U.C. Berkeley — CS278: Computational Complexity Handout N3
Professor Luca Trevisan 1/29/2002

Notes for Lecture 3

In this lecture we will define the probabilistic complexity classes BPP, RP, ZPP and
we will see how they are related to each other, as well as to circuit complexity classes.

1 Probabilistic complexity classes

First we are going to describe the probabilistic model of computation. In this model an
algorithm A gets as input a sequence of random bits 7 and the "real” input = of the problem.
The output of the algorithm is the correct answer for the input x with some probability.

Definition 1 An algorithm A is called a polynomial time probabilistic algorithm if the size
of the random sequence |r| is polynomial in the input |x| and A() runs in time polynomial

If we want to talk about the correctness of the algorithm, then informally we could say that
for every input z we need Pr[A(z,r) = correct answer for x| > % That is, for every input
the probability distribution over all the random sequences must be some constant bounded
away from % Let us now define the class BPP.

Definition 2 A decision problem L is in BPP if there is a polynomial time algorithm A
and a polynomial p() such that :

Ve e L Prre{ojl}p(lx‘) [A({B, 7’) = 1] > 2/3
Ve & L Prcryeen[Alz,r) =11 <1/3

We can see that in this setting we have an algorithm with two inputs and some con-
straints on the probabilities of the outcome. In the same way we can also define the class
P as:

Definition 3 A decision problem L is in P if there is a polynomial time algorithm A and
a polynomial p() such that :

Vo & L:Pr,cgo13p0en [Alz,7) =1] =0
Similarly, we define the classes RP and ZPP.

Definition 4 A decision problem L is in RP if there is a polynomial time algorithm A and
a polynomial p() such that:

Ve e L Prre{ojl}p(m)[A(IB,T) = 1] > 1/2
Vo & L Pr.cgo1ye0an[Alz,m) =1] <0

Definition 5 A decision problem L is in ZPP if there is a polynomial time algorithm A
whose output can be 0,1,7 and a polynomial p() such that :

Ve Pr,.cioq1ye0en [Az,r) =7] < 1/2
Va,Vr such that A(x,r) #7 then A(z,r)=1 ifand onlyif z €L

2 Relations between complexity classes

After defining these probabilistic complexity classes, let us see how they are related to other
complexity classes and with each other.

Theorem 1 RPCNP.

PRrROOF: Suppose we have a RP algorithm for a language L. Then this algorithm is can
be seen as a “verifier” showing that L is in NP. If z € L then there is a random sequence
r, for which the algorithm answers yes, and we think of such sequences r as witnesses that
x € L. If x ¢ L then there is no witness. O

We can also show that the class ZPP is no larger than RP.
Theorem 2 ZPPCRP.

PROOF: We are going to convert a ZPP algorithm into an RP algorithm. The construction
consists of running the ZPP algorithm and anytime it outputs ?, the new algorithm will
answer 0. In this way, if the right answer is 0, then the algorithm will answer 0 with
probability 1. On the other hand, when the right answer is 1, then the algorithm will give
the wrong answer with probability less than 1/2, since the probability of the ZPP algorithm
giving the output ? is less than 1/2. O

Another interesting property of the class ZPP is that it’s equivalent to the class of
languages for which there is an average polynomial time algorithm that always gives the
right answer. More formally,

Theorem 3 A language L is in the class ZPP if and only if L has an average polynomial
time algorithm that always gives the right answer.

PROOF: First let us clarify what we mean by average time. For each input z we take the
average time of A(z,r) over all random sequences r. Then for size n we take the worst time
over all possible inputs = of size |z| = n. In order to construct an algorithm that always
gives the right answer we run the ZPP algorithm and if it outputs a 7, then we run it again.
Suppose that the running time of the ZPP algorithm is T, then the average running time
of the new algorithm is:

Tavgz%«T+i-2T+...+2ik-kT:O(T)
Now, we want to prove that if the language L has an algorithm that runs in polynomial
average time ¢(|x|), then this is in ZPP. We run the algorithm for time 2¢(|z|) and output
a 7 if the algorithm has not yet stopped. It is straightforward to see that this belongs to
ZPP. First of all, the worst running time is polynomial, actually 2¢(|z|). Moreover, the
probability that our algorithm outputs a ? is less than 1/2; since the original algorithm has
an average running time ¢(|z|) and so it must stop before time 2t(|x|) at least half of the
times. O

Let us now prove the fact that RP is contained in BPP.

Theorem 4 RPCBPP

Proor: We will convert an RP algorithm into a BPP algorithm. In the case that the input
x does not belong to the language then the RP algorithm always gives the right answer, so
it certainly satisfies that BPP requirement of giving the right answer with probability at
least 2/3. In the case that the input x does belong to the language then we need to improve
the probability of a correct answer from at least 1/2 to at least 2/3.

Let A be an RP algorithm for a decision problem L. We fix some number k& and define
the following algorithm:

Ak)

input: x,
pick r1,79,.. ., Tk
if A(z,m)=A(z,m2)=...= A(z,r;) =0 then return 0
else return 1

Let us now consider the correctness of the algorithm. In case the correct answer is 0 the
output is always right. In the case where the right answer is 1 the output is right except
when all A(z,r;) = 0.

if ¢ L Pry . [A%@,r,...,r) =1]=0

k
if xelL Pry . ., [Ak(x,rl, TR =1 >1-— ()

It is easy to see that by choosing an appropriate k the second probability can go arbitrarily
close to 1. In particular, choosing k& = 2 suffices to have a probability larger than 2/3, which
is what is required by the definition of BPP. In fact, by choosing k to be a polynomial in
|x|, we can make the probability exponentially close to 1. This means that the definition of
RP that we gave above would have been equivalent to a definition in which, instead of the
bound of 1/2 for the probability of a correct answer when the input is in the language L,

we had have a bound of 1 — (%)Q(M), for a fixed polynomial ¢. O

Let, now, A be a BPP algorithm for a decision problem L. Then, we fix k and define
the following algorithm:

Alk)

input: x,
pick 71,79, .., Tk
k
c=> i1 Az, 1)
if ¢> g then return 1
else return 0

In a BPP algorithm we expect the right answer to come up with probability more than
1/2. So, by running the algorithm many times we make sure that this slightly bigger than

1/2 probability will actually show up in the results. More formally let us define the Chernoff
bounds.

Theorem 5 (Chernoff Bound)
Suppose X1, ..., Xy are independent random variables with values in {0,1} and for every i,
Pr[X; = 1] =p. Then:

2

k
ZX P > E _6 2p(1-p)

k
ZX p < —¢ <e © 2(1-p)

The Chernoff bounds will enable us to bound the probability that our result is far from the
expected. Indeed, these bounds say that this probability is exponentially small in respect
to k.

Let us now consider how the Chernoff bounds apply to the algorithm we described
previously. We fix the input z and call p = Pr,[A(x,r) = 1] over all possible random
sequences. We also define the independent random variables X1,..., X} such that X; =
Az, r;).

First, suppose € L. Then the algorithm A% (x,7r1,...,7) outputs the right answer
1, when 7 Y-, X; > $. So, the algorithm makes a mistake when 3 >, X; < 3.

We now apply the Chernoff bounds to bound this probability.

Pr[A®outputs the wrong answer on] = Pr(; Z X; < 3]

< Pr[+ ZX < %

N

since p > 3.

k
< 6_ 2p(1—p) — 2*9(]“)

The probability is exponentially small in k. The same reasoning applies also for the case
where x ¢ L. Further, it is easy to see that by choosing k to be a polynomial in |z| instead
of a constant, we can change the definition of a BPP algorithm and instead of the bound
of % for the probability of a wrong answer, we can have a bound of 2~90%D for a fixed
polynomial gq.

Next, we are going to see how the probabilistic complexity classes relate to circuit
complexity classes and specifically prove that the class BPP has polynomial size circuits.

Theorem 6 (Adleman) BPP C SIZE(n°()

PrROOF: Let L be in the class BPP. Then by definition, there is a polynomial time
algorithm A and a polynomial p, such that for every input x

Pr,c(013e0en [A(z, 1) = wrong answer for z] < 9~ (n+1)

4

This follows from our previous conclusion that we can replace % with 27902 We now fix
n and try to construct a family of circuits C,, that solves L on inputs of length n.

Claim 7 There is a random sequence r € {0,1}P") such that for every x € {0,1}" A(z,r)
s correct.

Proor: Informally, we can see that for each input x the number of random sequences
r that give the wrong answer is exponentially small. Therefore, even if we assume that
these sequences are different for every input x, their sum is still less than the total number
of random sequences. Formally, let’s consider the probability over all sequences that the
algorithm gives the right answer for all input. If this probability is greater than 0, then the
claim is proved.

Pr,[for every xz, A(z,r) is correct] =1 — Pr,[Jz, A(z,r) is wrong]

the second probability is the union of 2" possible events for each x. This is bounded by the
sum of the probabilities.

>1-— Z Pr,.[A(x,r)is wrong]
z€{0,1}"
>1_9m. 2—(n+1)
-1
-2
O
So, we proved that at least half of the random sequences are correct for all possible
input x. Therefore, it is straightforward to see that we can simulate the algorithm A(-,),
where the first input has length n and the second p(n), by a circuit of size polynomial in n.
All we have to do is find a random sequence which is always correct and build it inside
the circuit. Hence, our circuit will take as input only the input z and simulate A with input
x and r for this fixed r. Of course, this is only an existential proof, since we don’t know
how to find this sequence efficiently. O

3 References

Probabilistic complexity classes were defined in [Gil77]. Adleman’s proof that BPP C
SIZE(n°M) appears in [AdI78].

References

[Adl78] Leonard Adleman. Two theorems on random polynomial time. In Proceedings of
the 19th IEEE Symposium on Foundations of Computer Science, pages 75-83, 1978.
5

[Gil77] J. Gill. Computational complexity of probabilistic Turing machines. STAM Journal
on Computing, 6:675-695, 1977. 5

	Probabilistic complexity classes
	Relations between complexity classes
	References

