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Notes for Lecture 13

Let G be a D-regular graph on N vertices and H be a d-regular graph on D vertices.
We discussed how to define the graph GZ©H which is d2-regular over ND vertices and we
proved that GZ©H has good expansion if both G and H have good expansion. Today we
give another analysis showing that as long as G and H have any noticeable expansion, it
is possible to infer something non-trivial about the expansion of GZ©H. We will use this
analysis to show how one can “turn any graph into an expander.”

1 Another Analysis of The Zig-Zag Graph Product

This is the main result of this lecture.

Theorem 1 (Main) Suppose that λ̄2(G) ≤ 1− εG and λ̄2(H) ≤ 1− εH .
Then λ̄2(GZ©H) ≤ 1− εGε2H .

In order to prove the theorem, we need a result that shows that the transition matrix
of a graph can always be seen as a convex combination of the transition matrix of a clique
and of an “error” matrix. First, recall the definition of matrix norm.

Definition 1 (Matrix Norm) Let A be a n×m matrix, then

||A|| := max
x∈Rn

: ||x||=1
||xA|| = max

x∈Rn

||xA||
||x||

We have the following technical claim. (Recall that Jn is the n× n matrix that has a 1
in each entry, so that 1

nJn is the transition matrix of a complete graph with self-loops. We
omit the subscript when clear from the context.)

Lemma 2 Let G be an undirected regular graph on n vertices, M be its transition matrix,
and λ := λ̄2(G). Then there is a matrix E such that ||E|| ≤ 1 and

M = (1− λ)
1
n

J + λE

Proof: Let 1 = λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of M and x1, . . . , xn be a
corresponding orthonormal set of eigenvectors, with x1 =

(
1√
n
, · · · , 1√

n

)
. For a vector x,

we can write x = α1x1 + · · ·αnxn, where αi = x · xT
i , so that

xM = α1x1 + λ2α2x2 + · · ·+ λnαnxn

which we shall rewrite as

xM = (1− λ)α1x1 + λ ·
(

α1x1 +
λ2

λ
α2x2 + · · ·+ λn

λ
αnxn

)
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Now, notice that α1x1 = x · xT
1 · x1 = x · 1

nJ .
Define

E := xT
1 · x1 +

λ2

λ
xT

2 · x2 + · · ·+ λn

λ
xT

nxn

Then we have

xM = (1− λ)x
1
n

J + λxE

and so

M = (1− λ)
1
n

J + λE

It remains to bound ||E||. Pick any unit vector x, and write it as x = α1x1 + · · ·αnxn

then

||xE|| = ||α1x1 +
λ2

λ
α2x2 + · · ·+ λn

λ
αnxn||

=

√
α2

1 +
(

λ2

λ
α2

)2

+ · · ·
(

λn

λ
αn

)2

≤
√

α2
1 + · · ·α2

n = 1

2

We are now ready to give a proof of the Main Theorem. Consider the transition matrix
of GZ©H, and write it as BAB, where A is a permutation matrix and B is a block-diagonal
matrix where each block is a copy of the transition matrix of H.

Use the Lemma we just proved to write the transition matrix of H as εH
1
DJ+(1−εH)EB,

for an error matrix such that ||EB|| ≤ 1. Then we have

B = εHU + (1− εH)E

where U is a block-diagonal matrix that has 1
DJD in each block (it would be the matrix B

we would have if H had been a clique with self-loops), and E is a block-diagonal matrix
that has a copy of EB on each block. We’ll leave it as an exercise to prove ||E|| ≤ 1.

We are ready to bound the λ̄2 parameter of BAB. Let x be a unit vector orthogonal to
(1, · · · , 1).

|xBABxT | = |x(εHU + (1− εH)E)A(εHU + (1− εH)E)xT |
≤ ε2H |xUAUxT |

+2εH(1− εH)|xEAUxT |
+(1− εH)2|xEAExT |

The main observation is that the vector xU is the same as the vector we called x|| in
the previous lecture, and so, by a calculation we have already done, we have
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|xUAUxT | ≤ λ̄2(G) · ||xU ||2 ≤ 1− εG

For the other quantities, we can apply Cauchy-Schwarz and the bound on the matrix
norm of E to derive

|xEAUxT | ≤ ||xEA|| · ||xU || ≤ ||xE|| · ||x|| ≤ ||x||2 = 1

|xEAExT | ≤ ||xEA|| · ||xE|| = ||xE||2 ≤ ||x||2 = 1

and so

|xBABxT | ≤ ε2H − ε2HεG + 2εH(1− εH) + (1− εH)2 = 1− ε2HεG

This concludes the proof of the Main Theorem.
There is also an alternative, equivalent, way of looking at this proof, that emphasizes

the similarity with the proof we saw in the last lecture. In particular we can argue that if
x is a vector orthogonal to (1, · · · , 1), then we can write

x = εHx|| + (1− εH)x′

where x|| is as defined in the last lecture, and x′ satisfies

||x′B|| ≤ ||x||

(To prove tha above claim, write x′ = 1
1−εH

x − εH
1−εH

xU , and notice that, since B =
εHU + (1− εH)E, and xUB = xU , we have x′B = xE, and so ||x′B|| ≤ ||xE|| ≤ ||x||.)

Then we can write

|xBABxT | ≤ ε2H |x||BABxT
|| |

+2εH(1− εH)|x||BABx′T |
+(1− εH)2|x′BABx′T |

And, assuming ||x|| = 1, we have the bounds

|x||BABxT
|| | ≤ 1− εG

|x||BABx′T | ≤ 1

|x′BABx′T | ≤ 1

From which we recover |xBABxT | ≤ 1− ε2HεG.
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2 Turning Any Graph Into an Expander

In the previous lecture, given a good d-regular expander H on d4 vertices, we defined a
sequence of graphs G0, . . . , Gk, . . . by the recursion

G0 := H2

Gk+1 := G2
k
Z©H

and proved that if the λ̄2 parameter of H is small enough that all graphs in the family
have small λ̄2. By construction, Gk has d4+4k vertices and is d2-regular.

Now we want to show that, provided that H is a good expander, the construction
eventually converges to a good expander for every choice of a starting graph G0.

Theorem 3 Let G be a d2-regular graph, H be a d-regular graph on d4 vertices such that
λ̄2(H) ≤ 1

10 . Define the sequence of graphs G0, . . . , Gk, . . . as

G0 := H2

Gk+1 := G2
k
Z©H

Then

λ̄2(Gk) ≤ max
{

1
2
, 1− (1.2)k · (1− λ̄2(G))

}
Proof: The k = 0 base case is immediate; for the inductive step we need to prove that if
we write λ̄2(Gk) = 1− ε then

λ̄2(G2
k
Z©H) ≤ max

{
1
2
, 1− (1.2)ε

}
By the main theorem and the assumption on H we have

λ̄2(G2
k
Z©H) ≤ 1− (1− (1− ε)2) · .81

We consider two cases. If ε ≥ 1
2 , then λ̄2(G2

k) ≤
1
4 , and

λ̄2(G2
k
Z©H) ≤ 1− 3

4
· .81 <

1
2

If ε ≤ 1
2 , then (1− (1− ε)2) = 2ε− ε2 ≥ 1.5ε, and

λ̄2(G2
k
Z©H) ≤ 1− 1.5 · ε · .81 < 1− 1.2 · ε

2

Suppose now that G is an arbitrary connected 3-regular graph, and define GL to be the
d2-regular graph that is identical to G except that every vertex has d2 − 3 self-loops. We
can see (assuming d2 ≥ 6) that all the eigenvalues of GL are non-negative, and

4



λ̄2(GL) = λ2(GL) =
d2 − 3

d2
+

3
d2

λ2(G)

If G is a connected 3-regular graph, then h(G) ≥ 2
3n and, by Cheeger’s inequality,

λ2(G) ≤ 1− 2
9n2 , so

λ̄2(GL) ≤ 1− 2
3d2n2

and, if we use GL as a base case in the above theorem,

λ̄2(Gk) ≤ max
{

1
2
, 1− (1.2)k · 2

3d2n2

}
And for k = O(log n), we have λ̄2(Gk) ≤ 1

2 . So it only takes a logarithmic number of
steps to turn an arbitrary connected graph into a very good expander.

3 References

The analysis of the Zig-Zag product in Section 1 is due to Eyal Rozenman and Salil Vadhan
[RV05].
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