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Notes for Lecture 9

1 More on Eigenvalues and Expanders

Recall the definition of (normalized) edge expansion.

Definition 1 (Edge-expansion of a graph) The edge-expansion of a graph G is defined
as

h(G) := min
|S|≤|V |/2

edges(S, V − S)
d|S|

Let G = (V,E) be a d-regular graph, fixed for the rest of this section, and λ1 ≥ · · · ≥ λn

be its eigenvalues with multiplicites, and x1, . . . , xn be a corresponding set of orthnormal
eigenvectors. We have λ1 = 1 and x1 = 1√

n
(1, . . . , 1).

We proved that

λ2 = max
x⊥1

xMxt

xxt
(1)

and we also observed that for every real vector x ∈ Rn

∑
u,v

M(u, v)(x(u)− x(v))2 = 2xxT − 2xMxT (2)

and, combining the two, we have another equivalent characterization of λ2.

1− λ2 = min
x⊥1

∑
u,v M(u, v)(x(u)− x(v))2

2xxT
(3)

We proved that h(G) = 0 if and only if λ2 = λ1. Today we look at a quantitative version
of this result, that is we show that if λ1 − λ2 is large if and only if h(G) is large.

Theorem 1 (Cheeger’s Inequality)

h2

2
≤ 1− λ2 ≤ 2h

2 Proof that 1− λ2 ≤ 2h

We use the same argument that established that if λ2 = 1 then h = 0.
Let S be the set that achieves h(G) = edges(S,V−S)

d|S|
Let p := |S|/|V | and q := 1−p = |V −S|/|V |, and define the vector x ∈ Rn as x(v) := q

for v ∈ S and x(v) := p for v 6∈ S. By definition, x is orthogonal to (1, . . . , 1), and so, using
Equation (3),
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1− λ2 ≤
∑

u,v M(u, v)(x(u)− x(v))2

2xxT

Regarding the numerator, |x(u) − x(v)| is 1 when u and v are in different sides of the
cut, and it is 0 otherwise, so∑

u,v

M(u, v)(x(u)− x(v))2 = 2 · 1
d
· edges(S, V − S)

while the denominator is

2 · (|S| · q2 + |V − S|p2) = 2npq2 + 2nqp2 = 2nqp(p + q) = 2nqp ≥ np = |S|

and so, combining everything,

1− λ2 ≤
2edges(S, V − S)

d|S|
= 2h

It is also possible to present this proof in a somewhat different form, which gives one
more characterization of λ2.

First of all, let us define another combinatorial quantity, related to edge expansion,
called the conductance Φ(G) of a graph. For a subset S of nodes, the conductance Φ(G, S)
of the cut (S, V − S) is

Φ(G, S) :=
edges(S, V − S)

d|S| · |V−S|
|V |

intuitively, the conductance of a cut looks at the ratio between the number of edges crossing
the cut compared with the average number of edges that would cross the cut in a random
d-regular graph.

The conductance of a graph is the conductance of the minimal cut

Φ(G) := min
S⊆V

Φ(G, S)

Notice that

h(G) ≤ Φ(G) ≤ 2h(G)

We will show that 1 − λ2 ≤ Φ(G) by giving a formulation of 1 − λ2 as a relaxation of
Φ(G).

We can formulate Φ(G) as the problem of optimizing over all n-bit strings representing
cuts in G

Φ(G) = min
x∈{0,1}n

1
2

∑
u,v dM(u, v)|x(u)− x(v)|

d(
∑

u xu)(n−
∑

u xu) · 1
n

Now, notice that, for a boolean vector x ∈ {0, 1}n,
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∑
u,v

(x(u)− x(v))2 = 2n
∑

u

x2(u)− 2
∑
u,v

x(u)x(v)

= 2n
∑

u

x(u)− 2
∑
u,v

x(u)x(v) = 2

(∑
u

xu

)(
n−

∑
u

xu

)
and also |x(u)− x(v)| = (x(u)− x(v))2; so we have

Φ(G) = min
x∈Bn

∑
u,v M(u, v)(x(u)− x(v))2

1
n

∑
u,v(x(u)− x(v))2

Consider now the relaxation of the problem to real vectors. Because the function we
want to minimize is shift-invariant,

min
x∈Rn

∑
u,v M(u, v)(x(u)− x(v))2

1
n

∑
u,v(x(u)− x(v))2

= min
x∈Rn

,x⊥1

∑
u,v M(u, v)(x(u)− x(v))2

1
n

∑
u,v(x(u)− x(v))2

= min
x∈Rn

,x⊥1

∑
u,v M(u, v)(x(u)− x(v))2

2xxT − 2
n

∑
u,v x(u)x(v)

= min
x∈Rn

,x⊥1

∑
u,v M(u, v)(x(u)− x(v))2

2xxT
= 1− λ2

And so we have established

1−λ2 = min
x∈Rn

∑
u,v M(u, v)(x(u)− x(v))2

1
n

∑
u,v(x(u)− x(v))2

≤ min
x∈{0,1}n

∑
u,v M(u, v)(x(u)− x(v))2

1
n

∑
u,v(x(u)− x(v))2

= Φ(G) ≤ 2h

3 Proof that 1− λ2 ≥ h2/2

Let x2 be the eigenvector of λ2, assume, without loss of generality, that at most n/2 entries
of x2 are positive (otherwise, work with −x2) and define y ∈ Rn as

y(v) := max{x2(v), 0}

We will prove the following claims

Claim 2 ∑
u,v M(u, v) · (y(u)− y(v))2

2yyT
≤ 1− λ2

Claim 3

∑
u,v

M(u, v) · (y(u)− y(v))2 ≥ 1
4yyT

·

(∑
u,v

M(u, v) · |y2(u)− y2(v)|

)2

Claim 4 ∑
u,v

M(u, v) · |y2(u)− y2(v)| ≥ 2hyyT
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Combining the claims, we have

1− λ2 ≥
1
2
·
∑

u,v(y(u)− y(v))2

yyT
≥ 1

8
·

(∑
u,v |y2(u)− y2(v)|

)2

(yyT )2
≥ 1

2
h2

It remains to prove the claims.
The proof of the first claim is just a matter of following the definitions.

Proof:[Of Claim 2] First, note that yM ≥ λ2y component-wise. Indeed, if x2(v) ≥ 0, then
y(v) = x2(v), and so

yM(v) =
∑

u

y(u)M(u, v) ≥
∑

u

x2(u)M(u, v) = x2M(v) = λ2x2(v) = λ2y(v)

and if x2(v) ≤ 0, then y(v) = 0 and

yM(v) =
∑

u

y(u)M(u, v) ≥ 0 = λ2y(v)

We also have

yMyT ≥ λ2yyT

and so ∑
u,v

(y(u)− y(v))2 = 2yyT − 2yMyT ≤ 2− 2λ2

2

The second claim follows from Cauchy-Schwarz.
Proof:[Of Claim 3]∑

u,v

M(u, v)|y2(u)− y2(v)| =
∑
u,v

M(u, v)|y(u)− y(v)| · |y(u) + y(v)|

≤
√∑

u,v

M(u, v)(y(u)− y(v))2
√∑

u,v

M(u, v)(y(u) + y(v))2

≤
√∑

u,v

M(u, v)(y(u)− y(v))2
√∑

u,v

2M(u, v)(y2(u) + y2(v))

=
√∑

u,v

M(u, v)(y(u)− y(v))2
√

4dyyT .

2

The proof of the third claim is the main part of the argument.
Proof:[Of Claim 4] Let v1, . . . , vn be an ordering of the vertices such that y(v1) ≥ y(v2) ≥
y(vn). Let t be the largest index such that y(vt) > 0; recall that, by our assumptions,
t ≤ n/2.
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We begin by removing the absolute value.

∑
u,v

M(u, v)|y2(u)− y2(v)| = 2
t∑

i=1

n∑
j=i+1

M(vi, vj)(y2(vi)− y2(vj))

which we can rewrite as

= 2
t∑

k=1

∑
i≤k

∑
j>k

M(vi, vj)(y2(vk)− y2(vk+1))

because every edge (vi, vj), i < j, contributes to the second summation the correct value

j−1∑
k=i

M(vi, vj)(y2(vk)− y2(vk+1)) = M(vi, vj)(y2(vi)− y2(vj))

Let Sk := {v1, . . . , vk}, then

t∑
k=1

∑
i≤k

∑
j>k

M(vi, vj)(y2(vk)− y2(vk+1)) =
t∑

k=1

(y2(vk)− y2(vk+1)) ·
1
d
· edges(Sk, V − Sk)

and, using the definition of expansion, we have the bound

t∑
k=1

(y2(vk)−y2(vk+1))·
1
d
·edges(Sk, V−Sk) ≥

t∑
k=1

hk(y2(vk)−y2(vk+1)) = h

t∑
k=1

y2(vk) = hyyT

and so we have ∑
u,v

M(u, v)|y2(u)− y2(v)| ≥ 2hyyT

as required. 2

Note that the proof in this section is algorithmic. Given an eigenvector x2⊥(1, . . . , 1)
for λ2 we can find a cut of expansion at most

√
2− 2λ2 by sorting the vertices of the

graph as v1 . . . , vn so that x2(v1) ≥ · · · ≥ x2(vn) and then trying all cuts of the form
({v1, . . . , vk}, {vk+1, . . . , vn}).

4 References

The relationship between edge expansion and second eigenvalue in regular graphs was estab-
lished by Alon [Alo86]. Sinclair and Jerrum prove similar inequalities in the more general
setting of random walks on arbitrary undirected graphs [SJ89].
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5 Exercises

1. Prove that if M is the transition matrix of a regular undirected graph G and λ1 ≥
· · ·λn are its eigenvalues with multiplicities, then the number of eigenvalues equal to
1 is the same as the number of connected components of G.

[If λ is an eigenvalue of M , then the set of vectors x such that xM = λx forms a
linear space. For the solution of this problem you can assume the following result:
the multiplicity of λ is the same as the dimension of linear space {x : xM = λ}.]

2. Let G be an undirected regular graph, M be its transition matrix, λ1 ≥ · · · ≥ λn be
the eigenvalues of M . Prove that λn = −1 if and only if G is bipartite.

3. Let G be an undirected regular graph, M be its transition matrix, λ1 ≥ · · · ≥ λn be
the eigenvalues of M . Prove that

max
i
|λi| = max

x∈Rn
,x⊥1

||xM ||
||x||
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