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Notes on Zero Knowledge

1 Interactive Proofs

We define interactive proofs as in Sipser’s book, Section 10.4, except that we consider probabilistic
provers. (That is, in our definition, a prover takes in input an input string, a partial message
history and a random input, and gives in output a next message.)

Definition 1 (IP) For a function k : N → N, we define IP(k(n)) as the class of languages L such
that there is a polynomial time verifier VL and a prover PL such that for every input string x of
length n,

• The interaction between VL and PL involves at most k(n) messages.

• If x ∈ L then Pr[VL ↔ PL accepts x] = 1. (Completeness.)

• If x 6∈ L then for every prover P we have Pr[VL ↔ P accepts x] ≤ 1/2. (Soundness.)

If the probability in the completeness case is 1 (instead of 2/3), then we say that the proof system
has perfect completeness, and we denote by IP1(k(n)) the class of languages having proof systems
with perfect completeness and k(n) rounds.

We state the following two results without proof.

Theorem 2 If k(n) ≥ 2, then IP(k(n)) = IP1(k(n)).

Theorem 3 For every function k() such that k(n) ≥ 2 for every n, IP(2k(n)) = IP(k(n)). In
particular, for every constant k, IP(k) = IP(2).

There are reasons to believe that IP(2) is equal to NP, and it is considered very unlikely that
IP(2) could contain coNP-hard problems.

The following results are proved in Sipser’s book. Let GI be the graph isomorphism problem
and GNI be the graph non-isomorphism problem.

Theorem 4 GNI ∈ IP(2).

This gives a very strong evidence that GI is not NP-complete. (Otherwise GNI would be coNP-
complete and we would have a coNP-complete problem in IP(2).) There is no known polynomial
time algorithm for GI and, in fact, GI is conjectured to not be in P. This means that, most likely,
GI neither is in P nor is NP-complete. This interesting because almost all the natural problems
in NP are known either to be solvable in polynomial time or to be NP-complete.

Theorem 5 IP(nO(1)) = PSPACE.

In particular, all coNP-complete problems have interactive proof systems. This is interesting
because it would seem impossible to prove coNP-complete statements (that involve exponentially
many special cases) using only a polynomially long interaction.

1



2 Zero Knowledge

Definition 6 (Honest Verifier Zero Knowledge) A honest verifier Perfect Zero Knowledge
proof system for a language L is an interactive proof (VL, PL) for L, as defined in the previous
section, such that there is a probabilistic algorithm S (for Simulator) that runs in average polyno-
mial time and such that for every string x ∈ L the distribution of outputs of S(x) is identical to
the distribution of views of VL of the interaction between PL and VL on input x.

The class of languages that admit a honest verifier perfect zero knowledge proof system is denoted
by HVPZK.

A view of VL is described by the random input of VL and the sequence of messages exchanged
between VL and PL.

The definition captures the intuition that, if a protocol is HVPZK, then the verifier VL gains no
useful information from the interaction with PL. In fact, anything that VL might try to compute
about x after interacting with PL and receiving a proof that x ∈L, might also be computed without
interacting with PL and using outputs of S(x) instead.

The reader can verify that the interactive proof for GNI in Siper’s book demonstrates that GNI
is in HVPZK.

The following definition is more general and more useful in cryptographic applications.

Definition 7 (General Zero Knowledge) A Perfect Zero Knowledge proof system for a lan-
guage L is an interactive proof (VL, PL) for L, as defined in the previous section, such that for
every polynomial time verifier V ′ there is a probabilistic algorithm S′ (for Simulator) that runs in
average polynomial time and such that for every string x ∈ L the distribution of outputs of S′(x)
is identical to the distribution of views of V ′ of the interaction between PL and V ′ on input x.

The class of languages that admit a perfect zero knowledge proof system is denoted by PZK.

This stronger condition implies that, if the prover does not even trust the verifier to follow the
protocol of the proof system, the prover can still deliver a convincing proof that x ∈ L without
giving away any information about x.

There are some extra details that we are not considering here but that are important. For
example, it is important for cryptographic applications that the “error” probability in the com-
pleteness and soundness case be very small functions of n (typically 1/2n) rather than the constant
1/2. One can reduce the probability of error by repeating the protocol several times. If the proto-
col is repeated several times, however, it is not clear that the general zero knowledge property is
preserved. There is, however, a more complicated definition of Zero Knowledge that is preserved
by sequential repetition. We will not get into any of these finer points.

There a few problems that are in PZK and that are not believed to admit polynomial time
algorithms. In particular:

Theorem 8 GI ∈ PZK.

Proof: Consider the following proof system. Given two graphs G1 = (V,E1), G2 = (V,E2),

1. The prover picks at random a permutation π and sends to the prover the graph G = (V,E)
where E = π(E1)).

1

1Recall that if G = (V, E) is a graph and π : V → V is a permutation, then we denote by π(E) the set of edges of
the form (π(u), π(v)) such that (u, v) ∈ E.
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2. The verifier picks a bit b ∈ {0, 1} at random and sends it to the prover.

3. The prover replies with a permutation π′ such that E = π′(Eb). If b = 1 then π′ = π, and
otherwise π′ is a composition of π with the permutation that shows the isomorphism between
G1 and G2.

The verifier accepts if the permutation π′ satisfies the required property.

The protocol clearly has perfect completeness. To analyze soundness, suppose that G1 and G2

are not isomorphic, and let P ′ be a cheating prover interacting with the honest verifier. Then P ′

sends some graph G at the first round, and this graph cannot be isomorphic to both G1 and G2.
At the next round, there is a probability at least 1/2 that the verifier will choose a b such that G
and Gb are not isomorphic, and then the verifier will reject because the prover will fail to show the
required permutation. Thus, for every prover, the verifier accepts with probability at most 1/2. If
the verifier repeats the protocol twice, and accepts only if both repetitions are correct, then it is
easy to see that the protocol has still perfect completeness and the error in the soundness condition
is only 1/4.

For the zero knowledge property, let V’ be an arbitrary cheating verifier for the protocol, and
consider the following simulator. On input G1 = (V,E1), G2 = (V,E2),

• Pick the random input r′ for verifier V ′, pick r ∈ {0, 1}, pick a random permutation π : V →
V , define G = (V, π(Er));

• Write “verifier has random input r′”, “prover sends G to verifier”;

• Simulate verifier V ′ given G1, G2 as input strings, r′ as random input, and G as first message,
let b be the verifier’s second message;

• If b == r then write “verifier sends b to the prover”, “prover sends π to verifier”;

• Else FAIL

One can see that, conditioned on the event that the simulation does not fail, the output of the
simulator is identical to the distribution of interactions between V ′ and the prover. The simulator
runs in polynomial time and fails with probability 1/2. If we keep running the simulator until it does
not fail, then the average running time is still polynomial, because on average we run the simulator
twice. If we want to simulate two sequential runs of the protocol, then we have probability 1/4 of
not failing, and we can still repeat the simulation until it does not fail, resulting in a polynomial
time simulation. �

Because of the following result (that we give without proof), NP-complete problems are not
believed to have zero knowledge proofs.

Theorem 9 PZK ⊆ IP(2) ∩ coIP(2).

There is, however, a more relaxed definition of Zero Knowledge (called Computational Zero
Knowledge) proof system that can be realized for NP-complete problems.
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3 Proofs of Knowledge

Let R(·, ·) be an NP relation, that is, a relation that is computable in polynomial time and such
that there is a polynomial p such that if R(x, y) then |y| ≤ p(|x|). The language L associated to
an NP relation R is the language {x : ∃y.R(x, y)}. For example, consider the graph isomorphism
relation GIR((G1, G2), π) where the first input is pair of graphs, the second input is a bijection
between the sets of vertices of the two graphs, and the relation is satisfied if and only if π is an
isomorphism between G1 and G2. Then the language associated with R is the graph isomorphism
language.

A proof of knowledge for a relation R(·, ·) is an interactive protocol where a prover P convinces
a verifier V that P knows a y such that R(x, y), where x is a common input to P and V . The
prover can always successfully convince the verifier if indeed P knows such a y. Conversely, if P can
convince the verifier with reasonably high probability, then it knows, at least “implicitely,” such a
y, that is, such a y can be efficiently computed given x and the code of P . The precise definition
follows.

Definition 10 (Proofs of Knowledge) A proof of knowledge system for an NP relation R is a
triple of polynomial time randomized algorithms P (prover), V (verifier) and E (knowledge extrac-
tor) satisfying the following properties:

• For every x and y such that R(x, y), when P (x, y) interacts with V (x), V accepts with prob-
ability 1.

• For every prover strategy (of arbitrary complexity) P ′ and every x such that V (x) accepts with
probability at least 1/2 + ε when interacting with P ′(x), EP ′

(x) outputs a y such that R(x, y)
with probability at least Ω(εO(1)).

Notice that if (P, V,E) is a proof of knowledge system for a relation R, then (P, V ) is an
interactive proof system for the language associated to R.

A proof of knowledge system is zero knowledge if it is zero knowledge when thought of as an
interactive proof system.

Theorem 11 The GIR relation has a zero knowledge proof of knowledge system.

Proof: We use the same proof system we described in the proof of Theorem 8. We have already
analysed completeness and zero knowledge, so we just need to address the existence of a knowledge
extractor.

Suppose that for two graphs G1, G2, P ′ is a prover strategy that convinces the verifier V with
probability at least 1/2 + ε. This means that, with probability at least 2ε over the random choices
of the prover, the prover is able to correctly answer both of the possible questions asked by the
verifier in the second round. We randomly pick randomness for the prover, and then simulate the
executions of the protocol with such prover randomness in the case in which the verifier sends
the b = 1 message and the b = 2 message. With probability at least 2ε, we get a graph G and
two permutations π1 and π2 such that π1 is an isomorphism between G1 and G, and π2 is an
isomorphism between G2 and G. From this, it is easy to reconstruct an isomorphism between G1

and G2. �
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4 The Quadratic Residuosity Problem

For an integer N , we say that a, 0 ≤ a ≤ N − 1 is a quadratic residue mod N if there is an r (a
square root) such that a ≡ r2 (mod N).

The quadratic residuosity problem is, given N, a, to decide if a is a quadratic residue mod N .
The square root relation SQR((a,N), r) is satisfied if r is a square root of a mod N . Clearly the
quadratic residuosity problem is the language associated with SQR.

In the following, we will restrict ourselves to the case in which a and N share no common factor,
that is a ∈ Z

∗

N .
Let QN be the set of quadratic residues in Z

∗

N ; our first observation is that this is a subgroup of
Z
∗

N . The number 1 is clearly a quadratic residue (it’s its own square root), if a ≡ r2 is a quadratic
residue, then so is its inverse a−1 ≡ (r−1)2, and if a ≡ r2 and b ≡ t2 are quadratic residues then so
is their product ab ≡ (rt)2.

Consider now the following interactive protocol between a prover P that knows N , a, and a
square root r of A, and a verivier V that knows N and a.

• P picks at random t ∈ Z
∗

N and sends y ≡ t2 to V

• V picks at random b ∈ {0, 1} and sends b to P

• If b == 0, then P sets z ≡ t, otherwise P sets z ≡ rt. P sends z to V

• If b == 0, then V accepts iff z2 ≡ y; If b == 1 then V accepts iff z2 ≡ ya.

We shall argue that this is a perfect zero knowledge proof system for quadratic residuosity and
a zero knowledge proof of knowledge system for the square root relation.

Completeness. If all parties follow the protocol, then the verifier accepts with probability 1;

Soundness. Suppose that P ′ is a prover strategy that makes the verifier accept with probability
> 1/2. Then one of the possible first messages y sent by the prover P ′ must be such that V accepts
for both choices b = 0 and b = 1. Let z0, z1 be the third-round messages sent by P ′ in such cases.
Then we have y ≡ z2

0 and ya ≡ z2
1 , so that a ≡ (z−1

0 z1)
2 and so a is a quadratic residue.

Knowledge Extractor. The knowledge extractor is based on the previous observation. If P ′ is a
prover strategy that makes V accept with probability at least 1/2+ε, then, for at least a 2ε fraction
of the random choices of P ′, V accepts both for b = 0 and for b = 1. The knowledge extractor
picks random choices for P ′, runs P ′ on those random choices against a V that picks b = 0 and a
V that picks b = 1. If both executions are successful, and y is the first-round message and z0, z1

are the second round messages, then the knowledge extractor finds the square root (z−1
0 z1).

Simulator. Let V ′ be an arbitrary verifier strategy. Given N, a, the simulator algorithm for V ′

does the following

1. Pick at random b ∈ {0, 1} and z ∈ Z
∗

N ; pick randomness R for V ′.

2. If b == 0, set y ≡ z2 (mod N); else set y ≡ a−1z2 (mod N).
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3. If V ′, using randomness R, given y as first message, outputs b, then halt and output transcript:
“V ′ selects randomness R, P sends y at first round, V ′ sends b at second round, P sends z
at third round, V ′ accepts.”

4. Go to 1

The main step in the analysis of the simulator is to observe that, regardless of the choice of b,
the simulator chooses y as a unifomly distributed quadratic residue in Z

∗

N . This means that y and
b, as random variables, are statistically independent, and so that the second message of V ′ given y
is also statistically independent of b. No matter what the V ′ algorithm is, then, the simulator has
probability 1/2 of outputting a simulation in each attempt, and so the average number of attempts
is just 2. It then remains to observe that, conditioned on a transcript being given in output, the
distribution of the transcript is identical to the distribution of actual transcripts of the interaction
between V ′ and P .

5 The Hardness of Finding Square Roots

We conclude by proving that, if N = pq is the product of two distinct odd primes, then finding
square roots for random quadratic residues in Z

∗

N is as hard as factoring N .
Let A be an algorithm that, given N , and given a generated by picking r ∈ Z

∗

N and setting
a ≡ r2 (mod N), finds a square root of a with probability at least ε.

Consider the following algorithm

• Algorithm FACT( integer N )

– Pick a random r ∈ Z
∗

N

– t = A(r2 mod N,N)

– Return gcd(t + r mod N,N)

We will prove the following result.

Theorem 12 Let N = pq be a product of two distinct odd primes such that, for a random r,
A(r2 mod N,N) finds a square root of r2 mod N with probability at least ε. Then FACT(N) finds
a factor of N with probability at least ε/2.

We being by arguing that, with probability at least ε/2, A finds a square root that is different
from both r and −r. First, we need the following result.

Lemma 13 Let N = pq where p, q are distinct odd primes. Then every quadratic residue in Z
∗

N

has at least four square roots.

Proof:[Of Lemma 13] Let a be a quadratic residue and r be a square root. Let rp := r mod p and
rq := r mod q. Note that, because a, and thus r, are in Z

∗

N , neither rp nor rq can be zero. By the
Chinese remainder theorem, we can find r2 ∈ Z

∗

N such that r2 ≡ −rp mod p and r2 ≡ rq mod q; we
can find r3 ∈ Z

∗

N such that r3 ≡ rp mod p and r3 ≡ −rq mod q; and we can find r4 ∈ Z
∗

N such that
r4 ≡ −rp mod p and r3 ≡ −rq mod q. Furthermore, the four numbers r, r2, r3, r4 are all distinct,
and they are all square roots of a. �
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We can now prove Theorem 12. Let a ∈ Z
∗

N be a quadratic residue such that A(a,N) is a
square root of a, and consider the behavior of FAC(N) conditioned on the random choice of the
algorithm being an r such that r2 ≡ a (mod N). Then, under this condition, r is equally likely
to be one of the (four or more2) square roots of a, and so, with probability at least 1/(4− 2) = 1/2
it is different from both A(a,N) and from −A(a,N).

Now imagine, as a random experiment, that the randomness of the algorithm is chosen by first
choosing what r2 mod N should be like, and then choosing an r consistent with that choice. This
is equivalent to just choosing r uniformly at random as in the algorithm. But this way of thinking
of the choice makes it clear that there is a probability at least ε/2 that we pick an r such that

• t := A(r2 mod N,N) is a square root of r2 mod N

• t 6≡ r mod N

• t 6≡ −r mod N

From the first property, we have t2 ≡ r2 (mod N), that is, t2 − r2 ≡ 0 (mod N), and so the
product (t + r) · (t − r) is a multiple of N . From the other two properties, however, we see that
neither (t + r) nor (t − r) is a multiple of N , so this means that the factors of N are split between
(t + r) and (t − r), and by computing the greatest common divisor between N and, say, t + r, we
are going to find a non-trivial divisor of N .

2Actually, every quadratic residue in Z
∗

N has exactly four square roots, but the lower bound that we have proved
in Lemma 13 is all we need.
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