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Notes for Lecture 10

Most of today’s lecture was devoted to finishing the proof of Cheeger’s inequality. These
notes cover the additional discussion.

Tight Examples for Cheeger’s Inequality

Let G = (V,E) be a d-regular undirected graph with n vertices, M be its transition matrix,
λ1 = 1 ≥ · · · ≥ λn be the eigenvalues of M and x1, . . . , xn be a corresponding system of
orthonormal eigenvectors, with x1 = 1√

n
(1, . . . , 1).

Recall that we defined the normalized edge expansion of G as

h(G) := min
S⊆V, |S|≤n

2

edges(S, V − S)
d|S|

and we proved Cheeger’s inequality

2h ≥ 1− λ2 ≥
h2

2
We will now show that there are graphs where 1 − λ2 is of the order of h, and graphs

where it is order of h2, thus showing that both sides of the inequality are essentially tight.
Before describing the examples (to spoil the surprise, they are the hypercube and the

cycle, respectively), let us see what we should expect such examples to look like. We proved
that

1− λ2 = min
x∈Rn

∑
u,v M(u, v)(x(u)− x(v))2

1
n

∑
u,v(x(u)− x(v))2

(1)

Furthermore, the eigenvector x2 is a maximizer for the right-hand side.
We also proved that h is within a factor of 2 of the conductance Φ of G, which is defined

as

Φ(G) := min
S⊆V

edges(S, V − S)
d
n |S| · |V − S|

(2)

and satisfies

Φ(G) = min
x∈{0,1}n

∑
u,v M(u, v)(x(u)− x(v))2

1
n

∑
u,v(x(u)− x(v))2

(3)

So we have Φ(G) ≥ 1−λ2 simply because one quantity is a relaxation of the other, and
2h ≥ 1− λ2 follows because h ≥ Φ/2.

We can deduce that a graph for which the inequality is tight is a graph for which x2 is
(up to multiplication by a scalar and shift by an additive vector) a 0/1 vector.
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The hypercube is such a graph. The t-dimensional hypercube Ht is a graph with n = 2t

vertices, which we identify with {0, 1}t, and it is t-regular. Two vertices u, v ∈ {0, 1}t

are adjacent if and only if they differ in exactly one coordinate. In order to compute the
eigenvalues of the hypercube, we are going to define 2t orthogonal vectors xa, one for each
a ∈ {0, 1}t, and prove that they are all eigenvectors; the corresponding set of eigenvalues
will then enumerate all the eigenvalues of Ht.

For a ∈ {0, 1}t, define the vector xa as

xa(u) = (−1)
P

i aiui

Note that if u, v ∈ {0, 1}t are two bit-vectors, and we denote by u + v their bit-wise
XOR, then xa(u + v) = xa(u) · xa(v). Note also that xa(u) · xb(u) = xa+b(u), where again
a + b denotes a bit-wise XOR. Finally, note that, for every a 6= 0,∑

u

xa(u) = 0

Let M be the transition matrix of Ht, so that M(u, v) = 1
t is u and v differ in exactly

one coordinate, and M(u, v) = 0 otherwise.
Let ej ∈ {0, 1}t be the vector that is 1 in the j-th coordinate and 0 elsewhere. Then

(xaM)(v) =
∑

u adjacent to v

1
t
xa(u)

=
t∑

j=1

1
t
xa(v + ej)

=
t∑

j=1

1
t
xa(v) · xa(ej)

= xa(v) ·
t∑

j=1

1
t
xa(ej)

Which establishes that xa is an eigenvector with eigenvalue 1
t

∑
j xa(ej); let us define

λa := 1
t

∑
j xa(ej).

To see that the vectors are orthogonal, note that

xa · xT
b =

∑
v

xa(v)xb(v) =
∑

v

xa+b(v) = 0

Notice that the entries of the vectors xa are ±1, and so are essentially boolean values
(the vector 1

2xa + 1
21 is a 0/1 vector). Since one such vector is the maximizer in the right-

hand size of (1), it follows that in the hypercube the conductance equals 1 − λ2. Let us
explicitly compute conductance and eigenvalue gap.

Now, we can see that if a is a vector with ` non-zero entries then

λa =
1
t

∑
j

xa(ej) = 1− 2
`

t
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So the unique largest eigenvalue is λ0 = 1, and the second largest eigenvalue is 1− 2
t .

Regarding the conductance, consider a dimension cut in the hypercube, that is a cut
where S is, say, the set of vertices u ∈ {0, 1}t whose first coordinate is 0. Then |S| =
|V −S| = n/2, and the number of edges crossing the cut is also |S| = n/2. This proves that

Φ ≤
n
2

t
n ·

n
2 ·

n
2

=
2
t

(The same cut, by the way, has expansion 1
t , so the whole series of inequality 2h ≥ Φ ≥

1− λ2 is proved tight by this example.)
Let us now turn to the proof that 1− λ2 ≥ h2

2 . We start from an eigenvector x2 for λ2

such that x2 has at most n
2 positive entries, we define y(v) := max{x(v), 0} and we prove

2h ≤
∑

u,v M(u, v)|y2(u)− y2(v)|∑
v y2(v)

≤

√
4

∑
u,v M(u, v)|y(u)− y(v)|2∑

v y2(v)
≤

√
8(1− λ2) (4)

Consider again the case of the hypercube. Then (up to scaling) we can take x2 to be
the vector x(1,0,...,0), that is, the vector such that x2(v) = (−1)v1 . The corresponding vector
y will be such that y(v) = 0 if v1 = 1 and y(v) = 1 if v1 = 0. Doing the calculations, we see
that

2h =

∑
u,v M(u, v)|y2(u)− y2(v)|∑

v y2(v)
=

2
t

and √
4

∑
u,v M(u, v)|y(u)− y(v)|2∑

v y2(v)
=

√
8(1− λ2) =

√
16
t

This means that all the loss is in the Cauchy-Schwarz step∑
u,v M(u, v)|y2(u)− y2(v)|∑

v y2(v)
≤

√
4

∑
u,v M(u, v)|y(u)− y(v)|2∑

v y2(v)

Indeed, up to scaling, what happens is that we apply Cauchy-Schwarz to a vector that
has tn entries, one for each pair (u, v) which is an edge, of value |y2(u) − y2(v)|, against
another vector which is 1 everywhere. The former vector is 1 in a roughly 1

t fraction of
entries, and zero elsewhere, hence the loss of a factor of the order 1√

t
. Note that, in contrast,

Cauchy-Shwarz would have been tight if the values |y2(u) − y2(v)| had been more or less
the same for all edges (u, v).

The discussion so far suggests that, in a tight example for 1−λ2 ≥ h2

2 we should expect
an eigenvector x2 for the second eigenvalue that

1. Has entries not concentrated around two values. Presumably, the entries are spread
across a large number of possible values;

2. The values |x2(u)− x2(v)|, for (u, v) being an edge, are concentrated around a single
value.
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It turns out that the cycle has such properties, and is indeed a tight example for 1−λ2 ≥
h2

2 .
It would be possible to explicitly characterize the eigenvalues and the eigenvectors of

the cycle, the same way we did for the hypercube. There is, in fact, a general theory that
characterizes eigenvalues and eigenvectors of all “Cayley graphs of abelian groups,” of which
the cycle and the hypercube are special cases. We will, instead, just prove the tightness
(within constant factors) of the inequality.

Consider an (even) cycle with n vertices. Every cut is crossed by at least two edges, the
degree is 2, and so the normalized edge expansion is

h = min
S:|S|≤n

2

edges(S, V − S)
d|S|

≥ 2
2 · n

2

=
2
n

Recall that a characterization of λ2 is

1− λ2 = min
x:x⊥1

∑
u,v M(u, v)(x(u)− x(v))2

2
∑

v x2(v)

We define the following feasible solution x. If we number the vertices of the cycle as
1, . . . , n, then x(i) = n/4− i for i = 1, . . . , n/2, and x(i) = i− 3n/4 for i = n/2 + 1, . . . , n.
In other words, the value of x(i) goes from n/4 to −n/4 and then from −n/4 back to n/4
in increments of 1 when i goes from 1 to n.

For this choice of x, whose entries sum to zero so that x ⊥ (1, . . . , 1), we have∑
u,v

M(u, v)(x(u)− x(v))2 = n

and

∑
u

x(u)2 = 4 ·

n
4∑

i=1

i2 ≈ 4 · 1
3
·
(n

4

)3
=

1
48

n3

so

1− λ2 ≤
24
n2

and 1− λ2 = Θ(h2).
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