
U.C. Berkeley — CS278: Computational Complexity Handout N2
Professor Luca Trevisan 1/24/2008

Notes for Lecture 2

This lecture is on boolean circuit complexity. We first define circuits and the function
they compute. Then we consider families of circuits and the language they define.

1 Circuits

A circuit C has n inputs, m outputs, and is constructed with and gates, or gates and not

gates. Each gate has in-degree 2 except the not gate which has in-degree 1. The out-degree
can be any number. A circuit must have no cycle. See Figure 1.

AND

AND

 OR

x
1

x
2

x
3

x
4 n

x

1
z

2
z z

m

NOT

. . .

. . .

Figure 1: A Boolean circuit.

A circuit C with n inputs and m outputs computes a function fC : {0, 1}n → {0, 1}m.
See Figure 2 for an example.

Define SIZE(C) = # of and and or gates of C. By convention, we do not count the
not gates.

To be compatible with other complexity classes, we need to extend the model to arbitrary
input sizes:

Definition 1 A language L is solved by a family of circuits {C1, C2, . . . , Cn, . . .} if for every

n ≥ 1 and for every x s.t. |x| = n,

x ∈ L ⇔ fCn
(x) = 1.

Definition 2 Say L ∈ SIZE(s(n)) if L is solved by a family {C1, C2, . . . , Cn, . . .} of cir-

cuits, where Ci has at most s(i) gates.

1

NOT

AND

 OR

AND

NOT

x
1

x
2

circuits
XOR

x
3

x
4

Figure 2: A circuit computing the boolean function fC(x1x2x3x4) = x1 ⊕ x2 ⊕ x3 ⊕ x4.

2 Relation to other complexity classes

Unlike other complexity measures, like time and space, for which there are languages of
arbitrarily high complexity, the size complexity of a problem is always at most exponential.

Theorem 1 For every language L, L ∈ SIZE(O(2n)).

Proof: We need to show that for every 1-output function f : {0, 1}n → {0, 1}, f has
circuit size O(2n).

Use the identity f(x1x2 . . . xn) = (x1 ∧f(1x2 . . . xn))∨ (x1 ∧f(0x2 . . . xn)) to recursively
construct a circuit for f , as shown in Figure 3.

The recurrence relation for the size of the circuit is: s(n) = 3+ 2s(n− 1) with base case
s(1) = 1, which solves to s(n) = 2 · 2n − 3 = O(2n). 2

The exponential bound is nearly tight.

Theorem 2 There are languages L such that L 6∈ SIZE(o(2n/n)). In particular, for every

n ≥ 11, there exists f : {0, 1}n → {0, 1} that cannot be computed by a circuit of size 2n/4n.

Proof: This is a counting argument. There are 22n

functions f : {0, 1}n → {0, 1}, and we
claim that the number of circuits of size s is at most 2O(s log s), assuming s ≥ n. To bound the
number of circuits of size s we create a compact binary encoding of such circuits. Identify
gates with numbers 1, . . . , s. For each gate, specify where the two inputs are coming from,
whether they are complemented, and the type of gate. The total number of bits required
to represent the circuit is

s × (2 log(n + s) + 3) ≤ s · (2 log 2s + 3) = s · (2 log 2s + 5).

2

x
1

x
2 n

x

NOT

ANDAND

 OR

...

x
2
... x

n
)f(1 x

2
... x

n
)f(0

...

...

...

Figure 3: A circuit computing any function f(x1x2 . . . xn) of n variables assuming circuits
for two functions of n − 1 variables.

So the number of circuits of size s is at most 22s log s+5s, and this is not sufficient to
compute all possible functions if

22s log s+5s < 22n

.

This is satisfied if s ≤ 2n

4n
and n ≥ 11. 2

The following result shows that efficient computations can be simulated by small circuits.

Theorem 3 If L ∈ DTIME(t(n)), then L ∈ SIZE(O(t2(n))).

Proof: Let L be a decision problem solved by a machine M in time t(n). Fix n and x s.t.
|x| = n, and consider the t(n) × t(n) tableau of the computation of M(x). See Figure 4.

Assume that each entry (a, q) of the tableau is encoded using k bits. By Proposition
1, the transition function {0, 1}3k → {0, 1}k used by the machine can be implemented by
a “next state circuit” of size k · O(23k), which is exponential in k but constant in n. This
building block can be used to create a circuit of size O(t2(n)) that computes the complete
tableau, thus also computes the answer to the decision problem. This is shown in Figure 5.
2

Corollary 4 P ⊆ SIZE(nO(1)).

On the other hand, it’s easy to show that P 6= SIZE(nO(1)), and, in fact, one can define
languages in SIZE(O(1)) that are undecidable.

3

x1q0 x2 xn

.

.

.
.
.
.

q

xx3 4

. . .

a b c d etime

tape position

Figure 4: t(n)×t(n) tableau of computation. The left entry of each cell is the tape symbol at
that position and time. The right entry is the machine state or a blank symbol, depending
on the position of the machine head.

q0

x1 x2 3x

next
state

next
state

next
state

next
state

next
state

next
state

.

.

.
.
.
.

.

.

.

next
state

next
state

next
statek bits

k bits k bits k bits

. . .

next state
circuit

xn. . .

. . .

check for accepting state

.

Figure 5: Circuit to simulate a Turing machine computation by constructing the tableau.

4

Exercises

1. Show that SIZE(nO(1)) 6⊆ P.

5

	Circuits
	Relation to other complexity classes

