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Notes for Lecture 5

In this lecture we prove the Karp-Lipton theorem that if all NP problems have polyno-
mial size circuits then the polynomial hierarchy collapses. The next result we wish to prove
is that all approximate combinatorial counting problem can be solved within the polynomial
hierarchy. Before introducing counting problems and the hashing techniques that will yield
this result (which we will do in the next class), we prove the Valiant-Vazirani theorem that
solving SAT on instances with exactly one satisfying assignment is as hard as solving SAT
in general. The proof of the Valiant-Vazirani theorem will introduce the main ideas that
we will develop in the next class.

1 The Karp-Lipton-Sipser Theorem

Theorem 1 (Karp-Lipton-Sipser) If NP ⊆ SIZE(nO(1)) then PH = Σ2. In other
words, the polynomial hierarchy would collapse to its second level.

Before proving the above theorem, we first show a result that contains some of the ideas
in the proof of the Karp-Lipton-Sipser theorem.

Lemma 2 If NP ⊆ SIZE(nO(1)) then there is a family of polynomial-size circuits that on
input a 3CNF formula ϕ outputs a satisfying assignment for ϕ if one such assignment exists
and a sequence of zeroes otherwise.

Proof: We define the circuits C1
n, . . . , C

n
n as follows:

• C1
n, on input a formula ϕ over n variables outputs 1 if and only if there is a satisfying

assignment for ϕ where x1 = 1,

• · · ·

• Ci
n, on input a formula ϕ over n variables and bits b1, . . . , bi−1, outputs 1 if and only

if there is a satisfying assignment for ϕ where x1 = b1, . . . , xi−1 = bi−1, xi = 1

• · · ·

• Cn
n , on input a formula ϕ over n variables and bits b1, . . . , bn−1, outputs 1 if and only

if ϕ is satisfied by the assignment x1 = b1, . . . , xn−1 = bn−1, xn = 1.

Also, each circuit realizes an NP computation, and so it can be built of polynomial size.
Consider now the sequence b1 = C1

n(ϕ), b2 = C2
n(b1, ϕ), . . . , bnC

n
n(b1, . . . , bn−1, ϕ). The

reader should be able to convince himself that this is a satisfying assignment for ϕ if ϕ is
satisfiable, and a sequence of zeroes otherwise. 2

We now prove the Karp-Lipton-Sipser theorem.
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Figure 1: How to use decision problem solvers to find a witness to a search problem.

Proof: [Of Theorem 1] We will show that if NP ⊆ SIZE(nO(1)) then Π2 ⊆ Σ2. By a
result in a previous lecture, this implies that PH = Σ2.

Let L ∈ Π2, then there is a polynomial p() and a polynomial-time computable V () such
that

x ∈ L iff ∀y1.|y1| ≤ p(|x|)∃y2.|y2| ≤ p(|x|).V (x, y1, y2) = 1

By adapting the proof of Lemma 2 (see Figure 1), or by using the statement of the
Lemma and Cook’s theorem, we can show that, for every n, there is a circuit Cn of size
polynomial in n such that for every x and every y1, |y1| ≤ p(|x|),

∃y2.|y2| ≤ p(|x|) ∧ V (x, y1, y2) = 1 iff V (x, y1, Cn(x, y1)) = 1

Let q(n) be a polynomial upper bound to the size of Cn.
So now we have that for inputs x of length n,

x ∈ L iff ∃Cn.|Cn| ≤ q(n).∀y1.|y1| ≤ p(n).V (x, y1, Cn(x, y1)) = 1

which shows that L is in Σ2. 2

2 The Valiant-Vazirani Reduction

In this section we show the following: suppose there is an algorithm for the satisfiability
problem that always find a satisfying assignment for formulae that have exactly one sat-
isfiable assignment (and behaves arbitrarily on other instances): then we can get an RP
algorithm for the general satisfiability problem, and so NP = RP.

We prove the result by presenting a randomized reduction that given in input a CNF
formula ϕ produces in output a polynomial number of formulae ψ0, . . . , ψn. If ϕ is satisfiable,
then (with high probability) at least one of the ψi is satisfiable and has exactly one satisfying
assignment; if ϕ is not satisfiable, then (with probability one) all ψi are unsatisfiable.

The idea for the reduction is the following. Suppose ϕ is a satisfiable formula with n
variables that has about 2k satisfying assignments, and let h : {0, 1}n → {0, 1}k be a hash

2



function picked from a family of pairwise independent hash functions: then the average
number of assignments x such that ϕ(x) is true and h(x) = (0, . . . , 0) is about one. Indeed,
we can prove formally that with constant probability there is exactly one such assignment,1

and that there is CNF formula ψ (easily constructed from ϕ and h) that is satisfied precisely
by that assignment. By doing the above construction for values of k ranging from 0 to n,
we obtain the desired reduction. Details follow.

Definition 1 Let H be a family of functions of the form h : {0, 1}n → {0, 1}m. We say
that H is a family of pair-wise independent hash functions if for every two different inputs
x, y ∈ {0, 1}n and for every two possible outputs a, b ∈ {0, 1}m we have

Prh∈H [h(x) = a ∧ h(y) = b] =
1

22m

Another way to look at the definition is that for every x 6= y, when we pick h at random
then the random variables h(x) and h(y) are independent and uniformly distributed. In
particular, for every x 6= y and for every a, b we have Prh[h(x) = a|h(y) = b] = Prh[h(x) =
a].

For m vectors a1, . . . , am ∈ {0, 1}m and m bits b1, . . . , bm, define ha1,...,am,b1,...,bm
:

{0, 1}n → {0, 1}m as ha,b(x) = (a1 · x + b1, . . . , am · x + bm), and let HAFF be the fam-
ily of functions defined this way. Then it is not hard to see that HAFF is a family of
pairwise independent hash functions.

Lemma 3 Let T ⊆ {0, 1}n be a set such that 2k ≤ |T | < 2k+1 and let H be a family of
pairwise independent hash functions of the form h : {0, 1}n → {0, 1}k+2. Then if we pick
h at random from H, there is a constant probability that there is a unique element x ∈ T
such that h(x) = 0. Precisely,

Prh∈H [|{x ∈ T : h(x) = 0}| = 1] ≥
1

8

Proof: Let us fix an element x ∈ T . We want to compute the probability that x is the
unique element of T mapped into 0 by h. Clearly,

Prh[h(x) = 0∧∀y ∈ T−{x}.h(y) 6= 0] = Prh[h(x) = 0]·Prh[∀y ∈ T−{x}.h(y) 6= 0|h(x) = 0]

and we know that

Prh[h(x) = 0] =
1

2k+2

The difficult part is to estimate the other probability. First, we write

Prh[∀y ∈ T − {x}.h(y) 6= 0|h(x) = 0] = 1 − Prh[∃y ∈ T − {x}.h(y) = 0|h(x) = 0]

1For technical reasons, it will be easier to prove that this is the case when picking a hash function

h : {0, 1}n → {0, 1}k+2.
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And then observe that

Prh[∃y ∈ T − {x}.h(y) = 0|h(x) = 0]

≤
∑

y∈|T |−{x}

Prh[h(y) = 0|h(x) = 0]

=
∑

y∈|T |−{x}

Prh[h(y) = 0]

=
|T | − 1

2k+2

≤
1

2

Notice how we used the fact that the value of h(y) is independent of the value of h(x) when
x 6= y.

Putting everything together, we have

Prh[∀y ∈ T − {x}.h(y) 6= 0|h(x) = 0] ≥
1

2

and so

Prh[h(x) = 0 ∧ ∀y ∈ T − {x}.h(y) 6= 0] ≥
1

2k+3

To conclude the argument, we observe that the probability that there is a unique element
of T mapped into 0 is given by the sum over x ∈ T of the probability that x is the unique
element mapped into 0 (all this events are disjoint, so the probability of their union is the
sum of the probabilities). The probability of a unique element mapped into 0 is then at
least |T |/2k+3 > 1/8. 2

Lemma 4 There is a probabilistic polynomial time algorithm that on input a CNF formula
ϕ and an integer k outputs a formula ψ such that

• If ϕ is unsatisfiable then ψ is unsatisfiable.

• If ϕ has at least 2k and less than 2k+1 satifying assignments, then there is a probability
at least 1/8 then the formula ψ has exactly one satisfying assignment.

Proof: Say that ϕ is a formula over n variables. The algorithm picks at random vectors
a1, . . . , ak+2 ∈ {0, 1}n and bits b1, . . . , bk+2 and produces a formula ψ that is equivalent to
the expression ϕ(x)∧(a1 ·x+b1 = 0)∧ . . .∧(ak+2 ·x+bk+2 = 0). Indeed, there is no compact
CNF expression to compute a · x if a has a lot of ones, but we can proceed as follows: for
each i we add auxiliary variables yi

1, . . . , y
i
n and then write a CNF condition equivalent to

(yi
1 = x1 ∧ ai[1]) ∧ · · · ∧ (yi

n = yi
n−1 ⊕ (xn ∧ ai[n] ⊕ bi))). Then ψ is the AND of the clauses

in ϕ plus all the above expressions for i = 1, 2, . . . , k + 2.
By construction, the number of satisfying assignments of ψ is equal to the number of

satisfying assignments x of ϕ such that ha1,...,ak+2,b1,...,bk+2
(x) = 0. If ϕ is unsatisfiable,

then, for every possible choice of the ai, ψ is also unsatisfiable.
If ϕ has between 2k and 2k+1 assignments, then Lemma 3 implies that with probability

at least 1/8 there is exactly one satisfying assignment for ψ. 2
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Theorem 5 (Valiant-Vazirani) Suppose there is a polynomial time algorithm that on
input a CNF formula having exactly one satisfying assignment finds that assignment. (We
make no assumption on the behaviour of the algorithm on other inputs.) Then NP = RP.

Proof: It is enough to show that, under the assumption of the Theorem, 3SAT has an
RP algorithm.

On input a formula ϕ, we construct formulae ψ0, . . . , ψn by using the algorithm of Lemma
4 with parameters k = 0, . . . , n. We submit all formulae ψ0, . . . , ψn to the algorithm in the
assumption of the Theorem, and accept if the algorithm can find a satisfying assignment
for at least one of the formulae. If ϕ is unsatisfiable, then all the formulae are always
unsatisfiable, and so the algorithm has a probability zero of accepting. If ϕ is satisfiable,
then for some k it has between 2k and 2k+1 satisfying assignments, and there is a probability
at least 1/8 that ψk has exactly one satisfying assignment and that the algorithm accepts.
If we repeat the above procedure t times, and accept if at least one iteration accepts, then if
ϕ is unsatisfiable we still have probability zero of accepting, otherwise we have probability
at least 1 − (7/8)t of accepting, which is more than 1/2 already for t = 6. 2

3 References

The Karp-Lipton-Sipser theorem appears in [KL80]. The Valiant-Vazirani result is from
[VV86].
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Exercises

1. Define EXP = DTIME(2nO(1)
). Prove that if EXP ⊆ SIZE(nO(1)) then EXP = Σ2.
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