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Notes for Lecture 11

1 Eigenvalues, Expansion, and Random Walks

As usual by now, let G = (V,E) be an undirected d-regular graph with n vertices, M be
its transition matrix, 1 = λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of M , and x1, . . . , xn be a
system of orthonormal eigenvectors.

Let p be a probability distribution over vertices V , and consider the following process:
pick at random a vertex v according to p, then perform a t-step random walk in G starting
from v. We would like to address the following questions:

1. Is there a clean formula that specifies the distribution of the final vertex of the walk
in terms of p, M and t?

2. For large t, does the distribution of the final vertex converge to a fixed distribution
independent of p?

3. If so, what is this distribution?

4. And how fast is the convergence?

As we will see, the answers are

1. Yes, if we write distributions as row vectors, then it’s pM t.

2. Yes (provided the graph is connected and not bipartite, both necessary conditions).

3. The uniform distribution.

4. It depends on max{λ2,−λn}, or just on λ2 if we take a “lazy” random walk.

Let us begin with the first question. If p ∈ RV is a row vector that represents a
probability distribution over vertices (hence, p(v) ≥ 0 for all v, and

∑
v p(v) = 1), then

consider the vector pM . Its v-th entry is

(pM)(v) =
∑

u

p(u)M(u, v)

which clearly represents the probability of reaching v by first picking a vertex u according
to distribution p, and then moving to a random neighbor of u. In particular, pM is itself a
probability distribution.

Reasoning inductively, we see that, for every t ≥ 1, pM t is a probability distribution,
and it represents the distribution of the final vertex in a t-step random walk in G that starts
at a vertex selected accoding to p.
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It follows that, in order to understand random walks in G, we need to understand the
action of the matrix M t.

Fortunately, we already know the eigenvalues and the eigenvectors of M t: the matrix
M t has eigenvalues λt

1, . . . , λ
t
n, and eigenvectors x1, . . . , xn.

If p is a probability distribution, let us write p = α1x1 + αnxn. Then

pM t = α1x1 + α2λ
t
2x2 + . . . + αnλt

nxn

Where x1 = 1√
n
(1, . . . , 1) and α1 = p·xT

1 = 1√
n

∑
v p(v) = 1√

n
, so that α1x1 = ( 1

n , . . . , 1
n)

is the uniform distribution, which we shall denote by pU from now on.
Now we would like to argue that pM t converges to pU for large t. Indeed consider the

vector pM t − pU , which measures the “non-uniformity” of pM t; its length is

||pM t − pU || = ||α2λ
t
2x2 + . . . + αnλt

nxn||

=
√

α2
2λ

2t
2 + · · ·α2

nλ2t
n

≤ max
i=2,...,n

|λi|t ·
√

α2
2 + · · ·+ α2

n

≤ max
i=2,...,n

|λi|t · ||p||

≤ max
i=2,...,n

|λi|t

Where we use the fact that if p is a probability distribution then

||p|| =
√∑

v

p2(v) ≤
√∑

v

p(v) = 1

Let λ̄2 := maxi=2,...,n |λi| = max{λ2,−λn} be the second largest eigenvalue in absolute
value. Our calculation shows that

||pM t − pU || ≤ λ̄t
2

and so if choose t = O( 1
1−λ̄2

log n) then we can have, say

||pM t − pU || ≤
1

100n

and, in particular,
∣∣pM t(v)− 1

n

∣∣ ≤ 1
100n for every v. This means that it only takes

t = O( 1
1−λ̄2

log n) steps for a random walk to converge to the uniform distribution, and that
the diameter of G is upper bounded by O( 1

1−λ̄2
log n) for a stronger reason.

It is instructive to see that any bound on the convergence of random walks must depend
both on 1− λ2 and on 1− |λn|.

Suppose, for starters, that G has two connected components S, V − S and that p is
uniform on S. Then pM = p, pM t = p, and a random walk will never converge to the
uniform distribution. (Algebraically, we have λ2 = 1, α2 6= 0.) This demonstrates the
necessity of a dependence on 1− λ2.
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Suppose know that G = (V,E) is a complete bipartite graph with bipartition A, V −A,
such that n/2 vertices are on each side. (Hence G is regular of degree n/2.) Let us construct
the eigenvectors and eigenvalues of G. We now that x1 := 1√

n
(1, . . . , 1) is an eigenvector

for the eigenvalue 1. Consider now the vector xn such that xn(v) = 1√
n

if v ∈ A and

xn(v) = − 1√
n

if v 6∈ A. Then we can verify that x1⊥xn, and that xn is an eigenvector of
eigenvalue -1. Finally, we note that a vector x is orthogonal to both x1 and xn if and only
if

∑
v∈A x(v) =

∑
v 6∈A x(v) = 0, and that any such vector is an eigenvector of eigenvalue 0.

Choose x2, . . . , xn−1 to be an orthonormal basis for the above-described space of dimension
n − 2, and so we have constructed an orthonormal set of eigenvectors x1, . . . , xn for the
eigenvalues λ1 = 1, λ2 = · · ·λn−1 = 0, λn = −1.

Consider the distribution p that is uniform on A. Then pM is uniform on V −A, pM2

is uniform on A, pM3 is uniform on V − A, and so on, and the random walk does not
converge to the uniform distribution. To see what happens algebraically, p = 1√

n
x1 + 1√

n
xn,

so pM t − pU = λt
n

1√
n
xn = (−1)t 1√

n
xn.

The theory that we have developed so far connects edge expansion with 1− λ2, but not
with 1− |λn|. There is, however, a simple trick that allows to relate edge expansion to the
behavior of random walks.

For a d-regular graph G with transition matrix M , define the lazy random walk on G as
the random walk of transition matrix ML := 1

2I + 1
2M ; equivalently, we can think of it as a

standard random walk on the 2d-regular graph GL that is identical to G except that every
vertex has d self-loops.1

If M has eigenvalues λ1 = 1, . . . , λn and eigenvectors x1, . . . , xn, then it is easy to see
that x1, . . . , xn are also eigenvectors for ML, and that the eigenvalues of ML are 1

2 + 1
2λ1 =

1, 1
2 + 1

2λ2, . . . ,
1
2 + 1

2λn. In particular, all the eigenvalues of ML are non-negative, and so
λ̄2(ML) = λ2(ML) = 1

2 + 1
2λ2(M).

It follows that if G has normalized edge expansion h, then λ̄2(ML) ≤ 1− h2

4 .
If G is connected, then every cut is crossed by at least one edge, and so the normalized

edge expansion is at least inverse-polynomial.

h(G) = min
S⊆V,|S|≤ |V |

2

edges(S, V − S)
d|S|

≥ 1
d · n

2

=
2
nd

From Cheeger’s inequality, we have that the gap between largest and second-largest
eigenvalue is also inverse-polynomial

1− λ2 ≥
h2

2
≥ 2

n2d2

And so, in ML, we have

1− λ̄2(ML) = 1− λ2(ML) =
1
2
− 1

2
λ2(M) ≤ 1− 1

n2d2

This means that, in a connected graph, a lazy random walk of length O(n2d2 log n)
reaches a nearly uniformly distributed vertex.

1The name “lazy” random walk refers to the fact that the random walk ML behaves essentially like the
random walk M , except that at every step there is a probability 1

2
of doing nothing.
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Another conclusion that we can reach is that the diameter of GL is at most O
(

2
1−λ2

log n
)
,

and the same bound applies to G, since G and GL have the same diameter. If G has nor-
malized edge expansion h, then G has diameter at most O(h−2 log n).

2 The Expander Mixing Lemma

So far we have studied properties (and characterizations) of graphs in which λ2 and λ̄2 are
bounded away from 1. Graphs satisfying the stronger requirement that λ̄2 is close to zero
enjoy a number of additional, sometimes surprising, properties. Such graphs are also useful
in a number of applications, and the question of explicitly constructing such graphs having
bounded degree is well studied (and it will be the subject of the next two lectures). For now
we note that once we have constructed a family of arbitrary large d-regular graphs satisfying
λ2 ≤ 1−ε for some fixed ε > 0, then we also immediately get a family of 2kdk-regular graphs
satisfying λ̄2 ≤

(
1− ε

2

)k, because given a d-regular graph G satisfying λ2(G) ≤ 1 − ε, we
can first convert it into the 2d-regular graph GL satisfying λ̄2(GL) ≤ 1 − ε

2 and then take
the k-th power of GL. (The k-th power of a graph G with transion matrix M is the graph
Gk whose transition matrix is Mk: Gk has one edge for every length-k path in G.)

One of the main results about graphs with small λ̄2 is the Expander Mixing Lemma.

Lemma 1 (Expander Mixing Lemma) Let G be a d-regular graph with n vertices and
second largest eigenvalue in absolute value λ̄2, let A, B be two disjoint sets of vertices. Then∣∣∣∣edges(A,B)− d

|A||B|
n

∣∣∣∣ ≤ λ̄2 · d ·
√
|A| · |B| ≤ λ̄2 · d · n (1)

Thus, in a very good expander, the number of edges between any two sufficiently large
sets of vertices is approximately what it would be in a random d-regular graph.

Although there is a short direct proof, it is instructive to use the proof of the lemma as
an opportunity to introduce the following notion.

Definition 1 (Matrix Norm) Let M be an n×m matrix, then we define its norm as

||M || := max
x∈Rn

||xM ||
||x||

= max
x∈Rn

, ||x||=1
||xM || (2)

Note that if M is the transition matrix of an undirected regular graph, then ||M || = 1.
Define Jn to be the n× n matrix that has a 1 in each entry. We drop the subscript n when
it’s clear from the context.

Claim 2 Let M be the transition matrix of an undirected graph G, and let λ̄2 be the second
largest eigenvalue of M in absolute value. Then

λ̄2 = ||M − 1
n

J || (3)
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The point of the claim is that when λ̄2 is small then M is “close” to 1
nJ , which is the

transition matrix of the complete graph.
Note that a random walk in 1

nJ reaches, already at the first step, a random vertex, so
this is consistent with the intuition that a random walk in a graph with small λ̄2 converges
rapidly to the uniform distribution.

Let us now turn to the proof of the Expander Mixing Lemma. Let 1A ∈ Rn be the
vector such that 1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise; define 1B similarly. We have

edges(A,B) = 1AdM1T
B (4)

and

1A
1
n

J1T
B =

1
n
· |A| · |B| (5)

so that ∣∣∣∣edges(A,B)− d
|A||B|

n

∣∣∣∣ = d

∣∣∣∣1A

(
M − 1

n
J

)
1T

B

∣∣∣∣
and, applying Caucy-Schwarz and the definition of norm, we have

∣∣∣∣1A

(
M − 1

n
J

)
1T

B

∣∣∣∣ ≤ ||1A

(
M − 1

n
J

)
|| · ||1B|| ≤ ||1A|| · ||M − 1

n
J || · ||1B||

And now we see that

||1A|| =
√
|A|

||1B|| =
√
|B|

||M − 1
n

J || = λ̄2

3 Exercises

1. Prove Claim 2

[Hint: the maximizing vector is the eigenvector of λ̄2]
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