition for the denominator
is that choosing v “uses up” 1+ deg(v) vertices — v and all of its neighbors.

We define the family of algorithms A = {A,},c[0,1) as follows. The algorithm A, chooses vertices,
subject to feasibility, in order of nonincreasing w, /(1+deg(v))?. Note that A smoothly interpolates
between the two heuristics in the paragraph above. We first have the following negative result.

Theorem 1.4 (Impossibility of Online Learning MWIS). There is a distribution on MWIS input
sequences over which every algorithm has expected regret 1 — 1/ poly(n).

Recall that 1 —1/poly(n) is essentially the worst regret possible. Despite the negative result above,
we show a “low-regret” learning algorithm for MWIS under a slight restriction on how the instances
x¢ are chosen. By low-regret we mean regret that is polynomially small in the number of vertices
n.

We take the approach suggested by smoothed analysis [ST09]. Fix a parameter 0 < o < 1. We
allow each z; to have an arbitrary graph on n vertices, but only allow each weight w, to be specified
to its first log(1/c0) bits. The remaining lower order bits are set at random. This is a reasonable
restriction on the algorithm’s adversary if we imagine the inputs to be somewhat noisy in practice.
We call such an instance a o-smooth MWIS instance.! We then have the following result:

Theorem 1.5 (Online Learning of Smooth MWIS). There is a poly(n,1/c) time algorithm with
expected regret 1/ poly(n) for o-smooth MWIS.

!The definition of o-smooth MWIS in Chapter 3 is somewhat less restrictive than this, but this definition captures
the significant bits.



1.3 Session Types in Interaction Design

The last scenario we look at is motivated by a very specific problem in interaction design. Given
an app or website, we would like to understand how users are traveling through the app. The
output of such an analysis might be a list of common flows, or a list of common but unexpected
behaviors, due to e.g. users working around a user interface bug. We are not aware of any previous
formulation of this task, either as an empirical or theoretical problem.

As a motivating example, consider the usage of a standard maps app on a phone. There are a
number of different reasons one might come to the app: to search for a nearby business, to get
directions from one point to another, or just to orient oneself. Once the app has some users, we
would like to algorithmically discover things like:

e Common uses for the app that the designers hadn’t expected, or hadn’t expected to be
common. For instance, maybe a good fraction of users (or user sessions) simply use the app
to check the traffic.

e Whether different types of users use the app differently. For instance, maybe experienced
users use the app differently than first time users, either due to having different goals, or due
to accomplishing the same tasks more efficiently.

e Undiscoverable flows. For instance, maybe there is an “I'm hungry” tab in a drop down menu,
but many users are instead using some convoluted path through the “Find a business” tab
to search for food.

e Other unexpected behavior, such as users consistently pushing a button several times before
the app responds, or doing other things to work around programming or Ul errors.

We model the problem as follows. There are a small number L of unknown session types, such as
“experienced user looking for food”, or “first time user trying to figure out what the app does”, or
“user hitting bug #1234”. There are n > 2L observable states; the states can correspond to e.g.
pages on a site, or actions (swipe, type, zoom) on an app. As an initial attempt to formalize the
problem, we assume user behavior is Markovian for each fixed session type; namely, each of the L
session types corresponds to a Markov chain on the n states.

The app designers receive session trails of the following form: a session type and starting state is
selected from some unknown distribution over L x n, and then the session follows the type-specific
Markov chain for some number of steps. The computational problem is to recover the transition
probabilities in each of the L individual Markov chains, given a list of these trails. The L Markov
chains can then be passed to a human for examination, past and future traces can be labelled with
their most likely type, or users can be bucketed based on their typical session types.

Mathematically, this problem corresponds to learning a mixture of Markov chains, and is of inde-
pendent interest. The most closely related theoretical work is on learning Hidden Markov Models,
learning phylogenetic trees, or learning mixtures of Hidden Markov Models.



Sample Result: Learning a Mixture of Markov Chains

Let S be the distribution over session type and starting state, and let M be the transition proba-
bilities for the L Markov chains. Let a t-trail be a trail of length ¢, namely, a starting state drawn
from S followed by t — 1 steps in the corresponding Markov chain in M. Our main result is that
only 3-trails are needed for recovery of M and S. Specifically,

Theorem 1.6 (Recovering a Mixture of Markov Chains from 3-Trails). Under appropriate non-
degeneracy conditions, the mixture parameters M and S can be recovered exactly given their induced
distribution over 3-trails.

The non-degeneracy conditions are somewhat complicated, but benign. We also provide a fast
algorithm for doing the recovery, and show that on synthetic data it does better than the natural
expectation-maximization (EM) algorithm in some regimes.

1.4 A Note on Published Works

The results in Chapter 2 are joint work with Tim Roughgarden and C. Seshadhri, and many of
them appear in [GRS16]. Section 2.7 is additionally joint work with Joshua Wang. Appendix 2.A
appears in [GRS14]. Section 2.5 and Section 2.7 are new to this thesis, as is some of Section 2.8.

The results in Chapter 3 are joint work with Tim Roughgarden, and appear in [GR16]. The results
in Chapter 4 are joint with Ravi Kumar and Sergei Vassilvitskii, and appear in [GKV16].



Chapter 2

A New Framework for Interaction
Networks

Chapter summary: High triangle density, namely the graph property stating that a constant
fraction of two-hop paths belong to a triangle, is a common signature of interaction networks.
We first study triangle-dense graphs from a structural perspective. We prove constructively that
significant portions of a triangle-dense graph are contained in a disjoint union of dense, radius
2 subgraphs. This result quantifies the extent to which triangle-dense graphs resemble unions of
cliques. We also show that our algorithm recovers planted clusterings in approximation-stable k-
median instances, and empirically show that the algorithm can be an effective “divide” step in a
new divide-and-conquer algorithm to approximately count the number of small cliques.

2.1 Introduction

Can the special structure possessed by social and interaction networks be exploited algorithmically?
Answering this question requires a formal definition of interaction network structure. Extensive
work on this topic has generated countless proposals but little consensus (see e.g. [CF06]). The
most oft-mentioned (and arguably most validated) statistical properties of social and interaction
networks include heavy-tailed degree distributions [BA99, BKM™00, FFF99], a high density of
triangles [WS98, SCW*10, UKBM11] and other dense subgraphs or “communities” [For10, GN02,
New03, New06, LLDMO08], and low diameter and the small world property [Kle00Oa, KleO0b, Kle02,
New01].

Much of the recent mathematical work on interaction networks has focused on the important goal
of developing generative models that produce random networks with many of the above statistical
properties. Well-known examples of such models include preferential attachment [BA99] and related
copying models [KRR100], Kronecker graphs [CZF04, LCK*10], and the Chung-Lu random graph
model [CL02a, CL02b]. A generative model articulates a hypothesis about what “real-world”
interaction networks look like, and is directly useful for generating synthetic data. Once a particular
generative model is adopted, a natural goal is to design algorithms tailored to perform well on the
instances generated by the model. It can also be used as a proxy to study the effect of random



processes (like edge deletions) on a network. Examples of such results include [AJB00, LAST08,
MS10].

In this chapter, we pursue a different approach. In lieu of adopting a particular generative model,
we ask:

Is there a combinatorial assumption weak enough to hold in every “reasonable” model of
interaction networks, yet strong enough to permit useful structural and algorithmic results?

Specifically, we seek structural results that apply to every reasonable model of interaction networks,
including those yet to be devised.

2.1.1 Triangle-Dense Graphs

We initiate the study of triangle-dense graphs. Let a wedge be a two-hop path in an undirected
graph.

Definition 2.1 (Triangle-Dense Graph). The triangle density of an undirected graph G = (V, E)
is T(G) = 3t(G)/w(G), where t(G) is the number of triangles in G and w(QG) is the number of
wedges in G (conventionally, 7(G) =0 if w(G) =0). The class of e-triangle dense graphs consists
of the graphs G with 7(G) > e.

Since every triangle of a graph contains 3 wedges, and no two triangles share a wedge, the triangle
density of a graph is between 0 and 1. In the social sciences, triangle density is usually called the
transitivity of a graph [WF94], and also the (global) clustering coefficient. We use the term triangle
density because “transitivity” already has strong connotations in graph theory.

As an example, the triangle density of a graph is 1 if and only if it is the union of cliques. The
triangle density of an Erdos-Renyi graph, drawn from G(n, p), is concentrated around p. Thus, only
dense Erdos-Renyi graphs have constant triangle density (as n — o0). Interaction networks are
generally sparse and yet have remarkably high triangle density; the Facebook graph, for instance,
has triangle density 0.16 [UKBM11]. Large triangle density — meaning much higher that what the
edge density would suggest — is perhaps the least controversial signature of social and interaction
networks (see related work below).

The class of e-triangle dense graphs becomes quite diverse as soon as € is bounded below 1. For
example, the complete tripartite graph is triangle dense with € ~ % Every graph obtained from
a bounded-degree graph by replacing each vertex with a triangle is triangle dense, where € is a
constant that depends on the maximum degree. Adding a clique on n'/3 vertices to a bounded-
degree n-vertex graph produces a triangle-dense graph, where again the constant e depends on the
maximum degree. We give a litany of examples in Section 2.4. Can there be interesting structural

or algorithmic results for this rich class of graphs?



2.1.2 Main Results

Decomposition Theorems Our main decomposition theorem quantifies the extent to which a
graph with large triangle density resembles a union of cliques. The next definition gives our notion
of an “approximate union of cliques.” We use G|g to denote the subgraph of a graph G induced
by a subset S of vertices. Also, the edge density of a graph G = (V, E) is ]E\/('g') Note that the
definition here is slightly different from the formulation in Section 1.1.

Definition 2.2 (Tightly-Knit Family). Let p > 0. A collection Vi, Va, ..., Vi of disjoint sets of
vertices of a graph G = (V, E) forms a p-tightly-knit family if:

o Each subgraph G|y, has both edge density and triangle density at least p.
e Each subgraph G|y, has radius at most 2.

When p is a constant (as the graph size tends to infinity), we often refer simply to a tightly-knit
family. The “clusters” (i.e., the V;’s) of a tightly-knit family are dense in edges and in triangles. In
the context of social networks, an abundance of triangles is generally associated with meaningful
social structure. There is no a priori restriction on the number of clusters in a tightly-knit family,
and the union of the clusters doesn’t have to include every vertex of the graph.

Our main decomposition theorem states that every graph with constant triangle density contains
a tightly-knit family that captures a constant fraction of the graph’s triangles (with the constants
depending on the triangle density). The following is proved as Theorem 2.16.

Theorem 2.3 (Main Decomposition Theorem). There exists a non-constant polynomial f(€) such
that for every e-triangle dense graph G, there exists an f(€)-tightly-knit family that contains an f(e)
fraction of the triangles of G.

We emphasize that Theorem 2.3 requires only that the input graph G has constant triangle density
— beyond this property, it could be sparse or dense, low- or high-diameter, and possess an arbi-
trary degree distribution. Graphs without constant triangle density, such as sparse Erdos-Renyi
random graphs, do not generally admit non-trivial tightly-knit families (even if the triangle density
requirement for each cluster is dropped).

Our proof of Theorem 2.3 is constructive. Using suitable data structures, the resulting algorithm
can be implemented to run in time proportional to the number of wedges of the graph; a working
C++ implementation is available on request. This running time is reasonable for many networks.
Our preliminary implementation of the algorithm requires a few minutes on a commodity laptop
to decompose networks with millions of edges.

Note that Theorem 2.3 is non-trivial only because we require that the tightly-knit family preserve
the “interesting social information” of the original graph, in the form of the graph’s triangles.
Extracting a single low-diameter cluster rich in edges and triangles is easy — large triangle density
implies that typical vertex neighborhoods have these properties. But extracting such a cluster
carelessly can do more harm than good, destroying many triangles that only partially intersect the
cluster. Our proof of Theorem 2.3 shows how to repeatedly extract low-diameter dense clusters
while preserving at least a constant fraction of the triangles of the original graph.

10
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Figure 2.1: Jaccard similarity computation: Edges (7, j) and (j, k) have Jaccard similarity 2/7 and

1/5, respectively. The triangle density of the graph as a whole is 2/9. We use low Jaccard similarity
as a signal of low local triangle density.

A graph with constant triangle density need not contain a tightly-knit family that contains a
constant fraction of the graph’s edges; see the examples in Section 2.4. The culprit is that triangle
density is a “global” condition and does not guarantee good local triangle density everywhere,
allowing room for a large number of edges that are intuitively spurious. Under the stronger condition
of constant local triangle density, however, we can compute a tightly-knit family with a stronger
guarantee.

Definition 2.4 (Jaccard Similarity). The Jaccard similarity of an edge e = (i,7) of a graph G =
(V, E) is the fraction of vertices in the neighborhood of e that participate in triangles:

[N@) N NG
[N (@) UNG)\ {53

where N(x) denotes the neighbors of a vertex x in G. If the denominator above is 0, then J. = 0.

Je = (2.1)

The Jaccard similarity is always between 0 and 1. An example computation is in Figure 2.1.
Every edge in a clique has Jaccard similarity 1, and a bridge by definition has Jaccard similarity 0.
Informally, edges with low Jaccard similarity are often “bridge-like”, or are connected to at least
one vertex of very high degree. We now introduce a notion of high local triangle density for graphs.

Definition 2.5 (Everywhere Triangle-Dense). A graph is everywhere e-triangle dense if J. > € for
every edge e, and there are no isolated vertices.

Though useful conceptually, we would not expect graphs in practice to be everywhere triangle dense
for a large value of €. The following weaker definition permits graphs that have a small fraction of
edges with low Jaccard similarity.

Definition 2.6 (u,e-Triangle-Dense). A graph is pu,e-triangle dense if J. > € for at least a p
fraction of the edges e.

We informally refer to graphs with constant € and high enough u as mostly everywhere triangle
dense. An everywhere e-triangle dense graph is u,e-triangle dense for every u. An everywhere
e-triangle dense graph is also e-triangle dense.

The following is proved as Theorem 2.18.

Theorem 2.7 (Stronger Decomposition Theorem). There are non-constant polynomials j(e) and
f(€) such that for every u(e), e-triangle dense graph G, there exists an f(¢€)-tightly-knit family that
contains an f(€)-fraction of the triangles and edges of G.

11



When e = 1, there exists a 1-tightly-knit family that contains all of the triangles and edges of G. A
natural question is whether a similarly strong statement holds for € close to 1; e.g. if there exists a
tightly-knit family that recovers all but a polynomial in (1—¢) fraction of the triangles or edges. We
have the following surprising result for everywhere triangle-dense graphs, proved as Theorem 2.26.

Theorem 2.8 (Sufficiently Triangle-Dense Implies Tightly-Knit). If G is everywhere (1—9§)-triangle
dense for some § < 1/3, then G is the union of components of diameter 2, each of which is

(1 —26)2/(1 — 6)-edge dense.

Note that this means G is already a (1 — 28)2/(1 — §)-tightly-knit family.

Applications to Planted Cluster Models. We give an algorithmic application of our decom-
position in Section 2.6, where the tightly knit family produced by our algorithm is meaningful
in its own right. We consider the approximation-stable metric k-median instances introduced by
Balcan, Blum, and Gupta [BBG13]. By definition, every solution of an approximation-stable in-
stance that has near-optimal objective function value is structurally similar to the optimal solution.
They reduce their problem to clustering a certain graph with “planted” clusters corresponding to
the optimal solution. We prove that our algorithm recovers a close approximation to the planted
clusters, matching their guarantee.

Applications to Counting Small Cliques. We give a second application of our decomposition
algorithm in Section 2.7, to the problem of approximately counting the number of r-cliques in a
graph. Here, the tightly-knit family becomes the “divide” step in a divide-and-conquer algorithm.
The “conquer” step is a simple sampling algorithm for approximating the number of small cliques
in a dense graph, which we use on each subgraph of the tightly-knit family. We run the algorithm
on a variety of publicly available interaction networks from the SNAP database [SNA], typically
recovering ~90% of the cliques in a very small amount of time.

2.1.3 Model Discussion

Structural Assumptions vs. Generative Models. Pursuing structural results and algorith-
mic guarantees that assume only a combinatorial condition (namely, constant triangle density),
rather than a particular model of interaction networks, has clear advantages and disadvantages.
The class of graphs generated by a specific model will generally permit stronger structural and
algorithmic guarantees than the class of graphs that share a single statistical property. On the
other hand, algorithms and results tailored to a single model can lack robustness: they might not
be meaningful if reality differs from the model, and are less likely to translate across different ap-
plication domains that require different models. Our results for triangle-dense graphs — meaning
graphs with constant triangle density — are relevant for every model that generates such graphs
with high probability, and we expect that all future interaction network models will have this prop-
erty. And of course, our results can be used in any application domain that concerns triangle-dense
graphs, whether motivated by interaction networks or not.

12



Beyond generality and robustness, a second reason to prefer a combinatorial assumption to a gen-
erative model is that the assumption can be easily verified for a given data set. Since computing
the triangle density of a network is a well-studied problem, both theoretically and practically
(see [SPK13] and the references therein), the extent to which a network meets the triangle density
assumption can be quantified. By contrast, it is not clear how to argue that a network is a typical
instance from a generative model, other than by verifying various statistical properties (such as tri-
angle density). This difficulty of verification is amplified when there are multiple generative models
vying for prominence, as is currently the case with social and information networks (e.g. [CF06)).

Given the prevalence of triangles in social networks, it is considered an important property for
generative models to match [CF06]. Comparative studies of such generative models explicitly
compared the clustering coefficients to real data, and showed that classic models like the Preferential
Attachment Model, the Copying Model, and the Stochastic Kronecker Model do not generate
enough triangles [SCWT10, PSK12]. Recent models have explicitly tried to remedy this by creating
many triangles, examples being the Forest Fire, Block Two-Level Erd6s-Rényi, and the Transitive
Chung-Lu models [LKF07, SKP12, IFMN12].

Why Triangle Density? Interaction networks possess a number of statistical signatures, as dis-
cussed above. Why single out triangle density? First, there is tremendous empirical support for
large triangle density in interaction networks. This property has been studied for decades in the
social sciences [HL70, Col88, Bur04, Fau06, FWVDC10], and recently there have been numerous
large-scale studies on online social networks [SCW*10, UKBM11, SPK13]. Second, in light of this
empirical evidence, generative models for social and interaction networks are explicitly designed
to produce networks with high triangle density [WS98, CF06, SCW*10, VB12]. Third, the as-
sumption of constant triangle density seems to impose more exploitable structure than the other
most widely accepted properties of social and interaction networks. For example, the property
of having small diameter indicates little about the structure of a network — every network can
be rendered small-diameter by adding one extra vertex connected to all other vertices. Similarly,
merely assuming a power-law degree distribution does not seem to impose significant restrictions
on a graph [FPP06]. For example, the Chung-Lu model [CL02a] generates power-law graphs with
no natural decompositions. While constant triangle density is not a strong enough assumption to
exclude all “obviously unrealistic graphs,” it nevertheless enables non-trivial decomposition results.
Finally, we freely admit that imposing one or more combinatorial conditions other than triangle
density could lead to equally interesting results, and we welcome future work along such lines. For
example, recent work by Ugander, Backstrom, and Kleinberg [UBK13] suggests that constraining
the frequencies of additional small subgraphs could produce a refined model of interaction networks.

Why Tightly-Knit Families? We have intentionally highlighted the existence and computa-
tion of tightly-knit families in triangle-dense graphs, rather than the (approximate) solution of any
particular computational problem on such graphs. Our main structural result quantifies the extent
to which we can “visualize” a triangle-dense graph as, approximately, a union of cliques. This is a
familiar strategy for understanding restricted graph classes, analogous to using separator theorems
to make precise how planar graphs resemble grids [LT79], tree decompositions to quantify how
bounded-treewidth graphs resemble trees [RS86], and the regularity lemma to describe how dense
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graphs are approximately composed of “random-like” bipartite graphs [Sze78]. Such structural re-
sults provide a flexible foundation for future algorithmic applications. We offer a specific application
to recovering planted clusterings and leave as future work the design of more applications.

2.2 An Intuitive Overview

We give an intuitive description of our algorithm and proof. Our approach to finding a tightly-knit
family is an iterative extraction procedure. We find a single member of the family, remove this set
from the graph (called the extraction), and repeat. Let us start with an everywhere e-triangle-dense
graph G, and try to extract a single set S. It is easy to check that every vertex neighborhood is
dense and has many triangles, and would qualify as a set in a tightly-knit family. But for vertex
i, there may be many vertices outside N (i) (the neighborhood of ¢) that form triangles with a
single edge contained in N(i). By extracting N (i), we could destroy too many triangles. We give
examples in Section 2.4 where such a naive approach fails.

Here is a simple greedy fix to the procedure. We start by adding N (i) and ¢ to the set S. If any
vertex outside N (i) forms many triangles with the edges in N (i), we just add it to S. It is not
clear that we solve our problem by adding these vertices to .S, since the extraction of S could still
destroy many triangles. We prove that by adding at most d; vertices (where d; is the degree of 7)
with the highest number of triangles to N (i), this “destruction” can be bounded. In other words,
G|s will have a high density, obviously has radius 2 (from 7), and will contain a constant fraction
of the triangles incident to S.

Naturally, we can simply iterate this procedure and hope to get the entire tightly-knit family. But
there is a catch. We crucially needed the graph to be everywhere e-triangle-dense for the previous
argument. After extracting .S, this need not hold. We therefore employ a cleaning procedure
that iteratively removes edges of low Jaccard similarity and produces an everywhere e-triangle-
dense graph for the next extraction. This procedure also destroys some triangles, but we can
upper bound this number. As an aside, removing low Jaccard similarity edges has been used for
sparsifying real-world graphs by Satuluri, Parthasarathy, and Ruan [SPR11].

When the algorithm starts with an arbitrary e-triangle-dense graph G, it first cleans the graph
to get an everywhere e-triangle-dense graph. We may lose many edges during the initial cleaning,
and this is inevitable, as examples in Section 2.4 show. In the end, this procedure constructs a
tightly-knit family containing a constant fraction of the triangles of the original e-triangle-dense
graph.

When G is everywhere or mostly everywhere e-triangle-dense, we can ensure that the tightly-knit
family contains a constant fraction (depending on €) of the edges as well. Our proof is a non-
trivial charging argument. By assigning an appropriate weight function to triangles and wedges,
we can charge removed edges to removed triangles. This (constructively) proves the existence of a
tightly-knit family with a constant fraction of edges and triangles.
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2.3 The Decomposition Procedure

In this section we walk through the proof outlined in Section 2.2 above. We first bound the
losses from the cleaning procedure in Section 2.3.2. We then show how to extract a member of
a tightly-knit family from a cleaned graph in Section 2.3.3. We combine these two procedures
in Theorem 2.16 of Section 2.3.4 to obtain a full tightly-knit family from a triangle-dense graph.
Finally, Theorem 2.18 of Section 2.3.5 shows that the procedure also preserves a constant fraction
of the edges in a mostly everywhere triangle-dense graph.

2.3.1 Preliminaries

We begin with some notation. Consider a graph G = (V, E). We index vertices with i, j, k, ..., and
say vertex i has degree d;. We repeatedly deal with subgraphs H of G, and use the ... (H) notation
for the respective quantities in H. So, t(H) denotes the number of triangles in H, d;(H) denotes
the degree of 7 in H, and so on. Also, if S is a set of vertices, let G|g denote the induced subgraph
on G.

We conclude the preliminaries with a simple lemma on the properties of everywhere e-triangle-dense
graphs.

Lemma 2.9 (Local properties of everywhere triangle-dense graphs). If H is everywhere e-triangle
dense, then d; > ed; for every edge (i,7). Furthermore, N(i) is e-edge dense for every vertez i.

Proof. 1f d; > d; we are done. Otherwise

NOONG  _di—1_d;
N\ GH UGN = d—1 = dy

as desired. To prove the second statement, let S = N(¢). The number of edges in S is at least

1 ) . edi(d; — di
3 DINO NG > 5 3 s -1 = G —o(5).

jes jes

€< Ja ) =

2.3.2 Cleaning a Graph

An important ingredient in our constructive proof is a “cleaning” procedure that constructs an
everywhere e-triangle-dense graph from a graph H, given an € € (0, 1].

The cleaning procedure clean.: Iteratively remove an arbitrary edge with Jaccard similarity
less than €, as long as such an edge exists. Finally, remove all isolated vertices.

The output clean.(H) is dependent on the order in which edges are removed, but our results hold
for an arbitrary removal order. Satuluri et al. [SPR11] use a more nuanced version of cleaning for
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graph sparsification of social networks. They provide much empirical evidence that removal of low
Jaccard similarity edges does not destroy interesting graph structure, such as its dense subgraphs.
Our arguments below may provide some theoretical justification.

Claim 2.10 (Cleaning preserves triangles). The number of triangles in clean.(H) is at least t(H)—
ew(H), where w(H) is the number of wedges in H.

Proof. The process clean. removes a sequence of edges ey, es,.... Let W; and T; be the set of
wedges and triangles that are removed when e; is removed. Since the Jaccard similarity of e; at
this stage is at most €, |T;| < e(|Wi| — |T;|) < €|W;|. All the W’s (and T}’s) are disjoint. Hence, the
total number of triangles removed is >, |T;| < e>, |W;| < ew(H). O

We get an obvious corollary by noting that ¢(H) = 7(H) - w(H)/3.

Corollary 2.11. The graph cleanc(H) is everywhere e-triangle dense and has at least (T(H)/3 —
e)w(H) triangles.

2.3.3 Extracting a Single Cluster

Suppose we have an everywhere e-triangle dense graph H. We show how to remove a single cluster
of a tightly-knit family. Since the entire focus of this subsection is on H, we drop the ...(H)
notation.

For a set S of vertices, let tg denote the number of triangles which have at least one vertex in S,
and let tg]) = t(H|g) denote the number of triangles which have all three vertices in S (the [ is for
“internal”). We have the following key definition:

Definition 2.12 (p-extractable). For p € (0, 1], we say that a set of vertices S is p-extractable if
H|g is p-edge dense, p-triangle dense, H|s has radius 2, and t(SI) > pts.

We now define the following extract procedure that finds a single extractable cluster in the graph
H.

The extraction procedure extract: Let i be a vertex of maximum degree. For every vertex j,
let 6; be the number of triangles incident on j whose other two vertices are in N(i). Let R be the
set of d; vertices with the largest §; values. Output S = {i} U N(i) UR.

It is not necessary to start with a vertex of maximum degree, but doing so provides a better
dependence on e. Also, note that the {i} above is just for clarity; a simple argument shows that
1€ R.

We start with a simple technical lemma.

Lemma 2.13 (Concentration of vectors with low L; and high Ls). Suppose 1 > o > -+ > 0

with Y x; < a and Zm? > B. For all indices r < 20/, di<r .TJ2 > B%r/4a?.
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Proof. 1f ;11 > /2c, then ) 2> B%r/4a? as desired. Otherwise,

j<r T
SEEREH JRE
j>r
Hence, qu E Z.Z‘ Z]>r 1>6/2> B%r /4a?, using the bound given for r. O

The main theorem of the section follows.

Theorem 2.14. Let H be an everywhere e-triangle dense graph. The procedure extract outputs an
Q(e*)-extractable set S of vertices. Furthermore, the number of edges in H|s is an Q(¢)-fraction of
the edges incident to S.

Proof. Let € > 0, ¢ a vertex of maximum degree, and N = N (7).

We have |S| < 2d;. By Lemma 2.9, H|xy has at least e( ') edges, so H|g is Q(e)-edge dense. By the
size of S and maximality of d;, the number of edges in H|g is an €(e)-fraction of the edges incident
to S. Tt is also easy to see that H|g has radius 2. It remains to show that H|g is Q(e*)-triangle

dense, and that tg]) = Q(eH)ts.

For any j, let n; be the number of edges from j to N, and let 6; be the number of triangles incident
on j whose other two vertices are in N. Let z; = /20;.

Lemma 2.13 tells us that if we can (appropriately) upper bound ) ;%; and lower bound > y a:?

25

then the sum of the largest few z7’s is significant. This implies that H |s has sufficiently many

triangles. Using appropriate parameters, we show that H|s contains Q(poly(e) - d) triangles, as
opposed to trivial bounds that are quadratic in d;.

Claim 2.15. We have 3_;x; <3 oy di, and 3, x2 > 5 pen A(H|N) di, where di(H|y) is the
degree of vertex k within H\N

Proof. We first upper bound Zj xj:

Yo Ti(y) < Xu-Ta

keN

The first inequality follows from 6; < (7723) The last equality is simply stating that the total number
of edges to vertices in N is the same as the total number of edges from vertices in N.

Let t. be the number of triangles that include the edge e. For every e = (ki, k2), te > Je-max(dg, —
1,dg, — 1) > € - max(dy, — 1,d, — 1). Since € > 0, each vertex is incident on at least 1 triangle.
Hence all degrees are at least 2, and dy, — 1 > dj/2 for all k. This means

b €- max(;lkl,db) > e(dg, 2— di,)

for all e = (k‘l,kg).
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2
We can now lower bound }_; 3

subgraph. We have

Zx —220 = Z 2te > Z (dk1+dk2 de H|y)d

CEH‘N (k‘l,k‘Q)EH‘N ]fEN

Abusing notation, e € H|y refers to an edge in the induced

The two sides of the second equality are counting (twice) the number of triangles “to” and “from”
the edges of N. O

We now use Lemma 2.13 with o = >, c v di, 8= §> ey di(H|N) dg, and 7 = d;. We first check
that r < 2a2/5. Note that d; > di > ed; for all Kk € N, by Lemma 2.9 and by the maximality of
d;. Hence,

>

2
20 4 (Zgen dn) 4 edi|N|Spen e 0 o
_— € - (RS

B e ZkeN dk(H‘N) di, di ZkeN di;
as desired. Let R be the set of r = d; vertices with the highest value of ;, or equivalently, with the
highest value of ;1:? By Lemma 2.13, deR 7> B%r/4a?, or Z]eRH > B2r/8a%. We compute

dy(H|y) d ¢
B _ € Xien %(H|n) b min dy(H|v) >

€
which gives > . p6; > €*d3/128. For the first inequality above, think of the di/ Y d) as the

coefficients in a convex combination of dy(H|y)’s. For the last inequality, dy(H|n) = t;r) >
Ty (ds — 1) > ed;/2 for all k € N.

Recall S = N U R and |S| < 2d;. We have

0 A
t(SI)ZEJeR J 2661@7
3 384

since triangles contained in N get overcounted by a factor of 3. Since both tg and the number of
wedges in S are bounded above by |S| (‘;Z) = O(d?), H|g is Q(e*)-triangle dense, and t(SI) = Q(eM)tg,
as desired. O

2.3.4 Getting the Entire Family in a Triangle-Dense Graph

We start with a e-triangle-dense graph G and explain how to get the desired entire tightly-knit
family. Our procedure — called the decomposition procedure — takes as input a parameter e.

The decomposition procedure: Clean the graph with cleane, and run the procedure extract
to get a set S1. Remove S from the graph, run clean. again, and extract another set So. Repeat
until the graph is empty. Output the sets 51,59, .. ..

We now prove our main theorem, Theorem 2.3, restated for convenience.

Theorem 2.16. Consider a T-triangle dense graph G and € < 7/4. The decomposition procedure
outputs an Q(e*) tightly-knit family with an Q(e*)-fraction of the triangles of G.
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Proof. We are guaranteed by Theorem 2.14 that G|g, is Q(e?)-edge and Q(e*)-triangle dense and
has radius 2. It suffices to prove that an Q(e*)-fraction of the triangles in G' are contained in this
family.

Consider the triangles that are not present in the tightly-knit family. We call these the destroyed
triangles. Such triangles fall into two categories: those destroyed in the cleaning phases, and those
destroyed when an extractable set is removed. Let C' be the triangles destroyed during cleaning,
and let Dy, be the triangles destroyed in the kth extraction. By the definition of extractable subsets
and Theorem 2.14, t(G|s,) = Q(e*|Dy|). Note that C, Dy, and the triangles in G|g, (over all k)
partition the total set of triangles. Hence, we get that >, t(G|s,) = Q(e*(t — |C])).

We now bound |C|. This follows the proof of Claim 2.10. Let e, e, ... be all the edges removed
during cleaning phases. Let W; and 1; be the set of wedges and triangles that are destroyed
when ¢; is removed. Since the Jaccard similarity of e; at the time of removal is at most €, |T;| <
(Wil — |T3|) < e|]W;]. All the Wis (and T;s) are disjoint. Hence, |C| =", |T1| < €)X, |Wi| = ew =
3et/T < 3t/4, and Y, t(Gls,) = Q(e't), as desired. O

We also give a quick runtime analysis. Recall that w(G) is the number of wedges in G. Note that
w(G) will be somewhere between the number of edges in G times the average degree of G, and the
number of edges times the max degree. For most practical graphs, very few of the edges from high
degree vertices will play a role in the clustering. One can also imagine doing a preliminary cleaning
step where we first remove all edges (4, j) where d; < ed; (in time proportional to the number of
edges), which should reduce the max degree to roughly the size of the biggest cluster.

Theorem 2.17. The decomposition can be obtained in time proportional to w(G) + |V|.!

Proof. We maintain five hash tables/sets for the course of the algorithm: a hash table from each
node to its incident edges, a hash table from each edge to the degrees of its endpoints, a hash table
from each edge e to the set of triangles containing e, a hash table from integers d to the set of all
vertices of degree d, and the set of all edges with Jaccard similarity less than e. We also keep track
of the maximum degree.

We assume constant-time insert, delete, and lookup in all hash tables and sets. We can initialize
the data structures by enumerating over all wedges and edges, which takes O(w(G) + |V|) time.
When an edge e is deleted, we can update the hash tables in time proportional to the number of
wedges containing e. Since edges are deleted but never added by the decomposition procedure,
we spend a total of O(w(G) + |V|) time maintaining the data structures over the course of the
procedure.

Now, the three operations performed by the procedure are clean., extract, and removing a set of
nodes from the graph. The first and third are accounted for by our data structures, as is finding a
vertex of maximum degree from which to extract.

For an extract operation from vertex i, we enumerate over all pairs (u,v) of neighbors of i, which
takes time proportional to the number of wedges at i. For each pair that is an edge, we enumerate

!Note that the algorithm here uses O(w(G) + |V|) space as well. A slight variant of the algorithm runs in
O(w(G) + |V]) time and only O(|E|) space, but takes longer to analyze — see Appendix 2.A details.
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over all triangles that involve this pair/edge, and by hashing appropriately, we can find the d;
vertices with the largest 0; values. Every such enumerated triangle is deleted when the extracted
set is removed, so the total time spent here is again at most O(w(G)+|E|) = O(w(G)+|V|), giving
the desired result. O

2.3.5 Preserving Edges in a Mostly Everywhere Triangle-Dense Graph

For a mostly everywhere triangle-dense graph, the decomposition procedure can also preserve a
constant fraction of the edges. This requires a more subtle argument. The aim of this subsection
is to prove the following (cf. Theorem 2.7).

Theorem 2.18. Consider a ju,~y-triangle dense graph G, for p > 1 —~%/32. The decomposition
procedure, with € < v3/12, outputs an Q(e*) tightly-knit family with an Q(e*) fraction of the triangles
of G and an Q(ev) fraction of the edges of G.

The proof appears at the end of the subsection. The tightly-knit family and triangle conditions
follow directly from Theorem 2.16, so we focus on the edge condition. By Theorem 2.14, the actual
removal of the clusters preserves a large enough fraction of the edges. The difficulty is in bounding
the edge removals during the cleaning phases.

We first give an informal description of the argument. We would like to charge lost edges to
lost triangles, and piggyback on the fact that not many triangles are lost during cleaning. More
specifically, we apply a weight function to triangles (and wedges), such that losing or keeping an
edge corresponds to losing or keeping roughly one unit of triangle (and wedge) weight in the graph.
Most edges (i, j) belong to roughly d; + d; triangles and wedges, and so intuitively we weight each
of those triangles (and wedges) by roughly 1/(d; + d;). This intuition breaks down if d; < d;, but
d; =~ d; for edges with high Jaccard similarity.

The rest of the argument follows the high-level plan of the e-triangle dense case (cf. the argument
to bound |C| in Theorem 2.16), though work is needed to replace triangles and wedges with their
weighted counterparts. The original graph G has high triangle density, which under our weight
function is enough to imply a comparable amount of triangle weight and wedge weight. Only edges
with low Jaccard similarity are removed during cleaning, and each of these removed edges destroys
significantly more wedge weight than triangle weight. Hence, at the end of the process, a lot of
triangle weight must remain. There is a tight correspondence between edges and triangle weight,
and so a lot of edges must also remain.

We now start the formal proof. We use E, W, and T to denote the sets of edges, wedges, and
triangles in G. W, and T, denote the sets of edges and triangles that include the edge e. We use
E¢; W¢ and T° to denote the respective sets destroyed during the cleaning phases, and use W¢
and T¢ to denote the corresponding local versions. If an edge e is removed during cleaning, then
W& C We, but the sets are not necessarily equal, since elements of W, may have been removed prior
to e being cleaned. Let 7% = T\ T¢. Let E® and V*° denote the edges and vertices, respectively,
included in at least one triangle of 7. For ease of reading, let d; = d; — 1 be one less than the
degree of vertex 1.
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Call an edge e good if J. > v in the original graph G, and bad otherwise. We use g; to denote
the number of good edges incident to vertex i. Call a wedge good if it contains at least one good
edge, and bad otherwise. By hypothesis, a u fraction of edges are good. We make the following
observation.

Claim 2.19. For every good edge e = (i, j), d; > ~d;.

Proof. We have

te d,
VS o= Gt < oL,
d+d—t ~ d,

.

where the last inequality comes from t. < d. O

We now define a weight function r on triangles and wedges, as per the informal argument above. For
a triangle 7 = (i1, 42, 43) with at least 2 good edges, let 7(7) = 1/d}, +1/d;, +1/d; . If T has only
one good edge (i1,i2), let (7)) = 1/d; + 1/d;,. If T has no good edges, let 7(7") = 0. For a good
wedge w with central vertex i, let r(w) = 1/d;, otherwise, let r(w) = 0. Let r(X) = > .y r(z).
Note that weights are always with respect to the degrees in the original graph G, and do not change
over time.

In the next two claims we show that the total triangle weight in GG is comparable to the total wedge
weight in G, and is also comparable to |E|.

Claim 2.20. r(T) > yulE|.

Proof. Let t¢ be the number of triangles (¢, j, k) € T for which at least one of (i, j), (i, k) is good.
Since the good edges each have Jaccard similarity > v, we have t¢ > g;vd;/2. Thus,

gz'y
E :d, E Yl E|. O
Claim 2.21. (W) < 2u|E|.

Proof. Let w{ be the number of good wedges which have i as their central vertex. Then
r(W) = Z dl —Zgz—2N‘E| o

The next two claims bound the triangle weight lost by cleaning any particular edge.
Claim 2.22. If a good edge e = (i, j) is removed during cleaning, then r(TS) < (3¢/v*)r(W¢).
Proof. Assume that d; > d;. Let d = d;. We first lower bound r(W¢) as a function of |W¢|. For

any w € W¢, w has at least one good edge, and has either ¢ or j as its central vertex. Hence
r(w) > min{1/d},1/d;} = 1/d’, and

wel

r(We) = —

e
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We now upper bound 7(7¥) as a function of |T¢|. Consider triangle t = (i,5,k) € T<. If (4,7) is
the only good edge in ¢, then r(¢) = 1/d; + 1/d; < 2/d'y, since d; > d'y by Claim 2.19. If ¢ has
at least 2 good edges, then k is at most 2 good edges away from 4, and dj, > d'~v?. This gives
r(t) =1/dj+1/d; + 1/d; < 3/d'+*. Hence

. 3 2
() smax{ o2 2 = i

Now, |T¢| < €|W¢|, since J. < € at the time of cleaning. Hence we have

36
%5 wW¢
Wl < 2 r(We)

"1 < 35 ITE < 5

as desired. ]

Claim 2.23. If a bad edge e = (i,7) is removed during cleaning, r(TS) < 4/~.

Proof. The only triangles with non-zero weight in 7 have a good edge to ¢ and/or a good edge
to j. Let m; and m; be the minimum degrees of any vertex connected by a good edge to i and j,
respectively. It is not too hard to see that

. 11 11
T(Te)égz‘<d/ >+91 (C#JFW)’
J J

since there are at most g; + g; triangles with non-zero weight incident to e, each with at most the
weight in the corresponding set of parentheses. Plugging in m) > ~d! (Claim 2.19) and g; < d;
gives the desired result. O

We now combine the observations above to show that cleaning cannot remove all the triangle weight.

Claim 2.24. r(T%) > ~v|E|/4.
Proof. We have

r(T) =Y r(TE)+ ) r(T¥)

good e bad e
4
< Z *T (We) + Z — by Claim 2.22 and Claim 2.23
goode bade’y
Je 4
< —<rW)+ =1 —p)|E
SrV) + 20 )l
E 4(1 — p)|E
< 66u|2 | + (1= wiE| by Claim 2.21
Y Y
< plE] 7|E|
-2 * 8

where the last inequality follows from the bounds on € and p in the theorem statement. Hence
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r(T°) = r(T) = r(T°)

E E
> yulE| — <7M2H + ’y]8\> by Claim 2.20

> v|E|/4,

since p > 3/4. O

Finally, we show that if a subgraph of G has high triangle weight, it must also have a lot of edges.
Though the claim is stated in terms of T°, the proof would hold for any H C G. This can be
thought of as a moral converse to Claim 2.20.

Claim 2.25. r(7%) < |E®|.

Proof. Let H = (V, E®). The triangles of H are exactly T°. We have

1 1 1 t:(H)
T(TS) < Z ; + — + - _ / ’
waiotein GG T d(G) T d(G) S di(G)

where t;(H) is the number of triangles in H incident to ¢. From here, we compute

t(H) _ (" §H>
d;(G) = (G

= |E7|

as desired. ]

The last two claims together imply that the cleaning phase does not destroy too many edges. The
rest of the proof is nearly identical to that of Theorem 2.16 from the e-triangle dense case.

Proof. (of Theorem 2.18) As noted above, the tightly-knit family and triangle conditions follow
directly from Theorem 2.16.

Let Dy, be the edges destroyed in the kth extraction, and let Ej, be the edges in G|g,. By The-
orem 2.14, |Ey| = Q(e|Dg|). Since E¢, Dy, and Ej (over all k) partition E, we have ), |Ey| =
Q(e(|E| — |E€])). Since |E¢| 4+ |E*| < |E|, we have ), |Ex| = Q(e|E®|). Finally, by Claim 2.24 and
Claim 2.25, |E®| = Q(v|E|), and so ), |Ex| = Q(ey|E|) as desired. O

2.4 Triangle-Dense Graphs: The Rogues’ Gallery

This section provides a number of examples of graphs with constant triangle density. These exam-
ples show, in particular, that radius-1 clusters are not sufficient to capture a constant fraction of an
e-triangle-dense graph’s triangles, and that tightly knit families cannot always capture a constant
fraction of an e-triangle-dense graph’s edges.
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Figure 2.2: Bracelet graph with d/3 = 4: a triangle-dense graph that is far from a union of cliques.

e Why radius 27 Consider the complete tripartite graph. This is everywhere e-triangle-dense
with € ~ 3. If we removed the 1-hop neighborhood of any vertex, we would destroy a 1 — ©(1/n)-
fraction of the triangles. The only tightly-knit family (with constant p) in this graph is the entire
graph itself.

e More on 1-hop neighborhoods. All 1-hop neighborhoods in an everywhere triangle-dense
graph are edge-dense, in the sense of Lemma 2.9. Maybe we could just take the 1-hop neighborhoods
of an independent set, to get a tightly-knit family? Of course, the clusters would only be edge-
disjoint (not vertex disjoint).

We construct a family of everywhere e-triangle-dense graph with constant € where this does not
work. There are m + 1 disjoint sets of vertices, A1,..., A, B each of size m. The graph induced
on Ui Ay, is just a clique on m? vertices. Each vertex by € B is connected to all of Aj. Note that B
is a maximal independent set, and the 1-hop neighborhoods of B contain ©(m?) triangles in total.
However, the total number of triangles in the graph is ©(m9).

¢ Why we can’t preserve edges. Theorem 2.3 only guarantees that the tightly-knit family
contains a constant fraction of the graph’s triangles, not its edges. Consider a graph that has a
clique on n'/3 vertices and an arbitrary (or say, a random) constant-degree graph on the remaining
n—nl/3 vertices. No tightly-knit family (with constant p) can involve vertices outside the clique, so
most of the edges must be removed. Of course, most edges in this case have low Jaccard similarity.

In general, the condition of constant triangle density is fairly weak and is met by a wide variety of
graphs. The following two examples provide further intuition for this class of graphs.

e A family of triangle-dense graph far from a disjoint union of cliques. Define the graph
Bracelet(m, d), for m nodes of degree d, when m > 4d/3, as follows: Let By, ..., B3y, 4 be sets of
d/3 vertices each put in cyclic order. Note that 3m/d > 4. Connect each vertex in By, to each vertex
in B_1, Bx and Byi1. Refer to Figure 2.2. This is an everywhere € triangle-dense d-regular graph
on m vertices, with € a constant as m — oco. Nonetheless, it is maximally far (i.e., O(md) edges
away) from a disjoint union of cliques. A tightly-knit family is obtained by taking B; U By U Bs,
B4 U Bs U Bg, etc.

e Hiding a tightly-knit family. Start with n/3 disjoint triangles. Now, add an arbitrary
bounded-degree graph (say, an expander) on these n vertices. The resulting graph has constant
triangle density, but most of the structure is irrelevant for a tightly-knit family.
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2.5 Recovering Everything in an Everywhere 2/3-Triangle-Dense
Graph

A natural question is what happens to e-triangle-dense graphs, as € goes to 1. We have the following
surprising result for everywhere triangle-dense graphs:

Theorem 2.26. If G is everywhere (1 — §)-triangle dense for some § < 1/3, then G is the union
of components of diameter 2, each of which is (1 — 28)%/(1 — §)-edge dense.

Note that this implies that our decomposition algorithm will recover the entire graph.

Proof. We repeatedly use the following identity: for sets X and Y, X UY =X +Y — X NY. For
any sets I, J, K, and L, we have

IVJUKUL=ITUJUK+L—-(IUJUK)NL
<IUJUK+L—-KNL
=JUJ+K-({UJ)UK+L—-KnNL
<IUJ+K-JUK+L-KNL
=I+J+K+L-InJ—-JNK-KnNL.

et (i,75), (j,k), and (k,l) be edges in G. Say for contradiction the distance from ¢ to [ is 3.
et Ny = N(i)\{j},N; = N() \ {i,k}, Ny = N(k) \ {j,l}, and N; = N(I) \ {k}. Note that
N(i) N N(j) = Nin N;, and N(i) UN(j) — 2 > N;UN; > N;, so

. N(@)NN() <NiﬂNj
W N@HUNG) -2~ N

< J

W o

Similarly, 2/3 < (Ny N N;)/Ni. We have a strict inequality for the middle edge: N(j) UN (k) —2 >
max(Nj, Ni) > (Nj + Ni)/2, and so 1/3 < (N; N Ny)/(N;j + Ny).

From there,

N;UN; < N;UN,; UN,UN,
< N;+Nj+ N+ N, —N;AN;j — N;NA N, — NN N,
< N;+ N+ N+ N, —2N;/3 — (Nj + Ni)/3 — 2N} /3
= N; + N,.

Hence N; N N, is non-empty, and there is a path of length 2 from i to [, contradicting our original
claim. This demonstrates that every component of G has diameter 2.

Now let C' be a component of G, and let ¢ be a vertex of maximal degree d; in C. Let k € C'\ N (i),
and let j € N(i) N N(k). Let N; = N(4) \ {j} and so on, as above.

Then N;N N, = N;+Np—N;UN;, > NZ'-i-Nk—NiUNjUNk > —Nj—f—NiﬂNj-f-NjﬂNk, by the same
argument as above. We also similarly have N; N N; > (1 — 25)N; + 0N; and N;j N Ny, > (1 —J)Nj,
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which implies N; N N, > (1 —26)N; = (1 — 26)(d; — 1). Adding j back in, we have

N@G) NN (k) > (1 - 26)d;.

Now, pick a vertex [ € N(i). Let Ny = N(I)\ {i}, and N; = N (i) \ {{}. We have N; \ N; =
Ny — NN N; <N, — (1=06)N; <IN; =d(d; — 1) < dd;, where the second inequality holds because
d; is maximal.

Putting this together, the total number of edges leaving N*(i) = iU N (i) is at most N (i)dd; = dd2.
Each vertex in C'\ N*(i) has at least (1 — 2d)d; edges entering N*(i). Hence there are at most
dd; /(1 —26) vertices in C'\ N*(i), and at most dd;/(1 — 20) + d; + 1 vertices in C.

Finally, each vertex in C' has degree at least (1 — 20)d;, and so the edge density in C' is at least

(1-20)d; _ (1-20)2 .
S =20)Td — T=5 & desired. ]

It is worth noting that the bracelet graph from Figure 2.2 is just under everywhere 1/2-triangle
dense, has arbitrarily high diameter, and has arbitrarily low edge density. We conjecture that
regular graphs that are just above everywhere 1/2-triangle dense have diameter 2 by the same
argument as above.

2.6 Recovering a Planted Clustering

This section gives an algorithmic application of our decomposition procedure to recovering a
“oround truth” clustering. We study the planted clustering model defined by Balcan, Blum, and
Gupta [BBG13], and show that our algorithm gives guarantees similar to theirs. We do not sub-
sume the results in [BBG13]. Rather, we observe that a graph problem that arises as a subroutine
in their algorithm is essentially that of finding a tightly-knit family in a triangle-dense graph. Their
assumptions ensure that there is (up to minor perturbations) a unique such family.

The main setting of [BBG13] is as follows. Given a set of points V' in some metric space, we wish to
k-cluster them to minimize some fixed objective function, such as the k-median objective. Denote
the optimal k-clustering by C and the value by OPT. The instance satisfies (c, €)-approzimation-
stability if for any k-clustering C’ of V' with objective function value at most ¢-OPT, the “classifica-
tion distance” (formalized as A-incorrect below) between C and C’ is at most €. Thus, all solutions
with near-optimal objective function value must be structurally close to C.

A summary of the argument in [BBG13] is as follows. The first step converts an approximation-
stable k-median instance into an unweighted undirected graph by including an edge between two
points if and only if the distance between them (in the k-median instance) is at most a judiciously
chosen threshold 7. In [BBG13, Lemma 3.5] it is proved that this threshold graph G = (V, E)
contains k disjoint cliques {Xa}’;:l, such that the cliques do not have any common neighbors. These
cliques correspond to clusters in the ground-truth clustering, and their existence is a consequence
of the approximation stability assumption. The aim is to get a k-clustering sufficiently close to
{X,}. Formally, a k-clustering {S,} of V is A-incorrect if there is a permutation o such that
Z |X0'(a) \ Sa‘ <A.
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Let B=V \|J,Xs. The second step of the argument in [BBG13] proves that when |B| is small,
good approximations to { X, } can be found efficiently. We give a different algorithm for implement-
ing this second step; correctness follows by adapting the arguments in [BBG13]. Intuitively, the
connection between our work and the setting of [BBG13] is that, when |B| is much smaller than
> | Xal, the threshold graph G output by the first step has high triangle density. Furthermore,
as we prove below, the clusters output by the procedure extract of Theorem 2.14 are very close to
the X,’s of the threshold graph.

In more detail, to obtain a k-clustering of the threshold graph G identified in [BBG13], our algorithm
iteratively use the procedure extract (from Section 2.3.3) k times to get clusters Sy, So,...,Sg. In
particular, recall that at each step we choose a vertex s; with the current highest degree d;. We set
N; to be the d; neighbors of s; at this time, and R to be the d; vertices with the largest number
of triangles to N;. Then, S; = {i} U N; U R. The exact procedure of Theorem 2.16, which includes
cleaning, also works fine. Foregoing the cleaning step does necessitate a small technical change
to extract: instead of adding all of R to S, we only add the elements of R which have a positive
number of triangles to V;.

We use the notation N*(U) = N(U)UU. So N*(X,) N N*(X}) = 0, when a # b. Unlike [BBG13],
we assume that |X,| > 3. The following parallels the main theorem of [BBG13, Theorem 3.9], and
the proof has the same high-level structure.

Theorem 2.27. The output of the clustering algorithm above is O(|B|)-incorrect on G.

Proof. We first map the algorithm’s clustering to the true clustering {X,}. Our algorithm outputs
k clusters, each with an associated “center” (the starting vertex). These are denoted S1,S2,...,
with centers si, So, ..., in order of extraction. We determine if there exists some true cluster X,
such that s; € N*(X,). If so, we map S7 to X,. (Recall the N*(X,)’s are disjoint, so X, is unique
if it exists.) If no X, exists, we simply do not map S;. We then perform this for Sy, Ss, .. ., except
that we do not map Sy if we would be mapping it to an X, that has previously been mapped to.
We finally end up with a subset P C [k], such that for each a € P, S, is mapped to some X, .
By relabeling the true clustering, we can assume that for all a € P, S, is mapped to X,. The
remaining clusters (for X,¢p) can be labeled with an arbitrary permutation of [k] \ P.

Our aim is to bound ), | X, \ Sa| by O(|B|).

We perform some simple manipulations.

U&a\S) = JXa\Sa)U J(Xa\ Sa)

a acP a¢ P

= J&XanUSuJXa\ 80Ul (Xa\ Sa)

aeP b<a aeP b<a a¢ P

U&anUse)u J e\ U S u Y X

a b<a acP b<a ag¢P

N
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So we get the following sets of interest.

o L1 = Uy(XaNUpey S6) = Up(Sp N U,sp Xa) is the set of vertices that are “stolen” by clusters
before S,.

o Ly =,cp(Xa\ Up<q Sb) is the set of vertices that are left behind when S, is created.
e Ls=J agP X, is the set of vertices that are never clustered.

Note that >, [ X4 \ S| = [U,(Xa \ Sa)| < |L1| + |L2| + |L3|. The proof is completed by showing
that |L1| 4 |L2| + |Ls| = O(|B|). This will be done through a series of claims.

We first state a useful fact.

Claim 2.28. Suppose for some b € {1,2,...,k}, sp € N(Xp). Then Ny is partitioned into Ny N X},
and Ny N B.

Proof. Any vertex in N \ Xp must be in B. This is because N, is contained in a two-hop neigh-
borhood from X3, which cannot intersect any other X,. ]

Claim 2.29. For any b, |Sy NU,~, Xa| < 6]|S, N B|.

a>b

Proof. We split into three cases. For convenience, let U be the set of vertices Sy N J,~;, Xa. Recall
that |Sp| < 2dp.

e For some ¢, s € X.: Note that ¢ < b by the relabeling of clusters. Observe that .5, is contained
in a two-hop neighborhood of s, and hence cannot intersect any cluster X, for a # ¢. Hence, U is
empty.

e For some (unique) ¢, sp € N(X.): Again, ¢ < b. By Claim 2.28, d, = |Ny| = | Ny N X¢| + | Ny N BY.
Suppose |N, N B| > dy/3. Then |S, N B| > |N, N B| > dp/3. We can easily bound [S,| < 2d;, <
6|Sy N BY.

Suppose instead |Ny N B| < d/3, and hence {Nb N X¢| > 2dp/3. Note that [N, N X,.| is a clique.
Each vertex in N, N X, makes ('Nbﬂ‘;(C'_l) > ( ng/gj) triangles in Ny. On the other hand, the only

vertices of Ny that any vertex in X, for a # ¢ can connect to is in Ny N B. This forms fewer than
(Ld”2/ 3J) triangles in Np. If (Ld”2/ 3J) > 0, then ( pdg/ 3J) > (Lde/ 3J).

Consider the construction of S;. We take the top dp vertices with the most triangles to Ny, and
say we insert them in decreasing order of this number. Note that in the modified version of the
algorithm, we only insert them while this number is positive. Before any vertex of X, (a # b) is
added, all vertices of N N X, must be added. Hence, at most d, — [Ny N X.| = [Ny N B| < |S, N B|
vertices of Uy, X, can be added to Sy. Therefore, |U| < |S, N BY.

e The vertex s; is at least distance 2 from every X.: Note that N, C S, N B. Hence, |Sp| < 2dp, <
2|Sb N B| ]
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Claim 2.30. For any a € P, |Xq \ Up<, S| < [Sa N B.

Proof. Since a € P, either s, € X, or s, € N(X,). Consider the situation of the algorithm after
the first a — 1 sets S1,59,...,5,_1 are removed. There is some subset of X, that remains; call it

Xo=Xa\ Ub<a Sb-
Suppose s, € Xq. Since X, is still a clique, X; C Ng, and (X \ Up<, Sb) is empty.

Suppose instead s, € N(X,). Because s, has maximum degree and X, is a clique, d, > |X/| — 1.
Note that | X\ S,| is what we wish to bound, and | X!\ S,| < | X!\ N,|. By Claim 2.28, N, partitions
into N,N X, = N,N X, and N, N B. We have | X\ Ny| = |X]| = [NaNX,y| < dg+1—|N,NX,| =
INe N B|+1<|S,NB]. O

Claim 2.31. |Ls| < |B| + |L1].

Proof. Consider some X, for a ¢ P. Look at the situation when Sy, ..., S,_1 are removed. There is
a subset X/ (forming a clique) left in the graph. All the vertices in X, \ X/ are contained in L;. By
maximality of degree, d, > |X/| — 1. Furthermore, since a ¢ P, N, C B implying d, < |S,NB|—1.
Therefore, | Xg| < [Sa N B|. We can bound {J,¢p(Xa \ Xg) € L1, and 3 op [ Xg| < [B|, completing
the proof. O

To put it all together, we sum the bound of Claim 2.29 and Claim 2.30 over b € [k] and a € P
respectively to get |L1| < 6|B| and |L2| < |B|. Claim 2.31 with the bound on | L] yields |L3| < 7|B],
completing the proof of Theorem 2.27. ]

2.7 Experiments in Counting Small Cliques

This section presents a practical application of the decomposition procedure. In particular, we use
the decomposition procedure to give one of the first scalable algorithms for approximately counting
the number of small cliques in triangle-dense networks.

Counting the number of r-cliques is a fundamental operation in graph analysis. These numbers
are an important part of graphlet analysis in bioinformatics [PCJ04, HBPS07, GK07, ADH™08],
subgraph frequency counts in social network analysis [ITWMO00, YH02, KK04, RBH12, UBK13], and
are inputs to graph models (like exponential random graph models [CJ12]). The simplest non-
trivial incarnation of this problem is triangle counting, with r = 3. Triangle counting has a long
and rich history in data mining research [Tso08, TKMF09, CC11, SPK13], but there has been little
work done for larger values of r.

We provide one of the first scalable algorithms, CES(r) (for “clean-extract-sample”), for approx-
imately counting r-cliques in triangle-dense networks. We first partition the graph using the de-
composition algorithm of Section 2.3, and then approximately count the r-cliques in each subgraph
using sampling methods. Our sampling procedures explicitly exploit the density of the subgraphs
output by the decomposition algorithm.
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Figure 2.3: (Left) Accuracy of CES(r) for various graphs. The y-axis is the percentage accuracy,
which is the CES(r) estimate divided by the true answer. (Right) Speedup of CES over a tuned
clique enumeration Enum. Bars that are not present represent no speedup, in all cases because
both CES and Enum are taking less than a minute.

Our algorithm scales to millions of edges and approximates r-clique counts for r up to 9. It runs
orders of magnitude faster than enumeration schemes. For example, for 8-clique counts on a dblp
graph with one million edges, a tuned enumeration algorithm takes more than a day, while the CES
algorithm terminates in minutes.

Summary of Empirical Results We run the CES algorithm on a variety of publicly available
social networks from the SNAP database [SNA|. In Figure 2.3 (left), we show the percentage
accuracy of CES(r) on a number of graphs for r up to 7. This shows the CES estimate divided
by the true r-clique (or K,) count. Barring one Kj4-count, the accuracy is more than 85%, and
is mostly above 90%. The speedup over a fairly well-tuned enumeration is shown in Figure 2.3
(right). In almost all cases shown, CES terminates in minutes and is orders of magnitude faster
than enumeration. (For the amazon graph, speedup is negligible because both our algorithm and
the enumeration algorithm run in under a minute.)

Additionally, for Kg and Ky counting, enumeration methods do not terminate in a day, while CES
returns estimates mostly within ten minutes. We were able to get Kg-estimates on a flickr graph
with more than 10 such cliques in less than half an hour. More details are in Section 2.7.3.

2.7.1 Previous Work in Clique Counting

Clique counting is hard both theoretically and empirically. The state-of-the-art theoretical algo-
rithms have an exponential dependence on r [NS85]. There have been a plethora of techniques
for triangle counting, including eigenvalue methods [Tso08], graph sparsification [TKMF09], and
wedge sampling [SW05, SPK13], but these are all tailored to triangle counting and do not extend to
larger values of r. There are also a number of clever triangle enumeration schemes [Coh09, SV11],
but enumeration schemes are inevitably shackled to an exponential dependence on r. Empirically,
the number of small cliques can range into the billions even for moderately sized graphs.
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Sampling is a powerful technique for pattern counting and has been extensively used for trian-
gles [TKMF09, SPK13]. But there are no general sampling methods for finding or counting r-
cliques. The obstacles to sampling algorithms are especially tough in sparse graphs (including
most interaction networks), and as r grows, the likelihood of successfully sampling an r-clique
becomes vanishingly small, necessitating an infeasible number of trials even to find a single clique.

For larger subgraphs, Bordino et al. [ BDGLO08| count 3- and 4-vertex patterns in a streaming setting.
Numerous results in bioinformatics focus on counting small patterns (including cliques) of up to
6 vertices, but they mostly scale to only thousands of edges [PCJ04, HBPS07, GK07, ADH"08].
Rahman et al. [RBH12| use sampling methods for motif counting up to size 6 and have results for
networks of around 100,000 edges.

On the flip side, a well-studied problem is that of finding the mazimum clique. This is a classic
NP-hard problem that is also hard to approximate [Has96, KP06]. Recent empirical work by Rossi
et al. give an elegant heuristic that runs extremely fast on real data sets [RGGP13]. Recent work
by Tsourakakis et al. [TBG113] and older results of Andersen and Chellapilla [AC09] study the
related problem of finding dense subgraphs.

2.7.2 The CES Algorithm

We now present the CES(r) algorithm for approximately counting r-cliques. An empirical evaluation
for 4 <r <9 follows in Section 2.7.3.

We first run the decomposition procedure from Section 2.3 to obtain a tightly-knit family Vi,..., V4.
Let G; be Gly;, or the graph induced on V; by G.

We then run the following procedure with S = G; for each i € {1,...,k}:
e Enumerate all the triangles, edges, and vertices of S.
e Run w independent trials of the following sampling experiment:

— Pick [r/3]| random triangles from S, and an additional random vertex or edge from S if
ris 1 or 2 (mod 3), respectively.

— Declare success if all the chosen vertices are distinct and form an r-clique in S.

For example, when r = 5, an independent trial picks a random triangle and random edge, and is
deemed successful if and only if their vertices form a 5-clique.

A simple transformation converts the fraction of successful trials into an unbiased estimator for the
number of r-cliques in each G;, and then we sum over the G; to get an estimate of the number of
r-cliques in G.

More explicitly, let M, (S) denote the number of distinct choices that the sampling experiment
could make for some S = G;. For example, when r = 5, M,(S) is the number of triangles of S
times the number of edges of S. Let W, denote the number of distinct choices that lead to the
same r-clique. For example, there are (3‘?2) = 10 ways to choose a disjoint triangle and edge from a

31



5-clique, so W5 = 10. The estimate of the procedure for G; is then the fraction of successful trials
multiplied by M,.(G;)/W,.

The number of trials w controls the variance of the estimate. In our experiments, we found w =
100K (100,000) to be sufficient for good accuracy when r < 6, and w = 10M (10,000,000) to be
sufficient for » > 7. Furthermore, when G; is sufficiently small, we simply run a clique enumeration
algorithm. In our implementation, we enumerate when G; has fewer than 50 vertices.

Why it Works

We now motivate the algorithm proposed above, and explain intuitively why it should work.

Intuition #1: Enumeration is too expensive. Why not just count the r-cliques of G directly?
Known approaches for exact counting effectively enumerate the r-cliques, and these are unusable
once the number of r-cliques is overly large. For example, in a Facebook egonet with 88K edges,
there are 10*! K7’s (more such counts in Table 2.8). An enumerative approach is impractical even
for modest-sized social networks and modest values of r. This motivates approxrimately counting
the number of r-cliques, and sampling is arguably the most natural way to do this.

Intuition #2: Accurate sampling requires high density. Why not just sample from the original graph
G? The number of trials w we need is inversely proportional to the probability of success of each
trial, which has a heavy dependence on the density of the graph being sampled. The decomposition
procedure puts a lower bound on the density of each G;, whereas a typical interaction graph will
be orders of magnitude more sparse.

Intuition #3: Almost all cliques in interaction networks are confined to dense subgraphs. The
decomposition procedure does not explicitly strive to preserve r-cliques for » > 4, and Theorem 2.16
does not offer any guarantees about them. Intuitively, though, the algorithm’s focus on preserving
edge and triangle dense substructures is well-suited for preserving larger cliques as well.

2.7.3 Empirical Evaluation

We do an empirical study to answer the following questions.

1. How accurate is CES on real interaction networks?

2. Does CES give significant speedup over enumeration algorithms?

3. Can we empirically verify some of the intuition for why CES should work?

Datasets: We run experiments on a number of social networks of varying sizes, obtained from
SNAP [SNAJ; high level details are in Table 2.4. We also experiment on an “outlier” graph youtube,
which has a transitivity of .002 and is therefore outside the regime that the CES algorithm is designed
for. The following descriptions are copied or paraphrased from the SNAP website:
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n m K3 transitivity
egonets 40K | 0.08M 1.6M 0.2647
dblp 320K 1.0M 22M 0.1283
epinions 76K | 041M 1.6M 0.0229
amazon 340K | 0.93M 0.67M 0.07925
youtube | 1100K 3.0M 3.1M 0.002081
flickr 110K 23M  107TM 0.1828

Table 2.4: Details of the data sets.

egonets: This dataset consists of “circles” (or “friends lists”) from Facebook. Facebook data
was collected from survey participants using a Facebook app. The dataset includes node features
(profiles), circles, and ego networks.

dblp: The DBLP computer science bibliography provides a comprehensive list of research papers
in computer science. We construct a co-authorship network where two authors are connected if
they publish at least one paper together.

epinions: This is the who-trusts-who network of the consumer review site Epinions.com. Members
of the site can decide whether to trust each other. The trust relationships form a “Web of Trust”
which is then combined with review ratings to determine which reviews are shown to the user.

amazon: This network is based on the “Customers Who Bought This Item Also Bought” feature
of the retail site Amazon.com. If a product ¢ is frequently co-purchased with product j, the graph
contains an undirected edge from i to j. The data was collected by crawling Amazon’s website.

youtube: Youtube is a video-sharing web site that includes a social network. In the Youtube social
network, users form friendships with each other and users can create groups which other users can
join.

flickr: This dataset is built by forming links between images sharing common metadata from the
photo sharing site Flickr.com. Edges are formed between images from the same location, images
submitted to the same gallery, group, or set, images sharing common tags, images taken by friends,
ete.

Implementation details: We run CES(r) to count r-cliques for 4 < r < 9. For egonets, dblp,
and amazon, we set w (the sampling parameter) to be 100K samples for r < 6, and 1M samples for
6 <r < 9. For epinions, we set w to be 100K for r < 6, and 10" samples for > 6. For flickr,
we set w to be 10M samples for r < 6, and 100M samples for 6 < r < 9.

To get exact K, counts, we implement an enumeration scheme Enum based on recursive backtrack-
ing. The search for r-cliques begins with “candidates” that are all (r — 1)-cliques. Each of these
is extended to a K, by searching for a vertex that is connected to all vertices in the clique. We
use vertex orderings to ensure that every clique is found exactly once (rather than r! times). All
implementations are in C++ and were run on an Ubuntu machine equipped with a 24-core 2.1 GHz
AMD Opteron (6172) processor and 96GB of memory. The K, counts are given in Table 2.8.
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The Bottom Line

Accuracy of CES(r) : We show the accuracy of CES(r) in Figure 2.3 for r € [4,7] over several
graphs, computed as the output of CES(r) divided by the true answer. The accuracy of CES(r) is
above 85% for all but one instance, and is above 90% in most cases. Our accuracy increases with r,
and for K7-counting, the accuracy is more than 95% in every graph. We do not show any accuracy
results for either flickr or larger r because Enum did not terminate in a day.

Speedup of algorithm: The speedup of the CES(r) is shown in Figure 2.3 (right). For most
instances, CES(r) is many orders of magnitude faster than the enumeration algorithm. For K-
counting in egonets, Enum takes more than a day, while our algorithm takes only 19 seconds, with
only 1% error. Overall, the speedups are on the order of 100x for the graphs with many r-cliques,
which makes many previously infeasible clique-counting problems tractable.

Bars that are not present in Figure 2.3 (right) represent no speedup (on amazon and Kj4-counting
on dblp). In all these instances, both CES and Enum take less than a minute. We do not have
speedup results for flickr or r > 8, because Enum did not terminate in a day.

Scaling to massive outputs: We run our algorithm on a flickr graph with millions of edges
and hundreds of millions of triangles. The running times are given in Table 2.5. K,-counting for
flickr when r > 5 is infeasible and takes more than a day, while our estimates require less than
half and hour.

rl4]5]6|7[8]9
time (minutes) | 11 [ 11 [ 13 [ 13 | 28 | 29

Table 2.5: CES(r) running times on flickr in minutes. Enumeration takes more than a day for all
r > 5.

We also show the times CES required for Kg and Ko-counting in Table 2.6. (We ignore amazon,
since it has no 8-cliques.) Other than epinions where CES took 3.5 hours for Kg counting, all
other times are at most 30 minutes. Again, enumeration cannot be done in a day on any of these
networks.

‘ egonets ‘ dblp ‘ epinions ‘ flickr
0.3 5 72 28

Ky

Ky 2 26 211 29

Table 2.6: CES(r) Kg and Ky running times in minutes. Enumeration takes more than a day on
all instances.

High transitivity is essential: As stressed earlier, our algorithm is designed to work on graphs
with high transitivity. We highlight this by reporting results on youtube, a graph with a low
transitivity of 0.002. The accuracies are given in Table 2.7. In this case, the accuracies are very
poor, most likely because the extractions are destroying most of the cliques.
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r|4]5]|6]|7] 8
% Accuracy | 58 | 59 | 58 | 5| 0.1

Table 2.7: CES(r) accuracies on youtube. The Clean and Extract subroutines destroy most of the
r-cliques in youtube, which has a low transitivity (0.002).

Inferences from Clique Numbers: Large Dense Subgraphs

Looking at K, counts in Table 2.8, we see that even the tiny egonets graph (88K edges) has more
than a trillion Kgs. Enumeration methods, no matter how well-engineered, are clearly infeasible

here.
egonets dblp epinions | amazon flickr

n 4.04 E3 3.17ES 7.59E4 | 3.35ED 1.06 E5
m 8.82E4 1.05 E6 4.06E5 | 9.26EH 2.32E6
Ks 1.61E6 2.22E6 1.62E6 | 6.67TED 1.07E8
Ky 3.00E7 1.67TET 5.80E6 | 2.76ES 9.58 E9
K 0.18E8 2.63 E8 1.74E7 | 6.16E4 | ~8.99E11l
K 7.83E9 4.22 E9 4.57E7 | 5.80E3 | ~ 8.01E13
Ky 1.01 11 6.1E10 1.04E8 | 3.20E1 | ~ 6.21E15
Kg | ~1.11E12 | ~ 7.77E11 2.02E8 0| ~4.27E17
K9 | ~1.07TE13 | ~8.81E12 | ~ 3.10E8 0| ~250E19

Table 2.8: Exact K,-numbers. Numbers with a tilde in front are estimates from our algorithm,
where the enumeration algorithm did not terminate in a day.

The pattern of K,-counts as a function of r suggests properties about the graphs that would be
difficult to detect directly. For egonets, dblp, and flickr, the K,-counts increase by almost an
order of magnitude for each increment of r. This strongly suggests the presence of a very large
dense structure in these graphs. Even a clique of size 100 can only account for (180) ~ 1.9E12 such
Kgs, and there are significantly more Kgs in these graphs.

For epinions, the clique numbers increase very slightly, and for amazon, there are no Kgs. This
suggests that the community structure is much weaker in these graphs, and we hypothesize that
this is related to their lower transitivities (0.02 and 0.08, respectively). As a side note, the accuracy
(error less than 10%) of the CES algorithm for amazon is quite surprising, since the Kg- and K7-
counts are quite small.

Why it Works: An Empirical Validation

We discuss experimental results verifying the insights of Section 2.7.2. For convenience, we focus
on just the dblp graph, though the results are consistent over all the high transitivity graphs.

Cluster density: In Figure 2.9a, we plot the size versus edge densities of the clusters extracted
by the calls to Extract. We plot only the clusters with more than 50 vertices. (The densities of
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Figure 2.9: Cluster properties of dblp. On the left, we plot cluster size vs cluster edge density,
for clusters with at least 50 nodes. Note the high density of all clusters. The edge density of the
original graph is 2.08 x 107°. On the right, we plot the K4 and K5 sampling success probabilities
by cluster size. Again, note the fairly large success probabilities, versus ~ 10~% and ~ 1073 for K,
and K5 sampling in the overall graph.

the smaller clusters are generally even higher.) The edge density of the entire graph is 2.1 x 1072,
whereas the least dense cluster has density .22, over 10000 times larger. This is consistent with the
theoretical underpinnings of the decomposition procedure. These clusters collectively contain 49%
of the total edges of the graph.

Sampling success probability: Consider the success probability of a single trial, for both Ky
and K. In Figure 2.9b, we plot the size versus these probabilities, again only for clusters of more
than 50 vertices. The probabilities are very high, significantly more than 0.1 in almost all clusters.
Contrast this with the success probabilities of ~ 107 and ~ 1073 for K4 and K5 sampling on the
entire graph.

Full Breakdown of Running Times and Accuracy

The full details of running time and accuracy are presented in Figure 2.10. We also show the
breakdown between the running time of the decomposition step (which is independent of r) and
that of the sampling procedure.

2.8 Conclusions and Further Directions

This chapter proposes a “model-free” approach to the analysis of social and interaction networks.
We restrict attention to graphs that satisfy a combinatorial condition — constant triangle density —
in lieu of adopting a particular generative model. The goal of this approach is to develop structural
and algorithmic results that apply simultaneously to all reasonable models of interaction networks.
Our main result shows that constant triangle density already implies significant graph structure:
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egonets dblp | epinions | amazon | youtube | flickr
vertices n 4.0K | 320K 76K 340K 1100K 110K
edges m | 0.088M 1.0M 0.41M | 0.93M 3.0M 2.3M
triangles K3 1.6M 2.2M 1.6M | 0.67M 3.1M 107TM
transitivity 7 0.2647 | 0.1283 0.0229 | 0.07925 | 0.002081 | 0.1828
decomposition time 6.28s 22.5s 11.4s 16.2s 70.7s 641s
brute-force time 17.4s 16.3s 110s 2.98s 519s 641s
K, sampling time 0.99s 5.13s 1.87s 1.70s 15.4s 39.3s
speedup 2.39x - 8.29x - 6.03x 40.3x
Y%-error 8.7% | -6.1% -24.2% | -14.5% -41.8% | -6.3%
brute-force time 395s 168s 901s 4.02s 1276s
K sampling time 1.47s 9.58s 1.80s 1.41s 12.2s 39.4s
speedup 51.0x | 5.24x 68.2x - 15.4x
Y%-error -4.4% | -1.3% -13.7% -9.9% -40.7%
brute-force time 7548s | 2284s 3006s 5.87s 6702s
K sampling time 9.52s 77.4s 14.3s 5.23s 93.6s 111s
speedup 478x | 22.8x 117x - 40.8x
%-error -1.9% | -0.5% ST5% | -T.8% | -42.0%
brute-force time | 122995s | 50156s 7600s 5.97s 7318s
K sampling time 12.4s 151s 135s 4.13s 133s 134s
speedup T781x 502x 141x - 44.5x
Y%o-error -1.1% | -0.1% -0.5% -3.1% -95.3%
brute-force time 20720s 4.16s 13427s
K sampling time 13.5s 303s 1385s 4.18s 94.0s 1020s
8 speedup 15x - 81.5x
%-error -3.8% - -99.9%
brute-force time 4.31s
K sampling time 105s | 1538s 12655s 38.2s 1456s 1101s
9 speedup -
%-error -

Figure 2.10: Running times and accuracy. The brute-force time is from running Enum on the whole
graph (pre-decomposition), and the speedup is (brute-force time)/(decomposition time + sampling
time). The blanks are from when Enum did not finish in a day. When it finishes, Enum returns
an exact count, and the %-error is the error of CES (= decomposition + sampling) with respect to
Enum. The dashes (-) represent either no speedup, or no error for when the number of r-cliques is

Zero.
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every graph that meets this condition is, in a precise sense, well approximated by a disjoint union
of clique-like graphs.

Additionally, just as planar separator theorems lead to faster algorithms and better heuristics for
planar graphs than for general graphs, we expect our decomposition theorem to be a useful tool
in the design of algorithms for triangle-dense graphs. We show an extension of our decomposition
procedure that approximates the number of r-cliques in a triangle-dense graph, and verify its
efficacy on a variety of publicly-available interaction graphs.

Our work suggests numerous avenues for future research.

1. Can the dependence of the inter-cluster edge and triangle density on the original graph’s
triangle density be improved?

2. The relative frequencies of four-vertex subgraphs also exhibit special patterns in interaction
networks — for example, there are usually very few induced four-cycles [UBK13]. Is there an
assumption about four-vertex induced subgraphs, in conjunction with high triangle density,
that yields a stronger decomposition theorem?

3. Which other computational problems are easier for triangle-dense graphs than for arbitrary
graphs?

4. The approximate clique counting procedure can easily be extended to count other small,
dense subgraphs. Does the fast estimation of the frequencies of small substructures allow for
broader inference about large substructures or other global properties of a graph?

5. The key parts of both the decomposition procedure and the clique counting extension are
naturally parallelizable. How quickly can they be implemented in a MapReduce framework?

6. The decomposition procedure currently runs in time proportional to the number of wedges,
which is likely too high for some applications. Is there an approximate version of the procedure
that is more efficient?

Finally, our work offers practical advice to those clustering or otherwise operating on large triangle-
dense graphs. The cleaning procedure from Section 2.3.2 is easy to implement and can be a natural
(and non-obvious) first step for removing “unimportant” or “noisy” edges in a graph. Similarly,
the extraction procedure gives good advice for exploring the 2-hop neighborhood around a vertex
© — in the notation of Section 2.3.3, rank the vertices j by their 6;, and then either examine them
in order, if one is looking for vertices “similar” to ¢, or consider the top ¢ vertices for every ¢ up to
some threshold, if one is looking for candidate clusters.
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2.A Implementation Details

This section describes how to implement the decomposition procedure in the proof of Theorem 2.16
in expected O(|V|+ |E|+w) time and O(|E|) space, where w is the number of wedges of the graph.

The implementation includes a few improvements over a naive one. There are three operations that
could potentially cause a slowdown: cleaning, finding the maximum degree vertex i, and finding
vertices with many triangles incident on the neighborhoods M.

Naively computing all J.’s from scratch for every cleaning procedure could require Q(|E|?) time.
To make cleaning fast, we note that J; ;) only changes when edges incident on 7 or j get removed.
Hence, we maintain a set of “dirtied” vertices after extraction and after each iteration of the cleaning
procedure, and only recompute Jaccard similarities for the edges incident on those dirtied vertices.
We also keep track of the number of triangles ¢. incident on each edge and the degree d; of each
vertex so that computing J, is an O(1) operation.

To quickly find a maximum-degree vertex every extraction phase, we maintain a lookup from a
degree d to the vertices of degree d, and also keep track of the maximum degree dpax.-

For finding vertices with many triangles incident on the neighborhoods M, we do O(1) work for
every triangle with an edge in M. The important point is to enumerate them by computing 7T,
for each e € M, rather than directly computing the number of triangles from each vertex ¢, which
would take O(|V|w) time.

Sections 2.A.1 and 2.A.2 provide a more detailed description and analysis of the decomposition
procedure.

2.A.1 Data structures

We assume the following primitives:

e A hash table, or key-value store. With m keys, we assume O(m) space, amortized or expected
O(1) time look-up, insertion, and deletion of any key, O(m) enumeration of keys, expected
O(1) peek of a “random” key, and O(1) look-up of the total number of keys. We denote hash
tables by HASH(IC, k — f(k)), where K is the set of keys, and k — f(k) is the mapping from
keys to values.

e A set, or key store. This is simply a degenerate hash table, where every value is 0. Note that
the above properties imply O(m; + mg) time intersection of two sets with m; and mqy keys
respectively.

o A multiset, or key-count store. This is a hash table where the keys are the distinct elements,
and the values are counts. We do not store keys with value zero.

Let V' be the set of non-isolated vertices, namely vertices ¢ with d; > 0. We maintain the following
data structures throughout the course of the algorithm.
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A hash table G = HASH(V',i — SET(N(i))) of vertex neighborhoods. This allows O(N (7))
lookup of N (7).

A hash table D = HASH(V',i — d;) of vertex degrees.

An array A, where the d’th entry is a pointer to all the vertices of degree d, stored as a set.
Note that we implicitly keep track of |A[d]| via our definition of set.

An integer dpyax = max{d : |A[d]| > 0}.

A hash table T = HASH(FE, e — t.) that keeps track of the number of triangles incident on e.

Note that we can iterate over all edges in O(|E|) time, via G. We can also iterate over all triangles
in O(w + |E|) time, by computing N (i) N N(j) for each (i,5) € E.

We define the following operations on the data structures above:

e DELETEEDGE(Y, j) removes edge (i, 7).

e JACCARD(i, j) returns J; j) = %, and takes O(1) time.

e ISEMPTYGRAPH() returns True if dpax is 0, and takes O(1) time.

e MAXDEGREEVERTEX() returns a vertex from A(dpax), and takes expected O(1) time.

2.A.2 Procedure

We first define the two subroutines below.

CLEAN starts with a “dirty” set of vertices V. It iterates over edges incident on V until it finds one
with J; ;) < €, after which it deletes (7, j), adds 7 and j to V, and starts over. If it iterates over all
the edges of some ¢ € V without finding one with low Jaccard similarity, it removes ¢ from V.
1 function CLEAN(V, €)
2 while V is non-empty do > V is the set of dirty vertices
for i€V do
for j € N(i) do
if JACCARD(i,j) < € then
DELETEEDGE(e)
Add j to V and go to line 2.

Remove 7 from V.

0o ~N o b~ W

Recall that 6; is the number of triangles incident on j whose other two vertices are in N(4).
EXTRACT computes 6; for each j where 6; > 0, by iterating over T, for every edge e € N(i). It
then takes the largest d; such ;s to form the extracted set S. It removes S from the graph, and
dirties the vertices in the neighborhood of S for subsequent cleaning.

1 function EXTRACT
2 i = MAXDEGREEVERTEX()
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3 0 = a multiset over vertices > 6(j) will count the number of triangles
4 in N (i) Uj incident on j.
5 for j; € N(i) do

6 for jo € N(j1) N N(i) do > (j1,j2) iterates over the edges of N(1)
7 for j € N(j1) N N(j2) do

8 Add j to 6.

9 R = the D(i) keys of 6 with the highest counts

10 S = RUNC(i)

11 V= (Uses N(s))\ S > dirtied vertices
12 for e incident on S do

13 DELETEEDCGE(e)

14 return S,V

Finally, we glue the two subroutines together to get the main function below. PARTITION alterna-
tively CLEANs and EXTRACTs until the graph is gone.
1 function PARTITION(G, €)
2 Construct the data structures G, D, A, dimax, 7 from G.
P = empty list > stores the partition
CLEAN(V' €)
while not ISEMPTYGRAPH() do
S,V = EXTRACT()
Append S to P.
CLEAN(V,¢)
return (P)

© 00 ~N O O b~ W

We are now ready to prove the main theorem of this section.

Theorem 2.32. The procedure above runs in expected O(|V|+ |E| + w) time and O(|E|) space.

Proof. The space bound is easy to check, so we focus on the time. We look at the total amount
of time spent in DELETEEDGE, CLEAN, EXTRACT, and PARTITION in order; for each function,
we ignore time spent in subroutines that have been previously accounted for. The total cost of a
function or line of code refers to the time spent there over the course of the entire algorithm.

DELETEEDGE: Each edge gets deleted exactly once. It is easy to check that G, D, and A each
spend O(|E]) time each. The total time spent by dpnax is O(|V|); every time |A(dpax)| drops to
0, we do a linear search downwards till we find a non-empty entry of A. The total time spent
by T is at most > nepdi +dj = O(|E| + w); on deletion of (4,j), T(e) is decremented for
e = {(i,k), (. k) : k € N(i) N N ()}

CLEAN: Say a vertex k gets “chosen” every time ¢ = k in lines 4-8. Each vertex i € V’/ gets chosen
once from line 4 of PARTITION, and at most once each time d; changes to a positive value. Since
d; only decreases, each ¢ is chosen at most d; times. The cost of choosing a vertex ¢ is at most d;,
so the total cost here is at most >, d? = O(|E| + w).

EXTRACT: Over the course of the algorithm each edge ends up as a (j1,7) pair at most once, so
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the total cost of lines 5-6 is at most > ; ;yep dj, +di = O(|E| + w). Similarly, each edge ends up
as a (J1,j2) pair at most once, and so the total cost of lines 7-8 is also O(|E| 4+ w).

Line 9 can be computed in time proportional to the number of keys in 6. Each vertex i can be in
0 at most d; times, since once i € 0 it loses at least one edge to lines 12-13. Hence the total cost
of line 9 is O(|E)).

Finally, each vertex can be in S at most once, and so the total cost of line 11 is O(|E|).

PARTITION: The only non-trivial step here is line 2. Initial construction of G, D, A and dp,.x takes
O(|V|+ |E]) time, if the graph is originally presented as either as a list of edges or as an adjacency
list. Initial construction of T takes O(|E| 4+ w) time, via iterating over all triangles. O
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Chapter 3

Application-Specific Algorithm
Selection

Chapter Summary: The best algorithm for a computational problem generally depends on the
“relevant inputs,” a concept that depends on the application domain and often defies formal artic-
ulation. While there is a large literature on empirical approaches to selecting the best algorithm for
a given application domain, there has been surprisingly little theoretical analysis of the problem.

This chapter adapts concepts from statistical and online learning theory to reason about application-
specific algorithm selection. Our models capture several state-of-the-art empirical and theoretical
approaches to the problem, ranging from self-improving algorithms to empirical performance mod-
els, and our results identify conditions under which these approaches are guaranteed to perform
well. We present one framework that models algorithm selection as a statistical learning problem,
and our work here shows that dimension notions from statistical learning theory, historically used
to measure the complexity of classes of binary- and real-valued functions, are relevant in a much
broader algorithmic context. We also study the online version of the algorithm selection problem,
and give possibility and impossibility results for the existence of no-regret learning algorithms.

3.1 Introduction

Rigorously comparing algorithms is hard. The most basic reason for this is that two different
algorithms for a computational problem generally have incomparable performance: one algorithm
is better on some inputs, but worse on the others. How can a theory advocate one of the algorithms
over the other? The simplest and most common solution in the theoretical analysis of algorithms
is to summarize the performance of an algorithm using a single number, such as its worst-case
performance or its average-case performance with respect to an input distribution. This approach
effectively advocates using the algorithm with the best summarizing value (e.g., the smallest worst-
case running time).

Solving a problem “in practice” generally means identifying an algorithm that works well for most
or all instances of interest. When the “instances of interest” are easy to specify formally in advance
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— say, planar graphs — the traditional analysis approaches often give accurate performance pre-
dictions and identify useful algorithms. However, instances of interest commonly possess domain-
specific features that defy formal articulation. Solving a problem in practice can require selecting an
algorithm that is optimized for the specific application domain, even though the special structure
of its instances is not well understood. While there is a large literature, spanning numerous com-
munities, on empirical approaches to algorithm selection (e.g. [Fin98, HXHL14, HRGT01, HJY 10,
KGM12, LNS09]), there has been surprisingly little theoretical analysis of the problem. One possi-
ble explanation is that worst-case analysis, which is the dominant algorithm analysis paradigm in
theoretical computer science, is deliberately application-agnostic.

This paper demonstrates that application-specific algorithm selection can be usefully modeled as
a learning problem. Our models are straightforward to understand, but also expressive enough
to capture several existing approaches in the theoretical computer science and Al communities,
ranging from the design and analysis of self-improving algorithms [ACCLO6] to the application of
empirical performance models [HXHL14].

We present one framework that models algorithm selection as a statistical learning problem in
the spirit of [Hau92]. We prove that many useful families of algorithms, including broad classes
of greedy and local search heuristics, have small pseudo-dimension and hence low generalization
error. Previously, the pseudo-dimension (and the VC dimension, fat shattering dimension, etc.)
has been used almost exclusively to quantify the complexity of classes of prediction functions
(e.g. [AB99]).} Our results demonstrate that this concept is useful and relevant in a much broader
algorithmic context. It also offers a novel approach to formalizing the oft-mentioned but rarely-
defined “simplicity” of a family of algorithms.

We also study regret-minimization in the online version of the algorithm selection problem. We
show that the “non-Lipschitz” behavior of natural algorithm classes precludes learning algorithms
that have no regret in the worst case, and prove positive results under smoothed analysis-type
assumptions.

Paper Organization Section 3.2 outlines a number of concrete problems that motivate the
present work, ranging from greedy heuristics to SAT solvers, and from self-improving algorithms to
parameter tuning. The reader interested solely in the technical development can skip this section
with little loss. Section 3.3 models the task of determining the best application-specific algorithm
as a PAC learning problem, and brings the machinery of statistical learning theory to bear on a
wide class of problems, including greedy heuristic selection, sorting, and gradient descent step size
selection. A time-limited reader can glean the gist of our contributions from Sections 3.3.1-3.3.3.
Section 3.4 considers the problem of learning an application-specific algorithm online, with the
goal of minimizing regret. Sections 3.4.2 and 3.4.3 present negative and positive results for worst-
case and smoothed instances, respectively. Section 3.5 concludes with a number of open research
directions.

'A few exceptions: [SBDO06] use the pseudo-dimension to study the problem of learning a good kernel for use
in a support vector machine, [Lon01] parameterizes the performance of the randomized rounding of packing and
covering linear programs by the pseudo-dimension of a set derived from the constraint matrix, and [MM14, MR15]
use dimension notions from learning theory to bound the sample complexity of learning approximately revenue-
maximizing truthful auctions.
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3.2 Motivating Scenarios

Our learning framework sheds light on several well-known approaches, spanning disparate appli-
cation domains, to the problem of learning a good algorithm from data. To motivate and provide
interpretations of our results, we describe several of these in detail.

3.2.1 Example #1: Greedy Heuristic Selection

One of the most common and also most challenging motivations for algorithm selection is presented
by computationally difficult optimization problems. When the available computing resources are
inadequate to solve such a problem exactly, heuristic algorithms must be used. For most hard prob-
lems, our understanding of when different heuristics work well remains primitive. For concreteness,
we describe one current and high-stakes example of this issue, which also aligns well with our model
and results in Section 3.3.3. The computing and operations research literature has many similar
examples.

The FCC is currently (in 2016) running a novel double auction to buy back licenses for spectrum
from certain television broadcasters and resell them to telecommunication companies for wireless
broadband use. The auction is expected to generate over $20 billion dollars for the US govern-
ment [CBO14]. The “reverse” (i.e., buyback) phase of the auction must determine which stations
to buy out (and what to pay them). The auction is tasked with buying out sufficiently many stations
so that the remaining stations (who keep their licenses) can be “repacked” into a small number
of channels, leaving a target number of channels free to be repurposed for wireless broadband.
To first order, the feasible repackings are determined by interference constraints between stations.
Computing a repacking therefore resembles familiar hard combinatorial problems like the indepen-
dent set and graph coloring problems. The reverse auction uses a greedy heuristic to compute the
order in which stations are removed from the reverse auction (removal means the station keeps its
license) [MS14]. The chosen heuristic favors stations with high value, and discriminates against
stations that interfere with a large number of other stations.? There are many ways of combining
these two criteria, and no obvious reason to favor one specific implementation over another. The
specific implementation in the FCC auction has been justified through trial-and-error experiments
using synthetic instances that are thought to be representative [MS14]. One interpretation of our
results in Section 3.3.3 is as a post hoc justification of this exhaustive approach for sufficiently
simple classes of algorithms, including the greedy heuristics considered for this FCC auction.

3.2.2 Example #2: Self-Improving Algorithms

The area of self-improving algorithms was initiated by [ACCLO06], who considered sorting and
clustering problems. Subsequent work [CS08, CMS10, CMS12] studied several problems in low-
dimensional geometry, including the maxima and convex hull problems. For a given problem, the

2 Analogously, greedy heuristics for the maximum-weight independent set problem favor vertices with higher
weights and with lower degrees [STY03]. Greedy heuristics for welfare maximization in combinatorial auctions
prefer bidders with higher values and smaller demanded bundles [LOS02].
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goal is to design an algorithm that, given a sequence of i.i.d. samples from an unknown distri-
bution over instances, converges to the optimal algorithm for that distribution. In addition, the
algorithm should use only a small amount of auxiliary space. For example, for sorting indepen-
dently distributed array entries, the algorithm in [ACCLO06] solves each instance (on n numbers)
in O(nlogn) time, uses space O(n!T¢) (where ¢ > 0 is an arbitrarily small constant), and after
a polynomial number of samples has expected running time within a constant factor of that of
an information-theoretically optimal algorithm for the unknown input distribution. Section 3.3.4
reinterprets self-improving algorithms via our general framework.

3.2.3 Example #3: Parameter Tuning in Optimization and Machine Learning

Many “algorithms” used in practice are really meta-algorithms, with a large number of free param-
eters that need to be instantiated by the user. For instance, implementing even in the most basic
version of gradient descent requires choosing a step size and error tolerance. For a more extreme
version, CPLEX, a widely-used commercial linear and integer programming solver, comes with a
221-page parameter reference manual describing 135 parameters [XHHL11].

An analogous problem in machine learning is “hyperparameter optimization,” where the goal is to
tune the parameters of a learning algorithm so that it learns (from training data) a model with high
accuracy on test data, and in particular a model that does not overfit the training data. A simple
example is regularized regression, such as ridge regression, where a single parameter governs the
trade-off between the accuracy of the learned model on training data and its “complexity.” More
sophisticated learning algorithms can have many more parameters.

Figuring out the “right” parameter values is notoriously challenging in practice. The CPLEX man-
ual simply advises that “you may need to experiment with them.” In machine learning, parameters
are often set by discretizing and then applying brute-force search (a.k.a. “grid search”), perhaps
with random subsampling (“random search”) [BB12]. When this is computationally infeasible,
variants of gradient descent are often used to explore the parameter space, with no guarantee of
converging to a global optimum.

The results in Section 3.3.6 can be interpreted as a sample complexity analysis of grid search for the
problem of choosing the step size in gradient descent to minimize the expected number of iterations
needed for convergence. We view this as a first step toward reasoning more generally about the
problem of learning good parameters for machine learning algorithms.

3.2.4 Example #4: Empirical Performance Models for SAT Algorithms

The examples above already motivate selecting an algorithm for a problem based on characteristics
of the application domain. A more ambitious and refined approach is to select an algorithm on a
per-instance (instead of a per-domain) basis. While it’s impossible to memorize the best algorithm
for every possible instance, one might hope to use coarse features of a problem instance as a guide
to which algorithm is likely to work well.
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For example, [XHHLOS8| applied this idea to the satisfiability (SAT) problem. Their algorithm
portfolio consisted of seven state-of-the-art SAT solvers with incomparable and widely varying
running times across different instances. The authors identified a number of instance features,
ranging from simple features like input size and clause/variable ratio, to complex features like
Knuth’s estimate of the search tree size [Knu75] and the rate of progress of local search probes.?
The next step involved building an “empirical performance model” (EPM) for each of the seven
algorithms in the portfolio — a mapping from instance feature vectors to running time predictions.
They then computed their EPMs using labeled training data and a suitable regression model. With
the EPMs in hand, it is clear how to perform per-instance algorithm selection: given an instance,
compute its features, use the EPMs to predict the running time of each algorithm in the portfolio,
and run the algorithm with the smallest predicted running time. Using these ideas (and several
optimizations), their “SATzilla” algorithm won numerous medals at the 2007 SAT Competition.*
Section 3.3.5 outlines how to extend our PAC learning framework to reason about EPMs and
feature-based algorithm selection.

3.3 PAC Learning an Application-Specific Algorithm

This section casts the problem of selecting the best algorithm for a poorly understood application
domain as one of learning the optimal algorithm with respect to an unknown instance distribution.
Section 3.3.1 formally defines the basic model, Section 3.3.2 reviews relevant preliminaries from
statistical learning theory, Section 3.3.3 bounds the pseudo-dimension of many classes of greedy
and local search heuristics, Section 3.3.4 re-interprets the theory of self-improving algorithms via
our framework, Section 3.3.5 extends the basic model to capture empirical performance models and
feature-based algorithm selection, and Section 3.3.6 studies step size selection in gradient descent.

3.3.1 The Basic Model

Our basic model consists of the following ingredients.

1. A fixed computational or optimization problem II. For example, II could be computing a
maximum-weight independent set of a graph (Section 3.2.1), or sorting n elements (Sec-
tion 3.2.2).

2. An unknown distribution D over instances x € II.
3. A set A of algorithms for II; see Sections 3.3.3 and 3.3.4 for concrete examples.

4. A performance measure COST : AXII — [0, H] indicating the performance of a given algorithm
on a given instance. Two common choices for COST are the running time of an algorithm,
and, for optimization problems, the objective function value of the solution produced by an
algorithm.

31t is important, of course, that computing the features of an instance is an easier problem than solving it.
“See [XHHL12] for details on the latest generation of their solver.
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The “application-specific information” is encoded by the unknown input distribution D, and the
corresponding “application-specific optimal algorithm” Ap is the algorithm that minimizes or max-
imizes (as appropriate) E;ep[COST(A, z)] over A € A. The error of an algorithm A € A for a
distribution D is

|E;p[COST(A, 2)] — Egup[cOST(Ap, 2)]|.

In our basic model, the goal is:
Learn the application-specific optimal algorithm from data (i.e., samples from D).

More precisely, the learning algorithm is given m i.i.d. samples z1, ..., z,, € II from D, and (perhaps
implicitly) the corresponding performance COST(A, z;) of each algorithm A € A on each input z;.
The learning algorithm uses this information to suggest an algorithm A € A to use on future inputs
drawn from D. We seek learning algorithms that almost always output an algorithm of A that
performs almost as well as the optimal algorithm in A for D.

Definition 3.1. A learning algorithm L (e,d)-learns the optimal algorithm in 4 from m samples
if, for every distribution D over 11, with probability at least 1 — § over m samples x1,...,Tm ~ D,
L outputs an algorithm A € A with error at most €.

3.3.2 Pseudo-Dimension and Uniform Convergence

PAC learning an optimal algorithm, in the sense of Definition 3.1, reduces to bounding the “com-
plexity” of the class A of algorithms. We next review the relevant definitions from statistical
learning theory.

Let H denote a set of real-valued functions defined on the set X. A finite subset S = {z1,...,2Zm}
of X is (pseudo-)shattered by H if there exist real-valued witnesses ri,...,r,, such that, for each of
the 2™ subsets T' of S, there exists a function h € H such that h(x;) > r; if and only if i € T' (for
i=1,2,...,m). The pseudo-dimension of H is the cardinality of the largest subset shattered by H
(or 400, if arbitrarily large finite subsets are shattered by #). The pseudo-dimension is a natural
extension of the VC dimension from binary-valued to real-valued functions.’

To bound the sample complexity of accurately estimating the expectation of all functions in H, with
respect to an arbitrary probability distribution D on X, it is enough to bound the pseudo-dimension
of H.

Theorem 3.2 (Uniform Convergence (e.g. [AB99])). Let H be a class of functions with domain X
and range in [0, H], and suppose H has pseudo-dimension dy. For every distribution D over X,
every € > 0, and every § € (0,1], if

e (1) (b (1) o

5The fat shattering dimension is another common extension of the VC dimension to real-valued functions. It is a
weaker condition, in that the fat shattering dimension of H is always at most the pseudo-dimension of ‘H, that is still
sufficient for sample complexity bounds. Most of our arguments give the same upper bounds on pseudo-dimension
and fat shattering dimension, so we present the stronger statements.
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for a suitable constant ¢ (independent of all other parameters), then with probability at least 1 — o
over m samples x1,...,%y, ~ D,

' (; > h(m») ~ Evplh(v)

<€

for every h € H.

We can identify each algorithm A € A with the real-valued function z — CcOST(A, z). Regarding
the class A of algorithms as a set of real-valued functions defined on II, we can discuss its pseudo-
dimension, as defined above. We need one more definition before we can apply our machinery to
learn algorithms from A.

Definition 3.3 (Empirical Risk Minimization (ERM)). Fiz an optimization problem II, a per-
formance measure COST, and a set of algorithms A. An algorithm L is an ERM algorithm if,
gwen any finite subset S of 11, L returns an (arbitrary) algorithm from A with the best average
performance on S.

For example, for any II, COST, and finite A, there is the trivial ERM algorithm that simply computes
the average performance of each algorithm on S by brute force, and returns the best one. The next
corollary follows easily from Definition 3.1, Theorem 3.2, and Definition 3.3.

Corollary 3.4. Fiz parameters e >0, § € (0,1], a set of problem instances 11, and a performance
measure COST. Let A be a set of algorithms that has pseudo-dimension d with respect to II and
CcOST. Then any ERM algorithm (2¢,§)-learns the optimal algorithm in A from m samples, where
m is defined as in (3.1).

Corollary 3.4 is only interesting if interesting classes of algorithms A have small pseudo-dimension.
In the simple case where A is finite, as in our example of an algorithm portfolio for SAT (Sec-
tion 3.2.4), the pseudo-dimension of A is trivially at most log, |.A4|. The following sections demon-
strate the much less obvious fact that natural infinite classes of algorithms also have small pseudo-
dimension.

Remark 3.5 (Computational Efficiency). The present work focuses on the sample complezity rather
than the computational aspects of learning, so outside of a few remarks we won’t say much about
the existence or efficiency of ERM in our examples. A priori, an infinite class of algorithms may
not admit any ERM algorithm at all, though all of the examples in this chapter do have ERM
algorithms under mild assumptions.

3.3.3 Application: Greedy Heuristics and Extensions

The goal of this section is to bound the pseudo-dimension of many classes of greedy heuristics
including, as a special case, the family of heuristics relevant for the FCC double auction described
in Section 3.2.1. It will be evident that analogous computations are possible for many other classes
of heuristics, and we provide several extensions in Section 3.3.3 to illustrate this point. Throughout
this section, the performance measure COST is the objective function value of the solution produced
by a heuristic on an instance, where we assume without loss of generality a maximization objective.
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Definitions and Examples

Our general definitions are motivated by greedy heuristics for (N P-hard) problems like the follow-
ing; the reader will have no difficulty coming up with additional natural examples.

1. Knapsack. The input is n items with values vq,...,v,, sizes si1,...,s,, and a knapsack
capacity C. The goal is to compute a subset S C {1,2,...,n} with maximum total value
> ics Vi, subject to having total size ), ¢ s; at most C'. Two natural greedy heuristics are
to greedily pack items (subject to feasibility) in order of nonincreasing value v;, or in order
of nonincreasing density v;/s; (or to take the better of the two, see Section 3.3.3).

2. Mazimum-Weight Independent Set (MWIS). The input is an undirected graph G = (V, F) and
a non-negative weight w, for each vertex v € V. The goal is to compute the independent set —
a subset of mutually non-adjacent vertices — with maximum total weight. T'wo natural greedy
heuristics are to greedily choose vertices (subject to feasibility) in order of nonincreasing
weight w,, or nonincreasing density w, /(1 + deg(v)). (The intuition for the denominator is
that choosing v “uses up” 1+deg(v) vertices — v and all of its neighbors.) The latter heuristic
also has a (superior) adaptive variant, where the degree deg(v) is computed in the subgraph
induced by the vertices not yet blocked from consideration, rather than in the original graph.6

3. Machine Scheduling. This is a family of optimization problems, where n jobs with various
attributes (processing time, weight, deadline, etc.) need to be assigned to m machines,
perhaps subject to some constraints (precedence constraints, deadlines, etc.), to optimize
some objective (makespan, weighted sum of completion times, number of late jobs, etc.).
A typical greedy heuristic for such a problem considers jobs in some order according to a
score derived from the job parameters (e.g., weight divided by processing time), subject to
feasibility, and always assigns the current job to the machine that currently has the lightest
load (again, subject to feasibility).

In general, we consider object assignment problems, where the input is a set of n objects with
various attributes, and the feasible solutions consist of assignments of the objects to a finite set R,
subject to feasibility constraints. The attributes of an object are represented as an element £ of
an abstract set. For example, in the Knapsack problem £ encodes the value and size of an object;
in the MWIS problem, ¢ encodes the weight and (original or residual) degree of a vertex. In the
Knapsack and MWIS problems, R = {0,1}, indicating whether or not a given object is selected.
In machine scheduling problems, R could be {1,2,...,m}, indicating the machine to which a job
is assigned, or a richer set that also keeps track of the job ordering on each machine.

By a greedy heuristic, we mean algorithms of the following form (cf., the “priority algorithms”
of [BNRO3]):

1. While there remain unassigned objects:

(a) Use a scoring rule o (see below) to compute a score o(§;) for each unassigned object 4,
as a function of its current attributes &;.

SAn equivalent description is: whenever a vertex v is added to the independent set, delete v and its neighbors
from the graph, and recurse on the remaining graph.
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(b) For the unassigned object i with the highest score, use an assignment rule to assign i a
value from R and, if necessary, update the attributes of the other unassigned objects.”
For concreteness, assume that ties are always resolved lexicographically.

A scoring rule assigns a real number to an object as a function of its attributes. Assignment
rules that do not modify objects’ attributes yield non-adaptive greedy heuristics, which use only
the original attributes of each object (like v; or v;/s; in the Knapsack problem, for instance).
In this case, objects’ scores can be computed in advance of the main loop of the greedy heuristic.
Assignment rules that modify object attributes yield adaptive greedy heuristics, such as the adaptive
MWIS heuristic described above.

In a single-parameter family of scoring rules, there is a scoring rule of the form o(p,&) for each
parameter value p in some interval I C R. Moreover, ¢ is assumed to be continuous in p for each
fixed value of {. Natural examples include Knapsack scoring rules of the form v;/s? and MWIS
scoring rules of the form w, /(1 + deg(v))” for p € [0,1] or p € [0,00). A single-parameter family of
scoring rules is k-crossing if, for each distinct pair of attributes &, ¢, there are at most s values of
p for which o(p, &) = o(p,£’). For example, all of the scoring rules mentioned above are 1-crossing
rules.

For an example assignment rule, in the Knapsack and MWIS problems, the rule simply assigns 4
to “1” if it is feasible to do so, and to “0” otherwise. A typical machine scheduling assignment rule
assigns the current job to the machine with the lightest load. In the adaptive greedy heuristic for
the MWIS problem, whenever the assignment rule assigns “1” to a vertex v, it updates the residual
degrees of other unassigned vertices (two hops away) accordingly.

We call an assignment rule S-bounded if every object ¢ is guaranteed to take on at most 8 distinct
attribute values. For example, an assignment rule that never modifies an object’s attributes is 1-
bounded. The assignment rule in the adaptive MWIS algorithm is n-bounded, since it only modifies
the degree of a vertex (which lies in {0,1,2...,n —1}).

Coupling a single-parameter family of k-crossing scoring rules with a fixed S-bounded assignment
rule yields a (k, 3)-single-parameter family of greedy heuristics. All of our running examples of
greedy heuristics are (1, 1)-single-parameter families, except for the adaptive MWIS heuristic, which
is a (1, n)-single-parameter family.

Upper Bound on Pseudo-Dimension

We next show that every (k,[)-single-parameter family of greedy heuristics has small pseudo-
dimension. This result applies to all of the concrete examples mentioned above, and it is easy to
come up with other examples (for the problems already discussed, and for additional problems).

Theorem 3.6 (Pseudo-Dimension of Greedy Algorithms). If A denotes a (k, 3)-single-parameter
family of greedy heuristics for an object assignment problem with n objects, then the pseudo-

dimension of A is O(log(kfn)).

"We assume that there is always as least one choice of assignment that respects the feasibility constraints; this
holds for all of our motivating examples.
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In particular, all of our running examples are classes of heuristics with pseudo-dimension O(logn).

Proof. Recall from the definitions (Section 3.3.2) that we need to upper bound the size of every set
that is shatterable using the greedy heuristics in 4. For us, a set is a fixed set of s inputs (each with
n objects) S = z1,...,xs. For a potential witness ri,...,rs € R, every algorithm A € A induces
a binary labeling of each sample x;, according to whether COST(A, x;) is strictly more than or at
most ;. We proceed to bound from above the number of distinct binary labellings of S induced
by the algorithms of A, for any potential witness.

Consider ranging over algorithms A € A — equivalently, over parameter values p € I. The
trajectory of a greedy heuristic A € A is uniquely determined by the outcome of the comparisons
between the current scores of the unassigned objects in each iteration of the algorithm. Since the
family uses a k-crossing scoring rule, for every pair i, j of distinct objects and possible attributes
&i,&j, there are at most x values of p for which there is a tie between the score of i (with attributes
&) and that of j (with attributes £;). Since o is continuous in p, the relative order of the score of
i (with &) and j (with §;) remains the same in the open interval between two successive values of
p at which their scores are tied. The upshot is that we can partition I into at most « + 1 intervals
such that the outcome of the comparison between i (with attributes &;) and j (with attributes &;)
is constant on each interval.®

Next, the s instances of S contain a total of sn objects. Each of these objects has some initial
attributes. Because the assignment rule is S-bounded, there are at most snf3 object-attribute pairs
(7,&;) that could possibly arise in the execution of any algorithm from 4 on any instance of S.
This implies that, ranging across all algorithms of A4 on all inputs in S, comparisons are only ever
made between at most (sn3)? pairs of object-attribute pairs (i.e., between an object i with current
attributes & and an object j with current attributes &;). We call these the relevant comparisons.

For each relevant comparison, we can partition I into at most x + 1 subintervals such that the
comparison outcome is constant (in p) in each subinterval. Intersecting the partitions of all of
the at most (sn3)? relevant comparisons splits I into at most (sn3)%s + 1 subintervals such that
every relevant comparison is constant in each subinterval. That is, all of the algorithms of A that
correspond to the parameter values p in such a subinterval execute identically on every input in S.
The number of binary labellings of S induced by algorithms of A is trivially at most the number
of such subintervals. Our upper bound (sn3)%x + 1 on the number of subintervals exceeds 2°, the
requisite number of labellings to shatter S, only if s = O(log(kAn)). O

Theorem 3.6 and Corollary 3.4 imply that, if kK and 8 are bounded above by a polynomlal in n,
then an ERM algorithm (e, §)-learns the optimal algorithm in A from only m = O( ) samples,”
where H is the largest objective function value of a feasible solution output by an algorlthm of A
on an instance of IT1.10

8This argument assumes that & # £;. If & = &;, then because we break ties between equal scores lexicographically,
the outcome of the comparison between o (&;) and o(§;) is in fact constant on the entire interval I of parameter values.

9The notation O~() suppresses logarithmic factors.

10 Alternatively, the dependence of m on H can be removed if learning error eH (rather than ¢) can be tolerated
— for example, if the optimal objective function value is expected to be proportional to H anyways.
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We note that Theorem 3.6 gives a quantifiable sense in which natural greedy algorithms are indeed
“simple algorithms.” Not all classes of algorithms have such a small pseudo-dimension; see also the
next section for further discussion.!!

Remark 3.7 (Non-Lipschitzness). We noted in Section 3.3.2 that the pseudo-dimension of a finite
set A is always at most logy | A|. This suggests a simple discretization approach to learning the
best algorithm from A: take a finite “e-net” of A and learn the best algorithm in the finite net.
(Indeed, Section 3.3.6 uses precisely this approach.) The issue is that without some kind of Lipschitz
condition — stating that “nearby” algorithms in A have approximately the same performance on all
instances — there’s no reason to believe that the best algorithm in the net is almost as good as the
best algorithm from all of A. Two different greedy heuristics — two MWIS greedy algorithms with
arbitrarily close p-values, say — can have completely different executions on an instance. This lack
of a Lipschitz property explains why we take care in Theorem 3.6 to bound the pseudo-dimension
of the full infinite set of greedy heuristics.'?

Computational Considerations

The proof of Theorem 3.6 also demonstrates the presence of an efficient ERM algorithm: the
O((snf)?) relevant comparisons are easy to identify, the corresponding subintervals induced by
each are easy to compute (under mild assumptions on the scoring rule), and brute-force search
can be used to pick the best of the resulting O((sn3)?k) algorithms (an arbitrary one from each
subinterval). This algorithm runs in polynomial time as long as § and k are polynomial in n, and
every algorithm of A runs in polynomial time.

For example, for the family of Knapsack scoring rules described above, implementing this ERM
algorithm reduces to comparing the outputs of O(n?m) different greedy heuristics (on each of the m
sampled inputs), with m = O(logn). For the adaptive MWIS heuristics, where § = n, it is enough
to compare the sample performance of O(n*m) different greedy algorithms, with m = O(logn).

Extensions: Multiple Algorithms, Multiple Parameters, and Local Search

Theorem 3.6 is robust and its proof is easily modified to accommodate various extensions. For
a first example, consider algorithms than run ¢ different members of a single-parameter greedy
heuristic family and return the best of the ¢ feasible solutions obtained.!® Extending the proof of
Theorem 3.6 yields a pseudo-dimension bound of O(qlog(xfn)) for the class of all such algorithms.

For a second example, consider families of greedy heuristics parameterized by d real-valued param-
eters p1,...,pq. Here, an analog of Theorem 3.6 holds with the crossing number x replaced by a

1When the performance measure COST is solution quality, as in this section, one cannot identify “simplicity” with
“low pseudo-dimension” without caveats: strictly speaking, the set A containing only the optimal algorithm for the
problem has pseudo-dimension 1. When the problem II is N P-hard and A consists only of polynomial-time algorithms
(and assuming P # N P), the pseudo-dimension is a potentially relevant complexity measure for the heuristics in A.

12The e-net approach has the potential to work for greedy algorithms that choose the next object using a softmax-
type rule, rather than deterministically as the unassigned object with the highest score.

13For example, the classical %-approximation for Knapsack has this form (with g = 2).
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more complicated parameter — essentially, the number of connected components of the co-zero set
of the difference of two scoring functions (with &, &’ fixed and variables p1, ..., pg). This number
can often be bounded (by a function exponential in d) in natural cases, for example using Bézout’s
theorem (see e.g. [Gat14]).

For a final extension, we sketch how to adapt the definitions and results of this section from greedy
to local search heuristics. The input is again an object assignment problem (see Section 3.3.3),
along with an initial feasible solution (i.e., an assignment of objects to R, subject to feasibility
constraints). By a k-swap local search heuristic, we mean algorithms of the following form:

1. Start with arbitrary feasible solution.
2. While the current solution is not locally optimal:

(a) Use a scoring rule o to compute a score o({; : i € K}) for each set of objects K of size
k, where &; is the current attribute of object 1.

(b) For the set K with the highest score, use an assignment rule to re-assign each ¢ € K to
a value from R. If necessary, update the attributes of the appropriate objects. (Again,
assume that ties are resolved lexicographically.)

We assume that the assignment rule maintains feasibility, so that we have a feasible assignment at
the end of each execution of the loop. We also assume that the scoring and assignment rules ensure
that the algorithm terminates, e.g. via the existence of a global objective function that decreases
at every iteration (or by incorporating timeouts).

A canonical example of a k-swap local search heuristic is the k-OPT heuristic for the traveling
salesman problem (TSP)! (see e.g. [JM97]). We can view TSP as an object assignment problem,
where the objects are edges and R = {0, 1}; the feasibility constraint is that the edges assigned
to 1 should form a tour. Recall that a local move in k-OPT consists of swapping out & edges from
the current tour and swapping in k edges to obtain a new tour. (So in our terminology, k-OPT is a
2k-swap local search heuristic.) Another well-known example is the local search algorithms for the
p-median problem studied in [AGK*04], which are parameterized by the number of medians that
can be removed and added in each local move. Analogous local search algorithms make sense for
the MWIS problem as well.

Scoring and assignment rules are now defined on subsets of k£ objects, rather than individual objects.
A single-parameter family of scoring rules is now called k-crossing if, for every subset K of at most
k objects and each distinct pair of attribute sets x and £}, there are at most x values of p for
which o(p,Ex) = o(p, ). An assignment rule is now [S-bounded if for every subset K of at most
k objects, ranging over all possible trajectories of the local search heuristic, the attribute set of K
takes on at most § distinct values. For example, in MWIS, suppose we allow two vertices u, v to be
removed and two vertices y, z to be added in a single local move, and we use the single-parameter
scoring rule family

Wy Wy Wy W,

I+ deg(w)? (11 deg(v))?  (1+deg(y))? (1 + deg(2))?"

" Given a complete undirected graph with a cost ¢y, for each edge (u,v), compute a tour (visiting each vertex
exactly once) that minimizes the sum of the edge costs.

O—P(u7 Ua .% Z) = (
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Here deg(v) could refer to the degree of vertex v in original graph, to the number of neighbors of v
that do not have any neighbors other than v in the current independent set, etc. In any case, since
a generalized Dirichlet polynomial with ¢ terms has at most ¢t — 1 zeroes (see e.g. [Jam06, Corollary
3.2]), this is a 3-crossing family. The natural assignment rule is n*-bounded.!?

By replacing the number n of objects by the number O(n*) of subsets of at most k objects in the
proof of Theorem 3.6, we obtain the following.

Theorem 3.8 (Pseudo-Dimension of Local Search Algorithms). If A denotes a (k,[3)-single-
parameter family of k-swap local search heuristics for an object assignment problem with n objects,
then the pseudo-dimension of A is O(klog(kfpn)).

3.3.4 Application: Self-Improving Algorithms Revisited

We next give a new interpretation of the self-improving sorting algorithm of [ACCLO06]. Namely,
we show that the main result in [ACCLO06] effectively identifies a set of sorting algorithms that si-
multaneously has low representation error (for independently distributed array elements) and small
pseudo-dimension (and hence low generalization error). Other constructions of self-improving algo-
rithms [ACCL06, CS08, CMS10, CMS12] can be likewise reinterpreted. In contrast to Section 3.3.3,
here our performance measure COST is related to the running time of an algorithm A on an input
x, which we want to minimize, rather than the objective function value of the output, which we
wanted to maximize.

Consider the problem of sorting n real numbers in the comparison model. By a bucket-based sorting
algorithm, we mean an algorithm A for which there are “bucket boundaries” by < by < - -+ < by such
that A first distributes the n input elements into their rightful buckets, and then sorts each bucket
separately, concatenating the results. The degrees of freedom when defining such an algorithm are:
(i) the choice of the bucket boundaries; (ii) the method used to distribute input elements to the
buckets; and (iii) the method used to sort each bucket. The performance measure COST is the
number of comparisons used by the algorithm.'6

The key steps in the analysis in [ACCLO06] can be reinterpreted as proving that this set of bucket-
based sorting algorithms has low representation error, in the following sense.

Theorem 3.9 ([ACCL06, Theorem 2.1]). Suppose that each array element a; is drawn indepen-
dently from a distribution D;. Then there exists a bucket-based sorting algorithm with expected
running time at most a constant factor times that of the optimal sorting algorithm for Dy X - - X Dy.

The proof in [ACCLO06] establishes Theorem 3.9 even when the number ¢ of buckets is only n, each
bucket is sorted using InsertionSort, and each element a; is distributed independently to its rightful

'5Tn general, arbitrary local search algorithms can be made -bounded through time-outs: if such an algorithm
always halts within T iterations, then the corresponding assignment rule is T-bounded.

Devroye [Dev86] studies similar families of sorting algorithms, with the goal of characterizing the expected running
time as a function of the input distribution.
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bucket using a search tree stored in O(n®) bits, where ¢ > 0 is an arbitrary constant (and the
running time depends on %).17 Let A. denote the set of all such bucket-based sorting algorithms.

Theorem 3.9 reduces the task of learning a near-optimal sorting algorithm to the problem of (e, d)-
learning the optimal algorithm from A.. Corollary 3.4 reduces this learning problem to bounding
the pseudo-dimension of A.. We next prove such a bound, which effectively says that bucket-based
sorting algorithms are “relatively simple” algorithms.'®

Theorem 3.10 (Pseudo-Dimension of Bucket-Based Sorting Algorithms). The pseudo-dimension
of Ac is O(n'T¢).

Proof. Recall from the definitions (Section 3.3.2) that we need to upper bound the size of every
set that is shatterable using the bucket-based sorting algorithms in A.. For us, a set is a fixed set
of s inputs (i.e., arrays of length n), S = x1,...,xs. For a potential witness r1,...,rs € R, every
algorithm A € A, induces a binary labeling of each sample z;, according to whether cosT(A, x;) is
strictly more than or at most r;. We proceed to bound from above the number of distinct binary
labellings of S induced by the algorithms of A., for any potential witness.

By definition, an algorithm from A, is fully specified by: (i) a choice of n bucket boundaries
by < -+ < by; and (ii) for each i = 1,2,...,n, a choice of a search tree T; of size at most O(n¢) for
placing z; in the correct bucket. Call two algorithms A, A’ € A. equivalent if their sets of bucket
boundaries by, ..., b, and b}, ..., b, induce the same partition of the sn array elements of the inputs
in S — that is, if z;; < by, if and only if x;; < b} (for all ¢, j, k). The number of equivalence classes of
this equivalence relation is at most (S":") < (sn+mn)™. Within an equivalence class, two algorithms
that use structurally identical search trees will have identical performance on all s of the samples.
Since the search trees of every algorithm of A. are described by at most O(n!'*¢) bits, ranging over
the algorithms of a single equivalence class generates at most 20(n'*) Jistinct binary labellings of
the s sample inputs. Ranging over all algorithms thus generates at most (5n+n)”20("1+c) labellings.
This exceeds 2°, the requisite number of labellings to shatter S, only if s = O(n!'*¢). O

Theorem 3.10 and Corollary 3.4 imply that m = O(?—;nlﬂ) samples are enough to (e, §)-learn the
optimal algorithm in A., where H can be taken as the ratio between the maximum and minimum
running time of any algorithm in A, on any instance.!® Since the minimum running time is Q(n)
and we can assume that the maximum running time is O(nlogn) — if an algorithm exceeds this

bound, we can abort it and safely run MergeSort instead — we obtain a sample complexity bound
of O(n1+c)_20

"For small ¢, each search tree T; is so small that some searches will go unresolved; such unsuccessful searches are
handled by a standard binary search over the buckets.

18Not all sorting algorithms are simple in the sense of having polynomial pseudo-dimension. For example, the space
lower bound in [ACCLO06, Lemma 2.1] can be adapted to show that no class of sorting algorithms with polynomial
pseudo-dimension (or fat shattering dimension) has low representation error in the sense of Theorem 3.9 for general
distributions over sorting instances, where the array entries need not be independent.

19WWe again use O() to suppress logarithmic factors.

2%Tn the notation of Theorem 3.2, we are taking H = ©(nlogn), ¢ = O(n), and using the fact that all quantities
are Q(n) to conclude that all running times are correctly estimated up to a constant factor. The results implicit
in [ACCLO06] are likewise for relative error.
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Remark 3.11 (Comparison to [ACCLO06]). The sample complexity bound implicit in [ACCLO6]
for learning a near-optimal sorting algorithm is O(n¢), a linear factor better than the O(n*tc)
bound implied by Theorem 3.10. There is good reason for this: the pseudo-dimension bound of
Theorem 3.10 implies that an even harder problem has sample complexity é(n1+c), namely that of
learning a near-optimal bucket-based sorting algorithm with respect to an arbitrary distribution over
inputs, even with correlated array elements.?! The bound of O(n°) in [ACCLO6] applies only to the
problem of learning a near-optimal bucket-based sorting algorithm for an unknown input distribution
with independent array entries — the savings comes from the fact that all n near-optimal search
trees Ty, ..., T, can be learned in parallel.

3.3.5 Application: Feature-Based Algorithm Selection

Previous sections studied the problem of selecting a single algorithm for use in an application
domain — of using training data to make an informed commitment to a single algorithm from a
class A, which is then used on all future instances. A more refined and ambitious approach is to
select an algorithm based both on previous experience and on the current instance to be solved.
This approach assumes, as in the scenario in Section 3.2.4, that it is feasible to quickly compute
some features of an instance and then to select an algorithm as a function of these features.

Throughout this section, we augment the basic model of Section 3.3.1 with:

5. A set F of possible instance feature values, and a map f : X — F that computes the features
of a given instance.??

For instance, if X is the set of SAT instances, then f(x) might encode the clause/variable ratio of
the instance z, Knuth’s estimate of the search tree size [Knu75], and so on.

When the set F of possible instance feature values is finite, the guarantees for the basic model
extend easily with a linear (in |F|) degradation in the pseudo-dimension.?? To explain, we add an
additional ingredient to the model.

6. A set G of algorithm selection maps, with each g € G a function from F to A.
An algorithm selection map recommends an algorithm as a function of the features of an instance.

We can view an algorithm selection map ¢ as a real-valued function defined on the instance space
X, with g(z) defined as cosT(g(f(x)),x). That is, g(z) is the running time on z of the algorithm
g(f(x)) advocated by g, given that x has features f(x). The basic model studied earlier is the special
case where G is the set of constant functions, which are in correspondence with the algorithms of

A.

21'When array elements are not independent, however, Theorem 3.9 fails and the best bucket-based sorting algorithm
might be more than a constant-factor worse than the optimal sorting algorithm.

22Defining a good feature set is a notoriously challenging and important problem, but it is beyond the scope of our
model — we take the set F and map f as given.

#Tor example, [XHHLOS] first predicts whether or not a given SAT instance is satisfiable or not, and then uses a
“conditional” empirical performance model to choose a SAT solver. This can be viewed as an example with |F| = 2,
corresponding to the feature values “looks satisfiable” and “looks unsatisfiable.”
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Corollary 3.4 reduces bounding the sample complexity of (e, d)-learning the best algorithm selection
map of G to bounding the pseudo-dimension of the set of real-valued functions induced by G. When
G is finite, there is a trivial upper bound of log, |G|. The pseudo-dimension is also small whenever
F is small and the set A of algorithms has small pseudo-dimension.2*

Proposition 3.12 (Pseudo-Dimension of Algorithm Selection Maps). If G is a set of algorithm
selection maps from a finite set F to a set A of algorithms with pseudo-dimension d, then G has
pseudo-dimension at most | F|d.

Proof. A set of inputs of size |F|d + 1 is shattered only if there is a shattered set of inputs with
identical features of size d + 1. O

Now suppose F is very large (or infinite). We focus on the case where A is small enough that
it is feasible to learn a separate performance prediction model for each algorithm A € A (though
see Remark 3.15). This is exactly the approach taken in the motivating example of empirical
performance models (EPMs) for SAT described in Section 3.2.4. In this case, we augment the basic
model to include a family of performance predictors.

6. A set P of performance predictors, with each p € P a function from F to R.
Performance predictors play the same role as the EPMs used in [XHHLOS].

The goal is to learn, for each algorithm A € A, among all permitted predictors p € P, the one that
minimizes some loss function. Like the performance measure COST, we take this loss function as
given. The most commonly used loss function is squared error; in this case, for each A € A we aim
to compute the function that minimizes

E,.p[(cosT(4,z) — p(f(2)))?]

over p € P.2% For a fixed algorithm A, this is a standard regression problem, with domain F, real-
valued labels, and a distribution on F x R induced by D via = — (f(x), COST(A, x)). Bounding the
sample complexity of this learning problem reduces to bounding the pseudo-dimension of P. For
standard choices of P, such bounds are well known. For example, suppose the set P is the class
of linear predictors, with each p € P having the form p(f(z)) = a” f(x) for some coefficient vector
a € R%.26 The following is well known (see e.g. [AB99)]).

Proposition 3.13 (Pseudo-Dimension of Linear Predictors). If F contains real-valued d-dim-
ensional features and P is the set of linear predictors, then the pseudo-dimension of P is at most d.

2“When G is the set of all maps from F to A and every feature value of F appears with approximately the same
probability, one can alternatively just separately learn the best algorithm for each feature value.

2’Note that the expected loss incurred by the best predictor depends on the choices of the predictor set P, the
feature set F, and map f. Again, these choices are outside our model.

26 A linear model might sound unreasonably simple for the task of predicting the running time of an algorithm,
but significant complexity can be included in the feature map f(z). For example, each coordinate of f(z) could be a
nonlinear combination of several “basic features” of x. Indeed, linear models often exhibit surprisingly good empirical
performance, given a judicious choice of a feature set [LNS09].
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If all functions in P map all possible ¢ to [0, H], then Proposition 3.13 and Corollary 3.4 imply
a sample complexity bound of O(f—;d) for (e, d)-learning the predictor with minimum expected

square error. Similar results hold, with worse dependence on d, if P is a set of low-degree polyno-
mials [AB99].

For another example, suppose Py is the set of regression trees with at most ¢ nodes, where each
internal node performs an inequality test on a coordinate of the feature vector ¢ (and leaves are
labeled with performance estimates).?” This class also has low pseudo-dimension®®, and hence the
problem of learning a near-optimal predictor has correspondingly small sample complexity.

Proposition 3.14 (Pseudo-Dimension of Regression Trees). Suppose F contains real-valued d-
dimensional features and let Py be the set of regression trees with at most £ nodes, where each node
performs an inequality test on one of the features. Then, the pseudo-dimension of Py is O(£log(¢d)).

Remark 3.15 (Extension to Large A). We can also extend our approach to scenarios with a
large or infinite set A of possible algorithms. This extension is relevant to state-of-the-art em-
pirical approaches to the auto-tuning of algorithms with many parameters, such as mathematical
programming solvers [HXHL1/]; see also the discussion in Section 3.2.3. (Instantiating all of the
parameters yields a fived algorithm; ranging over all possible parameter values yields the set A.)
Analogous to our formalism for accommodating a large number of possible features, we now assume
that there is a set F' of possible “algorithm feature values” and a mapping f' that computes the
features of a given algorithm. A performance predictor is now a map from F x F' to R, taking as
input the features of an algorithm A and of an instance x, and returning as output an estimate of
A’s performance on x. If P is the set of linear predictors, for example, then by Proposition 3.13
its pseudo-dimension is d + d', where d and d' denote the dimensions of F and F', respectively.

3.3.6 Application: Choosing the Step Size in Gradient Descent

For our last PAC example, we give sample complexity results for the problem of choosing the best
step size in gradient descent. When gradient descent is used in practice, the step size is generally
taken much larger than the upper limits suggested by theoretical guarantees, and often converges
in many fewer iterations than with the step size suggested by theory. This motivates the problem of
learning the step size from examples. We view this as a baby step towards reasoning more generally
about the problem of learning good parameters for machine learning algorithms.

In this section, we look at a setting where the approximation quality is fixed for all algorithms,
and the performance measure COST is related to the running time of the algorithm. Unlike the
applications we’ve seen so far, the parameter space here satisfies a Lipschitz-like condition, and we
can follow the discretization approach suggested in Remark 3.7.

2TRegression trees, and random forests thereof, have emerged as a popular class of predictors in empirical work on
application-specific algorithm selection [HXHL14].
28We suspect this fact is known, but have been unable to locate a suitable reference.
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Gradient Descent Preliminaries

Recall the basic gradient descent algorithm for minimizing a function f given an initial point 2z
over R™:

1. Initialize z := zg.
2. While ||V f(2)]|2 > v:
(a) z:=2z—p-Vf(z).

We take the error tolerance v as given and focus on the more interesting parameter, the step size p.
Bigger values of p have the potential to make more progress in each step, but run the risk of
overshooting a minimum of f.

We instantiate the basic model (Section 3.3.1) to study the problem of learning the best step size.
There is an unknown distribution D over instances, where an instance x € II consists of a function f
and an initial point z9. Each algorithm A, of A is the basic gradient descent algorithm above, with
some choice p of a step size drawn from some fixed interval [pg, p,] C (0,00). The performance
measure COST(A, z) is the number of iterations (i.e., steps) taken by the algorithm for the instance
x.

To obtain positive results, we need to restrict the allowable functions f (see the end of Section 3.3.6).
First, we assume that every function f is convex and L-smooth for a known L. A function f is
L-smooth if it is everywhere differentiable, and ||V f(z1) — V f(z2)|| < L||z1 — 22|| for all z; and 29
(all norms in this section are the ¢, norm). Since gradient descent is translation invariant, and f is
convex, we can assume for convenience that the (uniquely attained) minimum value of f is 0, with

£(0) = 0.

Second, we assume that the magnitudes of the initial points are bounded, with ||zo|| < Z for some
known constant Z > v.

Third, we assume that there is a known constant ¢ € (0, 1) such that ||z —p V f(2)| < (1—¢)| z|| for
all p € [pg, pu]. In other words, the norm of any point z — equivalently, the distance to the global
minimum — decreases by some minimum factor after each gradient descent step. We refer to this as
the guaranteed progress condition. This is satisfied (for instance) by L-smooth, m-strongly convex
functions?, which is a well studied regime (see e.g. [BV04]). The standard analysis of gradient
descent implies that ¢ > pm for p < 2/(m + L) over this class of functions.

Under these restrictions, we will be able to compute a nearly optimal p given a reasonable number
of samples from D.

Other Notation All norms in this section are ¢s-norms. Unless otherwise stated, p means p
restricted to [py, pu], and z means z such that ||z|| < Z. We let g(z, p) := z — pV f(z) be the result
of taking a single gradient descent step, and ¢’ (z, p) be the result of taking j gradient descent steps.

*?A (continuously differentiable) function f is m-strongly convez if f(y) > f(w) + Vf(w)" (y —w) + Z|ly — w||* for
all w,y € R™. The usual notion of convexity is the same as 0-strong convexity. Note that the definition of L-smooth
implies m < L.
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Typical textbook treatments of gradient descent assume p < 2/L or p < 2/(m + L), which give
various convergence and running time guarantees. The learning results of this section apply for any
p, but this natural threshold will still appear in our analysis and results. Let D(p) := max{1, Lp—1}
denote how far p is from 2/L.

By the guaranteed progress condition, ||¢7(z, p)|| < (1—c)’|/z||, and so by L-smoothness,

IVF(g” (2 p))Il < (1—c) L |2]].

Since [|zp|| < Z, and we stop once the gradient is < v, coST(A,,x) < log(v/LZ)/log(1—c) for all
pand z. Let H =log(v/LZ)/log(1—c).

A Lipschitz-like Bound on cosT(4,,z) as a Function of p.

This will be the bulk of the argument. Our first lemma shows that for fixed p, the gradient descent
step ¢ is a Lipschitz function of z, even when p is larger than 2/L. One might hope that the
guaranteed progress condition would be enough to show that (say) g is a contraction, but the
Lipschitzness of g actually comes from the L-smoothness. (It is not too hard to come up with
non-smooth functions that make guaranteed progress, and where g is arbitrarily non-Lipschitz.)

Lemma 3.16. [lg(w,p) — g(y, p)|| < D(p)[lw — y||-
Proof. For notational simplicity, let o = ||w — y|| and 5 = ||V f(w) — Vf(y)||. Now,

lg(w, p) — gy, p)|I* = l[(w — y) — p(V f(w) = V()|
= o’ +p*8* = 2p(a, B)
<o’ +p*B% —2pB%/L
=a’ + %p(p - 2/L).

The only inequality above is a restatement of a property of L-smooth functions called the co-
coercivity of the gradient, namely that («, ) > 5%/L.

Now, if p < 2/L, then p(p —2/L) < 0, and we're done. Otherwise, L-smoothness implies 5 < La,
so the above is at most a?(1 + Lp(Lp — 2)), which is the desired result. O

The next lemma bounds how far two gradient descent paths can drift from each other, if they start
at the same point. The main thing to note is that the right hand side goes to 0 as n becomes close
to p.

Lemma 3.17. For any z, j, and p <1,

197 (2,p) = ¢ (z,m)|| < (n— p)M-
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Proof. We first bound ||g(w, p) — ¢g(y,n)||, for any w and y. We have

g(w,p) = g(y,m) = [w — pV f(w)] = [y =V f(y)] = g(w, p) — [g(y,p) — (1 — p)V ()]

by definition of g. The triangle inequality and Lemma 3.16 then give

lg(w, p) = g(y, )l = llg(w, p) = g(y, p) + (1 = L)V F(W)I| < D(p) [lw =yl + (n =PIV (W)I-

Plugging in w = ¢’(z, p) and y = ¢’(z,n), we have

9" (2, p) = T (zm)l < D) 197 (2, ) = & (o)l + (0 = P)IV £ (9 (z,m)|
for all j.

IVf(g’(zn)ll < Ll (z )|l < Ll|z([(1 = ¢) < LZ(1 =),

where the first inequality is from L-smoothness, and the second is from the guaranteed progress
condition. Letting r; = |/¢’(2,p) — ¢’(2,7n)||, we now have the simple recurrence ro = 0, and
rit+1 < D(p)rj + (n— p)LZ(1 — c)?. One can check via induction that

j
ri+1 < D(p) (n—p)LZY (1= ¢)'D(p)™"
=0

for all j. Recall that D(p) > 1. Rounding D(p)~* up to 1 and doing the summation gives the
desired result. O

Finally, we show that COST(A,, x) is essentially Lipschitz in p. The “essentially” is necessary, since
COST is integer-valued.

Lemma 3.18. |cOST(A,, ) — COST(A,,x)| <1 for all x, p, and n with 0 <n—p < Z—CZQD(/))_H.

Proof. Assume that cosT(A,,x) < COST(A,,x); the argument in the other case is similar. Let
j = COST(A,, ), and recall that j < H. By Lemma 3.17, ||¢’(z, p) — ¢/ (x,n)|| < vc. Hence, by the
triangle inequality,

lg’ (@, p)l| <ve+ g (@, )| < ve+v.

Now, by the guaranteed progress condition, |w|| — ||g(w,p)|| > c||lw]|| for all w. Since we only run
a gradient descent step on w if ||w|| > v, each step of gradient descent run by any algorithm in .4
drops the magnitude of w by at least vc.

Setting w = ¢’ (x, p), we see that either ||g/(z, p)|| < v, and COST(A,, z) = j, or that ||g/T!(z, p)|| <
(ve+v) —ve=v, and COST(A,,x) = j + 1, as desired. O
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Learning the Best Step Size

We can now apply the discretization approach suggested by Remark 3.7.2 Let K = E—C;D(pu)*H .
Note that since D is an increasing function, K is less than or equal to the %D(p)_H of Lemma 3.18

for every p. Let N be a minimal K-net, such as all integer multiples of K that lie in [pg, p,]. Note
that |N| < p,/K + 1.

We tie everything together in the theorem below.3°

Theorem 3.19 (Learnability of Step Size in Gradient D~escent). There is a learning algorithm that
(1+ €,8)-learns the optimal algorithm in A using m = O(H3/€%) samples from D.%!

Proof. The pseudo-dimension of Ay = {4, : p € N} is at most log |N|, since Ay is a finite set.
Since Ay is finite, it also trivially admits an ERM algorithm Ly, and Corollary 3.4 implies that
Ly (€,6)-learns the optimal algorithm in Ay using m = O(H?log |N|/e?) samples.

Now, Lemma 3.18 implies that for every p, there is a n € N such that, for every distribution D,
the difference in expected costs of A, and A, is at most 1. Thus Ly (1 + ¢,d)-learns the optimal
algorithm in A using m = O(H?¢ 2 log |N|) samples.

Since log [N| = O(H), we get the desired result. O

A Hard Example for Gradient Descent

We now depict a family F of functions for which A has arbitrarily high pseudo-dimension, justifying
the need to restrict the set of allowable functions above. For each member f € F, f : R> — R, and
we parameterize f; € F by finite subsets I C [0,1]. An aerial view of f; appears in Figure 3.1.

The “squiggle” s(I) intersects the relevant axis at exactly I (to be concrete, let s(I) be the monic
polynomial with roots at I). We fix the initial point zo to be at the tail of the arrow for all instances,
and fix py and p, so that the first step of gradient descent takes zy from the red incline into the
middle of the black and blue area. Let x; be the instance corresponding to f; with starting point
2. If for a certain p and I, g(zo, p) lands in the flat, black area, gradient descent stops immediately
and CoST(A,,zr) = 1. If g(zo0, p) instead lands in the sloped, blue area, COST(A4,,zr) > 1.

It should be clear that F can shatter any finite subset of (ps, py), and hence has arbitrarily large
pseudo-dimension. One can also make slight modifications to ensure that all the functions in F are
continuously differentiable and L-smooth.

30 Alternatively, this guarantee can be phrased in terms of the fat-shattering dimension (see e.g. [AB99]). In
particular, A has 1.001-fat shattering dimension at most log |N| = O(H).
313We use O(-) to suppress logarithmic factors in Z/v,c, L and p,.
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Figure 3.1: A family of functions for which gradient descent has arbitrarily high pseudo-dimension.
3.4 Online Learning of Application-Specific Algorithms

This section studies the problem of learning the best application-specific algorithm online, with
instances arriving one-by-one.??> The goal is choose an algorithm at each time step, before seeing
the next instance, so that the average performance is close to that of the best fixed algorithm
in hindsight. This contrasts with the statistical (or “batch”) learning setup used in Section 3.3,
where the goal was to identify a single algorithm from a batch of training instances that generalizes
well to future instances from the same distribution. For many of the motivating examples in
Section 3.2, both the statistical and online learning approaches are relevant. The distribution-free
online learning formalism of this section may be particularly appropriate when instances cannot be
modeled as i.i.d. draws from an unknown distribution.

3.4.1 The Online Learning Model

Our online learning model shares with the basic model of Section 3.3.1 a computational or opti-
mization problem II (e.g., MWIS), a set A of algorithms for II (e.g., a single-parameter family of
greedy heuristics), and a performance measure cosT : A x IT — [0, 1] (e.g., the total weight of the
returned solution).?3 Rather than modeling the specifics of an application domain via an unknown
distribution D over instances, however, we use an unknown instance sequence x1, ..., x7.%4

32The online model is obviously relevant when training data arrives over time. Also, even with offline data sets
that are very large, it can be computationally necessary to process training data in a one-pass, online fashion.

330ne could also have cOST take values in [0, H] rather than [0, 1], to parallel the PAC setting; we set H = 1 here
since the dependence on H will not be interesting.

34For simplicity, we assume that the time horizon T is known. This assumption can be removed by standard
doubling techniques (e.g. [CLO06]).
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A learning algorithm now outputs a sequence Aq, ..., Ap of algorithms, rather than a single algo-
rithm. Each algorithm A; is chosen (perhaps probabilistically) with knowledge only of the previous
instances x1,...,x;—1. The standard goal in online learning is to choose Aj,..., A7 to minimize
the worst-case (over x1,...,x7) regret, defined as the average performance loss relative to the best
algorithm A € A in hindsight:3>

1 T T
7 (sup ) " cosT(A,x;) — Y COST(A;, xi)> : (3.2)

AeAT =1

A no-regret learning algorithm has expected (over its coin tosses) regret o(1), as " — oo, for every
instance sequence. The design and analysis of no-regret online learning algorithms is a mature field
(see e.g. [CLO6]). For example, many no-regret online learning algorithms are known for the case
of a finite set | A] (such as the “multiplicative weights” algorithm).

3.4.2 An Impossibility Result for Worst-Case Instances

This section proves an impossibility result for no-regret online learning algorithms for the problem
of application-specific algorithm selection. We show this for the running example in Section 3.3.3:
maximum-weight independent set (MWIS) heuristics®® that, for some parameter p € [0, 1], process
the vertices in order of nonincreasing value of w,/(1 + deg(v))?. Let A denote the set of all
such MWIS algorithms. Since A is an infinite set, standard no-regret results (for a finite number
of actions) do not immediately apply. In online learning, infinite sets of options are normally
controlled through a Lipschitz condition, stating that “nearby” actions always yield approximately
the same performance; our set A does not possess such a Lipschitz property (recall Remark 3.7).
The next section shows that these issues are not mere technicalities — there is enough complexity
in the set A of MWIS heuristics to preclude a no-regret learning algorithm.

A Hard Example for MWIS

We show a distribution over sequences of MWIS instances for which every (possibly randomized)
algorithm has expected regret 1 — 0,(1). Here and for the rest of this section, by 0,(1) we mean
a function that is independent of 7" and tends to 0 as the number of vertices n tends to infinity.
Recall that cOST(A,, ) is the total weight of the returned independent set, and we are trying to
maximize this quantity. The key construction is the following:

Lemma 3.20. For any constants 0 < r < s < 1, there exists a MWIS instance x on at most n
vertices such that COST(A,,x) =1 when p € (r,s), and COST(A,,x) = 0,(1) when p <1 or p > s.

Proof. Let A, B, and C be 3 sets of vertices of sizes m? — 2, m3 — 1, and m? + m + 1 respectively,
such that their sum m3 4 2m? 4+ m is between n/2 and n. Let (A, B) be a complete bipartite graph.

3%Without loss of generality, we assume COST corresponds to a maximization objective.
36Section 3.3.3 defined adaptive and non-adaptive versions of the MWIS heuristic. All of the results in Section 3.4
apply to both, so we usually won’t distinguish between them.
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A B C
Figure 3.2: A rough depiction of the MWIS example from Lemma 3.20.

‘ size weight ‘ deg  weight/(deg+1)? size x weight
A m? — 2 tm” m3 —1 tm"—3° on(1)
B m3 —1 t m?—1 tm=2P 1
C| m?+m+1 tm™ m—1 tm™°7F on(1)

Figure 3.3: Details and simple calculations for the vertex sets comprising the MWIS example from
Lemma 3.20.

Let (B, () also be a bipartite graph, with each vertex of B connected to exactly one vertex of C,
and each vertex of C' connected to exactly m — 1 vertices of B. See Figure 3.2.

Now, set the weight of every vertex in A, B, and C to tm”, t, and tm™°), respectively, for t =
(m3 —1)~1. Figure 3.3 summarizes some straightforward calculations. We now calculate the cost
of A, on this instance.

If p < r, the algorithm A, first chooses a vertex in A, which immediately removes all of B, leaving
at most A and C in the independent set. The total weight of A and C is 0,(1), so COST(A,) is

on(1).

If p > s, the algorithm first chooses a vertex in C, which removes a small chunk of B. In the
non-adaptive setting, A, simply continues choosing vertices of C' until B is gone. In the adaptive
setting, the degrees of the remaining elements of B never change, but the degrees of A decrease
as we pick more and more elements of C. We eventually pick a vertex of A, which immediately
removes the rest of B. In either case, the returned independent set has no elements from B, and
hence has COST o,,(1).

If p € (r,s), the algorithm first picks a vertex of B, immediately removing all of A, and one
element of C. The remaining graph comprises m — 2 isolated vertices of B (which get added to the
independent set), and m? + m stars with centers in C' and leaves in B. It is easy to see that both
the adaptive and the non-adaptive versions of the heuristic return exactly B. O

We are now ready to state the main result of this section.

Theorem 3.21 (Impossibility of Worst-Case Online Learning). There is a distribution on MWIS
input sequences over which every algorithm has expected regret 1 — oy, (1).
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Proof. Let t; = (r;,s;) be a distribution over sequences of nested intervals with s; —r; = n™7,
to = (0, 1), and with ¢; chosen uniformly at random from within ¢;_;. Let ; be an MWIS instance
on up to n vertices such that cost(A,,z) =1 for p € (r},s;), and COST(A,, x) = 0,(1) for p < r;
and p > s; (Lemma 3.20).

The adversary presents the instances 1, 2, ..., 27, in that order. For every p € tp, COST(A,, x;) =
1 for all j. However, at every step ¢, no algorithm can have a better than 1/n chance of picking
a pg for which cosT(4,,,z;) = ©,(1), even given x1,x,...,2,—1 and full knowledge of how the
sequence is generated. O

3.4.3 A Smoothed Analysis

Despite the negative result above, we can show a “low-regret” learning algorithm for MWIS under
a slight restriction on how the instances x; are chosen. By low-regret we mean that the regret
can be made polynomially small as a function of the number of vertices n. This is not the same
as the no-regret condition, which requires regret tending to 0 as T" — oo. Nevertheless, inverse
polynomially small regret poly(n~!) is a huge improvement over the constant regret incurred in
the worst-case lower bound (Theorem 3.21). Let poly(n~!) denote a function that is independent
of T, and which can be taken as an arbitrarily small polynomial in n .

We take the approach suggested by smoothed analysis [ST09]. Fix a parameter o € (0,1). We allow
each MWIS instance x; to have an arbitrary graph on n vertices, but we replace each vertex weight
w, with a probability distribution A, with density at most c~! (pointwise) and support in [0, 1].
A simple example of such a distribution with ¢ = 0.1 is the uniform distribution on [0.6,0.65] U
[0.82,0.87]. To instantiate the instance z;, we draw each vertex weight from its distribution Ay,.
We call such an instance a o-smooth MWIS instance.

For small o, this is quite a weak restriction. As ¢ — 0 we return to the worst-case setting, and
Theorem 3.21 can be extended to the case of ¢ exponentially small in n. Here, we think of o as
bounded below by an (arbitrarily small) inverse polynomial function of n. One example of such a
smoothing is to start with an arbitrary MWIS instance, keep the first O(logn) bits of every weight,
and set the remaining lower-order bits at random.

The main result of this section is a polynomial-time low-regret learning algorithm for sequences
of o-smooth MWIS instances. Our strategy is to take a finite net N C [0, 1] such that, for every
algorithm A, and smoothed instance x;, with high probability over z; the performance of A, is
identical to that of some algorithm in {4, : n € N}. We can then use any off-the-shelf no-regret
algorithm to output a sequence of algorithms from the finite set {4, : € N}, and show the desired
regret bound.
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A Low-Regret Algorithm for c-Smooth MWIS

We start with some definitions. For a fixed , let 7/(x) be the set of transition points, namely,37
(x) :={p: Ap_u(z) # Apiy(x) for arbitrarily small w}.
It is easy to see 7/(x) C 7(z), where
7(z) == {p : wy, [k} = wy, /K5 for some vy, v2, k1, ko € [n]; k1, ke > 2}.
With probability 1, the vertex weights w, are all distinct and non-zero, so we can rewrite 7 as
7(z) := {p(v1,v2, k1, k) : v1,v2, k1, ko € [n]; k1,ka > 25 k1 # ko,

where

p(vi,v2, k1, k2) = hif:é}]zlg : }EE;U:;) (3.3)

and In is the natural logarithm function. The main technical task is to show that no two elements
of 7(x1) U---U7(xy,) are within ¢ of each other, for a sufficiently large ¢ and sufficiently large m,
and with high enough probability over the randomness in the weights of the x;’s.

We first make a few straightforward computations. The following brings the noise into log space.

Lemma 3.22. If X is a random variable over (0,1] with density at most 8, then In(X) also has
density at most §.

Proof. Let Y = In(X), let f(x) be the density of X at z, and let g(y) be the density of Y at y.
Note that X = e, and let v(y) = €Y. Then g(y) = f(v(y)) - v'(y) < f(v(y)) < § for all y. O

Since | In(k;) —In(ke)| < lnn, Lemma 3.22 and our definition of o-smoothness implies the following.

Corollary 3.23. For every o-smooth MWIS instance x, and every vy, va, ki,ka € [n], ki,ka >
2, k1 # ko, the density of p(vi,ve, k1, k2) is bounded by o~ 'Inn.

We now show that it is unlikely that two distinct elements of 7(z1) U --- U 7(x,,) are very close to
each other.

Lemma 3.24. Let xq,...,2y be o-smooth MWIS instances. The probability that no two distinct
elements of T(x1) U --- U T(zy,) are within q of each other is at least 1 — 4qo—'m?*n®Inn.

Proof. Fix instances x and ', and choices of (v1,ve, k1, ko) and (v}, vh, k7, k}). Denote by p and p
the corresponding random variables, defined as in (3.3). We compute the probability that |p—p'| < ¢
under various scenarios, over the randomness in the vertex weights. We can ignore the case where
x =12, v =], vg = vh, and k1 /ke = ki /Kb, since then p = p’ with probability 1. We consider
three other cases.

3"The corner cases p = 0 and p = 1 require straightforward but wordy special handling in this statement and in
several others in this section. We omit these details to keep the argument free of clutter.
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Case 1: Suppose x # 2/, and/or {vi,v2} and {v},v5} don’t intersect. In this case, p and p’ are
independent random variables. Hence the maximum density of p — p’ is at most the maximum
density of p, which is 0! Inn by Corollary 3.23. The probability that |p — p’| < ¢ is hence at most
2¢-0 'lnn.

Case 2: Suppose x = 2/, and {v1,v2} and {v],v}} share exactly one element, say vy = v}. Then

p — p' has the form X — Y, where X = % and X and Y are independent. Since the

maximum density of X is at most 0~ !Inn (by Lemma 3.22), the probability that [p — p/| < ¢ is
again at most 2¢ - o~ ! Inn.

Case 3: Suppose = 2’ and {v1,v2} = {v],v}}. In this case, ki/ks # k] /kb. Then

/ 1 !
’p —p ‘ = (ln(wvl) — hl(wvz)) <ln(/€1) _ ln(kZ) o 1n<k’1) — hl(ké)) ‘

 [n(wy,) — In(ws,)|

- n2 .

Since w,, and w,, are independent, the maximum density of the right hand side is at most o~ 'n?,

and hence the probability that |p — p'| < ¢ is at most 2¢ - o0~ 1n?.

We now upper bound the number of tuple pairs that can appear in each case above. Each set 7(z;)
has at most n* elements, so there are at most m?n® pairs in Cases 1 and 2. There are at most n*
choices of (ky, ko, k], kb) for each (x,v1,v9) in Case 3, for a total of at most mn® pairs. The theorem
now follows from the union bound. O

Lastly, we formally state the existence of no-regret algorithms for the case of finite |.A|.

Fact 3.25 (E.g. [LW94]). For a finite set of algorithms A, there exists a randomized online learning
algorithm L* that, for every m > 0, has expected regret at most O(+/(log |A|)/m) after seeing m
instances. If the time cost of evaluating COST(A, x) is bounded by B, then this algorithm runs in
O(BJA|) time per instance.

We can now state our main theorem.

Theorem 3.26 (Online Learning of Smooth MWIS). There is an online learning algorithm for
o-smooth MWIS that runs in time poly(n,o~') and has expected regret at most poly(n=1) (as
T — o0).

Proof. Fix a sufficiently large constant d > 0 and consider the first m instances of our sequence,
T1,. .. T, with m = n? In(c™!). Let ¢ = 1/(n?- 407 'm?n®Inn). Let E, be the event that every
two distinct elements of 7(x1) U--- U T(xy,) are at least ¢ away from each other. By Lemma 3.24,
E, holds with probability at least 1 — 1/ n over the randomness in the vertex weights.

Now, let Ay = {A; :i € {0,q,2q,...,|1/q]q,1}} be a “g-net.” Our desired algorithm L is simply
the algorithm L* from Fact 3.25, applied to Ay. We now analyze its expected regret.

If E; does hold, then for every algorithm A € A, there is an algorithm A’ € Ay such that
coST(A,xt) = cosT(A’,x¢) for z1,...,2m. In other words, the best algorithm of Ay is no worse
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than the best algorithm from all of A, and in this case the expected regret of L is simply that of
L*. By Fact 3.25 and our choice of m, the expected regret (over the coin flips made by L*) is at
most inverse polynomial in n.

If E, does not hold, our regret is at most 1, since COST is between 0 and 1. Averaging over the
cases where E,, does and does not hold (with probabilities 1 — 1/n% and 1/n9), the expected regret
of the learning algorithm L (over the randomness in L* and in the instances) is at most inverse
polynomial in n. O

3.5 Conclusions and Future Directions

FEmpirical work on application-specific algorithm selection has far outpaced theoretical analysis of
the problem, and this paper takes an initial step towards redressing this imbalance. We formu-
lated the problem as one of learning the best algorithm or algorithm sequence from a class with
respect to an unknown input distribution or input sequence. Many state-of-the-art empirical ap-
proaches to algorithm selection map naturally to instances of our learning frameworks. This chapter
demonstrates that many well-studied classes of algorithms have small pseudo-dimension, and thus
it is possible to learn a near-optimal algorithm from a relatively modest amount of data. While
worst-case guarantees for no-regret online learning algorithms are impossible, good online learning
algorithms exist in a natural smoothed model.

Our work suggests numerous wide-open research directions worthy of further study. For example:

1. Which computational problems admit a class of algorithms that simultaneously has low rep-
resentation error and small pseudo-dimension (like in Section 3.3.4)7

2. Which algorithm classes can be learned online, in either a worst-case or a smoothed model?

3. When is it possible to learn a near-optimal algorithm using only a polynomial amount of
computation, ideally with a learning algorithm that is better than brute-force search? Alter-
natively, are there (conditional) lower bounds stating that brute-force search is necessary for
learning?38

4. Are there any non-trivial relationships between statistical learning measures of the complexity
of an algorithm class and more traditional computational complexity measures?

5. How should instance features be chosen to minimize the representation error of the induced
family of algorithm selection maps (cf., Section 3.3.5)7

38Recall the discussion in Section 3.2.3: even in practice, the state-of-the-art for application-specific algorithm
selection often boils down to brute-force search.
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Chapter 4

Learning Session Types from Traces

Chapter summary: We look at a specific problem in understanding how users are interacting
with an application, given traces of their behavior. We model the problem as that of recovering
a mixture of Markov chains, and show that under mild assumptions the mixture can be recovered
from only its induced distribution on consecutive triples of states.

4.1 Introduction

The last scenario we look at is motivated by a specific problem in interaction design. Given an app
or a website, we would like to understand how users are traveling through the app. The output of
such an analysis might be a list of common flows, or a list of common but unexpected behaviors,
due to e.g. users working around a user interface bug. We are not aware of any previous formulation
of this task, either as an empirical or theoretical problem.

As a motivating example, consider the usage of a standard maps app on a phone. There are
a number of different reasons one might use the app: to search for a nearby business, to get
directions from one point to another, or just to orient oneself. Once the app has some users, we
would like to algorithmically discover things like:

e Common uses for the app that the designers had not expected, or had not expected to be
common. For instance, maybe a good fraction of users (or user sessions) simply use the app
to check the traffic.

o Whether different types of users use the app differently. For instance, experienced users might
use the app differently than first time users, either due to having different goals, or due to
accomplishing the same tasks more efficiently.

e Undiscoverable flows, with users ignoring a simple, but hidden menu setting, and instead
using a convoluted path to accomplish the same goal.

e Other unexpected behavior, such as users consistently pushing a button several times before
the app responds, or doing other things to work around programming or Ul errors.
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In the previous two chapters, we imposed very weak restrictions on the instances we considered,
and showed relatively strong results under those weak restrictions. We expect the most compelling
results for this problem will also come from a “model-independent” point of view, & la Chapter 2,
but initiate the study of the problem with a stronger set of assumptions.

We model the problem as follows. There are a small number L of unknown session types, such as
“experienced user looking for food”, or “first time user trying to figure out what the app does”, or
“user hitting bug #1234”. There are n > 2L observable states; the states can correspond to e.g.
pages on a site, or actions (swipe, type, zoom) on an app. We assume user behavior is Markovian
for each fixed session type; namely, each of the L session types corresponds to a Markov chain on
the n states.

The app designers receive session trails of the following form: a session type and starting state is
selected from some unknown distribution over L x n, and then the session follows the type-specific
Markov chain for some number of steps. The computational problem is to recover the transition
probabilities in each of the L individual Markov chains, given a list of these trails. The L Markov
chains can then be passed to a human for examination, past and future traces can be labelled with
their most likely type, or users can be bucketed based on their typical session types.

Mathematically, this problem corresponds to learning a mixture of Markov chains, and is of inde-
pendent interest. The rest of this chapter focuses on solving this problem.

4.1.1 Related Work

There are two immediate approaches to solving this problem. The first is to use the EM algo-
rithm [DLR77]. The EM algorithm starts by guessing an initial set of parameters for the mixture,
and then performs local improvements that increase the likelihood of the proposed solution. The
EM algorithm is a useful benchmark and will converge to some local optimum, but it may be slow
to get there [RW84], and there are no guarantees on the quality of the final solution.

The second approach is to model the problem as a Hidden Markov Model (HMM), and employ
machinery for learning HMMs, particularly the recent tensor decomposition methods [AGHT 14,
AHK12, HKZ12]. As in our case, this machinery relies on having more observed states than hidden
states. Unfortunately, directly modeling a Markov chain mixture as an HMM (or as a mixture
of HMMs, as in [STS14]) requires nL hidden states for n observed states. Given that, one could
try adapting the tensor decomposition arguments from [AHK12] to our problem, which is done
in Section 4.3 of [Siib11]. However, as the author notes, this requires accurate estimates for the
distribution of trajectories (or trails) of length five, whereas our results only require estimates for
the distribution of trails of length three. This is a large difference in the amount of data one might
need to collect, as one would expect to need ©(n') samples to estimate the distribution of trails of
length t.

An entirely different approach is to assume a Dirichlet prior on the mixture, and model the problem
as learning a mixture of Dirichlet distributions [Siib11]. Besides requiring the Dirichlet prior, this
method also requires very long trails (e.g., of minimum length 100).
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A related line of work shows parameter recovery of various classes of models, using Kruskal’s
theorem on 3-way tables [AMRO09]. Their models include HMMs as a special case. Dimension 3
seems to play a big role, as does generic identifiability (meaning, recovery of parameters for all but
a measure zero subset of the possible parameter settings), both of which will show up here as well.
Their results are not algorithmic in nature, but the connection is intriguing, and a potential avenue
for future work.

4.1.2 Results

Let S be the distribution over session type and starting state, and let M be the transition proba-
bilities for the L Markov chains. Let a t-trail be a trail of length ¢, namely, a starting state drawn
from S followed by t — 1 steps in the corresponding Markov chain in M. Our main result is that
under a weak non-degeneracy condition, M and S can be recovered exactly given their induced
distribution over 3-trails.

4.2 Preliminaries

Let [n] = {1,...,n} be a state space. We consider Markov chains defined on [n]. For a Markov
chain given by its n x n transition matrix M, let M (i, j) denote the probability of moving from
state i to state j. By definition, M is a stochastic matrix, M(4,j) > 0 and >, M(i,j) = 1. (In
general we use A(i,j) to denote the (4, 7)’th entry of a matrix A.)

For a matrix A, let A denote its transpose. Every n x n matrix A of rank r admits a singular value
decomposition (SVD) of the form A = UXV where U and V are n x r orthogonal matrices and 2
is an r x r diagonal matrix with non-negative entries. For an L x n matrix B of full rank, its right
pseudoinverse B~ is an n x L matrix of full rank such that BB~ = I; it is a standard fact that
pseudoinverses exist and can be computed efficiently when n > L. Finally, for a subspace W, let
W denote its orthogonal subspace.

We now formally define a mizture of Markov chains (M,S). Let L > 1 be an integer. Let
M = {M',...,M"} be L transition matrices, all defined on [n]. Let S = {s!,...,s"} be a
corresponding set of positive n-dimensional vectors of starting probabilities such that >, . Sf = 1.
Given M and S, a t-trail is generated as follows: first pick the chain ¢ and the starting state i with
probability sf, and then perform a random walk according to the transition matrix MY, starting
from ¢, for ¢t — 1 steps.

Throughout, we use i, j, k to denote states in [n] and ¢ to denote a particular chain. Let 1,, be a
column vector of n 1’s.

Definition 4.1 (Reconstructing a Mixture of Markov Chains). Given a (large enough) set of trails
generated by a mizture of Markov chains and an L > 1, find the parameters M and S of the
mizture.

Note that the number of parameters is O(n? - L). In this paper, we focus on a seemingly harder
version of the reconstruction problem, where all of the given trails are of length three, i.e., every
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trail is of the form i — j — k for some three states i, j, k € [n]. Surprisingly, we show that 3-trails
are sufficient for perfect reconstruction.

By the definition of mixtures, the probability of generating a given 3-trail ¢ — j — k is

ZSfMZ(Z’j)MZ(j)k)’ (41)
4

which captures the stochastic process of choosing a particular chain ¢ using S and taking two steps
in M*. Since we only observe the trails, the choice of the chain ¢ in the above process is latent. For
each j € [n], let O; be an n x n matrix such that O;(i, k) equals the value in (4.1). For simplicity,
we assume we know each O;(i, k) exactly, rather than an approximation of it from samples.

We now give a simple decomposition of O; in terms of the transition matrices in M and the
starting probabilities in S. Let P; be the L x n matrix whose (¢,)’th entry denotes the probability
of using chain ¢, starting in state ¢, and transitioning to state j, i.e., Pj(¢,i) = sf - M*%(i, ). In a
similar manner, let @); be the L x n matrix whose (¢, k)’'th entry denotes the probability of starting
in state j, and transitioning to state k£ under chain ¢, i.e., Q;(¢{, k) = 3§ - M*(j,k). Finally, let
Sj = diag(sjl, ey s]L) be the L x L diagonal matrix of starting probabilities in state j. Then,

O;="PF;- 571 Q. (4.2)

This decomposition will form the key to our analysis.

4.3 Conditions for Unique Reconstruction

Before we delve into the details of the algorithm, we first identify a condition on the mixture (M, S)
such that there is a unique solution to the reconstruction problem when we consider trails of length
three. (To appreciate such a need, consider a mixture where two of the matrices M* and M ¢ in
M are identical. Then for a fixed vector v, any s’ and s¥ with s 4+ s = v will give the same
observations, regardless of the length of the trails.) To motivate the condition we require, consider
again the sets of L x n matrices P = {Py,...,P,} and Q = {Q1,...,Qn} as defined in (4.2).
Together these matrices capture the n?L — 1 parameters of the problem, namely, n — 1 for each of
the n rows of each of the L transition matrices M*, and nL — 1 parameters defining S. However,
together P and Q have 2n?L entries, implying algebraic dependencies between them.

Definition 4.2 (Shuffle pairs). Two ordered sets X = {X1,..., X} and Y = {Y1,....Y,} of
L x n matrices are shuffle pairs if the j th column of X; is identical to the i’th column of Y; for all
i,j € [n].

Note that P and Q are shuffle pairs. We state an equivalent way of specifying this definition.
Consider a 2nL x n? matrix A(P, Q) that consists of a top and a bottom half. The top half is an
nL x n? block diagonal matrix with P; as the i’th block. The bottom half is a concatenation of
n different nL x n block diagonal matrices; the i’th block of the j’th matrix is the j’th column of
—(@Q;. A representation of A is given in Figure 4.1. As intuition, note that in each column, the two
blocks of L entries are the same up to negation.
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A(P, Q)

Figure 4.1: A(P, Q) for L = 2,n = 4. When P and Q are shuffle pairs, each column has two copies
of the same L-dimensional vector (up to negation). M is well-distributed if there are no non-trivial
vectors v for which v - A(P, Q) = 0.

Let Iy, be the L x L identity matrix, and let F' be the L x 2nL matrix consisting of 2n L x L
identity matrices in a row. It is straightforward to see that P and Q are shuffle pairs if and only if

F-A(P,Q)=0.

Let the co-kernel of a matrix X be the vector space comprising the vectors v for which v.X = 0.
We have the following definition.

Definition 4.3 (Well-distributed). The set of matrices M is well-distributed if the co-kernel of
A(P, Q) has rank L.

Equivalently, M is well-distributed if the co-kernel of A(P, Q) is spanned by the rows of F. Sec-
tion 4.4 shows how to uniquely recover a mixture from the 3-trail probabilities O; when M is
well-distributed and S has only non-zero entries. In Section 4.5, we show that nearly all M are
well-distributed, or more formally, that the set of non well-distributed M has (Lebesgue) measure 0.

4.4 A Reconstruction Algorithm

In this section we present an algorithm to recover a mixture from its induced distribution on 3-
trails. We assume for the rest of the section that M is well-distributed (see Definition 4.3) and S
has only non-zero entries, which also means P;, @);, and O; have rank L for each j.

At a high level, the algorithm begins by performing an SVD of each Oj;, thus recovering both P;
and @), as in (4.2), up to unknown rotation and scaling. The key to undoing the rotation will be
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the fact that the matrices P and Q are shuffle pairs, and hence have algebraic dependencies.

More specifically, our algorithm consists of four high-level steps. We first list the steps and provide
an informal overview; later we will describe each step in full detail.

(i) Matriz decomposition: Using SVD, we compute a decomposition O; = @zjvj and let Pj’ =U;
and Q; = X;Vj. These are the initial guesses at (?j, Q;). We prove in Lemma 4.4 that there exist
L x L matrices Yj and Z; so that P; = Y; P} and Q; = Z;Q); for each j € [n].

(ii) Co-kernel: Let P' ={P{,...,P.},and @' = {Q/,...,Q,}. We compute the co-kernel of matrix
A(P’, Q') as defined in Section 4.3, to obtain matrices Y; and Z;. We prove that there is a single
matrix R for which Y; = RY] and Z; = RZ] for all j.

(iii) Diagonalization: Let R’ be the matrix of eigenvectors of (Z1Y/)™*(Z4Y]). We prove that there
is a permutation matrix II and a diagonal matrix D such that R = DIIR'.

(iv) Two-trail matching: Given Oj it is easy to compute the probability distribution of the mixture
over 2-trails. We use these to solve for D, and using D, compute R, Y;, P;, and S; for each j.
ordering of [L]).

4.4.1 Matrix decomposition

From the definition, both P} and @} are L x n matrices of full rank. The following lemma states

that the SVD of the product of two matrices A and B returns the original matrices up to a change
of basis.

Lemma 4.4. Let A, B,C, D be L x n matrices of full rank, such that AB = CD. Then there is an
L x L matriz X of full rank such that C = X YA and D = XB.

Proof. Note that A = ABB™! = CDB~! = CW for W = DB~'. Since A has full rank, W must
as well. We then get CD = AB = CW B, and since C has full column rank, D = WB. Setting
X = W completes the proof. ]

Since O; = E(Sj_le) and O; = ?j’ > Lemma 4.4 implies that there exists an L x L matrix X of
full rank such that P; = X;'P} and Q; = $;X;Q}. Let Y; = X; ™', and let Z; = S;X;. Note that
both Y; and Z; have full rank, for each j. Once we have Y; and Z;, we can easily compute both
Pj and S}, so we have reduced our problem to finding Y} and Z;.

4.4.2 Co-kernel

Since (P, Q) is a shuffle pair, ((Y;P)) e, (ZjQ)jem)) is also a shuffle pair. We can write the
latter fact as B(Y, Z) A(P', Q") = 0, where B(Y, Z) is the L x 2nL matrix comprising 2n matrices
concatenated together; first Y; for each j, and then Z; for each j (see Figure 4.2). We know
A(P’, Q") from the matrix decomposition step, and we are trying to find B(Y, Z).
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B(Y, Z)
Figure 4.2: B(Y,Z) for L =2,n =4. B(Y, Z) is the co-kernel of A(P’, Q).

By well-distributedness, the co-kernel of A(P, Q) has rank L. Let D be the 2nL x 2nL block diag-
onal matrix with the diagonal entries (Y; ', Y5 L,..., Y, Z7 1 Z, ..., Z71). Then A(P',Q') =
D A(P,Q). Since D has full rank, the co-kernel of A(P’,Q’) has rank L as well.

We compute an arbitrary basis of the co-kernel of A(P’,Q")),! and write it as an L x 2nL matrix
as an initial guess B(Y’, Z’) for B(Y, Z). Since B(Y, Z) lies in the co-kernel of A(P’,Q’), and has
exactly L rows, there exists an L x L matrix R such that B(Y,Z) = RB(Y',Z’), or equivalently,
such that Y; = RY] and Z; = RZ; for every j. Since Y; and Z; have full rank, so does R. Now our
problem is reduced to computing R.

4.4.3 Diagonalization

Recall from the matrix decomposition step that there exist matrices X; such that Y; = X;l and
Z; = S;X;. Hence Z]’?]’ =(R™1Z;)(Y; R~1) = R71S;R~1. It seems difficult to compute R directly
from equations of the form R™1S;R~1, but we can multiply any two of them together to get, e.g.,
(ZY7)(24Y]) = RSy L SuRT,

Since S| 1S, is a diagonal matrix, we can diagonalize RSy 1S, R—T as a step towards computing R.
Let R’ be the matrix of eigenvectors of RST 1S,R—1. Now, R is determined up to a scaling and

ordering of the eigenvectors. In other words, there is a permutation matrix II and diagonal matrix
D such that R = DIIR'.

4.4.4 Two-Trail Matching

First, O;1,, = ESj_le 1, = P;1;, for each j, since each row of S]-_le is simply the set of transition
probabilities out of a particular Markov chain and state. Another way to see it is that both O;1,
and P;1;, are vectors whose 7’th coordinate is the probability of the trail i — j.

From the first three steps of the algorithm, we also have P; = Y; P = RY;P] = DIIR'Y]P].

Hence 1, DI = 1P (R'Y{P|)~! = O11,(R'Y{P{)~!, where the inverse is a pseudoinverse. We
arbitrarily fix II, from which we can compute D, R, Y}, and finally P; for each j. From the
diagonalization step (Section 4.4.3), we can also compute S; = R(ZY] )R for each j.

Note that the algorithm implicitly includes a proof of uniqueness, up to a setting of II. Different
orderings of II correspond to different orderings of M* in M.

'For instance, by taking the SVD of A(P’,Q’), and looking at the singular vectors.
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4.4.5 Modifications for Noisy Data

The algorithm is easy to implement, and so we implemented and tested it on synthetic data. We
generate mixtures with each entry of M and S chosen uniformly at random (and then appropriately
normalized). For each mixture, we take a finite number of samples, and use that to construct an
empirical O;. We then see if our algorithm recovers something close to M and S. In the process,
we observed three modifications that seemed to make the algorithm more robust in this somewhat
noisy setting.

First, the matrices P; that we recover at the end need not be stochastic, or even real-valued.
Following the work of [CSCT13], we first taking the norm of every entry, and then normalize so
that each of the columns sums to 1.

Next, in the diagonalization step (Section 4.4.3), we sum (Z/Y;)"*(Z],,Yiy1)"" over all i before
diagonalizing to estimate R’, instead of just using ¢ = 1. This gives some improvement, though we
suspect there is likely a much better/more sophisticated way to combine the information in the n

matrices.

Finally, given M, the observations O; are a linear function of §. Rather than setting S; =
R(Z}Y] )R as in Section 4.4.4, we can compute the S that minimizes the L; distance between the
reconstructed O; and the empirical O; via a straightforward linear program.

4.5 Analysis

We now show that nearly all M are well-distributed (see Definition 4.3), or more formally, that the
set of non well-distributed M has (Lebesgue) measure 0 for every L > 1 and n > 2L.

We first introduce some notation. All arrays and indices are 1-indexed. In previous sections, we
have interpreted i, j, k, and £ as states or as indices of a mixture; in this section we drop those
interpretations and just use them as indexes.

For vectors v1,...,v, € RY, let v, denote (v1,...,v,), and let x(vy,...,v,) denote the v;’s con-
catenated together to form a vector in R"*. Let v;[j] denote the j’th coordinate of vector v;.

We first show that there exists at least one well-distributed P for each n and L.
Lemma 4.5 (Existence of a well-distributed P). For every n and L with n > 2L, there exists a P
for which the co-kernel of A(P, Q) has rank L.

Proof. 1t is sufficient to show it for n = 2L, since for larger n we can pad with zeros. Also, recall
that F' - A(P, Q) =0 for any P, where F is the L x 2nL matrix consisting of 2n identity matrices
concatenated together. So the co-kernel of any A(P, Q) has rank at least L, and we just need to
show that there exists a P where the co-kernel of A(P, Q) has rank at most L.

Now, let ¢; be the I’th basis vector in RY. Let P* = (P},..., PY), and let pj; denote the j’th
column of P;. We set pj; to the (i, j)’th entry of
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ei_ij_1 ifi<Lorj<L
Formally, p;; = { gt - )= , where subscripts are taken mod L. For intuition, note

€j—i, ifi,7 > L

that we can split the above matrix into four L x L blocks < e E

E B > where E’ is a horizontal

“rotation” of E.

Now, let ap,), by, be any vectors in RY such that v = *(ar,...,an,b1,...,by) € R?*L is in the
co-kernel of A(P*, Q*). Recall this means v - A(P*, Q%) = 0. Writing out the matrix A, it is not
too hard to see that this holds if and only if

<ai,p;’}~> = <bjap%kj>
for each ¢ and j.

Consider the i and j where pj; = e;. For each k € [L], we have ai[1] = bg[1] from the upper
left quadrant, ax[l] = bryx[1] from the upper right quadrant, ari[1] = bg[1] from the lower left
quadrant, and arx[1] = b4 (k+1 (mod £))[1] from the lower right quadrant. It is easy to see that
these combine to imply that a;[1] = b;[1] for all i, j € [n].

A similar argument for each [ € [L] shows that a;[l] = b;[l] for all ¢, j and I. Equivalently, a; = b;
for each 7 and j, which means that v lives in a subspace of dimension L, as desired. O

We now bootstrap from our one example to show that almost all P are well-distributed.

Theorem 4.6 (Almost all P are well-distributed). The set of non-well-distributed P has Lebesgue
measure 0 for every n and L with n > 2L.

Proof. Let A'(P, Q) be all but the last L rows of A(P, Q). For any P, let

h(P) = det |A'(P, Q) A (P, Q)|.

Note that h(P) is non-zero if and only if P is well-distributed. Let P* be the P* from Lemma 4.5.
Since A'(P*, Q%) has full row rank, h(P*) # 0. Since h is a polynomial function of the entries of
P, and h is non-zero somewhere, h is non-zero almost everywhere [CTO05]. O

The above theorem is tight in the sense that no P can be well-distributed if n < 2L.
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