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Notes for Lecture 9

1 More on Eigenvalues and Expanders
Recall the definition of (normalized) edge expansion.

Definition 1 (Edge-expansion of a graph) The edge-expansion of a graph G is defined

as
edges(S,V — S)

h(G) ;= min
(@) 1S|<|V|/2 d|S|

Let G = (V, E) be a d-regular graph, fixed for the rest of this section, and \y > --- >\,
be its eigenvalues with multiplicites, and z1,...,z, be a corresponding set of orthnormal
eigenvectors. We have \; =1 and z; = ﬁ(l, 1)

We proved that

Mzt
Ay = max ;
rzll xXx

and we also observed that for every real vector x € R"
Z M (u,v)(z(u) — z(v)? = 2z2T — 2eMaT (2)

and, combining the two, we have another equivalent characterization of As.

D M(u,0) (2(u) = 2(v))?
1—A2= ol 7 2z T

3)

We proved that h(G) = 0 if and only if Ao = A\;. Today we look at a quantitative version
of this result, that is we show that if \; — A2 is large if and only if A(G) is large.

Theorem 1 (Cheeger’s Inequality)

h2

2 Proof that 1 — \y < 2h

We use the same argument that established that if Ao = 1 then h = 0.

Let S be the set that achieves h(G) = %ﬁ

Let p:=|S|/|V] and ¢ := 1—p = |V = 5|/|V|, and define the vector z € R" as z(v) := ¢
for v € S and x(v) := p for v ¢ S. By definition, x is orthogonal to (1,...,1), and so, using

Equation (3),



D M(u,v)(2(u) — z(v))?
2xaT

Regarding the numerator, |z(u) — (v)| is 1 when u and v are in different sides of the
cut, and it is 0 otherwise, so

1-X <

-edges(S,V — 9)

SH

> M(u,v)(a(u) —a(v)® =2-

while the denominator is

2-(IS|- ¢ + |V = S|p®) = 2npq® + 2ngp® = 2nqp(p + q) = 2nqp > np = |S|
and so, combining everything,

2edges(S,V —S)
d|S|

It is also possible to present this proof in a somewhat different form, which gives one
more characterization of \s.

First of all, let us define another combinatorial quantity, related to edge expansion,
called the conductance ®(G) of a graph. For a subset S of nodes, the conductance ®(G, S)
of the cut (S,V —5) is

1—X < =2h

edges(S,V — S)

V-S
dls| - B

(G, 9) =

intuitively, the conductance of a cut looks at the ratio between the number of edges crossing
the cut compared with the average number of edges that would cross the cut in a random
d-regular graph.
The conductance of a graph is the conductance of the minimal cut
®(G) := min ¢(G, S
(G) = min &(G, 5)

Notice that

h(G) < ®(G) < 2h(G)

We will show that 1 — Ay < ®(G) by giving a formulation of 1 — Ay as a relazation of
O(G).

We can formulate ®(G) as the problem of optimizing over all n-bit strings representing
cuts in G

i 2 S @M (0)lzw) — 2(v)
z€{0,1}" d(Zu mu)(n — Zu xu) . %

Now, notice that, for a boolean vector z € {0,1}",

B(G) =



D (@u) —xw)? =20 2 (u) -2 z(u)z(v)

U,V

= QnZ:B(u) - 2ZZL‘(U)1‘(’L)) =2 (Z a:u> (n - qu>

and also |z(u) — 2(v)| = (z(u) — 2(v))?; so we have

D M(u,v)(2(u) — (v))?
®(G) = min T 5
zeBr ) L (@(u) — ()
Consider now the relaxation of the problem to real vectors. Because the function we
want to minimize is shift-invariant,

P M(u,v)(2(u) — 2(v))? P M (u,0) (2(u) — 2(v))?

R TIY ) 2@ e 1S, (a(e) — 2(0)?
S MERem) ae) S, M) @)
C 2eR'p11 2227 — 2 > T(w)z(v) T 2Rzl 2xaxT - 2

And so we have established

Lty = iy S MO0~ L Sy M 0)al) —2(0))

u,v _ G
- O 7 P 1)) CR 1 LR SO e Py ) R et

3 Proof that 1 — \y > h?%/2

Let x5 be the eigenvector of Ay, assume, without loss of generality, that at most n/2 entries
of x5 are positive (otherwise, work with —z2) and define y € R" as

y(v) := max{za(v),0}

We will prove the following claims

Claim 2

S Ml 0) (o) —y @) _

Claim 3

Claim 4



Combining the claims, we have

(Suo ) - vP@)) "

1 Yun(u) = y(v)? 1
(yyT)? 2

1—Xy> =
Sl yy"
It remains to prove the claims.
The proof of the first claim is just a matter of following the definitions.
PRrOOF:[Of Claim 2] First, note that yM > Aoy component-wise. Indeed, if z2(v) > 0, then

y(v) = x2(v), and so

h2

>

|

= Zy(u) u, 1) > ng u ’U = SUQM( ) = )\2332(1)) = )‘Zy(v)

and if z9(v) <0, then y(v) = 0 and

yM(v) = y(u)M(u,v) > 0 = Aoy (v)

u

We also have

yMyT > doyy”

and so

D (y(u) —y(v)* = 2yy" — 2y My" < 22X

U,V

The second claim follows from Cauchy-Schwarz.
PRrOOF:[Of Claim 3]

ZM’uvly !—ZMUU\Z/ —y()] - [y(u) +y(v)]

ZMUU ZMUU u) +y(v))?

ZMUU \/ZQMUU (u) + y2(v))
> M (u,v)(y(w) — y(v)*/4dyy™.

The proof of the third claim is the main part of the argument.
PROOF:[Of Claim 4] Let vy, ..., v, be an ordering of the vertices such that y(vy) > y(ve) >
y(vy). Let t be the largest index such that y(v;) > 0; recall that, by our assumptions,

t <nj/2.



We begin by removing the absolute value.

> M(u,v)ly*(u) —y \—22 Z (03, 0) (7 (v3) = y*(v5))

i=1 j=1+1

which we can rewrite as
t
=23 > > Mvi,v) (o) =y (vks1))
k=1 i<k j>k
because every edge (vi,v;), ¢ < j, contributes to the second summation the correct value

j—1

> M (i, v) (P (k) = y? (vr1)) = M (vi, 07) (52 (03) = 42 (v5))
K=

Let Sy := {v1,...,v}, then

t

t
1
DO M(vi, o) (P (ok) — v (vkg)) = > (0 Y (k1)) 7 edges(Sk, V = Sk)
k=1 i<k j>k k=1
and, using the definition of expansion, we have the bound
t t t
2 _ T
> W y* (Vh41))- g edges(Sk, V=5Sk) > Y _ hk V(1) = h Yy (o) = hyy
k=1 k=1 k=1
and so we have
™ M(u,0)ly? () — y2(0)] > 2hyy”
uU,v
as required. O
Note that the proof in this section is algorithmic. Given an eigenvector xo L (1,...,1)
for Ay we can find a cut of expansion at most /2 — 2y by sorting the vertices of the
graph as v1...,v, so that xo(v1) > -+ > xa(v,) and then trying all cuts of the form

({v1, .- vk}, {vkst, -, on})-

4 References

The relationship between edge expansion and second eigenvalue in regular graphs was estab-
lished by Alon [Alo86]. Sinclair and Jerrum prove similar inequalities in the more general
setting of random walks on arbitrary undirected graphs [SJ89].



5 Exercises

1. Prove that if M is the transition matrix of a regular undirected graph G and A\; >
-+ Ay are its eigenvalues with multiplicities, then the number of eigenvalues equal to
1 is the same as the number of connected components of G.

[If A is an eigenvalue of M, then the set of vectors x such that zM = Az forms a
linear space. For the solution of this problem you can assume the following result:
the multiplicity of A is the same as the dimension of linear space {x : zM = A} .]

2. Let G be an undirected regular graph, M be its transition matrix, Ay > -+ > A, be
the eigenvalues of M. Prove that A\, = —1 if and only if G is bipartite.

3. Let G be an undirected regular graph, M be its transition matrix, A\; > --- > A, be
the eigenvalues of M. Prove that

1 ||z M]]
max [\;| = max
? zGRn,xJ_l HCIZH
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