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Notes for Lecture 17-18

In these two lectures we prove the first half of the PCP Theorem, the “Amplification
Lemma,” up to a statement about random walks on expanders that will be proved later.

Lemma 1 (Amplification) For all ¥y, there is a dy such that V¢, there ezists ¥ and a
poly-time reduction Ry, mapping Max-2-CSP-%q to Maz-2-CSP-%, such that the following
hold for all instances C of Max-2-CSP-Y

1. # of constraints of R1(C) = O(#of constraints of R1(C))
2. opt(C) =1= opt(R1(C)) =1

8. opt(C) <1 -6 = opt(R1(C)) <1~ ¢d, provided cd < &y

By a result proved in the last lecture, without loss of generality we may assume the
constraint graph G of C is a d-regular expander graph with \2(G) < A < 1, for an absolute
constant )\ indepedent of all the parameters of the lemma. Let C’ be the weighted constraint
satisfaction problem over ¥ = Eé+d+d2+"'+dt (for some t to be specified later) defined as
follows:

Variables: For each variable v;, i = 1,...,n, of C we define a variable v] for C’. Each
variable v; of C can be seen to assign an element of ¥y to its associated vertex v; in G. The
corresponding variable v} of C' can be interpreted to associate an element of 3¢ to v; and
any vertex in G that is at most ¢ edges away from v; in G.

Constraints: First we define a distribution over paths in G. Then we will associate
a constraint with each of these paths and will weight them by their probability. This will
give us a weighted CSP.

Use the following randomized procedure to pick a path in G; this clearly defines a
distribution over paths:

e Pick a starting vertex vy at random.

(D1) e For i =1 to t: With probability 1/2 let v;11 < v;. With probability
1/2 let v;41 < a random neighbor of v;.

Remark 1 This can be viewed as a random walk of length t on the 2d-regular graph G’
which is the same as G except that G' has additionally d self loops at each vertex.

The constraint associated with a path vg — v1 — - -+ — vy is satisfied in C’ if and only if
the variables corresponding to vy and v; in C’ give consistent assignments to all the vertices
in the path and those assignments satisfy the constraint associated with each edge in the
path.

Lemma 2 (Main) The reduction described above satisfies the following:

1. opt(C) =1= opt(C') =1



2. opt(C) <1—6=opt(C') <1—Qy 5 (ﬁ(S), provided /16 < 1

PrOOF: 1. The first part is clear, because, if A is an assignment satisfying C, then A
assigns an element of ¥y to each vertex of the constraint graph G, so that the constraints
associated with each edge are satisfied. We can use these same assignments to generate an
assignment A for C’ in the natural way. Then A will satisfy the constraint corresponding
to every path p : vg — v; — --- — v; of G because: 1) The values A(vg) and A(v;) are
consistent by construction and 2) Every edge in the path will be satisfied by the values that
A(vo) and A(v;) assign to its endpoints, because each edge of the path is either a self loop
or an edge in GG and A satisfies the constraint corresponding to every edge of G.

2. To show the second part, we will define a mapping from an assignment A for C’ to
an assignment A for C and we will show that

value[A(C)] <1 -6 = value[A(C)] <1—Qy 5 (1)

This proves the theorem, because, if opt(C) < 1 — 4, then, for any A, the corresponding
assignment A will satisfy at most a 1 — § fraction of the constraints, and so, by (1), the
value of A can be at most 1 — Q(v/#J). The mapping is defined as follows. Let us fix an
assignment A for C’. To define the assignment A for C to which A is mapped we use the
following distribution over paths starting at any given vertex vy of G:

for i=1tot/2:

(D2) With probability 1/2 let v;11 < v;.

With probability 1/2 let v;41 «+ a random neighbor of v;.

Let A(vg) be the value most likely to be given to vy by A(v; /2) according to this distri-
bution. Notice that Pr[A(vg) = A(vy)s)] > ﬁ.
We can pick a random constraint of C’ using process (D1). Equivalently, we can use the
following randomized procedure for some fixed b, b € {—t/2+1,...,t/2}:
e pick a (directed) edge (vy/2_p, v/—pt1) from G' at ran-
dom (recall that G’ is a 2d regular graph resulting from
G by adding d self loops to each vertex)

(D3) e choose v;/9_4_1,-..,vo by taking a random walk in G’
starting at vy /oy,

e choose v/3_py9,..., v by taking a random walk in G’
starting at vy /o _pq1

Intuition: Roughly speaking, if b = 0, the constraint picked by the above process will

be violated with probability at least ﬁ%. The edge (vy/2, vy /QH) picked at the first step of

the procedure will be violated by A with probability at least %, because at least a d fraction

of the edges of G are not satisfied by A and with probability % the first step of the above

process will pick an edge of G (with probability % it will pick one of the self loops added to

G to get G'). Furthermore, as we commented above, A(v;/5) will be consistent with A(vo)’s
1

assignment for v;/; with probability at least o] Similarly, A(v;/241) will be consistent
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with A(v)’s assignment for v, /241 With probability at least ol 1. Note that this S0 2

bound is only a lower bound on the probability that the middle edge of a random constraint
is contradicted. If a similar bound holds for Q(v/t) edges in the middle of a random path

and if the corresponding events are close to being disjoint, we would get our bound.

Formally: Let us fix an assignment A for C and the corresponding assignment A for
C'. The following definition is central to the remaining analysis.

Definition 1 In a path vg — v1 — -+ — vy, a (directed) edge (vi,viy1) is faulty if
o A contradicts constraint (v;,vit1).
o A(v;) is consistent with A(vg).

o A(viy1) is consistent with A(vy).

It is easy to see that, if a path contains a faulty edge, then the constraint corresponding
to the path is violated by A. Moreover, if b < /%, then the probability under (D3) that
the initially chosen edge is faulty should work out as before to be €2 (ﬁ@ So, if the
corresponding events for different values of b were disjoint, we would be done. What we
shall show next is that they are close enough to being disjoint.

Let F' be the set of edges contradicted by A (or a subset of it of size §|F| if the set of
edges contradicted by A is bigger than that). For every directed edge (u,v) € F, let us
define the random variable X, ,); for a randomly chosen path vg — vy — -+ — v; in G

(vi, vig1) = (u,v)
1 if  A(vg) is consistent with A(v;)
Xuw),i = A(vy) is consistant with A(viy1)

0 otherwise

Notice that X(, ), is the indicator variable that, when picking a random path of length
t in G', the i-th vertex is u, the (i + 1)-th vertex is v, A(vp) is consistent with A(v;) and

A(vy) is consistent with A(v;y1). If we define

t/2+V/t

N= ) Y Xwwi |

i=t/2—/1 \(u,v)EF

then it is easy to see that the (weighted) fraction of constraints contradicted by A is at least
Pr[N > 0]. The following proposition completes the proof.

Proposition 3 Pr[N > 0] = Q(v/-9)

PRrROOF: We prove this in three parts:

1This is almost true because this is walk has length % — 1 instead of % as is specified by our mapping and
(D2).
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L. Pr[N > 0] > £y

2. E[N] = Q(v%-6)
3. E[N?] =0(Vt-6)

(Part 1)

Claim 4 For every non-negative random variable N: Pr[N > 0] >

PROOF: Let 1y¢ be the indicator variable of the event {INV > 0}, i.e.

1 _J LN >0
N=0" 0, otherwise

From the Cauchy-Schwartz Inequality it follows that

E[N] = E[N - 1ns0] < VE[N?] - \/E[1%-0] = VEIN?] - VE[1n>0] = VE[N?] - \/Pr[N > 0]

The claim follows.O

(Part 2) It is enough to show the following.

Claim 5 For every (u,v) € F and for every i € {t/2 — Vt,t/2+ Vt}: Pr[X(,.); = 1] =
Q1/|E]).

PROOF:

(vg) is consistent with A(v;)
Ut

(v¢) is consistant with A(v;41) [ vi = and vy = v

Pr[X (), = 1] = Prlv; = v and v;11 = v]-Pr g

Note that Pr[v; = v and v;y1 = v] = 4‘%, because G’ has 4|E| directed edges. To lower
bound the other factor, we will need to compare the following experiments:

1. Pick a random directed edge (u,v) in G’. Do a random walk in G of length i from u,
and a random walk of length ¢ — 1 — ¢ from v. Call the end points of these two walks
a and b.

2. Pick a random directed edge (u,v) in G’. Do a random walk in G’ of length ¢/2 from
u. Call the end point a. Do a random walk in G’ of length ¢/2 from v. Call the end
point b. Note that, by definition of the mapping from A to A, Pr[A(a) is consistent

with A(u)] > 1/|X0| and Pr[A(b) is consistent with A(v)] > 1/|%0].
Once we condition on the number of steps that the walks took in G (which is G’ without
the self loops), the probability of consistency is the same in the above experiments. The

rest of the analysis is the following:
In experiment 2:



Pr[A(a) consistent with A(u)] =

Z ) consistent with A(u)|l steps taken in G|
!

Pr[l steps taken in G when a total of ¢/2 steps were taken in G'|

While in experiment 1:

Pr[A(a) consistent with A(u)] =
= Z Pr[A(a) consistent with A(u)|l steps taken in G-

Pr[l steps taken in G when a total of i steps were taken in G']

(S1)

The range of [ in the above summations is not the same when i # % Ignoring this fact,
since the first factor of every term in the above summations is the same, to finish the claim
it would be enough to show something of the flavor

Pr[l steps taken in G when a total of i steps were taken in G’|

= Q(Pr[l steps taken in G when a total of /2 steps were taken in G'])

This is not always true, but it is true when the value of i is close to % 2 and the value of
[ is close to its expectation, that is, around t/4. So, let us remove the tails from the above

summations!
It is not hard to see that there exists some ¢ = ¢(log |Xo|) such that (S2) implies

4+cxf
2‘2 ’ < Z Pr[A(a) consistent with A(u)|l steps taken in G-
0
I=t—cyi
Pr[l steps taken in G when a total of ¢/2 steps were taken in G']
4+C\/i
< Z Pr[A(a) consistent with A(u)|l steps taken in G-
Lot

- O (Pr[l steps taken in G when a total of i steps were taken in G'])

< O(Pr[A(a) consistent with A(u) in first experiment))

The second inequality in the above derivation relies on the fact that, if we flip 4 fair
coins i € {§ —V/1,..., % + V/t}, then the probability of getting | heads where | € {% —

“Recall that in the statement of the claim we asked i € {t/2 — V/t,t/2 4+ V/1}.



eVt ..., b4+ et} is ©(L) = ©(L). The third inequality results from removing the tails
from summation (S7). O

S

~

Putting everything together we get

s+Vt 1
Xoyoi| >2vE — Q) —Q L
B| 3 K| 220 g0 () = omavD

j—t _
=3 t

And so

Mmzﬂ%(J)&m4w,sm¢J®

(Part 3)

Claim 6 | [N?] = O\(V10).
Proor: For a path vg — v1 — ... — v, randomly chosen as described above, we define
random variables X (/u i and N " as follows

X! o 1, if vi=uand vy =0

(u,v),7 0, otherwise
TVt
D DD DI
i_ t (u,w)eF

Clearly, N’ > N and, thus, it suffices to bound E [N ! 2]. The bound follows from the
following result about random walks in expanders, which we will prove in the next lecture,
applied to the £ = 21/t steps of the random walk between step % — v/t and step % + /1.

Lemma 7 Let G = (V, E) be a d—regular graph with \o(G) < X\ < 1, let F C E, and define
d = |F|/|E|. Pick a random walk of length ¢ in G, and let M be the number of edges of F'
traversed in the walk.
Then
R[M?] = Ox(6¢ + 520?)

The lemma above gives us a bound E[N"?] = Ox(6v/t + 6%t), but recalling that v/t < 1,
we have E[N"?] = O,(6v/t) as required.
(end of proof of claim 6) O

(end of proof of proposition 3) O
(end of proof of lemma 2) O



