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Notes for Lecture 19

In this lecture we prove the only remaining missing step in the proof of the first half of the
PCP Theorem, and we begin a description of the second half of the proof.

1 A Lemma on Random Walks on Expanders

In the last lecture, we stated the following result without proof.

Lemma 1 Let G = (V,E) be a d-regular graph with λ̄2(G) ≤ λ < 1, let F ⊆ E, and define
δ = |F |/|E|. Pick a random walk of length ` in G, and let M be the number of edges of F
traversed in the walk.

Then
E[M2] = Oλ(δ` + δ2`2)

We denote the random walk as the sequence v0, v1, . . . , v` (where each vi is a random
variable), and we introduce the 0/1 random variables X1, . . . , X`, defined so that Xi = 1 if
(vi−1, vi) ∈ F , and Xi = 0 otherwise. Hence

M = X1 + X2 + · · ·X`

and, using linearity of expectation and the fact that X2
i = Xi,

E[M2] =
∑
i,j

E[XiXj ] =
∑

i

E[Xi] + 2
∑

i

∑
j>i

E[XiXj ]

Every edge in a random walk is uniformly distributed, and so∑
i

E[Xi] = δ`

It remains to bound the cross products. Our strategy will be to show that, for every i
and j > 1, we have

E[XiXj ] ≤ δ2 + δλj−i−1 (1)

Assuming that we have Equation (1), then for every i we have

∑
j>i

E[XiXj ] ≤ δ2` + δ

j−i−1∑
k=0

λk ≤ δ2` + δ
1

1− λ

and so

2
∑

i

∑
j>i

E[XiXj ] = Oλ(δ2`2 + δ`)
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as required.
We now turn to the proof of Equation (1). First, note that

E[XiXj ] = Pr[(vi−1, vi) ∈ F ∧ (vj−1, vj) ∈ F ]
= Pr[(vi−1, vi) ∈ F ] · Pr[(vj−1, vj) ∈ F | (vi−1, vi) ∈ F ]
= δ · Pr[(vj−1, vj) ∈ F | (vi−1, vi) ∈ F ]

Which means that proving Equation (1) reduces to proving the bound

Pr[(vj−1, vj) ∈ F | (vi−1, vi) ∈ F ] ≤ δ + λj−i−1 (2)

Now, the distribution of the edge (vj−1, vj) on a random walk conditioned on (vi−1, vi) is
the same as the distribution of the edge (uj−i−1, uj−i) in a random walk u0, . . . , uj−i where
u0 is chosen to be a random endpoint of a random edge of F , and the subsequent steps are
a length-(j − i) random walk in G.

Equation (2) can be abstracted as the following claim.

Lemma 2 Let G = (V,E) be a d−regular graph with λ̄2(G) ≤ λ < 1 and let F ⊆ E. Let
u0, . . . , uk be a random walk in G where the starting point u0 is chosen by picking a random
edge in F and then a random endpoint of the edge.

Then the probability that (uk−1, uk) is in F is at most

|F |
|E|

+ λk−1

Proof: Let M be the transition matrix of a random walk on the graph and let dF (v)
denote the number of edges incident on v that belong to F . Then the initial distribution
vector x (describing the distribution of u0) is of the form x(v) = dF (v)

2|F | . The distribution z

after k − 1 steps (the distribution of uk−1) is given by z = xP k−1. If the walk is at vertex
v after k − 1 steps, then the probability that the last step will be along an edge in F is
dF (v)

d = 2|F |
d x(v). Thus

Pr [(uk−1, uk) ∈ F ] =
∑

v

z(v)
dF (v)

d
=

2 |F |
d

zxT =
2 |F |

d
xMk−1xT

To obtain a bound on xMk−1xT , we split x as x = x‖ + x⊥ where x‖ and x⊥ are
respectively parallel and perpendicular to the uniform distribution. Specifically, x‖(v) = 1

n

and x⊥(v) = x(v)− 1
n . Then

xMk−1xT = x‖M
k−1xT + x⊥Mk−1xT

≤ 〈x‖, x〉+
∣∣∣∣∣∣x⊥Mk−1

∣∣∣∣∣∣ ||x|| (because x‖M = x‖)

≤ 1
n

+ λk−1 ||x||2 (since ||x⊥M || ≤ λ ||x⊥|| and ||x⊥|| ≤ ||x||)
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Also

||x||2 =
∑

v

(dF (v))2

(2 |F |)2
≤ max

v

dF (v)
2 |F |

∑
v

dF (v)
2 |F |

≤ d

2 |F |
(since

∑
v

dF (v) = 2 |F | and dF (v) ≤ d)

Using these, we obtain the required result as

Pr [(uk−1, uk) ∈ F ] =
2 |F |

d
xMk−1xT

≤ 2 |F |
d

[
1
n

+ λk−1 d

2 |F |

]
=

2 |F |
dn

+ λk−1

=
|F |
|E|

+ λk−1.
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2 An Overview of the Rest of the Proof of the PCP Theorem

To complete the proof of the PCP Theorem we will need to establish the following result.

Lemma 3 (Range Reduction) ∃Σ0, ∃c0 > 0, such that for all Σ, there exists a poly-time
R2, mapping Max-2-CSP-Σ to Max-2-CSP-Σ0 such that:

• For every C, size(R2(C)) = O(size(C);

• If C is satisfiable, then R2(C) is satisfiable;

• If opt(C) ≤ 1− δ, then opt(R2(C)) ≤ 1− c0δ.

We say that an instance of Max-2-CSP-Σ is in “projection form” if every constraint is
of the form x = f(y), where f : Σ → Σ can be arbitrary function, possibly dependent on
the constraint.

The main result in the proof of Lemma 3 will be the following.

Lemma 4 (Reduction to Boolean CSP) There is a q and a c1 such that for all Σ, there
exists a poly-time reduction RB, mapping Max-2-CSP-Σ to Max q-CSP-{0, 1}. such that:

• For every C, size(RB(C)) = O(size(C);

• If C is satisfiable, then RB(C) is satisfiable;

• If opt(C) ≤ 1− δ, then opt(RB(C)) ≤ 1− c1δ.
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The proof of Lemma 3 is completed by the following easier reduction.

Lemma 5 (Reduction to Projection Form) For all Σ and q, there exists a poly-time
reduction RP , mapping Max q-CSP-Σ to Max-2-CSP-Σq in projection form such that:

• For every C, size(RP (C)) = O(size(C);

• If C is satisfiable, then RP (C) is satisfiable;

• If opt(C) ≤ 1− δ, then opt(RP (C)) ≤ 1− δ/q.

To prove Lemma 3, we start from an instance C of Max-2-CSP-Σ and we use Lemma 5
to reduce it to an instance C1 of Max-2-CSP-Σ2 in projection form. Then we use Lemma
4 to reduce C1 to an instance C2 of Max q-CSP-{0, 1}. Finally, we use Lemma 5 to reduce
C2 to an instance C3 of Max 2-CSP-{0, 1}q. This proves Lemma 3 with Σ0 = {0, 1}q, where
q is the constant of Lemma 4, and with c0 = c1/2q, where c1 is the constant of Lemma 4.

We conclude this lecture with a proof of Lemma 5.

Proof: [Of Lemma 5] Let C be an instance of Max q-CSP-Σ with variables x1, . . . , xn

and constraints C1, . . . , Cm. The reduction produces a new instance that has variables
x1, . . . , xn, y1, . . . , ym, that is, the same set of original variables, plus an extra variable per
constraint of C. We also fix a surjective mapping of Σq → Σ so that we may think of an
assignment to the xi in the new instance as an assignment to the xi in the original instance.

Each constraint Cj , over variables xj1 , . . . , xjq , is mapped into q new constraints. The
i-th such constraint, over variables xji and yj , requires that, if we think of the value of yj

as specifying an assingment to xj1 , . . . , xjq , then such assignment must satisfy Cj and must
be consistent with the assigned value of xji .

Now we see that if opt(C) ≤ 1 − δ, then any assignment to the xj contradicts at least
δm constraints of C, and that, for each such constraint, no matter what is the assignment
to the yj , at least one of the q constraints derived from it will be contradicted in the new
instance. Hence, every assignment to the new instance contradicts at least δm of the qm
constraints, and the optimum is at most 1− δ/q. 2
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