
U.C. Berkeley — CS278: Computational Complexity Handout N1
Professor Luca Trevisan January 22, 2008

Notes for Lecture 1

This course assumes CS170, or equivalent, as a prerequisite. We will assume that the
reader is familiar with the notions of algorithm and running time, as well as with basic
notions of discrete math and probability. We will occasionally refer to Turing machines,
especially in this lecture.

A main objective of theoretical computer science is to understand the amount of re-
sources (time, memory, communication, randomness , . . .) needed to solve computational
problems that we care about. While the design and analysis of algorithms puts upper
bounds on such amounts, computational complexity theory is mostly concerned with lower
bounds; that is we look for negative results showing that certain problems require a lot of
time, memory, etc., to be solved. In particular, we are interested in infeasible problems,
that is computational problems that require impossibly large resources to be solved, even
on instances of moderate size. It is very hard to show that a particular problem is infeasible,
and in fact for a lot of interesting problems the question of their feasibility is still open.
Another major line of work in complexity is in understanding the relations between different
computational problems and between different “modes” of computation. For example what
is the relative power of algorithms using randomness and deterministic algorithms, what is
the relation between worst-case and average-case complexity, how easier can we make an
optimization problem if we only look for approximate solutions, and so on. It is in this
direction that we find the most beautiful, and often surprising, known results in complexity
theory.

Before going any further, let us be more precise in saying what a computational problem
is, and let us define some important classes of computational problems. Then we will see a
particular incarnation of the notion of “reduction,” the main tool in complexity theory, and
we will introduce NP-completeness, one of the great success stories of complexity theory.
We conclude by demonstrating the use of diagonalization to show some separations between
complexity classes. It is unlikely that such techniques will help solving the P versus NP
problem.

1 Computational Problems

In a computational problem, we are given an input that, without loss of generality, we assume
to be encoded over the alphabet {0, 1}, and we want to return as output a solution satisfying
some property: a computational problem is then described by the property that the output
has to satisfy given the input.

In this course we will deal with four types of computational problems: decision problems,
search problems, optimization problems, and counting problems.1 For the moment, we will
discuss decision and search problem.

1This distinction is useful and natural, but it is also arbitrary: in fact every problem can be seen as a
search problem

1

In a decision problem, given an input x ∈ {0, 1}∗, we are required to give a YES/NO
answer. That is, in a decision problem we are only asked to verify whether the input
satisfies a certain property. An example of decision problem is the 3-coloring problem:
given an undirected graph, determine whether there is a way to assign a “color” chosen
from {1, 2, 3} to each vertex in such a way that no two adjacent vertices have the same
color.

A convenient way to specify a decision problem is to give the set L ⊆ {0, 1}∗ of inputs
for which the answer is YES. A subset of {0, 1}∗ is also called a language, so, with the
previous convention, every decision problem can be specified using a language (and every
language specifies a decision problem). For example, if we call 3COL the subset of {0, 1}∗
containing (descriptions of) 3-colorable graphs, then 3COL is the language that specifies
the 3-coloring problem. From now on, we will talk about decision problems and languages
interchangeably.

In a search problem, given an input x ∈ {0, 1}∗ we want to compute some answer
y ∈ {0, 1}∗ that is in some relation to x, if such a y exists. Thus, a search problem
is specified by a relation R ⊆ {0, 1}∗ × {0, 1}∗, where (x, y) ∈ R if and only if y is an
admissible answer given x.

Consider for example the search version of the 3-coloring problem: here given an undi-
rected graph G = (V,E) we want to find, if it exists, a coloring c : V → {1, 2, 3} of the
vertices, such that for every (u, v) ∈ V we have c(u) 6= c(v). This is different (and more de-
manding) than the decision version, because beyond being asked to determine whether such
a c exists, we are also asked to construct it, if it exists. Formally, the 3-coloring problem is
specified by the relation R3COL that contains all the pairs (G, c) where G is a 3-colorable
graph and c is a valid 3-coloring of G.

2 P and NP

In most of this course, we will study the asymptotic complexity of problems. Instead of
considering, say, the time required to solve 3-coloring on graphs with 10, 000 nodes on some
particular model of computation, we will ask what is the best asymptotic running time of
an algorithm that solves 3-coloring on all instances. In fact, we will be much less ambitious,
and we will just ask whether there is a “feasible” asymptotic algorithm for 3-coloring. Here
feasible refers more to the rate of growth than to the running time of specific instances of
reasonable size.

A standard convention is to call an algorithm “feasible” if it runs in polynomial time,
i.e. if there is some polynomial p such that the algorithm runs in time at most p(n) on
inputs of length n.

We denote by P the class of decision problems that are solvable in polynomial time.
We say that a search problem defined by a relation R is a NP search problem if the

relation is efficiently computable and such that solutions, if they exist, are short. Formally,
R is an NP search problem if there is a polynomial time algorithm that, given x and y,
decides whether (x, y) ∈ R, and if there is a polynomial p such that if (x, y) ∈ R then
|y| ≤ p(|x|).

We say that a decision problem L is an NP decision problem if there is some NP relation
R such that x ∈ L if and only if there is a y such that (x, y) ∈ R. Equivalently, a decision

2

problem L is an NP decision problem if there is a polynomial time algorithm V (·, ·) and
a polynomial p such that x ∈ L if and only if there is a y, |y| ≤ p(|x|) such that V (x, y)
accepts.

We denote by NP the class of NP decision problems.
Equivalently, NP can be defined as the set of decision problems that are solvable in

polynomial time by a non-deterministic Turing machine. Suppose that L is solvable in
polynomial time by a non-deterministic Turing machine M : then we can define the relation
R such that (x, t) ∈ R if and only if t is a transcript of an accepting computation of M on
input x and it’s easy to prove that R is an NP relation and that L is in NP according to
our first definition. Suppose that L is in NP according to our first definition and that R is
the corresponding NP relation. Then, on input x, a non-deterministic Turing machine can
guess a string y of length less than p(|x|) and then accept if and only if (x, y) ∈ R. Such a
machine can be implemented to run in non-deterministic polynomial time and it decides L.

For a function t : N → N, we define by DTIME(t(n)) the set of decision problems
that are solvable by a deterministic Turing machine within time t(n) on inputs of length n,
and by NTIME(t(n)) the set of decision problems that are solvable by a non-deterministic
Turing machine within time t(n) on inputs of length n. Hence, P =

⋃
k DTIME(O(nk))

and NP =
⋃

k DTIME(O(nk)).

3 NP-completeness

3.1 Reductions

Let A and B be two decision problems. We say that A reduces to B, denoted A ≤ B, if
there is a polynomial time computable function f such that x ∈ A if and only if f(x) ∈ B.

Two immediate observations: if A ≤ B and B is in P, then also A ∈ P (conversely, if
A ≤ B, and A 6∈ P then also B 6∈ P); if A ≤ B and B ≤ C, then also A ≤ C.

3.2 NP-completeness

A decision problem A is NP-hard if for every problem L ∈ NP we have L ≤ A. A decision
problem A is NP-complete if it is NP-hard and it belongs to NP.

It is a simple observation that if A is NP-complete, then A is solvable in polynomial
time if and only if P = NP.

3.3 An NP-complete problem

Consider the following decision problem, that we call U : we are given in input (M,x, t, l)
where M is a Turing machine, x ∈ {0, 1}∗ is a possible input, and t and l are integers
encoded in unary2, and the problem is to determine whether there is a y ∈ {0, 1}∗, |y| ≤ l,
such that M(x, y) accepts in ≤ t steps.

It is immediate to see that U is in NP. One can define a procedure VU that on input
(M,x, t, l) and y accepts if and only if |y| ≤ l, and M(x, y) accepts in at most t steps.

2The “unary” encoding of an integer n is a sequence of n ones.

3

Let L be an NP decision problem. Then there are algorithm VL, and polynomials TL

and pL, such that x ∈ L if and only if there is y, |y| ≤ pL(|x|) such that VL(x, y) accepts;
furthermore VL runs in time at most TL(|x| + |y|). We give a reduction from L to U .
The reduction maps x into the instance f(x) = (VL, x, TL(|x| + pL(|x|)), pL(|x|)). Just by
applying the definitions, we can see that x ∈ L if and only f(x) ∈ U .

3.4 The Problem SAT

In SAT (that stands for CNF-satisfiability) we are given Boolean variables x1, x2, . . . , xn and
a Boolean formula ϕ involving such variables; the formula is given in a particular format
called conjunctive normal form, that we will explain in a moment. The question is whether
there is a way to assign Boolean (True / False) values to the variables so that the formula
is satisfied.

To complete the description of the problem we need to explain what is a Boolean formula
in conjunctive normal form. First of all, Boolean formulas are constructed starting from
variables and applying the operators ∨ (that stands for OR), ∧ (that stands for AND) and
¬ (that stands for NOT).

The operators work in the way that one expects: ¬x is True if and only if x is False;
x ∧ y is True if and only if both x and y are True; x ∨ y is True if and only at least one
of x or y is True.

So, for example, the expression ¬x ∧ (x ∨ y) can be satisfied by setting x to False and
y to True, while the expression x ∧ (¬x ∨ y) ∧ ¬y is impossible to satisfy.

A literal is a variable or the negation of a variable, so for example ¬x7 is a literal and
so is x3. A clause is formed by taking one or more literals and connecting them with a OR,
so for example (x2 ∨ ¬x4 ∨ x5) is a clause, and so is (x3). A formula in conjunctive normal
form is the AND of clauses. For example

(x3 ∨ ¬x4) ∧ (x1) ∧ (¬x3 ∨ x2)

is a formula in conjunctive normal form (from now on, we will just say “CNF formula” or
“formula”). Note that the above formula is satisfiable, and, for example, it is satisfied by
setting all the variables to True (there are also other possible assignments of values to the
variables that would satisfy the formula).

On the other hand, the formula

x ∧ (¬x ∨ y) ∧ ¬y

is not satisfiable, as it has already been observed.

Theorem 1 (Cook) SAT is NP-complete.

We will give a proof of Cook’s Theorem later in the course.

4 Diagonalization

Diagonalization is essentially the only way we know of proving separations between com-
plexity classes. The basic principle is the same as in Cantor’s proof that the set of real

4

numbers is not countable. First note that if the set of real numbers r in the range [0, 1)
is countable then the set of infinite binary sequences is countable: we can identify a real
number r in [0, 1) with its binary expansion r =

∑∞
j=1 2−jr[j]. If we had an enumeration of

real numbers, then we would also have an enumeration of infinite binary string. (The only
thing to watch for is that some real numbers may have two possible binary representations,
like 0.01000 · · · and 0.001111 · · · .)

So, suppose towards a contradiction that the set of infinite binary sequences were count-
able, and let Bi[j] be the j-th bit of the i-th infinite binary sequence. Then define the
sequence B whose j-th bits is 1 − Bj [j]. This is a well-defined sequence but there can be
no i such that B = Bi, because B differs from Bi in the i-th bit.

Similarly, we can prove that the Halting problem is undecidable by considering the
following decision problem D: on input 〈M〉, the description of a Turing machine, answer
NO if M(〈M〉) halts and accepts and YES otherwise. The above problem is decidable if the
Halting problem is decidable. However, suppose D where decidable and let T be a Turing
machine that solves D, then T (〈T 〉) halts and accepts if and only if T (〈T 〉) does not halt
and accept, which is a contradiction.

It is easy to do something similar with time-bounded computations. Instead of the
general halting problem, we can define a “bounded” halting problem, for example we can
define the problem BH where given a Turing machine 〈M〉 and a string x we answer YES
if M accepts x within |x|3 steps and NO otherwise. Then we can define the problem D
where on input 〈M〉 and x we answer YES if M(〈M〉, x) rejects within n3 steps, where
n is the length of (〈M〉, x), and NO otherwise. Clearly, there cannot be a machine that
solves D in time less than n3 on inputs of length n, and, similarly, we can deduce that
BH cannot be solved in time o(n3), because an algorithm that solves BH in time t(n)
can be easily modified to solve D in time O(t(2n)). Finally, we note that BH can be
solved in time polynomial in n, which shows DTIME(n3) 6= P. Just by replacing the
bound n3 with other bounds, one can show that, for every k, DTIME(O(nk)) 6= P, or that
DTIME(2n) 6= DTIME(22n) and so on.

If we want to show tighter separations, however, such as DTIME(n3) 6= DTIME(n3.1),
we need to be more careful in the definition of our “diagonal” problem D. If D is defined
as the problem of recognizing pairs (〈M〉, x) such that M(〈M〉, x) rejects within n3 steps,
where n is the length of (〈M〉, x), then it is possible then, in an input of length n for D, n/2
bits, say, are devoted to the description of 〈M〉. To simulate on step of the computation of
M , then, a universal Turing machine must scan the entire description of M , and so each
step of the simulation will take at least Ω(n) time, and the total running time for deciding
D will be Ω(n4). We can overcome this problem if we define D not in terms of the running
time of M , but rather in terms of the running time of a fixed universal Turing machine that
simulates M . We first state a result about efficient universal Turing machines.

Lemma 2 (Efficient Universal Turing Machine) There is a Turing machine U that,
on input the description 〈M〉 of a Turing machine M and a string x, behaves like M on
input x, that is, if M(x) accepts then U(〈M〉, x) accepts, if M(x) rejects then U(〈M〉, x)
rejects, and if M(x) does not halt then U(〈M〉, x) does not halt. Furthermore, if M(x) halts
within t steps then U(〈M〉, x) halts within O(|〈M〉|O(1) · t) steps.

We can now make an argument for a very tight “hierarchy” theorem.

5

Theorem 3 DTIME(o(n3)) 6⊆ DTIME(O(n3 log n).

Proof: Consider the following decision problem D: on input (〈M〉, x) answer YES if U
rejects (M,x) within |x|3 steps, and NO otherwise.

The problem can be solved in O(n3(log n)) time. We just need to modify U so that
it initializes a counter at |x|3, decreases its value after each step, and, if it hasn’t halted
already, it halts when the counter reaches zero. With some care, maintaining and updating
the counter can be done in time O(log n) per step even on a one-tape Turing machine.

Suppose by contradiction that D is solvable in time t(n) = o(n3) on inputs of length n
by a machine T . Then, for every x of length n, U(〈T 〉, x) also halts in o(n3) time. Let x be
sufficiently long so that U(〈T 〉, x) halts in less than |x|3 time. Then, if x is a YES instance
of D, it means that U rejects (〈T 〉, x) within |x|3 time, which means that T rejects x, which
means that T is incorrect on input x. Similarly, if x is a NO instance of D, then U does
not reject (〈T 〉, x) within |x|3 time, but U halts within |x|3 time, and so it follows that U
accepts (〈T 〉, x), and so T accepts x, incorrectly. 2

See the homeworks for generalizations of the above proof.
We would like to do the same for non-deterministic time, but we run into the problem

that we cannot ask a non-deterministic machine to reject if and only if a non-deterministic
machine of comparable running time accepts. If we could do so, then we would be able to
prove NP = coNP. A considerably subtler argument must be used instead, which uses the
following simple fact.

Theorem 4 On input the description 〈M〉 of a non-deterministic Turing machine M , a
string x and an integer t > n, the problem of deciding whether M accepts x within t steps
is solvable in deterministic |〈M〉|O(1)2O(t) time.

We will also need a theorem about efficient universal non-deterministic Turing machines.

Lemma 5 There is a non-deterministic Turing machine NU that, on input the description
〈M〉 of a non-deterministic Turing machine M and a string x:

• If M(x) has an accepting computation of length t then NU(〈M〉, x) has an accepting
computation of length O(|〈M〉|O(1) · t)

• If no computational paths of M(x) accepts, then no computational paths of NU(〈M〉, x)
accepts.

Finally, we can state and prove a special case of the non-deterministic hierarchy theorem.

Theorem 6 NTIME(o(n3)) 6⊆ NTIME(O(n3 log n)).

Proof: Let f : N → N be defined inductively so that f(1) = 2 and f(k + 1) = 2k·(f(k))3 .
Consider the following decision problem D: on input x = (〈M〉, 1t), where M is a non-
deterministic Turing machine,

1. if t = f(k) for some k, then the answer is YES if and only if the simulation of
M(〈M〉, 11+f(k−1)) as in Theorem 4 returns NO within t steps,

6

2. otherwise answer YES if and only if NU(〈M〉, (〈M〉, 1t+1)) accepts within t3 steps.

We first observe that D is solvable by a non-deterministic Turing machine running in
O(n3 log n) time, where n is the input length.

Suppose that D were decided by a non-deterministic Turing machine T running in time
o(n3), and consider inputs of the form 〈T 〉, 1t (which are solved by T in time o(t3)). Pick a
sufficiently large k, and consider the behaviour of T on inputs (〈T 〉, 1t) for f(k − 1) < t <
f(k); since all such inputs fall in case (2), we have that T (〈T 〉, 1t) = T (〈T 〉, 1t+1) for all
such t and, in particular,

T (〈T 〉, 11+f(k−1)) = T (〈T 〉, 1f(k)) (1)

On the other hand, the input (〈T 〉, 1f(k)) falls in case (2), and since T (〈T 〉, 11+f(k−1)) can be
simulated deterministically in time 2(k−1)·(f(k−1))3 , if k is large enough, and so the correct
answer on input (〈T 〉, 1f(k)) is NO if and only if T (〈T 〉, 11+f(k−1)) accepts, which is in
contradiction to Equation 1. 2

5 References

The time hierarchy theorem is proved in [HS65], which is also the paper that introduced
the term “Computational Complexity.” The non-deterministic hierarchy theorem is due to
Cook [Coo73]. The notion of NP-completeness is due to Cook [Coo71] and Levin [Lev73],
and the recognition of its generality is due to Karp [Kar72].

References

[Coo71] S.A. Cook. The complexity of theorem proving procedures. In Proceedings of the
3rd ACM Symposium on Theory of Computing, pages 151–158, 1971. 7

[Coo73] Stephen A Cook. A hierarchy for nondeterministic time complexity. Journal of
Computer and System Sciences, 7(4):343–353, 1973. 7

[HS65] J. Hartmanis and R.E. Stearns. On the computational complexity of algorithms.
Transactions of the AMS, 117:285–306, 1965. 7

[Kar72] R.M. Karp. Reducibility among combinatorial problems. In R.E. Miller and J.W.
Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum
Press, 1972. 7

[Lev73] L. A. Levin. Universal search problems. Problemi Peredachi Informatsii, 9:265–266,
1973. 7

7

Exercises

1. Show that if P = NP for decision problems, then every NP search problem can be
solved in polynomial time.

2. Generalize Theorem 3. Say that a monotone non-decreasing function t : N → N is
time-constructible if, given n, we can compute t(n) in O(t(n)) time. Show that if
t(n) and t′(n) are two time-constructible functions such that t′(n) > t(n) > n3 and
limn→∞

t(n) log t(n)
t′(n) = 0 then DTIME(t′(n)) 6⊆ DTIME(t(n)).

8

	Computational Problems
	P and NP
	NP-completeness
	Reductions
	NP-completeness
	An NP-complete problem
	The Problem SAT

	Diagonalization
	References

