
Lecture 3 All-Pairs Shortest Paths
Scribe: Michael P. Kim Date: April 7, 2014

1 Introduction

In this lecture, we will talk about the problem of computing all-pairs shortest paths (APSP) using matrix
multiplication. Formally, given a graph G = (V,E), the goal is to compute the distance d(u, v) for all pairs
of nodes u, v ∈ V . Given that G has n nodes and m edges, it is easy to come up with algorithms that run
in Õ(mn) time 1 – for example, on graphs with nonnegative edge weights, we can run Dijkstra’s Algorithm
from each node. When G is dense, this time is on the order of n3; the natural question is can we do better?

For weighted graphs, the best known algorithm for APSP runs in O
(

n3

2Ω(
√

log n)

)
time, by Ryan Williams

(2014). A major open problem is whether there exist “truly subcubic” algorithms for this version of APSP,
namely, algorithms running in time O(n3−ε) for some constant ε > 0.

For unweighted graphs, we know of algorithms that achieve this subcubic performance. In particular, for
undirected graphs there is an algorithm running in O(nω log n) time by Seidel (1992), and for directed graphs
there is an algorithm running in O(n2.575) time by Zwick (2002). This difference in runtime persists even
with improvements in the matrix multiplication exponent, ω. For instance, if ω = 2, then Seidel’s algorithm
would run in Õ(n2) time, whereas Zwick’s algorithm would run in Õ(n2.5) time. In this lecture, we will talk
about the algorithms for unweighted graphs. In particular, we discuss a baseline algorithm using a hitting
set which will work for directed or undirected graphs, and then describe Seidel’s algorithm for undirected
graphs.

2 Hitting Set Algorithm

Given G, and particularly the adjacency matrix A which represents G, we would like to compute distances
between all pairs of nodes. A natural first algorithm would be to compute the distances by successive boolean
matrix multiplication of A with itself. The (i, j)th entry in Ak is 1 if and only if i has a path of length k to
j. Thus, if the graph has finite diameter, then for all i, j, d(i, j) = min{k | Ak[i, j] = 1}.

Fact 2.1. If G has diameter D we can compute APSP in O(Dnω) time.

If the diameter of G is small, then we have found a fast algorithm for computing APSP, but D can be
O(n) in which case we have no improvement from O(n3) run time. Nevertheless, we can compute all short
distances less than some k in O(knω) time, and then employ another technique to compute longer distances.
The key idea is to use a “hitting set”.

Lemma 2.1. (Hitting Set) Let S be a collection of n2 sets of size ≥ k over V = [n]. With high probability,
a random subset T ⊆ V of size O(n

k log n) hits all the sets in S.

With this hitting set lemma in mind, we can use Algorithm 1 to compute distances that are greater than
or equal to k.

With high probability, this algorithm will compute distances ≥ k correctly (as these paths involve at least
k nodes, so with high probability T hits the path). The algorithm requires running Dijkstra’s algorithm
from O(n

k log n) nodes so takes Õ(n
kn

2) time. If we use this algorithm to compute long distances and the
iterative matrix multiplication to compute short distances, we have an algorithm for all-pairs shortest paths.

Theorem 2.1. Let G be a directed or undirected graph on n nodes, with unit weights. APSP of G can be
computed in Õ(knω + n

kn
2) time.

1Õ(T (n)) = O(T (n) · polylog n). In other words, the poly-logarithmic terms have been dropped.

1

Algorithm 1: LongDist(V,E)

Pick T ⊆ V randomly s.t. |T | = c · nk log n for large enough constant c
foreach t ∈ T do

Compute Dijkstra(t)

foreach u, v ∈ V do
Compute d(u, v) = mint∈T d(u, t) + d(t, v)

When we optimize for a choice of k and set it to n(3−ω)/2, the runtime comes out to be Õ
(
n

3+ω
2

)
which

is roughly Õ(n2.69).

3 Seidel’s Algorithm

While this first algorithm gives us a fast algorithm for computing APSP, the question remains, can we do
better? In particular, can we avoid computing short and long distances separately? Can we leverage matrix
multiplication to compute all the shortest paths?

In fact, we can improve on the hitting set algorithm for undirected graphs as follows. Given a graph
G with adjacency matrix A, consider its boolean square A2 = A · A, where · represents boolean matrix
multiplication. Consider a graph G′ with adjacency matrix A′ = A2 ∨A.

Fact 3.1. dG′(s, t) =
⌈
d(s,t)

2

⌉
To see this fact, note that edges in A2 represent paths of length 2 in the original graph G, and G′ also

contains the edges of G. Thus, any path of length 2k in G induces a path of length k in G′ using only edges
of A2, and also any path of length 2k + 1 induces a path of length k (from A2) followed by a single original
edge, thus forming a path of length k + 1.

Now suppose that we have a way of determining the parity of the distance between all pairs of nodes.
Then we can use the following recursive strategy to compute APSP.

Algorithm 2: APSP Idea

Given an adjacency matrix A
Compute A2 ∨A
Recursively compute d′ ← APSP(A2 ∨A)
foreach u, v ∈ V do

if d′(u, v) is even then
d(u, v) = 2d′(u, v)

else
d(u, v) = 2d′(u, v)− 1

Note that in each recursive call, the diameter of the graph decreases by 2, and that after log n iterations,
A will be the all 1s matrix with 0s along the diagonal, which we can detect. Thus, if we can find a way to
determine the parity of a u, v-path efficiently, we should obtain an efficient recursive algorithm for APSP.

Consider any pair of nodes i, j ∈ V and another node which is a neighbor of j, k ∈ N(j). By the triangle
inequality (which holds in unweighted, undirected graphs), we know d(i, j)− 1 ≤ d(i, k) ≤ d(i, j) + 1.

Claim 1. If d(i, j) ≡ d(i, k) mod 2, then d(i, j) = d(i, k).

Proof. By the triangle inequality, d(i, j) and d(i, k) differ by at most 1. Thus, if their parity is the same,
they must also be equal. �

2

Claim 2. Let dG2(i, j) be the distance between i and j in G2 defined by A2 ∨A. Then, (a) if d(i, j) is even
and d(i, k) is odd then dG2(i, k) ≥ dG2(i, j). (b) If d(i, j) is odd and d(i, k) is even, dG2(i, k) ≤ dG2(i, j) and
there exists a k′ ∈ N(j) such that dG2(i, k′) < dG2(i, j).

Proof of (a).

dG2(i, j) =
d(i, j)

2

dG2(i, k) =
d(i, k) + 1

2
≥ d(i, j)

2

so dG2(i, k) ≥ dG2(i, j). �
Proof of (b).

dG2(i, j) =
d(i, j) + 1

2
≥ d(i, k)

2
= dG2(i, k)

so in general, dG2(i, k) ≤ dG2(i, j), and for the neighbor of j along the shortest path from i to j, which we
call k′, we know d(i, k′) < d(i, j). �

Claim 3. If d(i, j) is even, then ∑
k∈N(j)

dG2(i, k) ≥ deg(j)dG2(i, j)

and if d(i, j) is odd, then ∑
k∈N(j)

dG2(i, k) < deg(j)dG2(i, j)

This third claim follows directly from the first two. Additionally, if we can compute the sums here in
O(nω) time, then the overall runtime will be O(nω log n) as desired. The right expression can be computed
in O(n2) time, which will be subsumed by the O(nω) term.

Consider D, an n × n matrix where D(i, j) = dG2(i, j). We want to decide for each i, j pair whether∑
k∈N(j) dG2(i, k) < deg(j)dG2(i, j). Consider the integer matrix product DA. Note that

(D ·A)[i, j] =
∑

k∈N(j)

dG2(i, k)

so this matrix product allows us to compute the left expression.
Now we are ready to state Seidel’s Algorithm in full.

Claim 4. Seidel’s Algorithm runs in O(nω log d) time where d refers to the diameter of the graph.

Proof. The run time can be expressed as the following recurrence relation.

T (n, d) ≤ T (n,
d

2
) + O(nω)

=⇒ T (n, d) ≤ O(nω log d)

Because d ≤ n, this run time is upper bounded by O(nω log n). �

Note that Seidel’s Algorithm relies on fast integer matrix multiplicaion, which runs in O(nω), but for
which no known fast combinatorial algorithms exist. Some questions remain open whose answers could speed
up the computation of APSP in theory and in practice: Is the integer matrix multiplication step avoidable?
Are there fast combinatorial matrix multiplication algorithms over the integers?

3

Algorithm 3: Seidel(A)

if A is all 1s except the diagonal then
return A

else
Compute boolean product A2

D ← Seidel(A2 ∨A)
Compute integer product D ·A
R← 0n×n

foreach i, j ∈ V do
if DA(i, j) < deg(j)D(i, j) then

R(i, j)← 2D(i, j)− 1
else

R(i, j)← 2D(i, j)

return R

References

[1] Raimund Seidel, On the All-Pairs-Shortest-Path Problem in Unweighted Undirected Graphs, Journal of
Computer and System Sciences 51, pp. 400-403 (1995).

4

