
Lecture 10 More on Matching
Scribe: Michael P. Kim Date: April 30, 2014

1 Introduction

In the last lecture, we discussed two algorithms for finding perfect matchings both of which leveraged a
random substitution of the Tutte Matrix to find edges in a pefect matching. Recall the Tutte Matrix is
defined as follows.

T (i, j) =





0 if (i, j) 6∈ E

xij if i < j

−xij if i > j

The naive algorithm uses the determinant of the Tutte Matrix as an oracle for whether a perfect matching
exists, while the Rabin-Vazirani Algorithm finds edges to include in the matching by leveraging properties
of the Tutte Matrix.

Recall the naive algorithm.

Algorithm 1: NaiveMatch(G)

for e ∈ E do

if detTG\{e} 6= 0 then

Remove e from G;

Because we can compute the determinant of T with an Õ(nω) randomized algorithm, this gives us an
O(nω+2) benchmark. Now, recall the Rabin -Vazirani algorithm.

Algorithm 2: RV(G)

T ← random substitution of Tutte Matrix mod some prime p > n3;
M ← ∅;
while |M | < n

2
do

N ← T−1 // run time bottleneck to invert T

Find j s.t. N(1, j) 6= 0, T (1, j) 6= 0;
M ←M ∪ {(i, j)};
T ← T{1,j},{1,j}

Remember that the runtime of RV is O(nω+1), primarily due to the bottleneck in the while loop to
compute the inverse of the Tutte Matrix in each iteration. In this lecture, we will improve upon this run
time, to O(n3) by using a specialized algorithm to invert the Tutte Matrix. Then, we give an O(nω) algorithm
that mimics the naive algorithm, but selects edges in a smart order.

2 Improving Rabin-Vazirani to O(n3)

Claim 1 (Mucha, Sankowski). RV can be implemented so that inverting T takes O(n2) time.

Corollary 2.1. Perfect matchings can be found in O(n3) time.

1

To see Claim 1, we will start by proving a lemma, which we will use to recompute the parts of the Tutte
Matrix necessary in O(n2) time.

Lemma 2.1. Let M be an n× n invertible matrix. Let N = M−1. Let M and N be of the following form.

M =

k n− k

k X Z

n− k Y W

N =

k n− k

k X̂ Ẑ

n− k Ŷ Ŵ

If X is invertible, then W is invertible and its inverse W−1 = Ŵ − Ŷ · X̂−1 · Ẑ.

Proof. We know M · N = I. This means that Y X̂ + WŶ = 0 and by assumption, X is invertible so
Y = −WŶ X̂−1. Also, Y Ẑ +WŴ = I. We can combine these facts to obtain the following result.

(−WŶ X̂−1)Ẑ +WŴ = I

=⇒ W · (Ŵ − Ŷ X̂−1Ẑ) = I

Thus, W is invertible and its inverse is Ŵ − Ŷ · X̂−1 · Ẑ. �

Note that this lemma also holds for permutations of the columns/rows of M . In particular, this means
we can apply the lemma to the Tutte matrix, where X is the 2 × 2 matrix formed by rows 1 and j and
columns 1 and j and W is T{1,j},{1,j}. WLOG, we’ll assume j = 2. Then, we get the following result.

T−1

{1,2},{1,2} = N{1,2},{1,2} −N{3:n},{1,2} ·N
−1

{1,2},{1,2} ·N{1,2},{3:n}

We know that N−1

{1,2},{1,2} exists because N is skew-symmetric.

Additionally, we claim that we can compute this matrix inverse in O(n2) time. The inverse requires the
subtraction of two (n−2)×(n−2) matrices which takes O(n2) time, and requires computing an (n−2)×(n−2)
matrix by the multiplication of an (n− 2)× 2 matrix by a 2× 2 matrix, and then a (n− 2)× 2 matrix by a
2 × (n − 2) matrix. In all, these multiplications will also take O(n2) time. Thus, with minor modifications
to the Rabin-Vazirani Algorithm, we come up with an O(n3) algorithm for finding a perfect matching. This
algorithm can be further modified to compute perfect matchings in bipartite graphs in O(nω) time, but this
result is not generalizable to other graphs.

3 Improving Naive Search to O(nω)

Claim 2 (Harvey). There is an Õ(nω) time algorithm for perfect matching in general graphs.

The algorithm by Harvey reimplements the naive algorithm for perfect matching. The naive version uses
the determinant of the Tutte Matrix as an oracle for whether a perfect matching exists, and incrementally
removes edges seeing which are necessary to make a perfect matching. The key idea to the improved version
is to choose a way to access the edges such that checking if G\{e} has a perfect matching is cheap. Consider
the following lemma.

Lemma 3.1. Let M be an invertible n×n matrix and S ⊆ [n] be some small subset of the entries. Addition-

ally, let M̃ be an n × n matrix such that if M̃(i, j) 6= M(i, j), then i, j ∈ S. Then the following statements

are true.

1. M̃ is invertible if and only if

det(I|S| + (M̃ [S, S]−M [S, S]) ·M−1[S, S]) 6= 0

2

2. if M̃ is invertible, then its inverse is

M̃−1 = M−1 −M−1(:, S) · Γ−1 · (M̃ [S, S]−M [S, S]) ·M−1[S, :]

where Γ = I|S| + (M̃ [S, S]−M [S, S]) ·M−1[S, S], the same matrix from 1.

An immediate corollary of 1 is that we can check if M̃ is invertible in O(|S|ω) time. Also, suppose we’re
only interested in M̃−1[S, S]. Then, we can compute this submatrix by using a |S| × |S| submatrix of M−1

in each submatrix in 2 of the lemma. In this case, the overall time to compute M̃−1[S, S] is O(|S|ω) given
M and M−1.

Let N = T−1 and T̃ be T with T̃ (i, j) = T̃ (j, i) = 0.

Claim 3. Checking if det T̃ 6= 0 is in O(|S|ω) = O(1) time.

To see this claim, note that we need to check if det Γ 6= 0 where in this case Γ is as follows.

Γ =

[
1 0
0 1

]
+

[
0 −T (i, j)

T (i, j) 0

]
·

[
0 N(i, j)

−N(i, j) 0

]

=

[
T (i, j)N(i, j) + 1 0

0 T (i, j)N(i, j) + 1

]

Thus, G \ {(i, j)} has a perfect matching if and only if T (i, j) ·N(i, j) 6= −1.
Thus, we can detect the presence of a perfect matching quickly, and we have that T̃ is the substituted

Tutte Matrix of G \ {(i, j)}. Now all that remains to be seen is how to recompute T̃−1, the updated version
of N . We could naively do this in O(n2) time, by the previous lemma but this would only give us an O(n4)
algorithm. We need to do something more sophisticated to obtain the desired O(nω) run time.

Let S1, S2 ⊆ V where |S1| = |S2|. Let’s try removing edges from S1 × S2 according to Algorithm 3.

Algorithm 3: DeleteCross(S1, S2)

if |S1| = |S2| = 1 then

S1 = {s}, S2 = {r};
if T (s, r) ·N(s, r) 6= −1 then

T (s, r) = T (r, s) = 0 // remove (s,r)

UpdateN;

else

S1 ← S11 ∪ S12, S2 ← S21 ∪ S22 // partition S1 and S2 each into two equal subsets

for i, j ∈ {1, 2} do
DeleteCross(S1i, S2j);
UpdateN;

While this recursive procedure will work, the question that remains is how to update N efficiently. The
solution will be to update onlyN [S1∪S2, S1∪S2] after eachDeleteCross call withinDeleteCross(S1, S2).

In particular, we will maintain the invariant that within DeleteCross(S1, S2), N [S1 ∪ S2, S1 ∪ S2] will
be correct. Then at the base case when |S1| = |S2| = 1, we will have the correct values T (s, r) and N(s, r)
and we can correctly figure out whether (r, s) can be deleted.

To update N after a call to DeleteCross(S1, S2), we have the old T before the call and the new T̃ of
changes within the call. All the changes will be in (S1 ∪ S2) × (S1 ∪ S2), so the updates will be sufficient.
Updating N will take O((|S1|+ |S2|)

ω) time using our observations above and Lemma 3.1.
Thus, the overall runtime of DeleteCross(S1, S2) is given by the following recurrence relation, where

n = |S1| = |S2|.

T (n) ≤ 4T (
n

2
) + 4O(nω)

=⇒ T (n) = Õ(nω)

3

We also need to handle edges within a set S in order to appropriately partition it into S1 and S2. Consider
the final algorithm.

(Below we assume that |S| is a power of 2. If it is not, we can add a large enough matching Y of new
nodes to the graph: the size of the graph at most doubles, and the new graph has a perfect matching if and
only if the old one did.)

Algorithm 4: DeleteWithin(S)

if |S| = 1 then

Return;

S ← S1 ∪ S2 // such that |S1| = |S2| = |S|/2

DeleteWithin(S1), UpdateN(S, S);
DeleteWithin(S2), UpdateN(S, S);
DeleteCross(S1, S2);

The runtime of Algorithm 4 is given by the following recurrence relation.

T (n) ≤ 2T (
n

2
) + T (DeleteCross(

n

2
))

= 2T (
n

2
) + T (Õ(nω))

=⇒ T (n) = ˜O(nω)

References

[1] Marcin Mucha and Piotr Sankowski, Maximum Matchings via Gaussian Elimination, FOCS, 248-255
(2004).

[2] Nicholas J.A. Harvey, Algebraic Algorithms for Matching and Matroid Problems, SIAM Journal on
Computing, 39(2):679-702, (2009).

4

