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Notes for Lecture 8

1 Undirected Connectivity

In the undirected s − t connectivity problem (abbreviated ST-UCONN) we are given an
undirected graph G = (V,E) and two vertices s, t ∈ V , and the question is whether that is
a path between s and t in G.

ST-UCONN is complete for the class SL of decision problems that are solvable by sym-
metric non-deterministic machines that use O(log n) space. A non-deterministic machine
is symmetric if whenever it can make a transition from a global state s to a global state
s′ then the transition from s′ to s is also possible. The proof of SL-completeness of ST-
UCONN is identical to the proof of NL-completeness of ST-CONN except for the additional
observation that the transition graph of a symmetric machine is undirected.

Reingold [Rei05] has given a log-space algorithm for ST-UCONN, thus showing that
SL = L. This was a great breakthrough, and we will spend a good amount of time studying
it and its context.

2 Randomized Log-space

We now wish to introduce randomized space-bounded Turing machine. For simplicity, we
will only introduce randomized machines for solving decision problems. In addition to a
read-only input tape and a read/write work tape, such machines also have a read-only
random tape to which they have one-way access, meaning that the head on that tape can
only more, say, left-to-right. For every fixed input and fixed content of the random tape, the
machine is completely deterministic, and either accepts or rejects. For a Turing machine
M , an input x and a content r of the random tape, we denote by M(r, x) the outcome of
the computation.

We say that a decision problem L belongs to the class RL (for randomized log-space) if
there is a probabilistic Turing machine M that uses O(log n) space on inputs of length n
and such that

• For every content of the random tape and for every input x, M halts.

• For every x ∈ L, Prr[M(r, x) accepts ] ≥ 1/2

• For every x 6∈ L, Prr[M(r, x) accepts ] = 0.

Notice that the first property implies that M always runs in polynomial time. It is easy
to observe that any constant bigger than 0 and smaller than 1 could be equivalently used
instead of 1/2 in the definition above. It also follows from the definition that L ⊆ RL ⊆ NL.

The following result shows that, indeed, L ⊆ SL ⊆ RL ⊆ NL.

Theorem 1 The problem ST-UCONN is in RL.

1



The algorithm is very simple. Given an undirected graph G = (V,E) and two vertices
s, t, it performs a random walk of length 100 · n3 starting from s. If t is never reached, the
algorithm rejects.

input: G = (V,E), s, t

v ← s
for i← 1 to 100 · |E| · |V |

pick at random a neighbor w of v
if w = t then halt and accept
v ← w reject

The analysis of the algorithm is based on the fact that if we start a random walk from
a vertex s of an undirected vertex G, then each vertex in the connected component of s
is likely to be visited at least once after O(|V | · |E|) steps. As we develop spectral graph
theory in the next few lectures, we will see the proof of the weaker bound O(|E|2).

3 Eigenvalues and expanders

We now embark on the study of graph expansion and algebraic graph theory. Within the
next lecture or two we will: (i) know about the equivalence of edge expansion and eigenvalue
gap, (ii) understand spectral partitioning, (iii) know how to efficiently construct a family of
bounded-degree expanders. We will then return to the question of the space complexity of
ST-UCONN and see how Reingold’s algorithm works by reducing ST-UCONN in arbitrary
graphs to ST-UCONN in bounded-degree expanders, the latter problem having an easy
log-space solutions.

We begin with the definition of (normalized) edge expansion. All graphs that we will
talk about from now on will be regular.

Definition 1 (Edge-expansion of a graph) Let G = (V,E) be a d-regular, then we de-
fine the normalized edge expansion of G as

h(G) := min
|S|≤|V |/2

edges(S, V − S)
d|S|

In what follows, we consider G = (V,E) to be a given d-regular graph and A ∈ RV×V

its adjacency matrix, that is

A(u, v) := number of edges between u and v (1)

We denote by M := 1
dA the random walk transition matrix of G. The intuition for this

definition is that if we take a one-step random walk starting at vertex u, then M(u, v) is
the probability that we reach vertex v.

Definition 2 (Eigenvalues and eigenvectors) If M ∈ Cn×n, λ ∈ C, x ∈ Cn and xM =
λx then λ is an eigenvalue of M and x is an eigenvector of M for the eigenvalue λ.
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Example 1 Let M be the transition matrix of a regular graph. Then (1, 1, · · · , 1) ·M =
(1, 1, · · · , 1). Therefore, the vector (1, 1, · · · , 1) is an eigenvector of M with corresponding
eigenvalue 1.

Generally, xM = λx ⇒ x(M − λI) = 0 ⇒ det(M − λI) = 0. det(M − λI) is a
polynomial in λ over C of degree n, and it has n roots (counting multiplicities). Therefore,
λ is an eigenvalue of M iff it is a root of det(M − λI) and so, counting multiplicities, M
has n eigenvalues.

Theorem 2 If M ∈ Rn×n is symmetric then the following properties hold:

1. all n eigenvalues λ1, · · · , λn are real

2. one can find an orthogonal set of eigenvectors x1, · · · , xn such that xi has correspond-
ing eigenvalue λi and xi⊥xj for i 6= j.

We note that a multiple of an eigenvector is also an eigenvector and therefore we can assume
w.l.o.g. that all the xi have length one.

From now on we fix the convention that if we denote by λ1, . . . , λn the eigenvalues of
M , then λ1 ≥ λ2 ≥ · · ·λn.

There are several equivalent characterizations of the eigenvalues of M ; the following one
will be useful.

Lemma 3 Let M ∈ Rn×n be symmetric. Then

λ1 = max
x∈Rn,‖x‖=1

xMxT = max
x∈Rn

xMxT

xxT
(2)

Proof:

• (a) Assume λ1 ≥ λ2 · · · ,≥ λn. Then x1MxT
1 = λ1x1x

T
1 = λ1 therefore,

maxx∈Rn,||x||=1{xMxT } ≥ λ1.

• (b) Conversely, let x be any vector of length one, x ∈ Rn, ‖x‖ = 1. Let x =
a1x1 + a2x2 + · · ·+ anxn.

xMxT =
∑
i,j

x(i)x(j)M(i, j) = (
∑

i

aixi)M(
∑

i

aixi)T =

(
∑

i

λiaixi)(
∑

j

aixj)T =
∑

i

λia
2
i ≤ maxiλi

∑
i

a2
i = λ1

Therefore maxx∈Rn,||x||=1{xMxT } ≤ λ1.
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We can also prove that

λ2 = max
x∈Rn,x⊥x1

xMxT

xxT
(3)

For (a) use x = x2, and conclude maxx∈Rn,x⊥x1
xMxT

xxT ≥ λ2.
For (b) take any x ∈ Rn, x⊥x1.

Let x = a2x2 + · · ·+ anxn. Then

xMxT

xxT
=

∑n
i=2 λia

2
i∑n

i=2 a2
i

≤ λ2 .

A similar argument shows that

max{|λ2|, . . . , |λn|} = max
x⊥x1

|xMxT |
xxT

(4)

We now know enough to characterize the largest eigenvalue of the adjacency matrix of
a regular graph.

Theorem 4 Let G be a regular graph and M its adjacency matrix. Let λ1 ≥ · · · ≥ λn be
its eigenvalues. Then λ1 = 1.

Proof: Trivially, λ1 ≥ 1 because 1 is an eigenvalue.
Let x ∈ Rn, ||x|| = 1, xM = λ1x

0 ≤
∑
u,v

M(u, v)(x(u)− x(v))2 = 2
∑

v

x(v)2 − 2
∑
u,v

x(u)x(v)M(u, v)

= 2xxT − 2xMxT = 2− 2λ1 ⇒ 1 ≥ λ1

Since d ≤ λ1 and d ≥ λ1 it follows d = λ1. 2

What about λ2? An important theme in this theory is that the difference 1 − λ2

characterizes the expansion of the graph. The following is a simple special case which is a
good warm-up example.

Claim 5 Let G be a regular graph and M its adjacency matrix. Let λ1 ≥ · · · ≥ λn its
eigenvalues. Then λ2 = 1 if and only if the graph is disconnected.

Proof: Choose x1 = 1√
n
(1, 1 · · · , 1) and x2 another eigenvector orthogonal to x1. x2 should

be (x2(1), · · · , x2(n)) with
∑

i x2(i) = 0. Therefore, some entries should be positive and
some others should be negative; in particular, the entries of x2 are not all equal.

0 ≤
∑
u,v

M(u, v)(x2(u)− x2(v))2 = 2− 2λ2 = 0

Therefore, for x2 any two adjacent vertices must have identical labels and, since the
labels are not all equal, the graph has to be disconnected.
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Conversely, if the graph is disconnected then let S and V −S be a partition of the graph
that is crossed by no edge. Let p = |S|

|V | , q = |V−S|
|V | . Assign

x(v) =
{

q if v ∈ S
−p if v /∈ S

First, observe that x⊥(1, 1, · · · , 1) since
∑

v x(v) = q · |S| − p · |V − S| = qpn− pqn = 0.
Second, look at xM = (dq, dq, · · · , dq︸ ︷︷ ︸

|S|

,−pd,−pd, · · · ,−pd︸ ︷︷ ︸
|V−S|

) = dx.

Therefore, if the graph is disconnected we have λ2 = 1. 2

References

The definition of SL is due to Lewis and Papadimitriou [LP82].
Prior to Reingold’s algorithm [Rei05], an algorithm for ST-UCONN was known running

in polynomial time and O(log2 n) space (but the polynomial had very high degree), due to
Nisan [Nis94]. There was also an algorithm that has O(log4/3 n) space complexity and super-
polynomial time complexity, due to Armoni, Ta-Shma, Nisan and Wigderson [ATSWZ00],
improving on a previous algorithm by Nisan, Szemeredy and Wigderson [NSW92].

The best known deterministic simulation of RL uses O((log n)3/2) space, and is due to
Saks and Zhou [SZ95].
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