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Notes for Lecture 12

The Zig-Zag Graph Product

In this lecture we show that it is possible to “combine” a d-regular graph on D vertices and
a D-regular graph on N vertices to obtain a d2-regular graph on ND vertices which is a
good expander if the two starting graphs are.

Let the two starting graphs be denoted by H and G respectively. Then, the resulting
graph, called the zig-zag product of the two graphs is denoted by GZ©H.

Using λ̄2(G) to denote the eigenvalue with the second-largest absolute value for a graph
G, we shall prove that λ̄2(GZ©H) ≤ λ̄2(G) + λ̄2(H) + (λ̄2(H))2.

1 Replacement product of two graphs

We first describe a simpler product for a “small” d-regular graph on D vertices (denoted
by H) and a “large” D-regular graph on n vertices (denoted by G). Assume that for each
vertex of G, there is some ordering on its D neighbors. Then we construct the replacement
product (Figure 1) G r©H as follows:

• Replace each vertex of G with a copy of H (henceforth called a cloud). For v ∈
V (G), j ∈ V (H), let (v, j) is the j-th vertex in the cloud of v.

• Let (u, v) ∈ E(G) be such that v is the i-th neighbor of u and u is the j-th neighbor of v.
Then ((u, i), (v, j)) ∈ E(G r©H). Also, if (i, j) ∈ E(H), then ∀v ∈ V (G) ((v, i), (v, j)) ∈
E(G r©H).

Note that the replacement product constructed as above has nD vertices and is (d+1)-
regular.

2 Zig-zag product of two graphs

Given two graphs G and H as above, the zig-zag product GZ©H is constructed as follows
(Figure 2):

• The vertex set V (GZ©H) is the same as in the case of the replacement product.

• ((u, i), (v, j)) ∈ E(GZ©H) if there exist h and k such that ((u, i), (u, h)), ((u, h), (v, k)))
and ((v, k), (v, j)) are in E(G r©H) i.e. (v, j) can be reached from (u, i) by taking a
step in the first cloud, then a step between the clouds and then a step in the second
cloud (hence the name!).
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Figure 1: The replacement product of G and H (not all edges shown)

It is easy to see that the zig-zag product is a d2-regular graph on nD vertices. Let
M ∈ R([n]×[D])×([n]×[D]) be the transition matrix of GZ©H. Using the fact that each edge in
G r©H is made up of three steps in G r©H, we can write M as BAB, where

B[(u, i), (v, j)] =
{

0 if u 6= v
1
d ·# edges between i and j in H if u = v

A[(u, i), (v, j)] =
{

1 if v is the i-th neighbor of u and u is the j-th neighbor of v
0 otherwise

Here B is the adjacency matrix of the replacement product after deleting all the edges
between clouds and A is the adjacency matrix containing only the edges between clouds.
Note that A is the adjacency matrix for a matching and is hence a permutation matrix.

3 Eigenvalues of the zig-zag graph

Theorem 1 If G is a D-regular graph on N vertices and H is a d-regular graph on D
vertices, then

λ̄2(GZ©H) ≤ λ̄2(G) + λ̄2(H) + (λ̄2(H))2 (1)

We know that

λ̄2(G) = max
x⊥1,||x||=1

∣∣xMxT
∣∣ = max

x⊥1

∣∣xMxT
∣∣

xxT
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Figure 2: The zig-zag product of G and H and the underlying replacement product (not all
edges shown)

Thus, it suffices to obtain a bound on the above expression for GZ©H when G and H are
good expanders. To provide an intuition for the proof consider two extreme cases for a cut
in GZ©H. If the cut mostly includes or excludes entire clouds, then it can be viewed as a
cut in G and the number of edges crossing it are almost the same as for the corresponding
cut in G. If the cut splits almost all clouds in two parts, then one may think of it as N
cuts in N copies of H. In both these cases then the number of edges crossing the cut will
be “large” due the good expansion of G and H respectively. The following proof essentially
breaks any vector x into the algebraic analogs of these two extremes.
Proof: Given any vector x ∈ RND, x ⊥ 1, one can write it as x = x‖ + x⊥ where x‖ is
constant on each cloud and x⊥, restricted to any cloud is perpendicular to 1D (the all 1’s
vector in D dimensions). In particular

x(u, i) :=
1
D

∑
j

x(u, j)

x⊥(u, i) = x(u, i)− x‖(u, i)

We have∣∣xMxT
∣∣ =

∣∣xBABxT
∣∣ =

∣∣(x‖ + x⊥)BAB(x‖ + x⊥)
∣∣

≤
∣∣∣x‖BABxT

‖

∣∣∣ + 2
∣∣x‖BABxT

⊥
∣∣ +

∣∣x⊥BABxT
⊥
∣∣

We now analyze each of these terms separately.
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∣∣x⊥BABxT
⊥
∣∣ =

∣∣x⊥BA(x⊥B)T
∣∣

≤ ||x⊥BA|| · ||x⊥B|| (by Cauchy − Schwarz)
= ||x⊥B|| · ||x⊥B|| (since A is a permutation matrix)
≤ λ̄2(H) ||x⊥|| · λ̄2(H) ||x⊥||

⇒
∣∣x⊥BABxT

⊥
∣∣ ≤ λ̄2(H)2 ||x⊥||2 (2)

In the above ||x⊥B|| ≤ λ̄2(H) ||x|| follows from the fact that the restriction of x⊥ to any
cloud is perpendicular to 1D and that B is a block-diagonal matrix whose action on the
restriction is the same as that of the adjacency matrix of H. For the mixed term,∣∣∣x⊥BABxT

‖

∣∣∣ =
∣∣x⊥BA(x‖B)T

∣∣
=

∣∣∣x⊥BAxT
‖

∣∣∣ (∵ x‖ is parallel to 1D in each cloud)

≤ ||x⊥B|| ·
∣∣∣∣x‖∣∣∣∣

≤ λ̄2(H) · ||x⊥|| · ||x⊥||

≤ 1
2
λ̄2(H)(||x⊥||2 + ||x⊥||2) (by Cauchy − Schwarz)

⇒
∣∣∣x⊥BABxT

‖

∣∣∣ ≤ 1
2
λ̄2(H)(

∣∣∣∣x‖∣∣∣∣2 + ||x⊥||2) =
1
2
λ̄2(H) ||x||2 (3)

Let y ∈ RN be the vector defined as y(u) = 1
D

∑
i x(u, i); note that y(u) = x‖(u, j) for

all j, and so ||x‖||2 = D||y||2. Let C be the transition matrix of G. Then∣∣∣x‖BABxT
‖

∣∣∣ =
∣∣∣x‖AxT

‖

∣∣∣
=

∣∣∣∣∣∣
∑

u,i,v,j

x‖(u, i)A(u, i), (v, j))x‖(v, j)

∣∣∣∣∣∣
= D

∣∣∣∣∣∑
u,v

y(u)C(u, v)y(v)

∣∣∣∣∣
= D

∣∣yCyT
∣∣

≤ Dλ̄2(G)||y||2

= λ̄2(G)
∣∣∣∣x‖∣∣∣∣2

⇒
∣∣∣x‖BABxT

‖

∣∣∣ ≤ λ̄2(G)
∣∣∣∣x‖∣∣∣∣2 (4)

Note that
∣∣yCyT

∣∣ ≤ λ̄2(G)||y||2 follows from the fact that y·1 =
∑

i y(i) = 1
D

∑
i

∑
j x(vij) =

0.
Combining the above bounds gives

∣∣xBABxT
∣∣ ≤ λ̄2(G)

∣∣∣∣x‖∣∣∣∣2 + λ̄2(H)2 ||x⊥||+ λ̄2(H) ||x||2

⇒
∣∣xBABxT

∣∣ ≤ (λ̄2(G) + λ̄2(H)2 + λ̄2(H)) ||x||2
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Using the characterization of λ̄2, we have

λ̄2(GZ©H) = max
x⊥1,||x||=1

∣∣xBABxT
∣∣ ≤ λ̄2(G) + λ̄2(H)2 + λ̄2(H)

2

4 Using the Zig-Zag Product to Construct Expanders

First, we state without proof the existence of graphs with good expansion properties. The
proof is simple and it will be given in a later lecture.

Theorem 2 For every p prime and t ≤ p there is an explicit construction of a p2 regular
graph Gp,t with pt+1 vertices such that λ̄2(Gp,t) ≤ t

p .

We will use the following special case of the previous theorem.

Corollary 3 There is a constant d such that a d-regular graph H with d4 vertices exists
that satisfies λ̄2(H) ≤ 1

5 .

In particular, we can apply the theorem with p = 37 and t = 7, so that the degree is
(37)2 = 1369.

Using the H from above we shall construct inductively a family of progressively larger
graphs, all of which are d2-regular and have λ̄2 ≤ 1

2 .
Let G0 := H2. For k ≥ 1 let Gk+1 = (G2

k)Z©H.

Theorem 4 For each k ≥ 1, Gk has degree d2 and λ̄2(Gk) ≤ 1
2 .

Proof: We shall proceed by induction.
For the base case: G0 = H2 is d2-regular and λ̄2(H2) = 1

25 .
For the inductive step, assume the statement for k, i.e. Gk has degree d2 and λ̄2(Gk) ≤ 1

2 .
Then G2

k has degree d4 = |V (H)|, so that the product (G2
k)Z©H is defined. Moreover,

λ̄2(G2
k) ≤

1
4 . Applying the construction, we get that Gk+1 has degree d2 and

λ̄2(Gk+1) ≤
1
4

+
1
5

+
1
25

=
49
100

<
1
2

This completes the proof. 2

Finally note that Gk has d4(k+1) vertices.

5 References

The Zig-Zag graph product was defined and analysed by Reingold, Vadhan and Wigderson
[RVW02]
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