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Notes for Lecture 23

In these notes we introduce Levin’s theory of average-case complexity.

This theory is still in its infancy: in these notes we will introduce the notion of “dis-
tributional problems,” discuss various formalizations of the notion of “algorithms that are
efficient on average,” introduce a reducibility that preserves efficient average-case solvabil-
ity, and finally prove that there is a problem that is complete for the distributional version
of NP under such reductions. It is still an open question how to apply this theory to the
study of standard NP problems and natural distributions of inputs.

1 Distributional Problems

Definition 1 (Distributional Problem) A distributional problem is a pair (L, 1), where
L is a decision problem and g = (g1, ..., fin,-..) is an ensemble of distributions such that
i, is a distribution over {0,1}".

We will restrict to the study of distributional problems where p is “polynomial-time
computable.”

Definition 2 (Polynomial Time Computable Distributions) Let u be an ensemble
of distributions, and for x € {0,1}", let

p(x):= Pr[y<al]. (1)
Y~pn
where ‘<’ denotes lexicographic ordering. Then u is a polynomial time computable distri-
bution if and only u(x) is computable in poly (|z|) time.

Clearly this notion is at least as strong as the requirement that Pry.,,, [y = z] be com-
putable in polynomial time, because

Priy =a] = w(2) == pu (a) — p(a — 1), (2)

x — 1 being the lexicographic predecessor of . Indeed one can show that, under reasonable
assumptions, there exist distributions that are efficiently computable in the second sense
but not polynomial-time computable in our sense.

2 DistNP

We define the complexity class

DistNP := {(L, ) : L € NP, s polynomial-time computable} . (3)

There are at least two good reasons for looking only at polynomial-time computable
distributions.



1. One can show that there exists a distribution p such that every problem is as hard on
average under g as it is in the worst case. Therefore, unless we place some computa-
tional restriction on u, the average-case theory is identical to the worst-case one.

This is undesirable, because we would like to prove a completeness result stating that
a specific distributional problem is hard-on-average unless all problems in DistNP
are easy-on-average. S0, if we defined DistNP in terms of all possible distributions,
our completeness result would have to state that a specific distributional problem
is hard-on-average unless P = NP, and there is some evidence [FF93, BT03] that
the reductions needed to establish such a “worst-case-to-average-case” completeness
result cannot exist.

2. Someone, somewhere, had to generate the instances we are trying to solve. If we
place computational restrictions on ourselves, then it seems reasonable also to place
restrictions on whoever/whatever generated the instances.

It should be clear that we need a whole class of distributions to do reductions; that is,
we can’t just parameterize a complexity class by a single distribution. This is because a
problem can have more than one natural distribution; it’s not always obvious what to take
as the ‘uniform distribution.’

3 Reductions

Definition 3 (Reduction) We say that a distributional problem (Li,pu1) reduces to a
distributional problem (Lo, u2) (in symbols, (L1, u1) < (Lo, po)) if there exists a polynomial-
time computable function f such that:

1. f is a reduction. z € L; iff f (x) € Ls.

2. f(u1) dominates po. For every n and m, and for every y € {0,1}"™,

> whn (@) < poly (n) pham (y) . 4)
= f @)=y

In Levin’s original definition, there is a requirement that for every = we have |f(x)| >
g q Yy
|z|*(MY | and the domination condition requires

> i () < poly ([y]) wram (),
w:f @)=y

so our definition is more general.

The first condition is the standard condition of many-to-one reductions in complexity
theory: it ensures that an algorithm that is always correct for Lo can be converted into an
algorithm that is always correct for L.

To motivate the domination condition, consider that we want reductions to preserve the
existence of algorithms that are efficient on average. Suppose that we have an algorithm
Ay for problem Ly such that, when we pick y according to distribution ug, A(y) is efficient



on average; if we want to solve L; under distribution p, then, starting from an input x
distributed according to u1, we compute f(x) and then apply algorithm Ag to f(x). This
will certainly be correct, but what about the running time? Intuitively, it could be the case
that As is very slow on some inputs, but such inputs are unlikely to be sampled according
to distribution po; the domination condition ensures us that such inputs are also unlikely
to be sampled when we sample x according to p; and then consider f(x).

4 Polynomial-Time on Average

Given a problem (L, u) and an algorithm A that runs in time ¢ (z) on input z, what does
it mean to say that A solves (L, 1) in polynomial time on average?

A first attempt could be to say that an algorithm is polynomial on average if its expected
running time is polynomial.

B [tH(2)] < O(n°)

This definition is quite appealing, but is subject to the fatal flaw of not being robust, in
that: (1) reductions do not preserve this definition of polynomial solvability on average and
(2) the definition is sensitive to trivial representation changes such as replacing a matrix
representation of a graph by an adjacency list.

To see why these problems arise, let u be the uniform distribution, and let

t(z)=2"ifx = 6), t (x) = n? otherwise. (5)

The average running time is about n?. But suppose now that n is replaced by 2n
(because of a change in representation, or because of the application of a reduction), then

t(z)= 22 if p = 6), t(zx)=4- n? otherwise. (6)

Similarly, if ¢(z) is replaced by ¢?(x), the average running time becomes exponential.
We now come to a satisfying definition.

Definition 4 (Polynomial on average) Suppose A is an algorithm for a distributional
problem (L, p) that runs in time t(x) on input x. We say that A has polynomial running
time on average if there are constants § > 0 and ¢ such that

Eop, [t(x)ﬂ < 0(n°)

Notice, first, that this definition is satisfied by any algorithm that runs in worst-case
polynomial time or in expected polynomial time (take 6 = 1). More interestingly, suppose
t() is a time bound for which the above definition is satisfied; then an algorithm whose
running time is ¢’(z) = t(x)? also satisfies the definition, unlike the case of the previous
definition. In fact we have the following result, whose proof would be non-trivial at this time.
We shall prove it later after finding an alternative characterization (due to Impagliazzo) of
algorithm that in time polynomial on average.



Theorem 1 If (L1, p1) < (Lo, u2) and (Lo, p2) admits an algorithm that is polynomial on
average, then (L1, 1) also admits an algorithm that is polynomial on average.

There is an additional interesting property of the definition of polynomial on average:
there is a high probability that the algorithm runs in polynomial time.
Suppose that

Eomp [1(2)°] = O (n°). ™

and that we wish to compute Pr[t(z) > k- |2|%/?]. Such a probability is clearly the same as
Pr [t(@é > k;5|x\0}

and by Markov’s inequality this is at most O(1/k%), which can be made fairly small by
picking k& large enough. Since the algorithm runs in time at most kn®/9 for a subset of
inputs having probability 1 —O(k~%), we see that our definition gives a smooth quantitative
tradeoff for how much time we need to solve an increasing fraction of inputs.

This observation motivates the following definition.

Definition 5 (Errorless Heuristic Scheme) An errorless heuristic scheme for a distri-
butional problem (L, ) is an algorithm A that, on input x and €, runs in time polynomial in
|x| and in 1/€, and either correctly decides whether x € L, or outputs “FAIL.” Furthermore,
for everyn and €

Pry.,., [A(z,e) = FAIL] < €
Errorless heuristic schemes capture polynomial time on average solvability.

Theorem 2 A distributional problem (L, ) admits a polynomial time on average algo-
rithms if and only if it allows an errorless heuristic scheme.

ProoOF: We have already established that an algorithm that is polynomial on average
implies an errorless heuristic scheme: if the algorithm runs in time polynomial on average
with parameters § and ¢, then given inputs x and € we run the algorithm for at most
O(e=1/9.|z|¢/%) steps, and output FAIL if the algorithm does not halt within such a number
of steps. By the Markov inequality calculations we performed above, the algorithm fails
with probability at most € when z is sampled from .

For the other direction, if A(-,-) is an errorless heuristic scheme, we compute A(x,1/2),
and output the result, unless the computation fails. If it fails, we compute A(x,1/4) and
output the result, if different from FAIL, otherwise we go on to compute A(z,1/8) and so
on. Eventually, the computation will not fail, because A(z,€) where € is smaller than the
probability of x under u, must output the correct answer. If x is an input that requires k
rounds of the above process in order to find the answer, then the running time ¢(z) for =
is |z|® - 2% for some exponents a and b. Let us choose § = 2b, so that t%(x) < |z|0® - 28/2,
Notice that we have Pr[t?(z) > |x|°*2%/2] < 27F. So we have



Eveu[@)] < (2l Epnp, |2 ()]
= 23" Pron,, [1|x|5at5(az) > t]
t
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< WY h
t
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Given this characterization, we can now prove Theorem 1.

PROOF:[Of Theorem 1] Suppose that (A, ua) < langleB, up) via the reduction f, and that
langleB, up) admits a polynomial time errorless heuristic scheme S; we shall show that
langleA, p4) admits an errorless heuristic scheme too.

On input = sampled from p4 and a parameter €, we simply run S(f(z),) for an appro-
priately small  that we will determine later. (But such that v~ = poly(n-e~1), so that our
heuristic scheme for (A, p4) runs in polynomial time.) If the computation of S(f(x),~y) does
not fail, then we correctly determine whether z € A. We need to prove that the probability
of failing is at most ¢, over the random choices of x from p4. We know that for every m,

Pry s, [S(y,7) fails | <~

and that, for every m, and every b € {0,1}",

Pr, 013 [f(x) = 0] < poly(n) - Pry~up . [y = 0]

Finally, we note that |f(z)| < poly(|z|), because f is computable in polynomial time.
So we can see that

poly(n)
Pr (0,17 [S(f(2),7) fails | = Pry 0,13 [S(f(x),7) fails A|f(z)| =m]
m=1
poly(n)
> poly(n) - Pry_(o1ym[S(y, ) fails |

m=1
poly(n) -y
€

IN

IN A

provided we set v small enough. O



5 Existence of Complete Problems

We now show that there exists a problem (albeit an artificial one) complete for DistNP.
Let the inputs have the form <M , T, 1t>, where M is an encoding of a non-deterministic
Turing machine and 1¢ is a sequence of ¢t ones. Then we define the following “bounded
halting” problem BH.

e Decide whether there is an accpeting path of M (z) that takes at most t steps.

Define a uniform distribution U over the <M , T, 1t> as follows:

1 1 1

Un ((M,2,1%)) = Sigg g+ (8)
The intuition is that first we pick ¢ at random (uniformly from 1 to n), and then we fill up
the first n — ¢ entries of the string at random. In a correctly formatted string, M and x
are encoded in a prefix-free way, so that if M has length m and x has length ¢, the length
of the string is O(logm + log¢) + m + ¢ + t. We allow incorrectly formatted strings in our
distributions. (Those are all NO instances of the language.) Alternative conventions could
be used and could be accommodated with small changes to the argument.

That BH is NP-complete follows directly from the definition. Recall the definition of
NP: we say that L € NP if there exists a machine M running in ¢t = poly (|z|) steps such
that € L iff at least one of the computational paths of M (z) accepts within time ¢. Thus,
to reduce L to BH we need only map z onto f(x) := <M, T, 1t> where ¢ is a sufficiently
large bound.

Such a reduction, however, fails to reduce a generic DistNP problem (L, u) to (BH,U).

The trouble is that, because of the domination condition, we can’t map = onto f (z)
unless u/, (z) < poly (|z])271¥l. We work around this problem by compressing z to a
shorter string if p/,, (x) is large. Intuitively, by mapping high-probability strings onto shorter
lengths, we make their high probability less conspicuous. The following lemma shows how
to do this.

Lemma 3 Suppose p is a polynomial-time computable distribution over x. Then there
exists a polynomial-time algorithm C' such that

1. C is injective over {0,1}": for every x,y € {0,1}", if x # y then C (x) # C (y).
2. |0 ()] <1 +min{|x| log ﬁ)}

PRrROOF: If s, (z) < 271%l then simply let C (z) = Oz, that is, 0 concatenated with =. If,

on the other hand, p/, (x) > 271%, then let C (x) = 1z. Here z is the longest common

prefix of uy, () and py, (x — 1) when both are written out in binary. Since p,, is computable

in polynomial time, so is z. C is injective because only two binary strings s; and ss can

have the longest common prefix z; a third string s3 sharing z as a prefix must have a longer
1

prefix with either s; or sy. Finally, since u/, (z) < 271* |C (z)] <1+ log @ O

Now the reduction is to map x onto



f(z) = <M, (n,C (z)), 1t> .

Here M is a machine that on input n, z accepts if and only if there exists an z € {0,1}"
such that C(x) = z and M () accepts. The running time of M is £. Clearly x € L iff M
accepts. To show that domination holds, observe that, since the map is injective, we need
only show that

phy (z) < poly(n) - Ujp(py (f(2))
and we have |f(z)| = O(1) + O(logn) + |C(z)| + t(n), so that

1 1 1 1
— . . > n
O T Ologn) 1 [C@) 77 0(1)  200oen 0@ = poly(n) )

Ulpay (f(2) =

and we are done.

6 Polynomial-Time Samplability

Definition 6 (Samplable distributions) We say that a distribution p is polynomial-
time samplable if there exists a probabilistic algorithm A that, on input n, runs in expected
poly(n) time and outputs x with probability u/ (z).

Any polynomial-time computable distribution is also polynomial-time samplable, pro-
vided that for all x,

W) (x) > 27 PV or i (2) = 0. (9)

For a polynomial-time computable u satisfying the above property, we can indeed construct
a sampler A that first chooses a real number r uniformly at random from [0, 1], to poly (|z|)
bits of precision, and then uses binary search to find the first = such that pu (z) > r.

On the other hand, under reasonable assumptions, there are efficiently samplable dis-
tributios p that are not efficiently computable.

In addition to DistNP, we can look at the class

(NP, P-samplable) = {(L, p) : L € NP,y polynomial-time samplable} . (10)

A result due to Impagliazzo and Levin states that if (L, u) is DistNP-complete, then
(L, ) is also complete for the class (NP, P-samplable).

This means that the completeness result established in the previous section extends
to the class of NP problems with samplable distributions. The completeness, however, is
proved under a different notion of reducibility, that preserves heuristic but not average
polynomial time algorithms.



7 References

Levin’s theory of average-case complexity was introduced in [Lev86]. Ben-David et al. [ BDCGL92]
prove several basic results about the theory. Impagliazzo and Levin [IL90] show that the
theory can be generalized to samplable distributions. Impagliazzo [Imp95] wrote a very
clear survey on the subject. Other good reference are a survey paper by Goldreich [Gol97]

and a more recent one by Bogdanov and Trevisan [BT06]
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Exercises

1. For a parameter ¢, consider the ensemble of distributions D. = (Dj, cn)n=1,2,.. OVer
instances of 3SAT with n variables generated by picking c¢n times independently a
random a clause out of the 8(2) possible clauses that can be constructed from n
variables. (Note that the same clause could be picked more than once.)

(a) Show that an instance from D, ., is satisfiable with probability at least (7/8)"
and at most 2" - (7/8)°".

(b) Argue that, using the definition given in this lecture, (3SAT, Di5) cannot be
reduced to (3SAT, Ds).
[Hint: take a sufficiently large n, and then look at the probability of satisfiable
instances of length n under D15 and the probability that their image is generated
by Ds0.]
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