U.C. Berkeley — CS278: Computational Complexity Handout N7
Professor Luca Trevisan 2/19/2008

Notes for Lecture 7

1 Space-Bounded Complexity Classes

A machine solves a problem using space s(-) if, for every input z, the machine outputs
the correct answer and uses only the first s(|z|) cells of the tape. For a standard Turing
machine, we can’t do better than linear space since x itself must be on the tape. So we
will often consider a machine with multiple tapes: a read-only “input” tape, a read/write
“work” or “memory” tape, and possibly a write-once “output” tape. Then we can say the
machine uses space s if for input z, it uses only the first s(|x|) cells of the work tape.

We denote by L the set of decision problems solvable in O(logn) space. We denote by
PSPACE the set of decision problems solvable in polynomial space. A first observation is
that a space-efficient machine is, to a certain extent, also a time-efficient one. In general
we denote by SPACE(s(n)) the set of decision problems that can be solved using space at
most s(n) on inputs of length n.

Theorem 1 If a machine always halts, and uses s(-) space, with s(n) > logn, then it runs
in time 20(().

ProoF: Call the “configuration” of a machine M on input x a description of the state
of M, the position of the input tape, and the contents of the work tape at a given time.
Write down ¢y, co, ..., c; where ¢; is the configuration at time ¢ and ¢ is the running time
of M(x). No two ¢; can be equal, or else the machine would be in a loop, since the ¢;
completely describes the present, and therefore the future, of the computation. Now, the
number of possible configurations is simply the product of the number of states, the number
of positions on the input tape, and the number of possible contents of the work tape (which
itself depends on the number of allowable positions on the input tape). This is

O(l) N |Z|S(n) = QO(S(n))+10gn — 20(s(n))

Since we cannot visit a configuration twice during the computation, the computation
must therefore finish in 2°0() gteps. O

NL is the set of decision problems solvable by a non-deterministic machine using
O(logn) space. NPSPACE is the set of decision problems solvable by a non-deterministic
machine using polynomial space. In general we denote by NSPACE(s(n)) the set of deci-
sion problems that can be solved by non-deterministic machines that use at most s(n) bits
of space on inputs of length n.

Analogously with time-bounded complexity classes, we could think that NL is exactly
the set of decision problems that have “solutions” that can verified in log-space. If so, NL
would be equal to NP, since there is a log-space algorithm V' that verifies solutions to SAT.
However, this is unlikely to be true, because NL is contained in P. An intuitive reason
why not all problems with a log-space “verifier” can be simulated in NL is that an NL
machine does not have enough memory to keep track of all the non-deterministic choices
that it makes.

Theorem 2 NL C P.

PRroOOF: Let L be a language in NL and let M be a non-deterministic log-space machine
for L. Consider a computation of M(x). As before, there are 20(s(n)) — nOM) pogsible
configurations. Consider a directed graph in which vertices are configurations and edges
indicate transitions from one state to another which the machine is allowed to make in
a single step (as determined by its §). This graph has polynomially many vertices, so in
polynomial time we can do a depth-first search to see whether there is a path from the
initial configuration that eventually leads to acceptance. This describes a polynomial-time
algorithm for deciding L, so we’re done. O

2 Reductions in NL

We would like to introduce a notion of completeness in NL analogous to the notion of
completeness that we know for the class NP. A first observation is that, in order to have
a meaningful notion of completeness in NL, we cannot use polynomial-time reductions,
otherwise any NL problem having at least a YES instance and at least a NO instance
would be trivially NL-complete. To get a more interesting notion of NL-completeness we
need to turn to weaker reductions. In particular, we define log space reductions as follows:

Definition 1 Let A and B be decision problems. We say A is log space reducible to B,
A <iog B, if 3 a function f computable in log space such that x € A iff f(x) € B, and
BelL.

Theorem 3 If B € L, and A <j,; B, then A € L.

PRrROOF: We consider the concatenation of two machines: My to compute f, and Mp to
solve B. If our resource bound was polynomial time, then we would use M¢(x) to compute
f(z), and then run Mp on f(x). The composition of the two procedures would given an
algorithm for A, and if both procedures run in polynomial time then their composition is
also polynomial time. To prove the theorem, however, we have to show that if M; and Mp
are log space machines, then their composition can also be computed in log space.

Recall the definition of a Turing machine M that has a log space complexity bound: M
has one read-only input tape, one write-only output tape, and uses a log space work tape.
A naive implementation of the composition of M; and Mp would be to compute f(z), and
then run Mp on input f(x); however f(x) needs to be stored on the work tape, and this
implementation does not produce a log space machine. Instead we modify My so that on
input x and ¢ it returns the i-th bit of f(x) (this computation can still be carried out in
logarithmic space). Then we run a simulation of the computation of Mp(f(z)) by using
the modified My as an “oracle” to tell us the value of specified positions of f(z). In order
to simulate Mp(f(x)) we only need to know the content of one position of f(z) at a time,
so the simulation can be carried with a total of O(log |x|) bits of work space. O

Using the same proof technique, we can show the following;:

Theorem 4 if A <jos B, B <jog C, then A <j5 C.

3 NL Completeness

Armed with a definition of log space reducibility, we can define NL-completeness.

Definition 2 A decision problem A is NL-hard if for every B € NL, B <j,; A. A decision
problem A is NL-complete if A € NL and A is NL-hard.

We now introduce a problem STCONN (s,t-connectivity) that we will show is NL-complete.
In STCONN, given in input a directed graph G(V, E') and two vertices s,t € V, we want to
determine if there is a directed path from s to t.

Theorem 5 STCONN is NL-complete.

PROOF:

1. STCONN € NL.

On input G(V,E), s,t, set p to s. For i = 1 to |V|, nondeterminsitically, choose a
neighboring vertex v of p. Set p =wv. If p =t, accept and halt. Reject and halt if the
end of the for loop is reached. The algorithm only requires O(logn) space.

2. STCONN is NL-hard.

Let A € NL, and let M4 be a non-deterministic logarithmic space Turing Machine for
A. On input x, construct a directed graph G with one vertex for each configuration
of M(x), and an additional vertex ¢. Add edges (c;,c;) if M(x) can move in one step
from ¢; to ¢;. Add edges (c,t) from every configuration that is accepting, and let s
be the start configuration. M accepts z iff some path from s to ¢ exists in G. The
above graph can be constructed from x in log space, because listing all nodes requires
O(logn) space, and testing valid edges is also easy.

4 Savitch’s Theorem

What kinds of tradeoffs are there between memory and time? STCONN can be solved
deterministically in linear time and linear space, using depth-first-search. Is there some
sense in which this is optimal? Nondeterministically, we can search using less than linear
space. Can searching be done deterministically in less than linear space?

We will use Savitch’s Theorem to show that STCONN can be solved deterministically in
O(log®n), and that every NL problem can be solved deterministically in O(log? n) space. In
general, if A is a problem that can be solved nondeterministically with space s(n) > logn,
then it can be solved deterministically with O(s?(n))space.

Theorem 6 STCONN can be solved deterministically in O(log?n) space.

PrOOF: Consider a graph G(V,E), and vertices s,t. We define a recursive function
REACH(u, v, k) that accepts and halts iff v can be reached from w in < k steps. If
k = 1, then REACH accepts iff (u,v) is an edge. If k¥ > 2,Vw € V — {u,v}, compute
REACH(u,w, | k/2 |) and REACH(w, v, [k/21]). If both accept and halt, accept. Else,
reject.

Let S(k) be the worst-case space use of REACH(-,-, k). The space required for the
base case S(1) is a counter for tracking the edge, so S(1) = O(logn). In general, S(k) =
O(logn)+ S(k/2) for calls to REACH and for tracking w. So, S(k) = O(logk -logn). Since
k < n, the worst-case space use of REACH is O(log®n). O

Essentially the same proof applies to arbitrary non-deterministic space-bounded com-
putations. This result was proved in [Sav70]

Theorem 7 (Savitch’s Theorem) For every function s(n) computable in space O(s(n)),
NSPACE(s) = SPACE(O(s?))

PROOF: We begin with a nondeterministic machine M, which on input x uses s(|z|) space.
We define REACH (¢, ¢j, k), as in the proof of Theorem 6, which accepts and halts iff M (x)
can go from ¢; to ¢j in < k steps. We compute REAC H (co, cacc, 29 (s|z|)) for all accepting
configurations cacc. If there is a call of REACH which accepts and halts, then M accepts.
Else, M rejects. If REACH accepts and halts, it will do so in < 2002 steps.

Let Sg(k) be the worst-case space used by REACH(-, -, k): Sg(1) = O(s(n)), Sr(k) =
O(s(n)) 4 Sr(k/2). This solves Sk = s(n) - logk, and, since k = 2°(s(n)), we have Sp =
O(s%(n)). O

Comparing Theorem 6 to depth-first-search, we find that we are exponentially better in
space requirements, but we are no longer polynomial in time.

Examining the time required, if we let ¢(k) be the worst-case time used by REACH(:, -, k),
we see t(1) = O(n 4+ m), and t(k) = n(2 - T(k/2)), which solves to t(k) = nOUek) —
O(no(log ”)), which is super-polynomial. Savitch’s algorithm is still the one with the best
known space bound. No known algorithm achieves polynomial log space and polynomial
time simultaneously, although such an algorithm is known for undirected connectivity.

5 NL = coNL

We did not cover the material of this section in class.

In order to prove that these two classes are the same, we will show that there is an NL
Turing machine which solves STCONN. STCONN is the problem of deciding, given a directed
graph G, together with special vertices s and ¢, whether ¢ is not reachable from s. Note
that STCONN is coNNL-complete.

Once we have the machine, we know that coNL C NL, since any language A in coNL
can be reduced to STCONN, and since STCONN has been shown to be in NL (by the exis-
tence of our machine), so is A. Also, NL C coNL, since if STCONN € NL, by definition
STCONN € coNL, and since STCONN is NL-complete, this means that any problem in NL
can be reduced to it and so is also in coNL. Hence NL = colNL. This result was proved
independently in [Imm88] and [Sze88].

5.1 A simpler problem first

Now all that remains to be shown is that this Turing machine exists. First we will solve
a simpler problem than STCONN. We will assume that in addition to the usual inputs G,
s and t, we also have an input 7, which we will assume is equal to the number of vertices
reachable from s in G, including s.

Given these inputs, we will construct a non-deterministic Turing machine which decides
whether £ is reachable from s by looking at all subsets of r vertices in GG, halting with YES if
it sees a subset of vertices which are all reachable from s but do not include ¢, and halting
with NO otherwise. Here is the algorithm:

input: G = (V, E), s, t, r
output: YES if it discovers that ¢ is not reachable from s, and NO otherwise
assumption: there are exactly r distinct vertices reachable from s

c—0
for all v € (V —{t}) do
non-deterministically guess if v is reachable from s
if guess = YES then
non-deterministically guess the distance k from s to v
pes
for i — 1 to k do
non-deterministically pick a neighbor ¢ of p
p—gq
if p # v, reject
c—c+1
if ¢ = r then return YES, otherwise return NO

It is easy to verify that this algorithm is indeed in NL. The algorithm only needs to
maintain the five variables ¢, k, p, ¢, v, and each of these variables can be represented with
log |V bits.

Regarding correctness, notice that, in the algorithm, ¢ can only be incremented for a
vertex v that is actually reachable from s. Since there are assumed to be exactly r such
vertices, ¢ can be at most r at the end of the algorithm, and if it is exactly r, that means that
there are r vertices other than ¢ which are reachable from s, meaning that ¢ by assumption
cannot be reachable form s. Hence the algorithm accepts if and only if it discovers that ¢
is not reachable from s.

5.2 Finding r

Now we need to provide an NL-algorithm that finds r. Let’s first try this algorithm:

input: G = (V,E), s, k, 1
output: the number of vertices reachable from s in at most k steps (including s in this count)
assumption: r,_1 is the exact number of vertices reachable from s in at most k& — 1 steps
c—20
for all v € V do
d—0
flag — FALSE
for all w eV do
pes
fori—1tok—1do
non-deterministically pick a neighbor ¢ of p (possibly not moving at all)
pP—4q
if p = w then
d—d+1
if v is a neighbor of w, or if v = w then
flag — TRUFE
if d < rp_1 reject
if flag then c+— c+1
return c

Figure 1: The correct algorithm that proves NL = coNL.

input: G = (V,E), s
output: the number of vertices reachable from s (including s in this count)

c+—20
for all v € V do
non-deterministically guess if v is reachable from s in k steps
if guess = YES then
pes
for i — 1 to k do
non-deterministically guess a neighbor ¢ of p (possibly not moving at all)
p—gq
if p # v reject
c+—c+1
return ¢

This algorithm has a problem. It will only return a number ¢ which is at most r,
but we need it to return ezactly r. We need a way to force it to find all vertices which are
reachable from s. Towards this goal, let’s define r; to be the set of vertices reachable from
s in at most k steps. Then r = r,,_1, where n is the number of vertices in G. The idea is
to try to compute 7 from r,_1 and repeat the procedure n — 1 times, starting from ro = 1.
In Figure 5.2 is another try at an algorithm.

Here is the idea behind the algorithm: for each vertex v, we need to determine if it is
reachable from s in at most k steps. To do this, we can loop over all vertices which are a
distance at most k — 1 from s, checking to see if v is either equal to one of these vertices or
is a neighbor of one of them (in which case it would be reachable in exactly k steps). The
algorithm is able to force all vertices of distance at most k — 1 to be considered because it
is given r;_1 as an input.

Now, putting this algorithm together with the first one listed above, we have shown that
STCONN € NL, implying that NL = coNL. In fact, the proof can be generalized to show
that if a decision problem A is solvable in non-deterministic space s(n) = Q(logn), then A
is solvable in non-deterministic space O(s(n)).

References

[Imm88] N. Immerman. Nondeterministic space is closed under complementation. SIAM
Journal on Computing, 17:935-938, 1988. 4

[Sav70] Walter J. Savitch. Relationships between nondeterministic and deterministic tape
complexities. Journal of Computer and System Sciences, 4(2):177-192, 1970. 4

[Sze88] R. Szelepcsényi. The method of forced enumeration for nondeterministic au-
tomata. Acta Informatica, 26:279-284, 1988. 4

Exercises

1. Define the class BPL (for bounded-error probabilistic log-space) as follows. A decision
problem L is in BPL if there is a log-space probabilistic Turing machine M such that

e For every r and every x, M (r,z) halts;
e If x € L then Pr,[M(r,z) accepts | > 2/3;
o If z ¢ L then Pr,[M(r,z) accepts | < 1/3.

Then

(a) Prove that RL C BPL.
(b) Prove that BPL C SPACE(O((logn)?).
(c¢) This last question requires a somewhat different approach: prove that BPL C P.

	Space-Bounded Complexity Classes
	Reductions in NL
	NL Completeness
	Savitch's Theorem
	NL= coNL
	A simpler problem first
	Finding r

