
Truly Sub-cubic Algorithms for
Language Edit Distance and RNA Folding

via Fast Bounded-Difference Min-Plus Product∗

Karl Bringmann†, Fabrizio Grandoni‡, Barna Saha§, Virginia Vassilevska Williams¶

April 5, 2016

Abstract

It is a major open problem whether the the (min,+)-product of two n × n matrices has a
truly sub-cubic (i.e. O(n3−ε) for ε > 0) time algorithm, as it is equivalent to the famous
All-Pairs-Shortest-Paths problem (APSP) in n-vertex graphs. There are a few restrictions
of the (min,+)-product to special types of matrices that admit truly sub-cubic algorithms,
each giving rise to a special case of APSP that can be solved faster. In this paper we
consider a new, different and powerful restriction in which one matrix can be arbitrary, as
long as the other matrix has “bounded differences” in either its columns or rows, i.e. any
two consecutive entries differ by only a small amount. We obtain the first truly sub-cubic
algorithm for this Bounded Differences (min,+)-product.

Our new algorithm, combined with a strengthening of an approach of L. Valiant for
solving context-free grammar parsing with matrix multiplication, yields the first truly sub-
cubic algorithms for the following problems: Language Edit Distance (a major problem in
the parsing community), RNA-folding (answering an open problem of Chan and Lewenstein)
and Optimum Stack Generation (answering an open problem of Tarjan).

∗This work was done in part while the authors were visiting the Simons Institute for the Theory of Computing.
†Max Planck Institute for Informatics, Saarbrücken, Germany, kbringma@mpi-inf.mpg.de.
‡IDSIA, University of Lugano, fabrizio@idsia.ch. This work was partially supported by the ERC StG

project NEWNET no. 279352 and the SNSF project APPROXNET no. 200021_159697/1
§University of Massachusetts Amherst, College of Information and Computer Science, Amherst, MA.

barna@cs.umass.edu. This work is partially supported by a NSF CCF 1464310 grant, a Yahoo ACE Award
and a Google Faculty Research Award.
¶Stanford University, virgi@cs.stanford.edu. Partially supported by NSF Grants CCF-1417238, CCF-

1528078 and CCF-1514339, and BSF Grant BSF:2012338.

1 Introduction

The (min,+)-product (also called min-plus or distance product) of two integer matrices A and
B is the matrix C = A?B such that Ci,j = mink{Ai,k +Bk,j}.1 Computing a (min,+)-product
is a basic primitive used in solving many other problems. For instance, Fischer and Meyer [17]
showed that the (min,+)-product of two n×n matrices has essentially the same time complexity
as that of the All Pairs Shortest Paths problem (APSP) in n node graphs, one of the most basic
problems in graph algorithms. APSP itself has a multitude of applications, from computing
graph parameters such as the diameter, radius and girth, to computing replacement paths and
distance sensitivity oracles (e.g. [12, 45, 21]) and vertex centrality measures (e.g. [13, 2]).

The (min,+)-product of two n × n matrices has a trivial O(n3) time algorithm, and it is
a major open problem whether there is a truly sub-cubic algorithm for this problem, i.e. an
O(n3−ε) time algorithm for some constant ε > 0. Following a multitude of polylogarithmic im-
provements over n3 (e.g. [18, 41, 15]), a relatively recent breakthrough of Williams [48] obtained
an O(n3/c

√
logn) time algorithm for a constant c > 1. Note that this striking improvement is

still sub-polynomial.
For restricted types of matrices, there are truly sub-cubic algorithms. The probably most

relevant examples include:

(1) when all matrix entries are integers bounded in absolute value byM , then the problem can
be solved in Õ(Mnω) time [6], where ω < 2.373 is the matrix multiplication exponent [44,
20];

(2) when each row of matrix A has at most C distinct values, then the (min,+)-product of A
with an arbitrary matrix B can be computed in time Õ(Cn(3+ω)/2) [49].2

Each of these restricted (min,+)-products have applications. E.g., the distance product of type
(1) is used to compute APSP in both undirected [39, 40] and directed [51] graphs with bounded
edge weights, while the distance product of type (2) is used to compute APSP in graphs in which
each vertex has a bounded number of distinct edge weights on its incident edges [49].

1.1 Our Result

In this paper we significantly extend the family of matrices for which a (min,+)-product can be
computed in truly sub-cubic time to include the following class.

Definition 1. A matrix X with integer entries is a W -bounded differences (W -BD) matrix if
for every row i and every column j, the following holds

|Xi,j −Xi,j+1| ≤W and |Xi,j −Xi+1,j | ≤W

When W = O(1), we will refer to X as a bounded differences (BD) matrix.

In this paper we present the first truly sub-cubic algorithm for (min,+)-product of BD
matrices, answering a question of Chan and Lewenstein [16].

Theorem 1. There is an Õ(n2.8244) time randomized algorithm and an Õ(n2.8603) time deter-
ministic algorithm that computes the (min,+)-product of any two n× n BD matrices.

Indeed, our algorithm produces a truly sub-cubic running time for W -BD matrices for non-
constant values ofW as well, as long asW = O(n3−ω−ε) for some constant ε > 0. In fact, we are
able to prove an even more general result: suppose that matrix A only has bounded differences
in its rows or its columns (and not necessarily both). Then, A can be (min,+)-multiplied by an
arbitrary matrix B in truly sub-cubic time:

1By Mi,j we will denote the entry in row i and column j of matrix M .
2The same holds if A is arbitrary and B has at most C distinct values per column.

1

Theorem 2. Let B be arbitrary and assume either of the following:

(1) ∀i, j ∈ [n], |Ai,j −Ai+1,j | ≤W or (2) ∀i, j ∈ [n], |Ai,j −Ai,j+1| ≤W

If W ≤ O(n3−ω−ε) for any ε > 0, then A ? B can be computed in randomized O(n3−Ω(ε)) time.
If W = O(1), then A ? B can be computed in randomized time O(n2.9217).

The main obstacle towards achieving a truly sub-cubic algorithm for (min,+) product in
general is the presence of entries of large absolute value. In order to compare our result with
(1) and (2) from that point of view, assume for a moment that ω = 2 (as conjectured by many).
Then (1) can perform a (min,+) product in truly sub-cubic time if both A and B have entries
of absolute value at most M = O(n1−ε) for some constant ε > 0, while (2), without any other
assumptions on A and B, can do that if at least one of A and B has entries of absolute value at
most M = O(n1/2−ε). We can do the same when at least one of A and B has entries of absolute
value at most M = O(n1−ε).

1.2 Our Approach

Our approach has three phases.

Phase 1: additive approximation C̃ of the product C = A?B. It turns out that for BD
matrices it is quite easy to obtain an additive overestimate C̃ of C: Let us subdivide A and B
in square blocks of size ∆ × ∆, for some small polynomial value ∆. Thus the overall product
reduces to the multiplication of O((n/∆)3) pairs of blocks (A′, B′). By the bounded differences
property, it is sufficient to compute A′i,k+B′k,j for any triple of indexes (i, k, j) in order to obtain
an overestimate of all the entries in A′ ? B′ within an additive error in O(∆W). This way in
truly sub-cubic time we can compute an O(∆W) additive overestimate C̃ of C.

It would seem that Phase 1 requires that the matrices are BD, so that one would not be
able to use the same approach to attack the (min,+) product of general matrices. We note that
this is NOT the case: Phase 1 can be performed for arbitrary integer matrices A and B as well,
provided one has an algorithm that can fix C̃ and obtain C from it: We use a scaling approach
ala Seidel [39]. Assume that the entries of A and B are nonnegative integers bounded by M3,
and obtain A′ and B′ by setting A′i,j = dAi,j/2e and B′i,j = dBi,j/2e. Recursively compute
A′ ? B′, where the depth of the recursion is logM and the base case is when the entries of A
and B are bounded by a constant in which case A′ ? B′ can be computed in O(nω) time. Then,
in each recursive step we can set C̃i,j = 2Ci,j for all i, j. This gives an overestimate that errs
by at most an additive 2 in each entry. Thus, as long as the rest of the phases can be made to
work for arbitrary matrices to fix up C̃, this phase would also work.

Phase 2: Correcting C̃ up to a few bad triples. The heart of our approach comes at
this point. We perform a (non-trivial) perturbation of A and B, and then set to ∞ the entries
of absolute value larger than c ·∆W for an appropriate constant c. The perturbation consists
of adding the same vector V r

A (resp., V r
B) to each column of A (resp., row of B). Here V r

A and
V r
B are random vectors derived from the estimate C̃. Let Ar and Br be the resulting matrices.

Using (1) we can compute Cr = Ar ?Br in truly sub-cubic time O(∆Wnω) for sufficiently small
W and ∆. The perturbation is such that it is possible to derive from (Cr)i,j the corresponding
value (A ? B)i,j = Ai,k +Bk,j unless one of the entries Ari,k or Br

k,j was rounded to ∞.
The crux of our analysis is to show that if we do Õ(n3d) perturbations (for some d) and

associated bounded entry (min,+)-products, then there is only a small number (O(n3−d)) of
triples (i, k, j) for which (a) |Ai,k+Bk,j− C̃i,j | ≤ c′ ·∆W for some c′ = O(1) (i.e. k is a potential
witness for Ci,j) and (b) none of the perturbations had both Ari,j and B

r
i,j finite.

3We can assume that M is a power of 2.

2

Interestingly, our proof of the correctness of Phase 2 relies on an extremal graph theoretical
lemma that lower bounds the number of 4-cycles in sufficiently dense bipartite graphs.

In a sense Phase 1 and 2 only leave O(n3−d) work to be done: if we knew these “bad” triples
that are not covered by the perturbation steps, we could just go through them in a brute-force
way, fixing C̃. Since Phase 2 does not use the fact that A and B are BD, if we could find the
bad triples efficiently, we would obtain a truly sub-cubic algorithm for (min,+)-matrix product!

Phase 3: Finding and fixing the bad triples. To fix the bad triples, one could try to
keep track of the triples handled in each perturbation iteration. For arbitrary matrices A and
B this wouldn’t give a truly sub-cubic algorithm as the number of triples is already n3. For
BD-matrices however one doesn’t need to keep track of all triples, but rather only of triples
formed by the upper-most left-most entries of the blocks from Phase 1 since these entries are
good additive approximations of all block entries. The number of these block representative
triples is only O(n/∆)3) where ∆ is the block size (from Phase 1). Thus, instead of spending
more than n3 time, one can get away with spending O(ρ · (n/∆)3) time where ρ is the number
of perturbation iterations (from Phase 2). After we find the bad block representative triples,
we can go through their blocks in a brute-force manner to fix C̃ and compute C. Since each
triple in the blocks of a bad block representative triple must also be bad, the total number of
triples considered by the brute-force procedure must be O(n3−d) as this is the total number of
bad triples.

We reiterate that this is the only part of the algorithm that does not work for arbitrary A
and B.

1.3 Applications

The notion of BD matrices is quite natural and has several applications. Indeed, our original
motivation for studying the (min,+)-product of such matrices came from a natural scored version
of the classical Context-Free Grammar (CFG) parsing problem. It turns out that a fast algorithm
for a bounded difference version of scored parsing implies the first truly sub-cubic algorithms
for a few well-studied problems such as Language Edit Distance, RNA-Folding and Optimum
Stack Generation.

Recall that in the parsing problem we are given a CFG G and string σ = σ1 . . . σn of n
terminals. Our goal is to determine whether σ belongs to the language L generated by G. For
ease of presentation and since this covers most applications, we will assume unless differently
stated that the size of the grammar is |G| = O(1), and will not explicitly mention the dependency
of running times on grammar size.4 We will also assume G is given in the Chomsky Normal
Form (CNF)5. In a breakthrough result [43] Valiant proved a reduction from parsing to Boolean
matrix multiplication: the parsing problem can be solved in O(nω) time.

One can naturally define a scored generalization of the parsing problem (see, e.g., [4]). Here
each production rule p in G has an associated integer score (or cost) s(p). Our goal is now to
find a sequence of production rules of minimum total score that generates a given string σ. It
is relatively easy to adapt Valiant’s parser to this goal, the main difference being that Boolean
matrix multiplications are replaced by (min,+)-products. It follows that scored parsing can be
solved up to logarithmic factors in the time needed to perform one (min,+)-product (see also
[38]). In particular, applying Williams’ algorithm for (min,+)-product [48], one can solve scored
parsing in O(n3/2Θ(

√
logn)) time, which is the current best running time for this problem.

For a nonterminal X let s(X,σ) be the minimum total score needed to generate σ from X
(where G is assumed to be clear from the context). Let us define a bounded difference notion

4Our approach also works when |G| is a sufficiently small polynomial.
5 Note that it is well-known that any context free grammar can be transformed into an equivalent CNF

grammar.

3

for CFGs: Intuitively, this means that adding or deleting a terminal at one endpoint of a string
does not change the corresponding score by much.

Definition 2. A CFG G is a W -bounded differences (W -BD) grammar if, for any non-terminal
X, terminal x, and string σ of terminals, the following holds:

|s(X,σ)− s(X,σx)| ≤W and |s(X,σ)− s(X,xσ)| ≤W

When W = O(1), we will refer to G as a bounded differences (BD) grammar.

Via a simple but very careful analysis of the scored version of Valian’t parser, we are able to
show that the scored parsing problem on BD grammars can be reduced to (min,+)-product of
BD matrices (see Section A).

Theorem 3. Let O(nα) be the time needed to perform one (min,+)-product between two n× n
BD matrices. Then the scored parsing problem on BD grammars in CNF can be solved in Õ(nα)
time.

Corollary 1. The scored parsing problem on BD grammars in CNF can be solved in Õ(n2.8244)
randomized time and Õ(n2.8603) deterministic time.

BD grammars appear naturally in relevant applications. Consider for example the well-
studied Language Edit Distance problem (LED) [4, 31, 27, 37, 38, 1, 35]. Here we are given
a CFG G and a string σ of terminals. We are allowed to edit σ by inserting, deleting and
substituting terminals. Our goal is to find a sequence of such edit operations of minimum length
so that the resulting string σ′ belongs to the language L generated by G6. As already observed
by Aho and Peterson in 1972 [4], LED can be reduced to scored parsing. In more detail, it is
sufficient to assign score zero to the production rules of the input grammar, and then augment
the grammar with production rules of score 0 and 1 that model edit operations. By performing
the above steps carefully, the resulting scored grammar is BD, leading to a truly sub-cubic
algorithm for LED via Corollary 1 (see Appendix C). We remark that finding a truly-sub-cubic
algorithm for LED was wide open even for very restricted cases. For example, consider Dyck
LED, where the underlying CFG represents well-balanced strings of parentheses. Developing fast
algorithms for Dyck LED, and understanding membership in parenthesis language has recently
received considerable attention [9, 37, 25, 14, 28, 33]. Even for such restricted grammars, no
truly sub-cubic exact algorithm was known prior to this work.

Another relevant application is related to RNA-folding, a central problem in bioinformatics
since its definition by Nussinov and Jackobson in 1980 [32]. We can rephrase RNA folding as
follows. We are given the CFG S → SS | aSu | uSa | cSg | gSc | ε. Here terminals {a, u, c, g}
represent the 4 types of nucleotides in an RNA molecule. We have to find the minimum number
of insertions and deletions of nucleotides on the RNA molecule that will generate a string
consistent with the above grammar. This is essentially a variant of LED where only insertions
and deletions (and no substitutions) are allowed. Nussinov and Jackobson proposed a simple
O(n3) time algorithm to solve RNA-folding. Despite considerable efforts [46, 5, 50, 32], no truly
sub-cubic algorithm for RNA folding was known prior to our work. By essentially the same
argument as for LED, it is easy to obtain a BD scored grammar modeling RNA folding. Thus
we immediately obtain a truly sub-cubic algorithm to solve this problem via Corollary 1.

As a final application, consider the Optimum Stack Generation problem (OSG) described by
Tarjan in [42]. Here, we are given a finite alphabet Σ, a stack S, and a string σ ∈ Σ∗. We would
like to print σ by a minimum length sequence of three stack operations: push(), emit (i.e., print
the top character in the stack), and pop. For example, the string BCCAB can be printed via
the sequence of operations: push(B), emit(B), push(C), emit(C), emit(C) pop(C), push(A),

6In some variants of the problem each edit operation has some integer cost upper bounded by a constant. Our
approach clearly works also in that case.

4

emit(A) pop(A),emit(B), pop(B). While, there exists a simple O(n3) time algorithm for OSG,
Tarjan suspected this could be improved. In Appendix D, we show that OSG can be reduced to
scored parsing on BD grammars. This leads to the first truly sub-cubic algorithm for OSG.

Let us summarize the mentioned applications of our approach.

Theorem 4. LED, RNA-folding, and OSG can be solved in Õ(n2.8244) randomized time and
Õ(n2.8603) deterministic time.

We remark that our techniques also lead to a truly subquadratic algorithm for bounded mono-
tone (min,+) convolution. A subquadratic algorithm was already and very recently achieved
in a breakthrough result by Chan and Lewenstein [16], however with very different techniques.
For two sequences a = (a1, . . . , an) and b = (b1, . . . , bn) the (min,+)-convolution of a and b is
the vector c = (c1, . . . , cn) with ck = mini{ai + bk−i}. Assume n = m2. A standard reduction
from (min,+) convolution to the (min,+) matrix product constructs the m × m matrices Ar

with Ari,k = arm+i+k (for 1 ≤ r ≤ m) and B with Bk,j = bjm−k. Then from the products Ar ?B
we can infer the (min,+)-convolution of a and b in time O(n3/2). Note that if a has bounded
differences, then the matrices Ar have bounded difference along the rows, while B has bounded
difference along the columns. In Section B, we discuss how to obtain truly sub-cubic algorithms
for (min,+)-products when only one matrix has bounded differences, and even just along one
dimension. This allows to compute the m (min,+)-products in time O(m ·m2.9217) = O(n1.961),
obtaining a subquadratic algorithm for BD (min,+)-convolution. As observed by Chan and
Lewenstein, computing (min,+) convolution over bounded monotone sequences is equivalent to
computing over two bounded difference sequences.

We envision other applications of BD (min,+)-product to come in the future.

1.4 Related Work

Language Edit Distance. LED is among the most fundamental and best studied problems
related to strings and grammars [4, 31, 27, 37, 38, 1, 35]. It generalizes two basic problems in
computer science: parsing and string edit distance computation. In 1972, Aho and Peterson
presented a dynamic programming algorithm for LED that runs in O(|G|2n3) time [4], which
was improved to O(|G|n3) by Myers in 1985 [31]. These algorithms are based on popular CYK
parsing algorithm [3] with the observation that LED can be reduced to a scored parsing problem
[4]. This implied the previous best running time in O(n3/2Θ(

√
logn)). In a recent paper [38],

Saha showed that LED can be solved in O(nω

poly(ε)) time if we allow to approximate the exact edit
distance by a (1 + ε)-factor. Due to known conditional lower bound results for parsing [27, 1],
LED cannot be approximated within any multiplicative factor in time o(nω). Interestingly,
if we only allow insertion as edits, then [38] also showed that a sub-cubic exact algorithm is
unlikely due to a reduction to APSP on weighted graphs [45]. Whereas, here we show with
insertions and deletions (and possibly substitutions) as edits LED is solvable in truly sub-cubic
time. LED provides a very generic framework for modeling problems with vast applications
[24, 23, 47, 30, 36, 34, 22]. A fast exact algorithm for it is likely to have tangible impact.

RNA-Folding. Computational approaches to find the secondary structure of RNA molecules
are used extensively in bioinformatics applications. In 1980, Nussinov and Jackobson [32] pro-
posed the following optimization problem, and a simple O(n3) dynamic programming solution
to obtain the optimal folding. Let Σ be a set of letters and let Σ′ = {σ′ | σ ∈ Σ} be the set of
“matching” letters, such that for every letter σ ∈ Σ the pair σ, σ′ match. Given a sequence of
n letters over Σ ∪ Σ′, the RNA-folding problem asks for the maximum number of non-crossing
pairs {i, j} such that the ith and jth letter in the sequence match, i.e., if letters in positions i
and j are paired and if letters in positions k and l are paired, and i < k then either they are

5

nested, i.e., i < k < l < j or they are non-intersecting, i.e., i < j < k < l. The objective is to
maximize the number of pairings under these constraints.

Since the seminal work of [32], multitude of sophisticated RNA-folding algorithms with
complex objectives and softwares have been developed7, but the basic dynamic programming
algorithm of Nussinov and Jackobson remains at the heart of all of these. Despite much effort,
only mild improvements in running time has been reported so far [46, 5, 50], and obtaining a
truly sub-cubic algorithm for RNA-folding has remained open till this work.

Abboud et al. [1] showed that obtaining an algorithm for RNA-folding that runs in O(nω−ε)
time for any ε > 0 would result in a breakthrough in our algorithmic knowledge of the Clique
problem. Moreover, the work of [1] implies that RNA-folding problem needs fast matrix multi-
plication to be solved in truly sub-cubic time, unless there are fast algorithms for Clique that
do not use matrix multiplication.

Dyck LED. A closely related problem is Dyck Edit distance. In Dyck LED, a parentheses
string must be well-balanced by matching open parentheses with corresponding closed paren-
theses in a non-crossing way. For example, [()] belongs to the Dyck language, but [) or][do not.
The RNA grammar is often referred to as the two-sided Dyck where][is also a valid match.
Dyck edit distance with insertion and deletion generalizes the widely-studied string edit distance
problem [29, 26, 10, 11, 8, 7]. When approximation is allowed, a near-linear time O(poly log n)-
approximation algorithm was developed by Saha [37]. A (1 + ε)-approximation in O(nω) time
was also shown in [38] for any constant ε > 0. Abboud et al. [1] related the Dyck LED problem
to Clique with the same implications as for RNA-folding. Thus, up to a breakthrough in Clique
algorithms, truly sub-cubic Dyck LED requires fast matrix multiplication. Prior to our work,
no sub-cubic exact algorithm was known for Dyck LED.

1.5 Preliminaries and Notation

In this paper, by “randomized time t(n)” we mean a zero-error randomized algorithm running
in time t(n) in expectation, and also with high probability.

As is typical, we denote by ω < 2.3729 [44, 20] the exponent of square matrix multiplication,
i.e. ω is the infimum over all reals such that n × n matrix multiplication over the complex
numbers can be computed in nω+o(1) time. For ease of notation and as typical in the literature,
we shall omit the o(1) term and write O(nω) instead. We denote the running time to multiply
an a× b matrix with a b× c matrix by M(a, b, c) [19]. As in (1) above we have the following:

Lemma 1. [6] Let A,B be a×b and b×c matrices with entries in {−M,−M+1 . . . ,M}∪{∞}.
Then A ? B can be computed in time Õ(M ·M(a, b, c)). In particular, for a = b = c = n this
running time is Õ(Mnω).

Organization. In Section 2 we give our main technical result, a truly sub-cubic algorithm
for (min,+)-product with BD property. In Section A, we show how bounded difference scored
parsing can be solved asymptotically in the same time as computing a single BD (min,+)
product. In Section B, we show how to further reduce the running time, how to derandomize
our algorithm, and some generalizations of our approach. Sections C and D are devoted to prove
reductions from LED, RNA-folding, and OSG to scored parsing on BD grammars.

2 Fast Bounded-Differences (min,+) Product

In this section we present our fast (min,+) product algorithm for BD matrices. For ease of
presentation, we will focus here only on the case that both input matrices A and B are BD.

7see https://en.wikipedia.org/wiki/List_of_RNA_structure_prediction_software

6

https://en.wikipedia.org/wiki/List_of_RNA_structure_prediction_software

Furthermore, we will present a simplified randomized algorithm which is still truly sub-cubic.
Refinements of the running time, derandomization, and generalizations are discussed in Section
B. Let A and B be n × n matrices with W -bounded differences. We write C = A ? B for the
desired output and denote by Ĉ the result computed by our algorithm. Our algorithm consists
of following three main phases (see also Algorithm 1).

2.1 Phase 1: Computing an approximation

Let ∆ be a positive integer that we later fix as a small polynomial8 in n. We partition [n] into
blocks of length ∆ by setting I(i′) := {i ∈ [n] | i′ − ∆ < i ≤ i′} for any i′ divisible by ∆.
From now on by i, k, j we denote indices in the matrices A,B, and C and by i′, k′, j′ we denote
numbers divisible by ∆, i.e., indices of blocks.

The first step of our algorithm is to compute an entry-wise additive O(∆W)-approximation
C̃ of A?B. Since A and B haveW -BD, it suffices to approximately evaluate A?B only for indices
i′, k′, j′ divisible by ∆. Specifically, we compute C̃i′,j′ = min{Ai′,k′ +Bk′,j′ | k′ divisible by ∆},
and set C̃i,j := C̃i′,j′ for any i ∈ I(i′), j ∈ I(j′), see lines 1-3 of Algorithm 1.

The next lemma shows that C̃ is a good approximation of C.

Lemma 2. For any i′, k′, j′ divisible by ∆ and any (i, k, j) ∈ I(i′)× I(k′)× I(j′) we have

(1) |Ai,k −Ai′,k′ | ≤ 2∆W (2) |Bk,j −Bk′,j′ | ≤ 2∆W ;

(3) |Ci,j − Ci′,j′ | ≤ 2∆W ; (4) |Ci,j − C̃i,j | ≤ 4∆W

Proof. Consider the first statement. Observe that we can move from Ai,k to Ai′,k in i′ − i ≤ ∆
steps each time changing the absolute value by at mostW , hence |Ai,k−Ai′,k| ≤ ∆W . Similarly
from Ai′,k to Ai′,k′ . The overall absolute change is therefore at most 2∆W . The proof of the
second claim is analogous.

For the third statement, let k be such that Ci,j = Ai,k + Bk,j . Then Ci′,j′ ≤ Ai′,k +
Bk,j′ ≤ Ai,k + Bk,j + 2∆W = Ci,j + 2∆W . In the second inequality we used the fact that
Ai′,k ≤ Ai,k + ∆W and Bk,j′ ≤ Bk,j + ∆W from the same argument as above. Symmetrically,
we obtain Ci′,j′ ≤ Ci,j + 2∆W .

For the last statement, note that C̃i,j = C̃i′,j′ by construction. Let k′ be divisible by ∆ and
such that C̃i′,j′ = Ai′,k′+Bk′,j′ . Then Ci,j ≤ Ai,k′+Bk′,j ≤ Ai′,k′+Bk′,j′+2∆W = C̃i′,j′+2∆W ,
where again the second inequality exploits the above observation. For the other direction, let k
be such that Ci,j = Ai,k + Bk,j , and consider k′ with k ∈ I(k′). Then C̃i′,j′ ≤ Ai′,k′ + Bk′,j′ ≤
Ai,k +Bk,j + 4∆W = Ci,j + 4∆W , where in the second inequality we exploited (1) and (2).

2.2 Phase 2: Randomized reduction to (min,+)-product with small entries

The second step of our algorithm is the most involved one. The goal of this step is to change
A and B in a randomized way to obtain matrices where each entry is ∞ or has small absolute
value, thus reducing the problem to Lemma 1. This step will cover most triples i, k, j, but not
all: the third step of the algorithm will cover the remaining triples by exhaustive search. We
remark that Phase 2 works with arbitrary matrices A and B (assuming we know an approximate
answer C̃ as computed in Phase 1).

The following observation is the heart of our argument. For any vector F = (F1, . . . , Fn),
adding Fk to every entry Ai,k (∀i) and subtracting Fk from every entry Bk,j (∀j) does not change
the product A ? B. Similarly, for n-dimension vectors X and Y , adding Xi to every entry Ai,k
and adding Yj to every entry Bk,j changes the entry (A?B)i,j by +Xi+Yj , which we can cancel
after computing the product.

8We can assume that both n and ∆ are powers of two, so in particular we can assume that ∆ divides n.

7

Specifically, we may fix indices ir, jr and consider the matrices Ar with Ari,k := Ai,k+Bk,jr−
C̃i,jr and Br with Br

k,j := Bk,j − Bk,jr + C̃ir,jr − C̃ir,j . Then from Cr := Ar ? Br we can infer
C = A ? B via the equation Ci,j = Cri,j + C̃i,jr − C̃ir,jr + C̃ir,j .

We will set an entry of Ar or Br to ∞ if its absolute value is more than 48∆W . This
allows to compute Cr = Ar ? Br efficiently using Lemma 1. However, it does not correctly
compute C = A ? B. Instead, we obtain values Ĉri,j := Cri,j + C̃i,jr − C̃ir,jr + C̃ir,j that fulfill
Ĉri,j ≥ Ci,j . Moreover, if neither Ari,k nor Br

k,j was set to ∞ then Ĉri,j ≤ Ai,k +Bk,j ; in this case
the contribution of i, k, j to Ci,j is incorporated in Ĉrij (and we say that i, k, j is “covered” by
Ar, Br, see Definition 3). We repeat this procedure with independently and uniformly random
ir, jr ∈ [n] for r = 1, . . . , ρ many rounds, where 1 ≤ ρ ≤ n is a small polynomial in n to be
fixed later. Then Ĉ is set to the entry-wise minimum over all Ĉr. This finishes the description
of Phase 2, see lines 4–14 of Algorithm 1.

In the analysis of this step of the algorithm, we want to show that w.h.p. most of the
“relevant” triples i, k, j get covered: in particular, all triples with Ai,k +Bk,j = Ci,j are relevant,
as these triples define the output. However, since this definition would depend on the output
Ci,j , we can only (approximately) check a weak version of relevance, see Definition 3. Similarly,
we need a weak version of being covered.

Definition 3. We call a triple (i, k, j)

• strongly relevant if Ai,k +Bk,j = Ci,j,

• weakly relevant if |Ai,k +Bk,j − Ci,j | ≤ 16∆W ,

• strongly r-uncovered if for all 1 ≤ r′ ≤ r we have |Ar′i,k| > 48∆W or |Br′
k,j | > 48∆W , and

• weakly r-uncovered if for all 1 ≤ r′ ≤ r we have |Ar′i,k| > 40∆W or |Br′
k,j | > 40∆W .

A triple is strongly (resp., weakly) uncovered if it is strongly (resp., weakly) ρ-uncovered.

Next lemma gives a sufficient condition for not being weakly r-uncovered.

Lemma 3. For any i, k, j and ir, jr, if all triples (i, k, jr), (ir, k, jr), (ir, k, j) are weakly relevant
then (i, k, j) is not weakly r-uncovered.

Proof. From the assumption and C̃ being an additive 4∆W -approximation of C, we obtain

|Ai,k +Bk,jr − C̃i,jr | ≤ |Ai,k +Bk,jr − Ci,jr |+ |C̃i,jr − Ci,jr | ≤ 16∆W + 4∆W = 20∆W.

Similarly, we also have |Air,k +Bk,jr − C̃ir,jr | ≤ 20∆W and |Air,k +Bk,j − C̃ir,j | ≤ 20∆W .
Recall that in the algorithm we set Ari,k := Ai,k + Bk,jr − C̃i,jr and Br

k,j := Bk,j − Bk,jr +

C̃ir,jr − C̃ir,j (and then reset them to ∞ if their absolute value is more than 48∆W). From
the above inequalities, we have |Ari,k| ≤ 20∆W . Moreover, we can write Br

k,j as (Air,k +Bk,j −
C̃ir,j) − (Air,k + Bk,jr − C̃ir,jr), where both terms in brackets have absolute value bounded by
20∆W , and thus |Br

k,j | ≤ 40∆W . It follows that the triple i, k, j gets weakly covered within
round r.

We will crucially exploit the following simple extremal graph-theoretic result.

Lemma 4. Let G = (U ∪ V,E) be a bipartite graph with |U | = |V | = n nodes per partition and
|E| = m edges. Let C4 be the number of 4-cycles of G. If m ≥ 2n3/2, then C4 ≥ m4/(32n4).

Proof. For any pair of nodes v, v′ ∈ V , let N(v, v′) be the number of common neighbors {u ∈
U | {u, v}, {u, v′} ∈ E}, and let N =

∑
{v,v′}∈(V2)N(v, v′). By d(w) we denote the degree of

node w in G. By convexity of
(
x
2

)
= x(x−1)

2 and Jensen’s inequality, we have

N =
∑

{v,v′}∈(V2)

N(v, v′) =
∑
u∈U

(
d(u)

2

)
≥ n ·

(∑
u∈U d(u)/n

2

)
= n

(
m/n

2

)
=
m2

2n
−m

2
≥ m2

2n
−n2.

8

Since m ≥ 2n3/2 by assumption, we derive m2

2n ≥ 2n2 and thus we obtain N ≥ n2 > 2
(
n
2

)
as well

as N ≥ m2/(4n).
By the same convexity argument as above, we also have

C4 =
∑

{v,v′}∈(V2)

(
N(v, v′)

2

)
≥
(
n

2

)
·
(
N/
(
n
2

)
2

)
=

(
N −

(
n

2

))
N

n(n− 1)
≥ N2

2n2
,

where in the last inequality above we used the fact that N ≥ 2
(
n
2

)
. Altogether, this yields

C4 ≥
N2

2n2
≥ m4/(16n2)

2n2
=

m4

32n4
.

We are now ready to lower bound the progress made by the algorithm at each round.

Lemma 5. W.h.p for any ρ ≥ 1 the number of weakly relevant, weakly uncovered triples is
Õ(n2.5 + n3/ρ1/3).

Proof. Fix k ∈ [n]. We construct a bipartite graph Gk on n+ n vertices (we denote vertices in
the left vertex set by i or ir and vertices in the right vertex set by j or jr). We add edge {i, j}
to Gk if the triple (i, k, j) is weakly relevant.

In each of the ρ rounds of our algorithm we select ir and jr uniformly at random. Round
r covers some triples (i, k, j). For any such weakly r-covered triple (i, k, j), if (i, j) is in Gk,
we remove it from Gk. Thus, after round r, Gk contains (i, j) if and only if (i, k, j) is weakly
relevant and r-weakly uncovered.

Let z = c(n2/ρ) lnn for any constant c > 4. Consider an edge (i, j) in Gk that is contained
in at least z 4-cycles in Gk before any of the rounds of Phase 2 are performed. Now consider
each round r in turn and let i → ` → p → j → i be a 4-cycle containing (i, j) whose edges are
still in Gk. If ir = p and jr = ` are selected, then since by the definition of Gk (i, k, `), (p, k, `)
and (p, k, j) are weakly uncovered, by Lemma 3, (i, k, j) will be r-covered and thus (i, j) will be
removed from Gk.

Thus, if in any of the ρ rounds r, ir, jr are selected to be among the at least z choices
of vertices that complete (i, j) to a 4-cycle in Gk, (i, j) will not be in Gk at the end of all ρ
iterations. The probability that for a particular edge (i, j) with at least z 4-cycles in a particular
Gk, ir, jr are never picked to form a 4-cycle with (i, j) is

≤
(

1− z

n2

)ρ
=
(

1− z

n2

)c(n2/z) lnn
≤ 1

nc
.

By a union bound we get that the probability for some i, j, k this happens is ≤ 1/nc−3 which
is 1/poly(n) as we picked c > 4. We thus get that with high probability, at the end of all ρ
iterations, every edge in every Gk is contained in less than z 4-cycles.

Let mk denote the number of edges of Gk. Now we will bound
∑

kmk, as this is exactly the
number of weakly relevant, weakly uncovered triples. First, let’s note that

∑
{k | mk<2n3/2}mk <

2n2.5, and so it suffices to compute the sum for those k for which mk ≥ 2n3/2. Fix one such Gk.
Since every edge in Gk is contained in less than z 4-cycles w.h.p., the number of 4-cycles Ck of
Gk is less than mkz. On the other hand, by Lemma 4, Ck ≥ (mk/n)4/32. Thus,

(mk/n)4 < 32mkz =⇒ m3
k < 32n4z =⇒ mk <

(
32c(n6/ρ) lnn

)1/3
=⇒ mk ≤ Õ(n2/ρ1/3).

The total number of weakly uncovered, weakly relevant triples at the end of the ρ iterations
is thus w.h.p. Õ(n2.5 + n3/ρ1/3).

9

2.3 Phase 3: Exhaustive search over all relevant uncovered triples of indices

In the third and last phase we make sure to fix all strongly relevant, strongly uncovered triples
by exhaustive search, as these are the triples defining the output matrix whose contribution is
not yet incorporated in Ĉ. We are allowed to scan all weakly relevant, weakly uncovered triples,
as we know that their number is small by Lemma 11. This is the only phase that requires that
A and B are BD.

We use the following definitions of being approximately relevant or uncovered, since they are
identical for all triples (i, k, j) in a block i′, k′, j′ and thus can be checked efficiently.

Definition 4. We call a triple (i, k, j) ∈ I(i′)× I(k′)× I(j′)

• approximately relevant if |Ai′,k′ +Bk′,j′ − C̃i′,j′ | ≤ 8∆W , and

• approximately uncovered if for all 1 ≤ r ≤ ρ we have |Ari′,k′ | > 44∆W or |Br
k′,j′ | > 44∆W .

The notions of being strongly, weakly, and approximately relevant/uncovered are related as
follows.

Lemma 6. Any strongly relevant triple is also approximately relevant. Any approximately rel-
evant triple is also weakly relevant. Then same statements hold with “relevant” replaced by
“r-uncovered”.

Proof. Let (i, k, j) ∈ I(i′)× I(k′)× I(j′). Using Lemma 2, we can bound the absolute difference
betweenAi,k+Bk,j−Ci,j andAi′,k′+Bk′,j′−C̃i′,j′ by the three contributions |Ai,k−Ai′,k′ | ≤ 2∆W ,
|Bk,j −Bk′,j′ | ≤ 2∆W , and |Ci,j − C̃i′,j′ | = |Ci,j − C̃i,j | ≤ 4∆W . Thus, if Ai,k +Bk,j = Ci,j (i.e.,
(i, k, j) is strongly relevant), then |Ai′,k′ +Bk′,j′ − C̃i′,j′ | ≤ 8∆W (i.e., (i, k, j) is approximately
relevant). On the other hand, if (i, k, j) is approximately relevant, then |Ai,k + Bk,j − Ci,j | ≤
16∆W (i.e., (i, k, j) is weakly relevant).

For the notion of being r′-uncovered, for any r we bound the absolute differences |Ari,k−Ari′,k′ |
and |Br

k,j−Br
k′,j′ |. Recall that we set Ari,j := Ai,j+Bk,jr−C̃i,jr . Again using Lemma 2, we bound

both |Ai,j−Ai′,j′ | and |Bk,jr−Bk′,jr | by 2∆W . Since we have C̃i,jr = C̃i′,jr by definition, in total
we obtain |Ari,k−Ari′,k′ | ≤ 4∆W . Similarly, recall that we set Br

k,j := Bk,j−Bk,jr + C̃ir,jr− C̃ir,j .
The first two terms both contribute at most 2∆W , while the latter two terms are equal for Br

k,j

and Br
k′,j′ . Thus, |Br

k,j −Br
k′,j′ | ≤ 4∆W . The statements on “r′-uncovered” follow immediately

from these inequalities.

In our algorithm, we enumerate every triple (i′, k′, j′) whose indexes are divisible by ∆, and
check whether that triple is approximately relevant. Then we check whether it is approximately
uncovered. If so, we perform an exhaustive search over the block i′, k′, j′: We iterate over all
(i, k, j) ∈ I(i′) × I(k′) × I(j′) and update Ĉi,j := min{Ĉi,j , Ai,k + Bk,j}, see lines 15-19 of
Algorithm 1.

Note that i′, k′, j′ is approximately relevant (resp., approximately uncovered) if and only if
all (i, k, j) ∈ I(i′) × I(k′) × I(j′) are approximately relevant (resp., approximately uncovered).
Hence, we indeed enumerate all approximately relevant, approximately uncovered triples, and
by Lemma 6 this is a superset of all strongly relevant, strongly uncovered triples. Thus, every
strongly relevant triple (i, k, j) contributes to Ĉi,j in Phase 2 or Phase 3. This proves correctness
of the output matrix Ĉ.

2.4 Running Time

The running time of Phase 1 is O((n/∆)3 + n2) using brute-force. The running time of Phase
2 is Õ(ρ∆Wnω), since there are ρ invocations of Lemma 1 on matrices whose finite entries
have absolute value O(∆W). It remains to consider Phase 3. Enumerating all blocks i′, k′, j′

10

and checking whether they are approximately relevant and approximately uncovered takes time
O((n/∆)3ρ). The approximately relevant and approximately uncovered triples form a subset
of the weakly relevant and weakly uncovered triples by Lemma 6. The number of the latter
triples is upper bounded by Õ(n2.5 +n3/ρ1/3) w.h.p. by Lemma 11. In total Phase 3 takes time
Õ((n/∆)3ρ+ n3/ρ1/3 + n2.5) w.h.p. In total, the running time of Algorithm 1 is w.h.p.

Õ((n/∆)3 + n2 + ρ∆Wnω + (n/∆)3ρ+ n3/ρ1/3 + n2.5).

A quick check shows that for appropriately chosen ρ and ∆ (say ρ := ∆ := n0.1) and
for sufficiently small W this running time is truly sub-cubic. We optimize by setting ρ :=
(n3−ω/W)9/16 and ∆ := (n3−ω/W)1/4, obtaining time Õ(W 3/16n(39+3ω)/16), which is truly sub-
cubic for W ≤ O(n3−ω−ε). For W = O(1) using ω ≤ 2.3729 [44, 20] this running time evaluates
to O(n2.8825). Note that even with bad random choices the running time of our algorithm
is bounded by O(n3). In particular, this implies that our w.h.p. time bounds also hold in
expectation.

References

[1] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the current clique
algorithms are optimal, so is valiant’s parser. In IEEE 56th Annual Symposium on Foun-
dations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages
98–117, 2015.

[2] Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams. Subcubic equivalences
between graph centrality problems, APSP and diameter. In Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA,
January 4-6, 2015, pages 1681–1697, 2015.

[3] Alfred V. Aho and John E. Hopcroft. The Design and Analysis of Computer Algorithms.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1974.

[4] Alfred V. Aho and Thomas G. Peterson. A minimum distance error-correcting parser for
context-free languages. SIAM J. Comput., 1(4), 1972.

[5] Tatsuya Akutsu. Approximation and exact algorithms for RNA secondary structure pre-
diction and recognition of stochastic context-free languages. Journal of Combinatorial Op-
timization, 3(2-3):321–336, 1999.

[6] Noga Alon, Zvi Galil, and Oded Margalit. On the exponent of the all pairs shortest path
problem. J. Comput. Syst. Sci., 54(2):255–262, April 1997.

[7] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Polylogarithmic approx-
imation for edit distance and the asymmetric query complexity. In 51th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las
Vegas, Nevada, USA, pages 377–386, 2010.

[8] Alexandr Andoni and Krzysztof Onak. Approximating edit distance in near-linear time.
In Proceedings of the Forty-first Annual ACM Symposium on Theory of Computing, STOC
’09, pages 199–204, 2009.

[9] Arturs Backurs and Krzysztof Onak. Fast algorithms for parsing sequences of parentheses
with few errors. In PODS, page to appear, 2016.

[10] Ziv Bar-Yossef, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar. Approximating edit
distance efficiently. In FOCS, pages 550–559, 2004.

11

Algorithm 1 (min,+)-product A ? B for n × n matrices A,B with W -bounded differences.
Here ∆ and ρ are carefully chosen polynomial values. Also I(q) = {q −∆ + 1, . . . , q}.

. Phase 1: compute entry-wise additive 4∆W -approximation C̃ of A ? B
1: for any i′, j′ divisible by ∆ do
2: C̃i′,j′ := min{Ai′,k′ +Bk′,j′ | k′ divisible by ∆}
3: for any i ∈ I(i′), j ∈ I(j′) do
4: C̃i,j := C̃i′,j′

5: end for
6: end for
. Phase 2: randomized reduction to (min,+)-product with small entries

7: initialize all entries of Ĉ with ∞
8: for 1 ≤ r ≤ ρ do
9: pick ir and jr independently and uniformly at random from [n]

10: for all i, k do
11: set Ari,k := Ai,k +Bk,jr − C̃i,jr
12: if Ari,k 6∈ [−48∆W, 48∆W] then set Ari,k :=∞
13: end for
14: for all k, j do
15: set Br

k,j := Bk,j −Bk,jr + C̃ir,jr − C̃ir,j
16: if Br

k,j 6∈ [−48∆W, 48∆W] then set Br
k,j :=∞

17: end for
18: compute Cr := Ar ? Br using Lemma 1
19: for all i, j do Ĉi,j := min{Ĉi,j , Cri,j + C̃i,jr − C̃ir,jr + C̃ir,j}
20: end for
21: end for

. Phase 3: exhaustive search over all relevant uncovered triples of indices
22: for all i′, k′, j′ divisible by ∆ do
23: if |Ai′,k′ +Bk′,j′ − C̃i′,j′ | ≤ 8∆W then
24: if for all r we have |Ari′,k′ | > 44∆W or |Br

k′,j′ | > 44∆W then
25: for all i ∈ I(i′), k ∈ I(k′), j ∈ I(j′) do
26: Ĉi,j := min{Ĉi,j , Ai,k +Bk,j}
27: end for
28: end if
29: end if
30: end for
31: return Ĉ

12

[11] Tuğkan Batu, Funda Ergun, and Cenk Sahinalp. Oblivious string embeddings and edit
distance approximations. In SODA, pages 792–801, 2006.

[12] Aaron Bernstein and David R. Karger. A nearly optimal oracle for avoiding failed vertices
and edges. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing,
STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 101–110, 2009.

[13] U. Brandes. A faster algorithm for betweenness centrality. Journal of Mathematical Soci-
ology, 25(2):163–177, 2001.

[14] Amit Chakrabarti, Graham Cormode, Ranganath Kondapally, and Andrew McGregor. In-
formation cost tradeoffs for augmented index and streaming language recognition. In FOCS,
2010.

[15] Timothy M. Chan. More algorithms for all-pairs shortest paths in weighted graphs. SIAM
J. Comput., 39(5):2075–2089, 2010.

[16] Timothy M. Chan and Moshe Lewenstein. Clustered integer 3sum via additive combi-
natorics. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of
Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 31–40, 2015.

[17] Michael J. Fischer and Albert R. Meyer. Boolean matrix multiplication and transitive
closure. In 12th Annual Symposium on Switching and Automata Theory, East Lansing,
Michigan, USA, October 13-15, 1971, pages 129–131, 1971.

[18] Michael L Fredman. New bounds on the complexity of the shortest path problem. SIAM
Journal on Computing, 5(1), 1976.

[19] François Le Gall. Faster algorithms for rectangular matrix multiplication. In 53rd Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ,
USA, October 20-23, 2012, pages 514–523, 2012.

[20] François Le Gall. Powers of tensors and fast matrix multiplication. In International Sympo-
sium on Symbolic and Algebraic Computation, ISSAC ’14, Kobe, Japan, July 23-25, 2014,
pages 296–303, 2014.

[21] Fabrizio Grandoni and Virginia Vassilevska Williams. Improved distance sensitivity oracles
via fast single-source replacement paths. In 53rd Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages
748–757, 2012.

[22] R.R Gutell, J.J. Cannone, Z Shang, Y Du, and M.J Serra. A story: unpaired adenosine
bases in ribosomal RNAs. In Journal of Mol Biology, 2010.

[23] Mark Johnson. PCFGs, Topic Models, Adaptor Grammars and Learning Topical Colloca-
tions and the Structure of Proper Names. In ACL, pages 1148–1157, 2010.

[24] Flip Korn, Barna Saha, Divesh Srivastava, and Shanshan Ying. On repairing structural
problems in semi-structured data. In VLDB, 2013.

[25] Andreas Krebs, Nutan Limaye, and Srikanth Srinivasan. Streaming algorithms for recog-
nizing nearly well-parenthesized expressions. In MFCS, 2011.

[26] Gad M. Landau, Eugene W. Myers, and Jeanette P. Schmidt. Incremental string compari-
son. SIAM J. Comput., 27(2), April 1998.

[27] Lillian Lee. Fast context-free grammar parsing requires fast boolean matrix multiplication.
J. ACM, 49(1), January 2002.

13

[28] Frédéric Magniez, Claire Mathieu, and Ashwin Nayak. Recognizing well-parenthesized ex-
pressions in the streaming model. In STOC, 2010.

[29] William J. Masek and Michael S. Paterson. A faster algorithm computing string edit
distances. Journal of Computer and System Sciences, 20(1):18 – 31, 1980.

[30] Darnell Moore and Irfan Essa. Recognizing multitasked activities from video using stochas-
tic context-free grammar. In NCAI, pages 770–776, 2002.

[31] Gene Myers. Approximately matching context-free languages. Information Processing Let-
ters, 54, 1995.

[32] Ruth Nussinov and Ann B.Jacobson. Fast algorithm for predicting the secondary structure
of single-stranded rna. Proceedings of the National Academy of Sciences of the United States
of America, 77(11):6309–6313, 1980.

[33] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Testing membership in parenthesis lan-
guages. Random Struct. Algorithms, 22(1), January 2003.

[34] Geoffrey K Pullum and Gerald Gazdar. Natural languages and context-free languages.
Linguistics and Philosophy, 4(4), 1982.

[35] Sanguthevar Rajasekaran and Marius Nicolae. An error correcting parser for context free
grammars that takes less than cubic time. Manuscript, 2014.

[36] Andrea Rosani, Nicola Conci, and Francesco G. De Natale. Human behavior recognition
using a context-free grammar. Journal of Electronic Imaging, 23(3), 2014.

[37] Barna Saha. The dyck language edit distance problem in near-linear time. In 55th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA,
USA, October 18-21, 2014, pages 611–620, 2014.

[38] Barna Saha. Language edit distance and maximum likelihood parsing of stochastic gram-
mars: Faster algorithms and connection to fundamental graph problems. In IEEE 56th
Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA,
17-20 October, 2015, pages 118–135, 2015.

[39] Raimund Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs.
J. Comput. Syst. Sci., 51(3):400–403, 1995.

[40] Avi Shoshan and Uri Zwick. All pairs shortest paths in undirected graphs with integer
weights. In 40th Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-
18 October, 1999, New York, NY, USA, pages 605–615, 1999.

[41] Tadao Takaoka. Subcubic cost algorithms for the all pairs shortest path problem. Algorith-
mica, 20(3):309–318, 1998.

[42] Robert E Tarjan. Problems in data structures and algorithms. In Graph Theory, Combi-
natorics and Algorithms, pages 17–39. Springer, 2005.

[43] Leslie G. Valiant. General context-free recognition in less than cubic time. J. Comput. Syst.
Sci., 10(2):308–315, 1975.

[44] Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd. In
STOC, pages 887–898, 2012.

14

[45] Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path,
matrix and triangle problems. In 51th Annual IEEE Symposium on Foundations of Com-
puter Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 645–654,
2010.

[46] Balaji Venkatachalam, Dan Gusfield, and Yelena Frid. Faster algorithms for RNA-folding
using the four-russians method. In WABI, 2013.

[47] Ye-Yi Wang, Milind Mahajan, and Xuedong Huang. A unified context-free grammar and
n-gram model for spoken language processing. In ICASP, pages 1639–1642, 2000.

[48] Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In STOC, pages
664–673, 2014.

[49] Raphael Yuster. Efficient algorithms on sets of permutations, dominance, and real-weighted
APSP. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2009, New York, NY, USA, January 4-6, 2009, pages 950–957, 2009.

[50] Shay Zakov, Dekel Tsur, and Michal Ziv-Ukelson. Reducing the worst case running times
of a family of RNA and CFG problems, using Valiant’s approach. In WABI, 2010.

[51] Uri Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplica-
tion. J. ACM, 49(3):289–317, 2002.

A Fast Scored Parsing

In this section we prove Theorem 3 that reduces the scored parsing problem over BD grammars
to (min,+) product over BD matrices. For a square matrix M , we let n(M) denote its number
of rows and columns.

Context Free Grammars and Scored Parsing. Let G = (N,T, P, S) be a Context Free
Grammar (CFG), where N and T are the (disjoint) sets of non-terminals and terminals, respec-
tively, P is the set of production rules, and S is the starting non-terminal. We recall that a
production rule is of the form p = (X → α), with X ∈ N and α ∈ (N ∪ T)∗, and applying p to
(some instance of) X ∈ N in a string σ ∈ (N ∪ T)∗ generates the string σ′ where X is replaced
by α.9 The language L(S) generated by G is the set of strings σ ∈ T ∗ that can be derived from
S by applying a finite sequence of production rules. We also let L(X) denote the set of strings
that can be generated from the non-terminal X ∈ N .

For the sake of simplicity and w.l.o.g., we assume that G is given in Chomsky normal form
(CNF). In particular, productions rules are of the form (Z → XY), (Z → x), and (S → ε),
where X,Y ∈ N \ {S}, Z ∈ N , x ∈ T , and ε denotes the empty string.

In the scored parsing problem, each production rule p ∈ P is associated with an integer score
s(p). Intuitively, applying a given production rule has a cost. Given a string σ of length n, we
wish to compute a sequence of production rules of minimum total score s(S, σ) that derives σ
from S (we assume s(S, σ) = +∞ if σ /∈ L(S)). Let us define s(X,σ) similarly for a non-terminal
X.

We will exploit a generalization of Valiant’s parser [43]: in Section A.1 we start by describing
it. Then in Section A.2 we describe how to modify Valiant’s parser to solve the scored parsing
problem: here we replace Boolean matrix multiplications with (min,+) products. Finally, in
Section A.3 we show that all the involved (min,+) products can be reduced to (min,+) product
on W -bounded differences matrices.

9Given a set of symbols U , U∗ as usual denotes any, possibly empty, string of elements from U .

15

A.1 Valiant’s Parser

Given a CFG G = (N,T, P, S) and a string σ = σ1σ2....σn ∈ T ∗, the parsing problem is to
determine whether σ ∈ L(S). In a breakthrough paper [43], Valiant described a reduction from
parsing to Boolean matrix multiplication (for a more detailed description, please see [43]). Let
us define a (product) operator “.” as follows. For N1, N2 ⊆ N ,

N1.N2 = {Z ∈ N : ∃X ∈ N1,∃Y ∈ N2 : (Z → XY) ∈ P}.

Note the above operator is not associative in general, namely (N1.N2).N3 might be different
from N1.(N2.N3).

Given a a × b matrix A and a b × c matrix B, whose entries are subsets of N , we can
naturally define a matrix product C = A.B, where Ci,j = ∪bk=1Ai,k.Bk,j . Observe that the “.”
operator can be reduced to the computation of a constant number of standard Boolean matrix
multiplications. In more detail, for a matrix M and non-terminal X, we let M(X) be the 0-
1 matrix with the same dimension of X and having M(X)i,j = 1 iff X ∈ Mi,j . Consider the
product C = A.B. Matrix C is initialized with empty entries. Then we consider each production
rule (Z → XY) separately, and we compute C ′(Z) = A(X) ·B(Y) where · is standard Boolean
matrix multiplication. Then, for all i, j, we add Z to the set Ci,j if C ′(Z)i,j = 1.

The transitive closure A+ of an m×m matrix A of the above kind is defined as

A+ = ∪mi=1A
(i),

where
A(1) = A and A(i) = ∪i−1

j=1A
(j).A(i−j).

Here unions are taken component-wise.
Given the above definitions we can formulate the parsing problem as follows. We construct

an (n + 1) × (n + 1) matrix A where Ai,i+1 = {X ∈ N : (X → σi) ∈ P} and Ai,j = ∅ for
j 6= i+ 1. Then by the definition of “.” it turns out that X ∈ A+

i,j iff σi . . . σj−1 ∈ L(X). Hence
one can solve the parsing problem by computing A+ and checking whether S ∈ A+

1,n+1.
Suppose that, for two given m×m matrices, the “.” operation can be performed in O(mα)

time for some 2 ≤ α ≤ 3, and assume w.l.o.g. that the ∪ operation can be performed in O(m2)
time10. In this case we cannot use the usual squaring technique to compute A+ in O(nα) time
due to the fact that “.” is not associative. Valiant describes a more sophisticated approach to
achieve the same running time. By the above discussion, it follows that the parsing problem
can be solved in time O(nω), where ω < 2.373 is fast Boolean matrix multiplication exponent
[44, 20].

The fast procedure to compute the transitive closure of a given matrix is described in Algo-
rithm 2. For the sake of simplicity assume that n+ 1 is a power of 4: this way all the indexes in
the recursive calls are integer.11 By Q we denote a sufficiently large constant so that (Q/2)α is
smaller than Qα by a sufficiently large constant multiplicative factor (recall that O(mα) is the
time needed to perform one “.” product on two m×m matrices). For two sets of indices I and
J , by BJ

I we denote the submatrix of B given by entries Bi,j , with i ∈ I and j ∈ J .
The algorithm involves 4 recursive procedures: Parse, Parse2, Parse3, and Parse4. Each one

of them receives in input a n(B)× n(B) matrix B, and the result of the computation is stored
in B (B is passed by reference).

The running time bound follows by standard arguments, observing that each recursive call
involves the call of a constant number of procedures on submatrices of at most half the size of
the input matrix.

10Here we exploit the fact that G has constant size.
11This can be enforced by expanding the matrix with dummy entries.

16

Algorithm 2 Valiant’s parser. In all the subroutines the input is a n(B) × n(B) matrix B,
which is passed by reference. By BJ

I we denote the submatrix of B having entries Bi,j , with
i ∈ I and j ∈ J . Q is a sufficiently large constant.
Parse(B)
1: if n(B) ≤ Q = O(1) then
2: compute B+ with the trivial algorithm and set B ← B+

3: else
4: Parse(B[1,n(B)/2]

[1,n(B)/2])

5: Parse(B[n(B)/2+1,n(B)]
[n(B)/2+1,n(B)])

6: Parse2(B)
7: end if

Parse2(B)
1: if n(B) ≤ Q = O(1) then
2: compute B+ with the trivial algorithm and set B ← B+

3: else
4: Parse2(B

[n(B)/4+1,3n(B)/4]
[n(B)/4+1,3n(B)/4])

5: Parse3(B
[1,3n(B)/4]
[1,3n(B)/4])

6: Parse3(B
[n(B)/4+1,n(B)]
[n(B)/4+1,n(B)])

7: Parse4(B)
8: end if

Parse3(B)
1: B ← B ∪B.B
2: C ← matrix obtained from B by deleting row/column indices in [n(B)/3 + 1, 2n(B)/3]
3: Parse2(C)
4: B ← matrix obtained from C by reintroducing the rows and columns deleted in Step 2

Parse4(B)
1: B ← B ∪B.B
2: C ← matrix obtained from B by deleting row/column indices in [n(B)/4 + 1, 3n(B)/4]
3: Parse2(C)
4: B ← matrix obtained from C by reintroducing the rows and columns deleted in Step 2

17

A.2 Scored Parser and (min,+) Products

We can adapt Valiant’s approach to scored parsing as follows. This has already been done in
[38], but we give details here for the sake of completeness. Let us consider pairs of the form
Xs = (X, sX), where X ∈ N and sX is a non-negative integer (that can be interpreted as a
score). We denote by N s the set of such pairs. Let N1, N2 ⊆ N s, where each non terminal
X appears in at most one pair in N1 and N2. We redefine the operator “.” as follows: N1.N2

is the set of pairs (Z, sZ) ∈ N s such that there exist (X, sX) ∈ N1 and (Y, sY) ∈ N2 such
that (Z → XY) ∈ P and sZ = sX + sY + s(Z → XY), and furthermore sZ is the minimum
possible value of the mentioned type for each considered non-terminal Z. We also redefine the
“∪” operator on N s as follows: we first compute the classical set union operation and then, in
case of multiples entries of type (X, s1), . . . , (X, sk) (all sharing the same non-terminal X), we
replace all such entries with one single entry (X,min{s1, . . . , sk}).

Given the above operations “.” and “∪”, we can define the product of two matrices whose
entries are subsets of N s and the transitive closure of one such square matrix in the same way
as before. We can then solve the scored parsing problem as follows. For a string σ on length n
and a scored grammar (G, s), we define a (n+ 1)× (n+ 1) matrix A whose entries are subsets
of N s, where

Ai,i+1 = {(X, sX) ∈ N s : (X → σi) ∈ P, s(X → σi) = sX}
for i = 1, . . . , n and Ai,j = ∅ for j 6= i+ 1. It then follows that the solution to the scored parsing
problem is s if (S, s) ∈ A+

1,n+1 (+∞ if there is no entry of type (S, s) in A+
1,n+1).

Crucially for our goals, the “.” operator can be implemented with a reduction to a constant
number of (min,+) products ?, with a natural adaptation of the previously described reduction
to Boolean matrix multiplication. For a matrix M with entries in N s and for X ∈ N , let
M(X) be the matrix with the same dimension of M and having M(X)i,j = sX if some pair
(X, sX) ∈ Mi,j and M(X)i,j = +∞ otherwise. Consider the product C = A.B. Matrix C is
initialized with empty entries. Then we consider each production rule (Z → XY) sequentially
and compute the (min,+) product C ′(Z) = A(X) ? B(Y). Then we construct a matrix C ′′(Z)
with C ′′(Z)i,j = {(Z, s(Z → XY) + C ′(Z)i,j} and set M ← M ∪ C ′′(Z) (recall that ∪, in case
of multiple entries with the same non-terminal, keeps only the entry with minimum score).

Suppose that we can perform a (min,+) product of the mentioned type on m×m matrices
in time O(mα) for some 2 ≤ α ≤ 3. Then exactly the same analysis as in [43] implies that the
scored parsing problem (hence LED) can be solved in time O(nα).

A.3 Reduction to Bounded Differences (min,+) Product

In this section we show that, given a O(nα) time algorithm for W -BD (min,+) product, then
we can perform the products in Step 1 of Parse3(B) and Parse4(B) in O(n(B)α) time.

We will have to perform (min,+) products between matrices that not only contain integers,
but also ∞. For this reason it is convenient to consider the following relaxed notion of W -BD.

Definition 5. An n × n matrix M with entries in Z ∪ {∞} has relaxed W -BD if (i) M has
W -BD, or (ii) M contains only ∞, or (iii) Mi,j = ∞ for i ≥ j, and for any two indexes i, j,
i < j < n, one has

|Mi,j −Mi,j+1| ≤W and |Mi,j −Mi+1,j | ≤W.

An n × n matrix M with entries in N s has relaxed W -BD if M(X) has this property for all
non-terminals X.

Observe that A+ satisfies condition (iii) in the above definition since by assumption the input
grammar is W -BD.

Next lemma shows a reduction from (min,+) product of relaxedW -BD matrices to (min,+)
product of (standard) W -BD matrices.

18

Lemma 7. Assume we are given a O(nα) time algorithm to compute the (min,+) product of
two n × n W -BD matrices, for some W and 2 ≤ α ≤ 3. Then it is possible to compute the
(min,+) product of two n× n relaxed W -BD matrices in time Õ(nα) (O(nα) for α > 2).

Proof. Consider the product C = A?B, where A and B are n×n matrices with relaxed W -BD.
The claim is trivially true if at least one of A and B satisfies case (ii) in the definition (C only
contains ∞), or if both A and B satisfy case (i). Hence assume that at least one of A and B
satisfies case (iii), say A. W.l.o.g. we can assume that also B satisfies (iii): indeed, it is sufficient
to set to ∞ the entries Bi,j with i ≥ j; this doesn’t change the value of the product.

We initialize a matrix Ĉ with ∞, and then update it to achieve Ĉ = C. This will be done
by performing (min,+) products between submatrices taken from the upper triangular part of
A and B (main diagonal excluded), which have therefore W -BD in the standard sense.

Recall that Ci,j = mink=1,...,n{Ai,k + Bk,j}. Trivially Ci,j = ∞ for i ≤ j. Furthermore
Ai,k = Bk,j = ∞ for i ≥ k and k ≥ j. Therefore, in order to compute any finite value Ci,j it is
sufficient to consider the relevant triples of indexes (i, k, j) with i < k < j.

We partition the computation into levels ` = 1, . . . , log2 n. At level ` we consider a partition
of [n] into intervals I(`, a) = (an/2`, (a+ 1)n/2`], a = 0, . . . , 2` − 1. Consider first the following
algorithm: for each level `, and each a, b, c ∈ {0, . . . , 2` − 1}, a < b < c, we perform all the
(min,+) products C`a,b,c = A

I(`,b)
I(`,a) ? B

I(`,c)
I(`,b) . Then we update the entries in ĈI(`,c)I(`,a) by taking the

entry-wise minimum with C`a,b,c. Observe that all the considered products are among submatrices
of A and B with W -BD. Furthermore all the relevant triples (i, k, j), i < k < j, are considered
at least once. Thus the algorithm computes the correct solution.

The above algorithm can be sped up by considering, for a given level ` > 1, only triples (a, b, c)
with b = a+1 or b+1 = c. Indeed, whenever a+1 < b < c−1, one has I(`, a)×I(`, b)×I(`, c) ⊆
I(`− 1, a′)× I(`− 1, b′)× I(`− 1, c′) for proper indexes a′, b′, c′ ∈ {0, . . . , 2`−1− 1}, a′ < b′ < c′.
Thus any relevant triple (i, k, j) ∈ I(`, a)× I(`, b)× I(`, c) is anyway considered at level `− 1.

It remains to bound the running time. The number of triples (a, b, c) considered at level ` is
at most 22`, and each corresponding (min,+) product can be performed in time O((n

2`
)α). Thus

the total cost of the computation is O(
∑

` 22` · (n
2`

)α). This quantity is O(nα) for α > 2, and
O(n2 log n) otherwise.

Recall that in the scored parser the only (min,+) products that we perform, inside procedures
Parsek(B), k ∈ {3, 4}, are of type B.B. Let us focus on one such product. Recall also that
in order to implement such products we consider each production rule (Z → XY), we derive
integer matrices B(X) and B(Y), and then we compute B(X) ? B(Y).

It is possible that B does not have relaxed W -BD. We next show that we can reduce the
product B.B to a constant number of (min,+) products over smaller square matrices which
have that property. In order to do that we need to analyze the behavior of the algorithm at
intermediate steps.

We start by proving a technical lemma that relates the indexes of the input square matrices B
in the various procedures to the indexes of the original matrix A. Note that each such matrix B
corresponds to some submatrix of A, however indexes of B might map discontinuously to indexes
of A (i.e., the latter indexes do not form one interval). This is due to Step 2 of Parse3(B) and
Parse4(B) that constructs a matrix C by removing central rows and columns of B. Note also
that by construction the row indexes of A associated to B are equal to the corresponding column
indexes (since the mentioned step removes the same set of rows and columns). We next denote
by mapB(i) the row/column index of A corresponding to row/column index i of B. We say that
B is contiguous if {mapB(i)}i=1,...,n(B) = {mapB(1),mapB(1) + 1, . . . ,mapB(1) +n(B)− 1}. In
other words, the indexes of A corresponding to B form an interval of consecutive indexes. We
say that B has a discontinuity at index 1 < a < n(B) if B is not continuous but the submatrices
B

[1,a]
[1,a] and B

[a+1,n(B)]
[a+1,n(B)] are continuous.

19

Lemma 8. Any input matrix B considered by the procedures in the scored parser:

1. is continuous if it is the input to Parse;

2. is continuous or has a discontinuity at n(B)/2 if it is the input to Parse2 or Parse4;

3. is continuous or has a discontinuity at n(B)/3 or 2n(B)/3 if it is the input to Parse3.

Proof. We prove the claim by induction on the partial order induced by the recursion tree from
the root to the leaves.

Parse(B) satisfies the claim in the starting call with B = A. In the remaining cases Parse(B)
is called by Parse(D) with B = D

[1,n(D)/2]
[1,n(D)/2] or B = D

[n(D)/2+1,n(D)]
[n(D)/2+1,n(D)]. Claim (1) follows by

inductive hypothesis on Parse(D).
Parse4(B) is called by Parse2(B). Claim (2) follows by inductive hypothesis on Parse2(B).
Parse3(B) is called by Parse2(D), with (i) B = D

[1,3n(D)/4]
[1,3n(D)/4] or (ii) B = D

[n(D)/4+1,n(D)]
[n(D)/4+1,n(D)].

By inductive hypothesis D is continuous or has a discontinuity at n(D)/2. Hence B, if not
continuous, has a discontinuity at 2n(B)/3 in case (i) and at n(B)/3 in case (ii). Claim (3)
follows.

Finally consider Parse2(B). If it is called by Parse(B), Claim (4) follows by inductive hy-
pothesis on Parse. If it is called by Parse2(D) with B = D

[n(D)/4+1,3n(D)/4]
[n(D)/4+1,3n(D)/4], Claim (4) fol-

lows by inductive hypothesis on Parse2. Suppose it is called by Parse4(D). Then D has size
n(D) = 2n(B), and is continuous or has a discontinuity at n(D)/2 by inductive hypothesis. In
this case B is obtained by removing the n(D)/2 central columns and rows of D. Therefore B
has a discontinuity at n(B)/2. The remaining case is that Parse2(B) is called by Parse4(D),
where D has size n(D) = 4n(B)/3. In this case B is obtained by removing the n(D)/3 central
columns and rows of D. Since D is continuous or has a discontinuity at n(D)/3 or 2n(D)/3 by
inductive hypothesis on Parse3, B has a discontinuity at n(B)/2.

The following two lemmas upper and lower bound the progress made by the scored parser in
intermediate steps of the algorithm. Indeed, this is the lemma which follows from the correctness
of Valiant’s algorithm. It shows that any submatrix which is input to some Parsek is transitively
closed after that call of Parsek completes.

Lemma 9. Let A be the input matrix and B be any submatrix in input to some call to Parsek,
k ∈ {2, 3, 4}. Then one has the following input property:

Bi,j = (A+)mapB(i),mapB(j) ∀i, j ∈ [1, n(B)− n(B)/k] (1)

Bi,j = (A+)mapB(i),mapB(j) ∀i, j ∈ [n(B)/k + 1, n(B)] (2)

The matrix B at the end of the procedure has the following output property

Bi,j = (A+)mapB(i),mapB(j) ∀i, j ∈ [1, n(B)] (3)

The same output property holds for procedure Parse.

Proof. We prove the claim by induction on the total order defined by the beginning and the end
of each procedure during the execution of the algorithm starting from Parse(A).

Consider the input property of some call Parse2(B). If Parse2(B) is called in Step 6 of Parse,
the property follows by inductive hypothesis on the output property of Parse. If Parse2(B) is
called in Step 4 of Parse2, the claim follows by inductive hypothesis on the input property of
Parse2. Otherwise Parse2(B) is called in Step 3 of Parsek, k ∈ {3, 4}: the claim follows by
inductive hypothesis on the input property of Parsek.

Let us consider the input property of some call Parse3(B). Note that Parse3(B) is called
either in Step 5 or in Step 6 of Parse2. In the first case the claim follows by inductive hypothesis
on the input and output property of Parse2. In the second case it follows from the input property

20

of Parse2 and the output property of Parse3. The input property of Parse4 holds by a similar
argument.

The output property of Parse follows immediately by the correctness of the trivial algorithm
used in Step 2 and by inductive hypothesis on the output property of Parse2. Similarly, the
output property of Parse2 follows by the correctness of the trivial algorithm used in Step 2 and
by inductive hypothesis on the output property of Parse4.

The output property of Parsek, k ∈ {3, 4}, follows by inductive hypothesis on the input
property of Parsek and on the output property of Parse2.

Lemma 10. Let B be some input matrix to Parsek, k ∈ {2, 3, 4}, and define S = [1, n(B)/k] and
L = [n(B)− n(B)/k+ 1, n(B)]. Then submatrix BS

L contains only empty entries. Furthermore,
submatrix BL

S has relaxed W -bounded differences for k ∈ {3, 4}, and for k = 2 it has relaxed
W -BD or contains only empty entries except for entry Bn(B)/2,n(B)/2+1.

Proof. We prove the claim by induction on the partial order induced by the recursion tree from
root to leaves.

Consider first BS
L. By Lemma 8 it is easy to see that the entries of BS

L always correspond
to entries in the lower triangular part of A. Observe that this portion of A contains only empty
entries both at the beginning of the algorithm (by construction) and at its end (by the properties
of A+). Since the algorithm never turns a non-empty entry into an empty one, it follows that
those entries are always empty during the execution of the algorithm. The claim on BS

L follows.
Consider next BL

S . We start by considering Parse3(B). This procedure is called on Step 5 or
6 of Parse2(D) for some matrix D. In both cases the claim follows by inductive hypothesis on
Parse2 since Step 4 in the first case, and Steps 4-5 in the second case do not update BL

S . Note
that in both cases the entry Dn(D)/2,n(D)/2+1 is not contained in BL

S . The case of Parse4(B) is
analogous: the procedure is called in Step 7 of Parse2(D) and the portion of D corresponding
to BL

S is not updated in Steps 4-6.
It remains to consider Parse2. Suppose that Parse2(B) is called by Parse. In this case BL

S is
always taken from the upper-triangular part of the initialization matrix A (which contains only
empty entries with the exception of the entries above the main diagonal). The claim follows. If
Parse2(B) is called in Step 4 of Parse2, the claim follows by inductive hypothesis on Parse2.

Otherwise Parse2 is called in Step 3 of Parsek(D), k ∈ {3, 4}. Consider first the case k = 3.
Let S′ = [1, n(D)/3], M ′ = [n(D)/3 + 1, 2n(D)/3] and L′ = [2n(D)/3 + 1, n(D)]. Note that
BL
S = DL′

S′ . By inductive hypothesis we have that at the beginning of the call to Parse3 matrix
DL′
S′ has relaxed W -BD. In Step 1 of Parse3 we execute the update

DL′
S′ ← DL′

S′ ∪DS′
S′ .D

L′
S′ ∪DM ′

S′ .D
L′
M ′ ∪DL′

S′ .D
L′
L′

Observe that the union and the product of two square matrices with relaxed W -BD has relaxed
W -BD. Since DL′

S′ has this property by inductive hypothesis, it is sufficient to show that the
same holds for DS′

S′ , D
M ′
S′ , D

L′
M ′ , and D

L′
L′ . By Lemma 8, D is continuous or has a discontinuity

at n(D)/3 or 2n(D)/3. Combining this with Lemma 9, one obtains the desired property.
The case of Parse4 is analogous. Let us define S′ = [1, n(D)/4], M ′ = [n(D)/4 + 1, n(D)/2],

M ′′ = [n(D)/2+1, 3n(D)/4], and L′ = [3n(D)/4+1, n(D)]. Also in this case BL
S = DL′

S′ , and at
the beginning of Parse4(D) matrix DL′

S′ has relaxed W -BD by inductive hypothesis. The update
in this case can be written as:

DL′
S′ ← DL′

S′ ∪DS′
S′ .D

L′
S′ ∪DM ′

S′ .D
L′
M ′ ∪DM ′′

S′ .D
L′
M ′′ ∪DL′

S′ .D
L′
L′

By Lemma 8, D is continuous or has a discontinuity at n(D)/2. Combining this with Lemma
9, one obtains that DS′

S′ , D
M ′
S′ , D

L′
M ′ , D

M ′′
S′ , DL′

M ′′ , and D
L′
L′ all have relaxed W -BD. The claim on

DL′
S′ (hence on BL

S) follows.

21

The following corollary, in combination with Lemma 7 and our fast bounded-differences
(min,+) product algorithm, implies a fast implementation of the scored parser.

Corollary 2. The product in Step 1 of Parsek, k ∈ {3, 4}, can be reduced to a constant number
of products between smaller square submatrices with relaxed W -BD.

Proof. Consider first Parse3(B). Let S = [1, n(B)/3], M = [n(B)/3 + 1, 2n(B)/3] and L =
[2n(B)/3 + 1, n(B)]. It is sufficient to show that all the submatrices BJ

I , I, J ∈ {S,M,L}, have
relaxed W -BD. By Lemma 8, B is continuous or has a discontinuity at n(D)/3 or 2n(D)/3.
It follows by Lemma 9, that submatrices BS

S , B
M
M , BL

L , B
M
S , BL

M , BS
M , and BM

L are equal to
square blocks of A+. In more detail, the first three such matrices correspond to blocks along
the main diagonal of A+, the second two such matrices to blocks in the upper-triangular part
of A+, and the last two such matrices to blocks in the lower-triangular part of A+. Therefore
all such matrices have relaxed W -BD. By Lemma 10, also BL

S and BS
L have this property.

The proof for Parse4(B) is analogous. Here we consider the partition of B into blocks BJ
I ,

I, J ∈ {S,M ′,M ′′, L}, with S = [1, n(B)/4], M ′ = [n(B)/4 + 1, n(B)/2], M ′′ = [n(B)/2 +
1, 3n(B)/4], and L = [3n(B)/4 + 1, n(B)]. All these blocks have relaxed W -BD by Lemmas 8,
9, and 10 similarly to the previous case.

B Bounded-Differences (min,+) Product: Improvement, Deran-
domization, and Generalization

B.1 Speeding Up Phase 2

We begin with a more refined version of Lemma 5.

Lemma 11. W.h.p for any 1 ≤ r ≤ ρ the number of weakly relevant, weakly r-uncovered triples
is Õ(n2.5 + n3/r1/3).

Proof. Fix k ∈ [n]. For any 1 ≤ r ≤ ρ+ 1, we construct a bipartite graph Gr,k on n+n vertices
(we denote vertices in the left vertex set by i or ir and vertices in the right vertex set by j or jr).
We add edge {i, j} to Gr,k if the triple (i, k, j) is weakly relevant and weakly (r− 1)-uncovered.
Note that E(Gr,k) ⊇ E(Gr′,k) for r ≤ r′. Denote the number of edges in Gr,k by mr,k and its
density by αr,k = mr,k/n

2. In the following we show that w.h.p. mr,k drops by a constant factor
after O(α−3

r,k log(n)) rounds.
We denote by Yr,k(i, j) the number of 4-cycles in Gr,k containing edge {i, j}. (If {i, j} is not

an edge, we set Yr,k(i, j) = 0.) Observe that Yr,k(i, j) ≥ Yr′,k(i, j) for r ≤ r′.
Now fix a round r. For r′ ≥ r, we call {i, j} r′-heavy if Yr′,k(i, j) ≥ 2−8α3

r,kn
2. Let r∗ be

a round with r∗ − r = Θ(α−3
r,k log n) (with sufficiently large hidden constant). We claim that

w.h.p. no {i, j} is r∗-heavy. Indeed, in any round r ≤ r′ < r∗, either {i, j} is not r′-heavy, say
because some of the edges in its 4-cycles got covered in the last round, but then we are done.
Or {i, j} is r′-heavy, but then with probability Yr′,k(i, j)/n2 = Ω(α3

r,k) we choose ir′ , jr′ as the
remaining vertices in one of the 4-cycles containing {i, j}. In this case, Lemma 3 shows that
(i, k, j) will get weakly covered in round r′, so in particular {i, j} is not (r′ + 1)-heavy. Over
r∗ − r = Θ(α−3

r,k log n) rounds, this event happens with high probability.
Now we know that w.h.p. no {i, j} is r∗-heavy. Thus, each of the αr∗,kn2 edges of Gr∗,k

is contained in less than 2−8α3
r,kn

2 4-cycles, so that the total number of 4-cycles in Gr∗,k is at
most 2−8αr∗,kα

3
r,kn

4. On the other hand, Lemma 4 shows that the number of 4-cycles is at
least (αr∗,kn

2)4/(32n4) if αr∗,k ≥ 2/
√
n. Altogether, we obtain αr∗,k ≤ max{αr,k/2, 2/

√
n},

i.e., after O(α−3
r,k log n) rounds the density of Gr,k drops by a factor 1/2. In particular, w.h.p.

in round r = O(
∑t

i=0 23i log n) = O(23t log n) the density of Gr,k is at most 2−t, as long as
2−t ≥ 2/

√
n. In other words, w.h.p. the density of Gr,k is O((log(n)/r)1/3 + n−1/2), and mr,k ≤

22

O(n2(log(n)/r)1/3 +n3/2). Since we have r ≤ ρ ≤ n, the dominating term is O(n2(log(n)/r)1/3).
Since mr+1,k counts the weakly relevant, weakly r-uncovered triples (i, k, j) for fixed k, summing
over all k ∈ [n] yields the claim.

Inspection of the proof of Lemma 11 shows that we only count triples i, k, j that get covered
in round r if the triple ir, k, jr is weakly relevant and weakly (r − 1)-uncovered. Hence, after
line 12 of Algorithm 1 we can remove all columns k from Ar and all rows k from Br for which
ir, k, jr is not weakly relevant or not weakly (r − 1)-uncovered. Then Lemma 11 still holds, so
the other steps are not affected. Note that checking this property for ir, k, jr takes time O(ρ)
for each k and each round r, and thus in total incurs cost O(nρ2) ≤ O(ρn2), which is dominated
by the remaining running time of Phase 2. Using rectangular matrix multiplication to compute
Ar ∗Br (Lemma 1) we obtain the following improved running time.

Lemma 12. W.h.p. the improved Step 2 takes time Õ(ρ∆W ·M(n, n/ρ1/3, n)).

Proof. Let sr denote the number of surviving k’s in round r, i.e., the number of k such that
ir, k, jr is weakly relevant, weakly (r− 1)-uncovered. Using Lemma 1, the running time of Step
2 is bounded by Õ

(∑ρ
r=1 ∆W · M(n, sr, n)

)
. Note that for any x, y, we have M(n, x, y) ≤

O((1 + x/y)M(n, y, n)), by splitting columns and rows of length x into bx/yc ≤ 1 + x/y blocks.
Hence, we can bound the running time by Õ

(∑ρ
r=1 ∆W (1+srρ

1/3/n)·M(n, n/ρ1/3, n)
)
. Thus, to

show the desired bound of Õ(ρ∆W ·M(n, n/ρ1/3, n)), it suffices to show that
∑ρ

r=1 sr ≤ Õ(nρ2/3)
(in expectation and w.h.p.).

W.h.p. the number of weakly relevant, weakly (r − 1)-uncovered triples is Õ(n3/r1/3), by
Lemma 11. Thus, for a random k the probability that ir, k, jr is weakly relevant, weakly (r−1)-
uncovered is Õ(r−1/3). Summing over all k we obtain E[sr] = Õ(n/r1/3) (note that the inequality
sr ≤ n allows to condition on any w.h.p. event for evaluating the expected value). This yields the
desired bound for the expectation of the running time, since

∑ρ
r=1 E[sr] ≤ Õ(n

∑ρ
r=1 r

−1/3) ≤
Õ(nρ2/3).

For concentration, fix r∗ as any power of two and consider sr∗ + sr∗+1 + . . . + s2r∗−1. For
any r∗ ≤ r < 2r∗ denote by s̄r the number of ir, k, jr that are weakly relevant and weakly
r∗-uncovered, and note that sr ≤ s̄r. Again we have E[s̄r] ≤ Õ(n/r1/3). Moreover, conditioned
on the choices up to round r∗, the numbers s̄r, r∗ ≤ r < 2r∗, are independent. Hence, a Chernoff
bound (Lemma 13) on variables s̄r/n ∈ [0, 1] shows that w.h.p.

s̄r∗ + s̄r∗+1 + . . .+ s̄2r∗−1 ≤ O
(
E[s̄r∗ + s̄r∗+1 + . . .+ s̄2r∗−1] + n log n

)
.

Hence, w.h.p.
∑ρ

r=1 sr ≤
∑ρ

r=1 s̄r ≤ O
(
n log(n) log(ρ)+

∑ρ
r=1 E[s̄r]

)
. Using our bound on E[s̄r],

we obtain
∑ρ

r=1 sr ≤ Õ(n+ nρ2/3) ≤ Õ(nρ2/3) as desired.

Lemma 13. Let X1, . . . , Xn be independent random variables taking values in [0, 1], and set
X :=

∑n
i=1Xi. Then for any c ≥ 1 we have

Pr[X > (1 + 6ec)E[X] + c log n] ≤ n−c.

Proof. If E[X] < log(n)/2e we use the standard Chernoff bound Pr[X > t] ≤ 2−t for t > 2eE[X]
with t := c log n. Otherwise, we use the standard Chernoff bound Pr[X > (1 + δ)E[X]] ≤
exp(−δE[X]/3) for δ ≥ 1 with δ := 6ec.

B.2 Speeding Up Phase 3

Enumerating approximately uncovered blocks In line 17 we check for each block i′, k′, j′

of approximately relevant triples whether it consists of approximately uncovered triples. This
step can be improved using rectangular matrix multiplication as follows. For each block k′ we
construct a (n/∆) × ρ matrix Uk′ and a ρ × (n/∆) matrix V k′ with entries Uk′xr := [|Arx∆,k′ | ≤

23

44∆W] and V k′
ry := [|Br

k′,y∆| ≤ 44∆W]. Then from the Boolean matrix product Uk′ · V k′

we can infer for any block i′, k′, j′ whether it consists of approximately uncovered triples by
checking (Uk

′ ·V k′)i′/∆,j′/∆ = 1. Hence, enumerating the approximately relevant, approximately
uncovered triples i′, k′, j′ can be done in time O((n/∆) ·M(n/∆, ρ, n/∆)).

Recursion In the exhaustive search in Step 3, see lines 18-19, we essentially compute the
(min,+)-product of the matrices (Aik)i∈I(i′),k∈I(k′) and (Bkj)k∈I(k′),j∈I(j′). These matrices again
have W -BD, so we can use Algorithm 1 recursively to compute their product. Writing T (n,W)
for the running time of our algorithm, this reduces the time complexity of one invocation of lines
18-19 from O(∆3) to T (∆,W), which in total reduces the running time of the exhaustive search
from Õ(n3/ρ1/3) to Õ((T (∆,W)/∆3) · n3/ρ1/3) w.h.p.

B.3 Total running time

Recall that Step 1 takes time O((n/∆)3 + n2), Step 2 now runs in Õ(ρ∆W ·M(n, n/ρ1/3, n))
w.h.p., and Step 3 now runs in Õ((n/∆) ·M(n/∆, ρ, n/∆) + (T (∆,W)/∆3) · n3/ρ1/3) w.h.p.
This yields the complicated recursion

T (n,W) ≤ Õ
(
ρ∆W ·M

(
n,

n

ρ1/3
, n
)

+
n

∆
·M
(n

∆
, ρ,

n

∆

)
+
T (∆,W)

∆3
· n

3

ρ1/3

)
,

while the trivial algorithm yields T (n,W) ≤ O(n3).
In the remainder, we focus on the case W = O(1), so that T (n,W) = T (n,O(1)) =: T (n).

Setting ∆ := nδ and ρ := ns logc n for constants δ, s ∈ (0, 1) and sufficiently large c > 0, and
using M(a, Õ(b), c) ≤ Õ(M(a, b, c)), we obtain

T (n) ≤ Õ
(
nδ+sM(n, n1−s/3, n) + n1−δM(n1−δ, ns, n1−δ)

)
+ n3−3δ−s/3T (nδ).

This is a recursion of the form T (n) ≤ Õ(nα)+nβT (nγ), which solves to T (n) ≤ Õ(nα+nβ/(1−γ)),
by an argument similar to the master theorem. Hence, we obtain

T (n) ≤ Õ
(
nδ+sM(n, n1−s/3, n) + n1−δM(n1−δ, ns, n1−δ) + n(3−3δ−s/3)/(1−δ)).

We optimize this expression using the bounds on rectangular matrix multiplication by Le
Gall [19]. Specifically, we set δ := 0.0772 and s := 0.4863 to obtain a bound of O(n2.8244), which
proves part of Theorem 1. Here we use the bounds M(m,m1−s/3,m) ≤ M(m,m0.85,m) ≤
O(m2.260830) and M(m,ms/(1−δ),m) ≤ M(m,m0.5302,m) ≤ O(m2.060396) by Le Gall [19] for
m = n and m = n1−δ, respectively.

We remark that if perfect rectangular matrix multiplication exists, i.e., M(a, b, c) = Õ(ab+
bc + ac), then our running time becomes T (n) ≤ Õ(n2+δ+s + n3−3δ + n(3−3δ−s/3)/(1−δ)), which
is optimized for δ = (13 −

√
133)/18 and s = (2

√
133 − 17)/9, yielding an exponent of (5 +√

133)/6 ≈ 2.7554. This seems to be a barrier for our approach.

B.4 Derandomization

The only random choice in Algorithm 1 is to pick ir, jr uniformly at random from [n]. In the
following we show how to derandomize this choice, at the cost of increasing the running time of
Step 2 by O(ρ(n/∆)1+ω). At the end of this section we then show that we still obtain a truly
sub-cubic total running time.

Fix round r. Similar to the proof of Lemma 11, for any k′ divisible by ∆ we construct a
bipartite graph G′r,k′ with vertex sets {∆, 2∆, . . . , n} and {∆, 2∆, . . . , n} (we denote vertices in
the left vertex set by i′ or ir and vertices in the right vertex set by j′ or jr). We connect i′, j′

by an edge in G′r,k′ if i
′, k′, j′ is approximately relevant and approximately (r − 1)-uncovered.

24

In G′r,k′ we count the number of 3-paths between any i′, j′. Now we pick ir, jr as the pair i′, j′

maximizing the sum over all k′ of the number of 3-paths in G′r,k′ containing i
′, j′. This finishes

the description of the adapted algorithm.
It is easy to see that this adaptation of the algorithm increases the running time of Step 2

by at most O(ρ(n/∆)ω+1). Indeed, constructing all graphs G′r,k′ over the ρ rounds takes time
O(ρ(n/∆)3), and computing the number of 3-paths between any pair of vertices can be done in
O(|V (G′r,k′)|ω), which over all r and k′ incurs a total cost of O(ρ(n/∆)ω+1).

It remains to argue that an analog of Lemma 11 still holds. Note that the number of 3-paths in
G′r,k′ containing i

r, jr counts the number of i′, j′ such that (i′, k′, j′), (ir, k′, j′), (i′, k′, jr), (ir, k′, jr)
are all approximately relevant and approximately (r−1)-uncovered. For any such (i′, k′, j′), any
(i, k, j) ∈ I(i′) × I(k′) × I(j′) gets covered in round r, in fact, these are the triples counted in
Lemma 11 (after replacing “weakly” by “approximately” relevant and uncovered). As we maxi-
mize this number, we cover at least as many new triples as in expectation, so that Lemma 11 still
holds, after replacing “weakly” by “approximately” relevant and uncovered: For any 1 ≤ r ≤ ρ
the number of approximately relevant, approximately r-uncovered triples is Õ(n3/r1/3). Since
this is sufficient for the analysis of Step 3, we obtain the same running time bound as for the
randomized algorithm, except that Step 2 takes additional time O(ρ(n/∆)1+ω).

Total running time Adapting the basic Algorithm 1 yields, as in Section 2.4, a running time
of Õ(ρ∆Wnω+ρ(n/∆)1+ω+n3/ρ1/3). We optimize this by setting ∆ := (n/W)1/(ω+2) and ρ :=
n3(5+ω−ω2)/(4ω+8)W−3(ω+1)/(4ω+8). This yields running time Õ(n3−(5+ω−ω2)/(4ω+8)W (ω+1)/(4ω+8)) ≤
O(n2.9004W 0.1929), using the current bound of ω ≤ 2.3728639 [20]. In particular, the algorithm
has truly sub-cubic running time whenever W ≤ O(n2−ω+3/(ω+1)−ε) ≈ O(n0.5165−ε) for any
ε > 0.

For W = O(1), adapting the improved algorithm from Section B.3 yields

T (n) ≤ Õ
(
nδ+sM(n, n1−s/3, n) + n1−δM(n1−δ, ns, n1−δ) + n(3−3δ−s/3)/(1−δ) + n(1+ω)(1−δ)+s),

which is O(n2.8603) for δ := 0.2463 and s := 0.3159, finishing the proof of Theorem 1. Here we
use the bounds M(m,m1−s/3,m) ≤ M(m,m0.90,m) ≤ O(m2.298048) and M(m,ms/(1−δ),m) ≤
M(m,m0.45,m) ≤ O(m2.027102) by Le Gall [19] for m = n and m = n1−δ, respectively.

B.5 Generalizations

In this section we study generalizations of Theorem 1. In particular, we will see that it suffices
if A has bounded differences along either the columns or the rows, while B may be arbitrary.
Since A ? B = (BT ? AT)T , a symmetric algorithm works if A is arbitrary and B has bounded
differences along either its columns or its rows.

Theorem 5. Let B be arbitrary and assume either of the following:

(1) for an appropriately chosen 1 ≤ ∆ ≤ n we are given a partitioning [n] = I1∪ . . .∪ In/∆ such
that maxi∈I` Ai,k −mini∈I` Ai,k ≤ ∆W for all k, `, or

(2) for an appropriately chosen 1 ≤ ∆ ≤ n we are given a partitioning [n] = K1 ∪ . . . ∪Kn/∆

such that maxk∈K`
Ai,k −mink∈K`

Ai,k ≤ ∆W for all i, `.

IfW ≤ O(n3−ω−ε), then A?B can be computed in randomized time O(n3−Ω(ε)). IfW = O(1),
then A ? B can be computed in randomized time O(n2.9217).

Important special cases of the above theorem are that A has W -BD only along columns
(|Ai+1,k − Ai,k| ≤ W for all i, k) or only along the rows (|Ai,k+1 − Ai,k| ≤ W for all i, k). In
these cases the assumption is indeed satisfied, since we can choose each I` or K` as a continuous
subset of ∆ elements of [n], thus amounting to a total difference of at most ∆W .

25

Proof. (1) For the first assumption, adapting Algorithm 1 is straight-forward. Instead of blocks
I(I ′)× I(k′)× I(j′) we now consider blocks I`×{k}×{j}, for any ` ∈ [n/∆], k, j ∈ [n]. Within
any such block, Ai,k varies by at most ∆W by assumption. Moreover, Bkj does not vary at
all, since k, j are fixed. We adapt Step 1 by computing for each block I` × {k} × {j} one entry
C̃i∗j = (A ?B)i∗j exactly, for some i∗ ∈ I`, and setting C̃ij := C̃i∗j for all other i ∈ I`. It is easy
to see that Lemma 2 still holds. Note that Step 1 now runs in time O(n3/∆).

Step 2 does not have to be adapted at all, since as we remarked in Section 2.2 it works for
arbitrary matrices.

For Step 3, we have analogous notions of being approximately relevant or uncovered, by
replacing the notion of “blocks”. Thus, we now iterate over every `, k, j, check whether it is
approximately relevant (i.e., |Ai∗k + Bkj − C̃i∗j | ≤ 8∆W for some i∗ ∈ I`), check whether it is
approximately uncovered (i.e., for all rounds r we have |Ari∗k| > 44∆W or |Br

kj | > 44∆W), and
if so we exhaustively search over all i ∈ I`, setting Ĉij := min{Ĉij , Aik +Bkj}. Then Lemma 6
still holds and correctness and running time analysis hold almost verbatim. Step 3 now runs in
time Õ(ρn3/∆ + n3/ρ1/3) w.h.p.

The total running time is w.h.p. Õ(ρ∆Wnω + ρn3/∆ + n3/ρ1/3). We optimize this by
setting ∆ := n(3−ω)/2/W 1/2 and ρ := n3(3−ω)/8/W 3/8, obtaining time Õ(n3−(3−ω)/8W 1/8). As
desired, this is n3−Ω(ε) for W = O(n3−ω−ε), while for W = O(1) it evaluates to Õ(n3−(3−ω)/8) ≤
O(n2.9217). The latter bound can be slightly improved by incorporating the improvements from
Section B, we omit the details.

(2’) Before we consider the second assumption, we first discuss a stronger assumption where
also B is nice along the columns: Assume that for an appropriately chosen 1 ≤ ∆ ≤ n we are
given a partitioning [n] = K1 ∪ . . .∪Kn/∆ such that maxk∈K`

Ai,k −mink∈K`
Ai,k ≤ ∆W for all

i, ` and maxk∈K`
Bkj −mink∈K`

Bkj ≤ ∆W for all `, j.
In this case, adapting Algorithm 1 is straight-forward and similar to the last case. Instead of

blocks I`×{k}×{j} we now consider blocks {i}× I`×{j}, for any ` ∈ [n/∆], i, j ∈ [n]. Within
any such block, A and B vary by at most ∆W by assumption. We adapt Step 1 by computing
for each i, `, j for some value k∗ ∈ K` the sum Aik∗ + Bk∗j . We set C̃ij as the minimum over
all ` of the computed value. It is easy to see that Lemma 2 still holds. Step 1 now runs in time
O(n3/∆).

Step 2 does not have to be adapted at all, since as we remarked in Section 2.2 it works for
arbitrary matrices.

For Step 3, we now iterate over every i, `, j, check whether it is approximately relevant (i.e.,
|Aik∗+Bk∗j− C̃ij | ≤ 8∆W for some k∗ ∈ K`), check whether it is approximately uncovered (i.e.,
for all rounds r we have |Arik∗ | > 44∆W or |Br

k∗j | > 44∆W), and if so we exhaustively search
over all k ∈ K`, setting Ĉij := min{Ĉij , Aik + Bkj}. Then Lemma 6 still holds and correctness
and running time analysis hold almost verbatim. Step 3 now runs in time Õ(ρn3/∆ + n3/ρ1/3)
w.h.p.

We obtain the same running time as in the last case.
(2) For the second assumption, compute for all `, j the value v(`, j) := min{Bkj | k ∈ K`},

and consider a matrix B′ with B′kj := min{Bkj , v(`, j) + 2∆W}, where k ∈ K`. Note that for
any i, k, j with k ∈ K` and k∗ ∈ K` such that Bk∗j = v(`, j), we have Aik + (v(`, j) + 2∆W) ≥
Aik∗ +Bk∗j + ∆W > Cij , since A varies by at most ∆W . Hence, no entry Bkj = v(`, j) + 2∆W
is strongly relevant, which implies A ? B′ = A ? B. Note that B′ satisfies maxk∈K`

Bkj −
mink∈K`

Bkj ≤ 2∆W for all `, j, so we can use case (2’) to compute A ? B′. Since B′ can be
computed in time O(n2), the result follows.

C From LED and RNA-folding to Scored Parsing

In this section, we show that LED can be reduced to scored parsing on BD grammars. The same
construction works also in the case of insertions and deletions only. Observe that RNA-folding

26

can be seen as a special case of LED with only insertion and deletion as edits. Indeed, if d is
the optimum distance of a sequence using only insertions and deletions from the RNA grammar,
then the maximum number of bases that can be paired in the corresponding RNA sequence is
simply n−d, where n is the length of the sequence. Therefore the mentioned reduction for LED
implies the same for RNA-folding.

Recall that a CFG G is a W -BD grammar if for any nonterminal X, terminal x, and string
σ, the following holds:∣∣s(X,σ)− s(X,σx)

∣∣ ≤W and
∣∣s(X,σ)− s(X,xσ)

∣∣ ≤W
.

We assume that G is given in the Chomsky normal form (CNF).

Creating an Augmented Grammar The first step of solving LED is to create an augmented
grammar as follows. We are given a CNF context-free grammar G = (N,T, P, S), and a string
σ as the input to LED. We next use N(G) to denote the non-terminals of G. W.l.o.g. we
can assume that, for each terminal a, there exists at least one non-terminal Xa such that
(X → a) ∈ P (if not, we can create one new such non-terminal and a corresponding production
rule without changing the language generated by G).

Now we turn G into a scored grammar G′. Each production rule of P gets a score of 0. We
then add new, costly production rules and one new non-terminals in order to model insertions,
deletions and substitutions.

In order to model insertions, we create a new non-terminal I, and add the following scored
production rules:

I → XaI (score = 1) | IXa (score = 1) | ε (score = 0), for every a ∈ T

X → XI (score = 0) | IX (score = 0) for every nonterminal X ∈ N
Observe that I can generate any string of terminals, and the associated score is the length of
the string. Then I can be inserted at any point of a string generated by the original grammar.

In order to model substitutions and deletions we add the productions

X → a (score = 1) | ε (score = 1) for every X ∈ N and a ∈ T

X → b allows us to substitute b in place of any character generated by X, and similarly X → ε
allows to delete any such character. Note that we might have two identical production rules
with different scores: let us keep only the one with minimum score.

This creates an augmented grammar G′ = (N ∪ I, T, P ′, S) where P ′ included the new
production rules and the original rules of P .

It has been shown in [4] that with the augmented grammar G′, LED is equivalent to find
the minimum scored parsing of σ according to G′.

Claim 1. G′ is a 1-BD grammar.

Proof. Consider any nonterminal X ∈ N ∪ I. Assume that X produces σ with score `, then
X → IX → XxX → xX is a valid parsing of xσ with score `+ 1.

Now assume that X produces xσ with score `. There must be some production rule of type
(Y → x) that produces the first terminal of xσ. By replacing that rule with (Y → ε) we obtain
the string σ while increasing the cost at most by one.

The other condition
∣∣s(X,σ)− s(X,xσ)

∣∣ ≤ 1 can be proved similarly.

Note that, having or not having the substitution rules do not affect the 1-BD property of
G′. However, G′ is not in CNF form, which is required for our algorithms to work. We therefore
convert G′ to CNF, and show that even after conversion, the BD property holds. Again, we only
need the rules for insertions and deletions. Hence, this also shows the BD property required for
RNA-folding.

27

Conversion to Chomsky normal form. Note that except for the rulesX → ε, X ∈ N ′\{S},
all the other productions are in the required CNF form.

We next execute the standard steps to convert G′ into an equivalent CNF grammar G′′, with
the extra care of propagating the scores during this process in a natural way (when we compose
two rules to create a new rule, we sum the respective scores). By construction any sequence of
production rules in G′′ that produces a string σ with some score s corresponds to a sequence
of production rules in G′ that produces σ with the same score s and vice versa. Therefore,
following the proof of Claim 1 one obtains that G′′ is 1-BD.

In some more details, consider any nonterminal X ∈ N(G′′) = N(G′), if X produces σ
with score `, then X → IX → XxX → xX is a valid parsing of xσ with score ` + 1 in G′′.
Suppose now that X produces xσ with score `. Consider the parsing of xσ where the left-most
nonterminal is always expanded first. Consider the steps when a production rule of the form
Y1 → Y2Z1 and Y2 → XxZ are applied. Then in G′′ we have a production Y1 → ZZ1 with a
score of score(Y2 → Z) = score(Xx → ε) = 1 such that if we use it instead of Y1 → Y2Z1 then X
produces σ with a score of `+ 1. If there is no such Y1, that is S → XxZ, then if in the original
grammar, there was a production of the form Z → Z1Z2 (or Z → a where a is either a terminal
or ε) then after the conversion, if the conversion is correct, we must also have S → Z1Z2 (or
S → a) that is the scores for producing σ and xσ are off by at most 1.

We therefore obtain the desired property.

Proposition 1. LED and RNA-folding problem can be reduced to scored parsing problem over
1-BD grammars.

D From Optimal Stack Generation to Scored Parsing

Recall that a context-free grammar G is aW -bounded difference grammar if for any nonterminal
X, terminal x, and string σ 6= ε, the following holds:∣∣s(X,σ)− s(X,σx)

∣∣ ≤W
and ∣∣s(X,σ)− s(X,xσ)

∣∣ ≤W
.

We now show that OSG can be reduced to a scored parsing problem on 3-bounded difference
grammar in Chomsky Normal Form (CNF).

We first show a scored grammar G that is not yet in CNF or 3-BD. It has a non-terminal
S representing that the stack is empty, and a non-terminal Xc for any c ∈ Σ representing that
the topmost symbol on the stack is c. Moreover, we use a symbol Nc for emitting symbol c, and
call a production producing Nc a “pre-emit”. To obtain bounded differences, we also allow Nc

to “change it’s mind” and not emit any character.

S → ε (score 0) end of string
S → XcS (score 1) push c, for any c ∈ Σ

Xc → NcXc (score 0) pre-emit c, for any c ∈ Σ

Xc → Xc′Xc (score 1) push c′, for any c, c′ ∈ Σ

Xc → ε (score 1) pop c, for any c ∈ Σ

Nc → c (score 1) emit c, for any c ∈ Σ

Nc → ε (score 0) do not emit c, for any c ∈ Σ

28

Indeed, these productions model that from an empty stack the only possible operation is to
push some symbol c, while if the topmost symbol is c then we may (pre-)emit c, or push another
symbol c′, or pop c.

Consider the example string bccab. This can be produced as follows, where we always resolve
the leftmost non-terminal. Note that the suffix of non-terminals always corresponds to the
content of the stack.

S → XbS → NbXbS → bXbS → bXcXbS → bNcXcXbS → bcXcXbS → bcNcXcXbS

→ bccXcXbS → bccXbS → bccXaXbS → bccNaXaXbS → bccaXaXbS → bccaXbS

→ bccaNbXbS → bccabXbS → bccabS → bccab

Bounded Differences We change the above grammar G by adding the following productions,
thus obtaining a grammar G′. For any non-terminal X we introduce the productions

X → NcX (score = 3) | XNc (score = 3), for any c ∈ Σ

Moreover, for any c ∈ Σ we introduce the productions

Nc → c′ (score = 3), for any c′ ∈ Σ

The following claims show that G′ is 3-BD and correctly models the ODG problem. However,
it is not yet in CNF.

Claim 2. G′ is a 3-bounded difference grammar.

Proof. Consider any nonterminal X of G′. If X produces σ with score `, then X → NcX →
cX →∗ cσ is a valid parsing of cσ with score `+ 3.

On the other hand, if X produces cσ with score `, then consider the parsing of cσ where
the left-most nonterminal is always expanded first. Consider the step in the parsing where c is
produced from the terminal producing rule Nc → c. Replace it with Nc → ε, decreasing the
score by 1. Hence, X produces σ with a score of at most `− 1.

Similarly, the other condition
∣∣s(X,σ)− s(X,σc)

∣∣ ≤ 3 can be verified.

Claim 3. G′ describes the same scored language as G, i.e., sG(S, σ) = sG′(S, σ) for the starting
symbol S and any string σ.

Proof. We will use the following property of OSG (*): If string σ = σ′σ′′ can be generated with
cost s, then for any symbol c ∈ Σ the string σ′cσ′′ can be generated with cost at most s + 3.
Indeed, for any sequence of push, emit, and pop that generates σ, at the point where we have
exactly emitted σ′ we can insert the sequence “push(c), emit, pop”, then the adapted sequence
produces σ′cσ′′ and has length s+ 3.

Note that if the old grammar G produces string σ at cost s, and we insert k ≥ 0 new symbols
into σ, obtaining a string σ′, then the new productions allow to generate σ′ at cost s+ 3k, i.e.,
sG′(S0, σ

′) ≤ s+ 3k (and this is all that changes). However, the generation cost of σ′ is anyways
bounded by s+ 3k by the above property (*), even without using the new productions, i.e., we
have sG(S0, σ

′) ≤ s + 3k by (*). This shows sG(S0, σ) ≤ sG′(S0, σ) for any string σ. Since we
extended the grammar, we clearly also have sG(S0, σ) ≥ sG′(S0, σ). Thus, the new productions
do not change the generation cost s(S0, σ).

Conversion to Chomsky normal form Note that except for the rules X → ε for all non-
terminals X all the other productions are in the required CNF form.

The conversion works as follows. Consider every rule p of the form Y → XZ | ZX where
X → ε ∈ G′. Add a new rule Y → Z with a score of s(Y → Z) = s(p) + s(X → ε) if Z 6= Y .

29

Now consider every rule in G′ where Y appears on the right, and add a new rule by replacing
Y with Z and adding s(Y → Z) to its score. This process continues recursively until no new
rule is formed. If the same rule is generated with multiple scores, then we simply need to keep
the minimum score. After this process, we can delete all productions of the form X → ε or
X → Y to obtain a CNF grammar G′′. This is exactly how ε productions are eliminated while
converting a non-CNF grammar to CNF. We just additionally maintain the scores. We remark
that we ignored the handling of the empty string here; to be precise one has to add a new
starting symbol S0 with the production S0 → ε, and for each production S → u add S0 → u.

By construction, G′′ is in CNF and generates the same scored language as G′ and thus
correctly models the OSG problem. It remains to prove that G′′ is 3-bounded.

Claim 4. G′′ is a 3-bounded difference grammar.

Proof. Again consider any nonterminal X ∈ N(G′′) = N(G′). If X produces σ with score `,
then X → NcX → cX →∗ cσ is a valid parsing of cσ with score `+3 in G′′. Let us now consider
X that produces cσ with score `. Consider the parsing of cσ where the left-most nonterminal
is always expanded first. Consider the steps when a production rule of the form Y1 → Y2Z1

and Y2 → NcZ are applied. Then in G′′ we have a production Y1 → ZZ1 with a score of
s(Y2 → Z) = s(Y2 → NcZ) + s(Nc → ε) = s(Y2 → NcZ) such that if we use it instead of
Y1 → Y2Z1 then X produces σ with the same score `. Hence, sG′′(X,σ) ≤ sG′′(X, cσ).

The other condition
∣∣sG′′(X,σ)− sG′′(X,σc)

∣∣ ≤ 3 can be verified similarly.

30

	Introduction
	Our Result
	Our Approach
	Applications
	Related Work
	Preliminaries and Notation

	Fast Bounded-Differences (min,+) Product
	Phase 1: Computing an approximation
	Phase 2: Randomized reduction to (min,+)-product with small entries
	Phase 3: Exhaustive search over all relevant uncovered triples of indices
	Running Time

	Fast Scored Parsing
	Valiant's Parser
	Scored Parser and (min,+) Products
	Reduction to Bounded Differences (min,+) Product

	Bounded-Differences (min,+) Product: Improvement, Derandomization, and Generalization
	Speeding Up Phase 2
	Speeding Up Phase 3
	Total running time
	Derandomization
	Generalizations

	From LED and RNA-folding to Scored Parsing
	From Optimal Stack Generation to Scored Parsing

