Midterm

Due Tuesday, April 15, by email or in class. Work on the exam individually.

1. A Hierarchy Theorem for Circuits [25/100]. Prove that for all sufficiently large n there is a function $f: \{0,1\}^n \to \{0,1\}$ computable by a circuit of size n^3 but not by any circuit of size $\leq n^3/(100 \log n)$.

[There are several possible arguments to prove this "hierarchy theorem for circuits." Some arguments give stronger bounds: you can get f to not have circuits of size $n^3 - O(n)$, or even $n^3 - O(1)$.]

- 2. Circuit Lower Bounds in the Polynomial Hierarchy [25/100].
 - (a) [15/100] Prove that there is a language in the Polynomial Hierarchy (you should be able to get it in Σ_4) that is not solvable by any family of circuits of size $O(n^3)$.
 - (b) [10/100] Using the previous result and the Karp-Lipton theorem, prove that there is a language in Σ_2 that is not solvable by any family of circuits of size $O(n^3)$.
- 3. Log-Space Counting Problems [25/100].

Consider the following two definitions of log-space counting problems.

A function $f: \{0,1\}^* \to \mathbb{N}$ is in #L1 if there is a non-deterministic Turing machine M_f that on input x of length n uses $O(\log n)$ space and is such that the number of accepting paths of $M_f(x)$ equals f(x).

A function $f: \{0,1\}^* \to \mathbb{N}$ is in #L2 is there is a relation $R(\cdot,\cdot)$ that is decidable in log-space and a polynomial p such that if R(x,y) then $|y| \le p(|x|)$ and such that f(x) equals $|\{y: R(x,y)\}|$.

Prove that all functions in #L1 can be computed in polynomial time (15/100), while #L2 equals #P (10/100).

- 4. Powering and Edge Expansion [25/100]. Recall that if G is a d-regular graph with transition matrix M, then G^k is the d^k -regular graph with transition matrix M^k that has one edge for each path of length k in G (with repetitions).
 - (a) [20/100] Prove that if $\overline{h}(G) \geq \epsilon$, then there is a $k = k(\epsilon)$ that depends only on ϵ and not on the size of G such that $\overline{h}(G^k) \geq \frac{1}{10}$.
 - (b) [5/100] Provide a counterexample to the following statement:

$$\overline{h}(G^2) \geq \min \left\{ \frac{1}{10} \ , \ 1.01 \cdot \overline{h}(G) \right\}$$

[Note: the statement may be true (it's an open question) if G^2 is replaced by G^3 . If you can prove it for G^k , for some constant k, it can be your project.]