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Notes for Lecture 15

1 Hardness of Approximation

We know that a number of important optimization problems are NP-hard to solve exactly.
Today we begin the study of the complexity of finding approximate solutions.

There is a fundamental difficulty in proving hardness of approximation results. All the
NP-completeness proofs for graph problems before 1990 can be essentially described as
follows: we start from the computation of a generic non-deterministic Turing machine, then
we encode its computation as a 3SAT formula, using the construction of Cook’s theorem,
and then we reduce 3SAT to the problem of interest (the reduction may be presented as a
sequence of reductions involving several intermediate problems, but it can always be thought
of as a direct reduction from 3SAT) by encoding variables and clauses of the formula as sub-
graphs connected in a proper way. The computation of a Turing machine is very sensitive to
small changes, and it seems impossible to generate an inapproximability gap starting from a
fragile model and applying “local” reductions. The only inapproximability results that can
be proved with such reductions are for problems that remain NP-hard even restricted to
instances where the optimum is a small constant. For example, in the Metric Min k-Center
problem it is NP-hard to decide whether the optimum has cost 1 or 2, and so no algorithm
can have a performance ratio smaller than 2 unless P = NP [HS85]. Similarly, in the
Coloring problem it is NP-hard to decide wether the optimum has cost 3 or 4, and so no
algorithm has performance ratio smaller than 4/3 unless P = NP, and Garey and Johnson
[GJ76] show that the gap can be “amplified” to k versus 2k − 4 for constant k, ruling out
also algorithms with performance ratio smaller than 2. Most interesting problems, however,
become trivial when restricted to inputs where the optimum is a constant.

To prove more general inapproximability results it seemed necessary to first find a ma-
chine model for NP in which accepting computations would be “very far” from rejecting
computations. Before such a model was discovered, an important piece of work on inap-
proximability was due to Papadimitriou and Yannakakis, who showed that, assuming that
Max 3SAT does not have a PTAS,1 then several other problems do not have a PTAS [PY91].
Berman and Schnitger [BS92] proved that if Max 2SAT does not have a PTAS then, for
some c > 0, the Independent Set problem cannot be approximated within a factor nc.

The modern study of inapproximability was made possible by the discovery, due to
Feige et al. [FGL+96] in 1990, that probabilistic proof systems could give a robust model
for NP that could be used to prove an inapproximability result for the Independent Set
problem.2 A year later, Arora et al. [AS98, ALM+98] proved the PCP Theorem, a very
strong characterization of NP in terms of proof systems, and showed how to use the PCP

1PTAS, short for Polynomial Time Approximation Scheme, is an algorithm that given an instance x
and a parameter ε runs in time polynomial in n, but with an arbitrary dependency on ε, and returns a
(1 + ε)-approximate solution.

2Another, less influential, connection between probabilistic proof checking and inapproximability was
discovered around the same time by Condon [Con93].
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Theorem to prove that Max 3SAT does not have a PTAS. Using the reductions of [PY91]
(and others [PY93, BP89]), the PCP Theorem gave inapproximability results for several
other problems.

2 Probabilistically Checkable Proofs

Probabilistically checkable proofs (PCPs) provide a “robust” characterization of the class
NP. When we reduce a generic NP problem L to 3SAT using Cook’s theorem, we give
a way to transform an instance x into a 3CNF formula ϕx so that if x ∈ L then ϕx is
satisfiable, and if x 6∈ L then ϕx is not satisfiable. Following the proof of Cook’s theorem,
however, we see that it is always easy (even when x 6∈ L) to construct an assignment that
satisfies all the clauses of ϕx except one.

Using the PCP Theorem one can prove a stronger version of Cook’s theorem, that states
that, in the above reduction, if x ∈ L then ϕx is satisfiable, and if x 6∈ L then there is no
assignment that satisfies even a 1 − ε fraction of clauses of ϕx, where ε > 0 is a fixed
constant that does not depend on x. This immediately implies that Max 3SAT does not
have a PTAS (unless P = NP), and that several other problems do not have a PTAS
either (unless P = NP), using the reductions of Papadimitrious and Yannakakis [PY91]
and others.

We define PCPs by considering a probabilistic modification of the definition of NP. We
consider probabilistic polynomial time verifiers V that are given an input x and “oracle
access” to a witness string w. We model the fact that V is a probabilistic algorithm by
assuming that V , besides the input x and the witness w, takes an additional input R, that
is a sequence of random bits. Then V performs a deterministic computation based on x,
w and R. For fixed w and x, when we say “V w(x) accepts” we mean “the event that V
accepts when given oracle access to witness w, input x, and a uniformly distributed random
input R.” When we refer to the “probability that V w(x) accepts,” we take the probability
over the choices of R.

We say that a verifier is (r(n), q(n))-restricted if, for every input x of length n and for
every w, V w(x) makes at most q(n) queries into w and uses at most r(n) random bits.

We define the class PCP[r(n), q(n)] as follows. A language L is in PCP[r(n), q(n)] if
there is an (r(n), q(n))-restricted verifier V such that if x ∈ L, then there is w such that
V w(x) accepts with probability 1 and if x 6∈ L then for every w the probability that V w(x)
accepts is ≤ 1/2.

We also consider the following more refined notation. We say that a language L is in
PCPc(n),s(n)[r(n), q(n)] if there is an (r(n), q(n))-restricted verifier V such that if x ∈ L,
then there is w such that V w(x) accepts with probability at least c(n), and if x 6∈ L then
for every w the probability that V w(x) accepts is at most s(n). Of course, the definition
makes sense only if 0 ≤ s(n) < c(n) ≤ 1 for every n. The parameter c(n) is called the
completeness of the verifier and the parameter s(n) is called the soundness error, or simply
the soundness of the verifier.

Note that if r(n) = O(log n) then the proof-checking can be derandomized, that is, V
can be simulated by a polynomial time deterministic verifier that simulates the computation
of V on each of the 2r(n) = nO(1) possible random inputs and then computes the probability
that V w(x) accepts, and then accepts if and only if this probability is one. It then follows
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that, for example, PCP[O(log n), O(log n)] ⊆ NP. The PCP Theorem shows a surprising
converse.

Theorem 1 (PCP Theorem) NP = PCP[O(log n), O(1)].

The theorem was proved in [AS98, ALM+98], motivated by a relation between PCP and
approximation discovered in [FGL+96], and based on much previous work. In the notes for
the past lectures we discussed the historical context

3 PCP and the Approximability of Constraint Satisfaction
Problem

In the Max 3SAT problem we are given a 3CNF boolean formula, that is, a boolean formula
in conjunctive normal form (AND-of-OR of literals, where a literal is either a variable or
the negation of a variable) such that each term in the conjunction is the OR of at most
three literals. The goal is to find an assignment that satisfies the largest possible number
of terms.

In the Max qCSP problem, where q is a positive integer, we are given a system of boolean
constraints defined over boolean variables such that every constraints involves at most q
variables. The goal is to find an assignment that satisfies as many constraints as possible.
Note that Max 3SAT is a special case of Max 3CSP. (View each clause as a constraint.)

Theorem 2 The PCP Theorem implies that there is a constant q such that there is no
a-approximate algorithm for Max qCSP with a < 2, unless P = NP.

Proof: Let L ∈ PCP[O(log n), q] be an NP-complete problem, where q is a constant, and
let V be the (O(log n), q)-restricted verifier for L. We describe a reduction from L to Max
qCSP.

Given an instance z of L, our plan is to construct a Max qCSP instance Iz with m =
|z|O(1) constraints such that

z ∈ L ⇒ Iz is satisfiable
z /∈ L ⇒ optMax qCSP(Iz) ≤ m

2

(1)

Once (1) is proved, the theorem follows.
We enumerate all random inputs R for V . The length of each string is r(|z|) = O(log |z|),

so the number of such strings is polynomial in |z|. For each R, V chooses q positions
iR1 , . . . , iRq and a Boolean function fR : {0, 1}q → {0, 1} and accepts iff fR(wiR1

, . . . , wiRq
) = 1.

We want to simulate the possible computation of the verifier (for different random
inputs R and different witnesses w) as a Boolean formula. We introduce Boolean variables
x1, . . . , x`, where ` is the length of the witness w.

For every R we add the constraint fR(xiR1
, . . . , xiRq

) = 1. This completes the description
of Iz.

Now, if z ∈ L, then there is a witness w that is accepted by V with probability 1.
Consider the assignment xi ← wi, where wi is the i-th bit of w: then such an assignment
satisfies all the constraints of Iz.
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If Iz has an assignment xi ← ai that satisfies more than m/2 constraints, then the
witness w defined as wi := ai is accepted with probability more than 1/2 by V , which
implies that z ∈ L. So if z 6∈ L then Iz has no assignment that satisfies more than m/2
constraints. 2

Theorem 3 The PCP Theorem implies that is an ε1 > 0 such that there is no polynomial
time (1 + ε1)-approximate algorithm for Max-3SAT, unless P = NP.

Proof: Given an instance I of Max qCSP (where q is the constant in the PCP Theorem)
over variables x1, . . . , xn and with m constraints, we show how to construct an instance ϕI

of Max 3SAT with m′ clauses such that

I is satisfiable ⇒ ϕI is satisfiable
optMax qCSP(I) ≤ m

2 ⇒ optMax 3SAT(ϕI) ≤ (1− ε1)m′ (2)

Once (2) is proved, the theorem follows.
For every constraint f(xi1 , . . . , xiq) = 1 in I, we first construct an equivalent qCNF of

size ≤ 2q. Then we “convert” clauses of length q to clauses length 3, which can be done
by introducing additional variables, as in the standard reduction from kSAT to 3SAT (for
example x2 ∨ x10 ∨ x11 ∨ x12 becomes (x2 ∨ x10 ∨ yR) ∧ (ȳR ∨ x11 ∨ x12)). Overall, this
transformation creates a formula ϕI with at most q2q 3CNF clauses for each constraint in
I, so the total number of clauses in ϕI is at most q · 2q ·m.

Let us now see the relation between the optimum of ϕz as an instance of Max 3SAT
and the optimum of I as an instance of Max qCSP.

If I is satisfiable, then set the x variables in ϕI to the same values and set the auxiliary
variables appropriately, then the assignment satisfies all clauses, and ϕI is satisfiable.

If every assignment of I contradicts at least half of the constraints, then consider an
arbitrary assignment to the variables of ϕ; the restriction of the assigment to the x variables
contradicts at least m/2 constraints of I, and so at least m/2 of the clauses of ϕI are also
contradicted. The number m′ −m/2 is at most m′(1− ε1) if we choose ε1 ≤ 1

2q2q . 2

Interestingly, the converse also holds: any gap-creating reduction from an NP-complete
problem to Max qCSP implies that the PCP Theorem must be true.

Theorem 4 If there is a reduction as in (1) for some problem L in NP, then L ∈
PCP[O(log n), q]. In particular, if L is NP-complete then the PCP Theorem holds.

Proof: We describe how to construct a verifier for L. V on input z expects w to be
a satisfying assignment for Iz. V picks a constraint of at random, and checks that the
assignment xi ← wi satisfies it. The number of random bits used by the verifier is log m =
O(log |z|). The number of bits of the witness that are read by the verifier is q.

z ∈ L ⇒ Iz is satisfiable
⇒ ∃w such that V w(z) always accept.

z /∈ L ⇒ ∀w a fraction 1
2 of constraints of Iz are unsatisfied by w

⇒ ∀w V w(z) rejects with probability ≥ 1
2

2
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